Course Code: - CSM-6252
Course Name: - DAA and Web
Programming Lab

DAA and Web Programming Lab - 1

MASTER OF COMPUTER

APPLICATIONS (MCA)

PROGRAMME DESIGN COMMITTEE

Prof. Masood Parveez
Vice Chancellor — Chairman
MTSOU, Tripura

Prof. Abdul Wadood Siddiqui
Dean Academics
MTSOU, Tripura

Prof. C.R.K. Murty
Professor of Distance Education
IGNOU, New Delhi

Prof. Mohd. Nafees Ahmad Ansari
Director of Distance Education
Aligarh Muslim University, Aligarh

Prof. P.V. Suresh
Professor of Computer Science
IGNOU, New Delhi

Prof. V.V. Subrahmanyam
Professor of Computer Science

IGNOU, New Delhi

Prof. S. Nagakishore Bhavanam
Professor of Computer Science
Mangalayatan University, Jabalpur

Prof. Manoj Varshney
Professor of Computer Science
MTSOU, Tripura

COURSE WRITERS

Dr. Md. Amir Khusru Akhtar

Associate Professor of Computer Science
MTSOU, Tripura

CSM-6211 Web Programming

Dr. Ankur Kumar

Assistant Professor

MTSOU, Tripura

CSM-6212 Advance Cyber Security

Dr. Manish Saxena
Assistant Professor of Computer Science

MTSOU, Tripura
CSM-6213 Management Information &
system

Dr. Duvvuri B. K. Kamesh

Assistant Professor of Computer Science
MTSOU, Tripura

CSM-6214 Design & Analysis of
Algorithm

Mr. Pankaj Kumar
Assistant Professor of Computer Science

Mangalayatan University, Aligarh
CSM-6251 Data Structure using C++ &
Lab

Dr. Manoj Varshney

Associate Professor of Computer Science
MTSOU, Tripura

CSM-6252 DAA and Web Programming
Lab

COURSE EDITORS

Prof. S. Nagakishore Bhavanam
Professor of Computer Science
Mangalayatan University, Jabalpur

Prof. Jawed Wasim
Associate Professor of Computer Science
Mangalayatan University, Aligarh

Dr. Manoj Varshney
Associate Professor of Computer Science
MTSOU, Tripura

Dr. M. P. Mishra
Associate Professor of Computer Science

IGNOU, New Delhi

Dr. Akshay Kumar
Associate Professor of Computer Science
IGNOU, New Delhi

FORMAT EDITORS

Dr. Nitendra Singh
Associate Professor of English
MTSOU, Tripura

Ms. Angela Fatima Mirza
Assistant Professor of English

MTSOU, Tripura

Dr. Faizan
Assistant Professor of English
MTSOU, Tripura

Ms. Vanshika Singh
Assistant Professor of English
MTSOU, Tripura

MATERIAL PRODUCTION

1. Mr. Himanshu Saxena

2. Ms. Rainu Verma

3. Mr. Jeetendra Kumar
4. Mr. Khiresh Sharma

5. Mr. Ankur Kumar Sharma
6. Mr. Pankaj Kumar

DAA and Web Programming Lab - 2

CONTENT
Page No.

C++ Programming Lab: 5-40
Syllabus and Sessions Allocation: (10 Sessions)

Session 1: Basics of C++, data types, /O, Control Structures, etc.
Session 2: Class and Objects, function calling.

Session 3: Constructor and Destructor.

Session 4: Inheritance.

Session 5: Operator Overloading.

Session 6: Polymorphism.

Session 7: Template class and function.

Session 8: I/O and streaming.

Session 9: Exception Handling

Session 10: STL.

DAA and Web Programming Lab - 3

DAA and Web Programming Lab - 4

CSM-6252: DATA STRUCTURE USING C++
LAB

Structure
1.0 Introduction
1.1 Objectives
1.2 Lab Setup Requirement
1.3 Lab Sessions Overview
1.4 Lab Experiments
1.4.1 Lab 1: Introduction to C++
1.4.2 Lab 2: Control Structures
1.4.3 Lab 3: Functions and Recursion
1.4.4 Lab 4: Arrays and Strings
1.4.5 Lab 5: Pointers and Dynamic Memory
1.4.6 Lab 6: Classes and Objects
1.4.7 Lab 7: Operator Overloading
1.4.8 Lab 8: Inheritance and Polymorphism
1.4.9 Lab 9: Linked Lists
1.4.10 Lab 10: Stacks and Queues
1.4.11 Lab 11: Sorting and Searching Algorithms
1.5 Summary

1.6 Questions

1.0 INTRODUCTION

C++ is a powerful, high-performance programming language
widely used in software development, system programming, game

development, and real-time simulations. Its efficiency and control

DAA and Web Programming Lab - 5

over system resources make it an essential tool for professional
programmers. By learning C++, you will gain a strong foundation
in programming concepts that apply to many other languages and

development environments.

Data structures are critical components in computer science and
software engineering, as they enable efficient storage, retrieval,
and modification of data. Understanding how to implement and
utilize data structures like arrays, linked lists, stacks, queues, trees,
and graphs is fundamental to developing robust and efficient

software solutions.

1.1 OBJECTIVES

The lab sessions in this manual are structured to achieve the

following objectives:

1. Reinforce Theoretical Concepts: Apply theoretical
knowledge from lectures in a practical, hands-on

environment.

2. Develop Problem-Solving Skills: Enhance your ability to
solve complex problems by breaking them down into

manageable tasks.

3. Understand Implementation Details: Gain a deeper
understanding of how data structures are implemented and

optimized in C++.

4. Improve Programming Proficiency: Increase your
proficiency in C++ through practice and real-world

application.

DAA and Web Programming Lab - 6

1.2 LAB SETUP REQUIREMENT

Software Requirements:
e Compiler: GCC (g++), Clang, or any C++ compiler

e IDE: Visual Studio Code, Code: Blocks, CLion, or any
C++ IDE

¢ OS: Windows, Linux, or macOS
Steps to Set Up:
¢ Install a C++ compiler.

Detailed Explanation

Here is the step-by-step process to download and install Dev C++

Compiler

Step 1: Open google.com in the browser. Search for Dev C++

download as shown in the image below.

Google

o
o)

Q' devc++ download

Figure 1: Google Search

DAA and Web Programming Lab - 7

Step 2: Click on the link as shown below.

E Dev-C++
hitps:/wwnw.bloodshed.net }

Home - Dev-C++ Official Website

You can also develop with Dev-C++ directly from this USB pen drive with no installation required.
Download original Dev-C#++ 5 IDE only. Dev-C++5.0 (4.9.92)..

Dev-C++ 4.0 - Dev-Pascal - Order USB drive / CD - Free compilers list

Figure 2: Search Result

Step 3: Click on the Download button as shown in the image below.

Download original Dev-C++ 5

Supports Windows 98, NT, 2000, XP

Dev-C++ 5.0 (4.9.9.2) with Mingw/GCC 3.4.2 compiler and GDB 5.2.1 debugger (9.0
MB)

= = Download original Dev-C++ 5 IDE only

Dev-C++ 5.0(4.9.9.2), IDE only - no compiler included (2.4 MB)

Step 4: Now double-click on the downloaded file and proceed with
the installation as shown in the images below.

Installer Language X
Q Please select a language.
EIW\ v
=

Figure 3: Click on OK.

DAA and Web Programming Lab - 8

Step 5: Click on I Agree.

[&d pev-c++ 5.11 . >
License Agreement
Please review the license terms before installing Dev-C++ 5.11. G

Press Page Down to see the rest of the agreement.

Bloodshed Dev-C++ is distributed under the GNU General Public License. ~
Be sure to read it before using Dev-C++.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
75 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed. ~

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Dev-C++ 5.11.

I Agree Cancel
Step 6: Click on Next.
l&ad pev-c++ 5.1 — x
Choose Components
Choose which features of Dev-C++ 5.11 you want to install. Q

Check the components you want to install and uncheck the components you don't want to
install. Click Next to continue.

Select the type of install: Full

Or, select the optional
components you wish to
install:

Dev-C++ program files (required) ~
Icon files

TDM-GCC 4.9.2 compiler

Language files

Assodiate C and C++ files to Dev-C++

Space required: 346.8MB

Step 7: Click on Install. The image below is how it looks during
installation.

|&d pev-c++ 511 &= >
Choose Install Location
Choose the folder in which to install Dev-C++ 5.11. ﬁ

Setup will install Dev-C++ 5.11in the following folder. To install in a different folder, dick
Browse and select another folder. Click Install to start the installation.

Destination Folder

Browse...

Space required: 346.8MB
Space available: 22.2GE

= Cance

DAA and Web Programming Lab - 9

Installing

Extract

Extract:
Extract:
Extract:
Extract:
Extract:
Extract:

Ed Dev-C++ 511
Please wait while Dev-C++ 5. 11 is being installed. ﬁ

Extract: test_argparse.py

test__ future__.py
test__locale.py
test___osx_support.py
test_abc.py

test_abstract_numbers.py

test_aepack.py

: test_aifc.py
Extract:
Extract:
Extract:

test_al.py
test_anydbm.py
test_applesingle.py

Step 8: Click on Finish.

kd Dev-C++ 5.11

Completing the Dev-C++ 5.11 Setup
Wizard

Dev-C++ 5. 11 has been installed on your computer.

Click Finish to close this wizard.

Run Dev-C++ 5.11

After clicking on the finish, we will be prompted with a

configuration wizard as shown below. Now click on next.

Step 10: Click on Next

OV sWNE

-

Dev-C++ first time configuration
#include <iostream>
int main(int argc, char** argv) Bulgarian (Augaadhee) ~

std: :cout << "Hello
return @;

Select your language:

world!\ Catalan (Catala)
% 0140DIA/Chinese
Chinese (TW)
Croatian
Czech (Eeitina)
Danish
Dutch (Nederlands)
Estonian
French
Galeao

You can later change the language at Tools >>
Environment Options >> General.

P Next

DAA and Web Programming Lab - 10

Step 11: Click on Next again.

Dev-C++ first time configuration
#include <iostream>
int main(int argc, char** argv)

std::cout << "Hello world!\
return @;

OV s wWwN e

—

Select your theme:

Font: Consolas o
Color: | Classic Plus 4
lcons: New Look R

DdEEsEsc+00
EHEEO0M@EE dh @ 3]

You can later change themes at Tools >> Editor
Options >> Fonts/Colors.

® Next I

Step 12: Click on OK.

Dev-C++ first time configuration

1 #include <iostream>

3 int main(int argc, char®™* argv)
4 std::cout << "Hello world!\
5 return @;

6 -}

>

Dev-C++ has been configured successfully.

If you need help using Dev-C++, please refer to the
Dev-C++ help file in the Help menu or send the
developer a message (he doesn't mind!).

You can also download packages (like libraries or
tools) to use with Dev-C++ using WebUpdate, which
you will find in Tools menu >> Check for Packages.

| o oK]

Now the installation is completed, and the editor will be opened as

shown in the image below.

DAA and Web Programming Lab - 11

¢ Install your preferred IDE.
List of IDES —

» Visual Studio Code
» Code: Blocks

» CLion

» Eclipse

» Code Lit

+» Configure your IDE to recognize the compiler.

% Create a workspace for your lab exercises.

1.3 LAB SESSION OVERVIEW

The lab sessions in this course offer a comprehensive exploration
of C++ programming and data structures. Each session is carefully
structured to build upon the previous one, progressively advancing
from fundamental concepts to more complex topics. Students will
engage in hands-on exercises designed to reinforce theoretical
knowledge, develop problem-solving skills, and enhance
programming proficiency. The sessions cover a wide range of
topics, including basic syntax and control structures in C++,
functions, recursion, arrays, strings, pointers, object-oriented
programming principles such as classes, inheritance, and
polymorphism, as well as fundamental data structures like linked
lists, stacks, queues, trees, and graphs. Through a combination of
theoretical ~explanations, practical exercises, and guided
experimentation, students will gain a deep understanding of both
C++ programming and the implementation and application of
various data structures. The lab sessions are supplemented with a
structured lab report template, providing students with an
opportunity to document their work, results, and reflections, and
facilitating assessment based on their understanding and
proficiency demonstrated throughout the course. Overall, the lab

sessions aim to equip students with essential programming skills

DAA and Web Programming Lab - 12

and knowledge that will serve as a solid foundation for their future

studies and careers in computer science and software engineering.

1.4 LAB EXPERIMENTS

1.4.1 Lab 1: Introduction to C++

Objective: Understand the basic structure of a C++ program,

compilation, and execution.
1. Write a simple C++ program to display "Hello, World!".

Code:
#include <iostream>
using namespace std,;
int main () {

cout << "Hello, World!" << endl;

return 0;

}

Practice Question: Understand the usage of #include, main (),

and basic I/O (cin and cout).

1.4.2 Lab 2: Control Structures

Objective: Learn the use of conditional statements and loops.
2. Write a program to check if a number is even or odd.

Code Example:

#include <iostream>

using namespace std,;

DAA and Web Programming Lab - 13

int main () {
int num,;
cout << "Enter an integer: ";
cin >> num,;
if (num % 2 ==0)
cout << num << " is even." << endl;
else
cout << num << " is odd." << endl;
cout << endl;

return O;

Practice Question: Write a program to print the first 10 natural

numbers using a for loop.

Practice Question: Write a program to print this pattern-

%k % *
%k % * * *
%k * * * * %k *

1.4.3 Lab 3: Functions and Recursion

Objective: Understand functions, parameter passing,

recursion. Tasks:

1. Write a function to calculate the factorial of a number.

and

DAA and Web Programming Lab - 14

Code:
#include <iostream>
using namespace std;

int factorial (int n) {

if (n==0)
return 1;
else

return n * factorial (n - 1);

int main () {
int num,;
cout << "Enter a number: ";
cin >> num;

cout << "Factorial of " << num << " is " << factorial(num) <<

endl;

return 0;

Practice Question: Implement a recursive function for computing

the Fibonacci series up to n terms.
1.4.4 Lab 4: Arrays and Strings

Objective: Learn array manipulations and basic string operations.

1. Write a program to find the largest element in an array.

DAA and Web Programming Lab - 15

Code Example:

#include <iostream>

using namespace std;

int main () {
nt n;
cout << "Enter the number of elements: ";
cin >> n;
int arr[n]; / Declare an array of size n
cout << "Enter " << n <<" clements: ";
for (inti=0; 1 <n; i++) {

cin >> arr[i];

int max = arr[0];
for (inti=1;1<n;i++) {
if (arr[i] > max) {

max = arr[i];

cout << "Largest element is " << max << endl;

return 0;

Practice Question: Write a program to reverse a string.

DAA and Web Programming Lab - 16

1.4.5 Lab 5: Pointers and Dynamic Memory

Objective: Understand pointers, dynamic memory allocation, and

pointer arithmetic.

1. Write a program to allocate memory dynamically for an

array and find its sum.
Code Example:
#include <iostream>
using namespace std;
int main () {
nt n;
cout << "Enter the number of elements: ";
cin >> n;
// Dynamically allocate memory for the array
int* arr = new int[n];
cout << "Enter " << n << " elements: ";
for (inti=0; 1 <n; i++) {

cin >> arr[i];

int sum = 0;

for (inti=0; 1 <n;i++) {

sum += arrf[i];

DAA and Web Programming Lab - 17

cout << "Sum of the elements is " << sum << endl;
// Deallocate the memory

delete [] arr;

return 0;

}

Practice Question: Implement pointer arithmetic to traverse an

array.
1.4.6 Lab 6: Classes and Objects

Objective: Learn the concepts of object-oriented programming,

including classes and objects.

1. Create a class Rectangle with length and breadth as data

members, and methods to calculate area and perimeter.

Code Example:
#include <iostream>
using namespace std,;
class Rectangle {
private:

double length;

double breadth;
public:

// Constructor to initialize the rectangle dimensions

Rectangle (double 1, double b) {

length =1,

DAA and Web Programming Lab - 18

breadth = b;
}
// Method to calculate the area of the rectangle
double area() {

return length * breadth;
}
// Method to calculate the perimeter of the rectangle
double perimeter() {

return 2 * (length + breadth);
}
// Method to display the dimensions, area, and perimeter
void display() {

cout << "Length: " <<length << end];

cout << "Breadth: " << breadth << endl;

cout << "Area: " << area() << endl;

cout << "Perimeter: " << perimeter() << endl;

53
int main() {
double length, breadth;
cout << "Enter the length of the rectangle: ";

cin >> length;

DAA and Web Programming Lab - 19

cout << "Enter the breadth of the rectangle: ";
cin >> breadth;

// Create a Rectangle object

Rectangle rect(length, breadth);

// Display the dimensions, area, and perimeter
rect.display();

return 0;

}

Practice Question: Create a class Circle and find the area and the

Perimeter of the Circle.
1.4.7 Lab 7: Operator Overloading

Objective: Understand operator overloading in C++. Tasks:

1. Overload the + operator to add two complex numbers using

a class Complex.

Code Example:
#include <iostream>
using namespace std;
class Complex {
private:

double real;

double image;

public:

DAA and Web Programming Lab - 20

// Constructor to initialize the complex number
Complex(double r = 0.0, double i = 0.0): real(r), image(i) {}
/I Overload the + operator to add two complex numbers
Complex operator + (const Complex& other) const {

return Complex(real + other.real, image + other.image);
}
/I Method to display the complex number
void display() const {

cout <<real <<" +" <<image <<"i" <<endl;

}5
int main() {
double reall, imagl, real2, imag?2;

cout << "Enter the real and imaginary parts of the first complex

number: ";
cin >> reall >> imagl;

cout << "Enter the real and imaginary parts of the second

complex number: ";
cin >> real2 >> imag?2;
// Create two Complex objects
Complex cl(reall, imagl);

Complex c2(real2, imag2);

DAA and Web Programming Lab - 21

// Add the two complex numbers using the overloaded +

operator
Complex ¢3 =cl + c2;
// Display the result
cout << "Sum of the two complex numbers: ";
c3.display();
return O;

}

Practice Question: Overload the << operator for outputting the

complex number.
1.4.8 Lab 8: Inheritance and Polymorphism

Objective: Explore inheritance and polymorphism in C++. Tasks:

1. Implement a base class Shape and derive classes Circle

and Rectangle.
Code Example:
#include <iostream>
#include <cmath> // For M_PI
using namespace std;
// Base class Shape
class Shape {
public:

virtual double area() const =0; // Pure virtual function for area

DAA and Web Programming Lab - 22

virtual double perimeter() const = 0; // Pure virtual function for

perimeter
virtual ~Shape() {} // Virtual destructor
¥
/I Derived class Circle
class Circle: public Shape {
private:
double radius;
public:
Circle(double r): radius(r) {}
double area() const override {
return M_PI * radius * radius;
b
double perimeter() const override {
return 2 * M_PI * radius;
b
void display() const {
cout << "Circle: " << endl;
cout << "Radius: " << radius << end];
cout << "Area: " << area() << endl;

cout << "Perimeter: " << perimeter() << endl;

DAA and Web Programming Lab - 23

¥
// Derived class Rectangle
class Rectangle : public Shape {
private:
double length;
double breadth;
public:
Rectangle(double 1, double b) : length(l), breadth(b) {}
double area() const override {
return length * breadth;
}
double perimeter() const override {
return 2 * (length + breadth);
}
void display() const {
cout << "Rectangle: " << endl;
cout << "Length: " <<length << end];
cout << "Breadth: " << breadth << endl;
cout << "Area: " << area() << endl;

cout << "Perimeter: " << perimeter() << endl;

DAA and Web Programming Lab - 24

int main() {
double radius, length, breadth;
// Input and create Circle object
cout << "Enter the radius of the circle: ";
cin >> radius;
Circle circle(radius);
// Input and create a Rectangle object
cout << "Enter the length and breadth of the rectangle: ";
cin >> length >> breadth;
Rectangle rectangle(length, breadth);
// Display details of Circle
circle.display();
// Display details of Rectangle
rectangle.display();
return 0;

}

Practice Question: Demonstrate polymorphism using virtual

functions to calculate area.
1.4.9 Lab 9: Linked Lists

Objective: Implement and manipulate linked lists. Tasks:

1. Create a singly linked list and perform insertions and

deletions.

DAA and Web Programming Lab - 25

Code Example:
#include <iostream>
using namespace std;
class Node {
public:
int data;
Node* next;
Node(int data) {
this->data = data;

this->next = nullptr;

¥
class SinglyLinkedList {
private:
Node* head;
public:
SinglyLinkedList() {

head = nullptr;

// Function to insert a node at the beginning
void insertAtBeginning(int data) {

Node* newNode = new Node(data);

DAA and Web Programming Lab - 26

newNode->next = head;

head = newNode;

// Function to insert a node at the end
void insertAtEnd(int data) {
Node* newNode = new Node(data);
if (head == nullptr) {
head = newNode;
return;
}
Node* temp = head,;
while (temp->next != nullptr) {
temp = temp->next;

}

temp->next = newNode;

// Function to delete a node by value
void deleteByValue(int data) {
if (head == nullptr) {
cout << "List is empty." << end]l;

return;

DAA and Web Programming Lab - 27

if (head->data == data) {
Node* temp = head,;
head = head->next;
delete temp;
return;

}

Node* temp = head;

while (temp->next != nullptr && temp->next->data != data) {
temp = temp->next;

}

if (temp->next == nullptr) {

cout << "Node with value " << data << " not found." <<

endl;
return;
}
Node* nodeToDelete = temp->next;
temp->next = temp->next->next;
delete nodeToDelete;
h

// Function to display the list
void display() {

if (head == nullptr) {

DAA and Web Programming Lab - 28

cout << "List is empty." << endl;
return;

}

Node* temp = head;

while (temp != nullptr) {
cout << temp->data <<" ->";
temp = temp->next;

}

cout << "nullptr" << endl;

// Destructor to free the allocated memory
~SinglyLinkedList() {
Node* temp = head,;
while (temp != nullptr) {
Node* next = temp->next;
delete temp;

temp = next;

}5
int main() {

SinglyLinkedList list;

DAA and Web Programming Lab - 29

int choice, value;
while (true) {

cout << "\nMenu:\n";

cout <<"I. Insert at Beginning\n";

cout << "2, Insert at End\n";

cout << "3. Delete by Value\n";

cout << "4. Display List\n";

cout <<"5. Exit\n";

cout << "Enter your choice: ";

cin >> choice;

switch (choice) {

case I:
cout << "Enter value to insert at the beginning: ";
cin >> value;
list.insertAtBeginning(value);
break;
case 2:

cout << "Enter value to insert at the end: ";
cin >> value;
list.insertAtEnd(value);
break;

case 3:

DAA and Web Programming Lab - 30

"

cout << "Enter value to delete: ";
cin >> value;
list.deleteByValue(value);
break;

case 4:
list.display();
break;

case 5:
cout << "Exiting..." << endl;
return 0;

default:

cout << "Invalid choice. Please try again." << endl,

}

return 0;

Practice Question: Traverse the linked list and display its

elements.

1.4.10 Lab 10: Stacks and Queues

Objective: Implement stack and queue data structures using arrays

and linked lists.

1. Implement a stack with push and pop operations.

DAA and Web Programming Lab - 31

Code Example:
#include <iostream>
using namespace std;
class Node {
public:
int data;
Node* next;
Node(int data) {
this->data = data;

this->next = nullptr;

¥
class Stack {
private:
Node* top;
public:
Stack() {
top = nullptr;
}
// Function to push an element onto the stack
void push(int data) {

Node* newNode = new Node(data);

DAA and Web Programming Lab - 32

newNode->next = top;

top = newNode;
}
// Function to pop an element from the stack
int pop() {

if (top == nullptr) {

cout << "Stack underflow. Cannot pop from an empty

stack." << endl;
return -1;
}
Node* temp = top;
top = top->next;
int poppedData = temp->data;
delete temp;
return poppedData;
b
// Function to display the stack
void display() {
if (top == nullptr) {
cout << "Stack is empty." << end]l;

return;

DAA and Web Programming Lab - 33

Node* temp = top;

while (temp != nullptr) {
cout << temp->data <<" ->";
temp = temp->next;

}

cout << "nullptr" << endl;

}

// Destructor to free the allocated memory
~Stack() {
while (top != nullptr) {
Node* temp = top;
top = top->next;

delete temp;

¥
int main() {
Stack stack;
int choice, value;
while (true) {
cout << "\nMenu:\n";

cout <<"I. Push\n";

DAA and Web Programming Lab - 34

cout <<"2. Pop\n";
cout << "3. Display Stack\n";
cout << "4, Exit\n";
cout << "Enter your choice: ";
cin >> choice;
switch (choice) {
case 1:
cout << "Enter value to push: ";
cin >> value;
stack.push(value);
break;
case 2:
value = stack.pop();
if (value !=-1) {

cout << "Popped value: " << value << endl;

break;

case 3:
stack.display();
break;

case 4:

cout << "Exiting..." << end];

DAA and Web Programming Lab - 35

return 0;
default:

cout << "Invalid choice. Please try again." << endl,

return 0;

}

Practice Question: Implement a queue with enqueue and dequeue

operations.

1.4.11 Lab 11: Sorting and Searching
Algorithms
Objective: Implement common sorting and searching algorithms.
1. Implement Bubble Sort.
Code Example:
#include <iostream>
using namespace std;
void bubbleSort(int arr[], int n) {
for(inti=0;i<n-1;i++) {
// Last 1 elements are already in place
for(intj=0;j<n-i-1;j++) {

/I Swap if the element found is greater than the next

element

DAA and Web Programming Lab - 36

if (arr[j] > arr[j + 1]) {

swap(arr([j], arr[j + 1]);

}

int main() {
int arr[] = {64, 25, 12,22, 11};
int n = sizeof{(arr) / sizeof(arr[0])
cout << "Original array: ";
for (inti=0; i <n; i++) {
cout << arr[i] <<"";
}
cout << endl;
bubbleSort(arr, n);
cout << "Sorted array: ";
for (inti=0;i<n; i++) {
cout << arr[i] <<"";
}
cout << endl;

return O;

b

DAA and Web Programming Lab - 37

Practice Question:
1. Implement Binary Search.
2. Implement Insertion sort.

3. Implement Merge Sort.

1.5 SUMMARY

The C++ Programming Lab Manual is designed to provide
students with practical experience in programming concepts using
the C++ language. It covers a wide range of topics, including basic
syntax, control flow, data structures, and algorithms. Through
hands-on exercises, students will gain proficiency in C++
programming, develop problem-solving skills, and acquire a solid
understanding of fundamental data structures and algorithms. The
lab manual aims to prepare students for real-world application
development by providing practical experience in implementing

C++ programs for various scenarios and applications.

1.6 QUESTIONS

1. Write a program to find the sum of two numbers.

2. Implement a program to check whether a given number is

even or odd.
3. Write a program to find the factorial of a given number.

4. Implement a program to swap two numbers without using a

temporary variable.

DAA and Web Programming Lab - 38

5. Write a program to check if a given year is a leap year or

not.
6. Implement a stack using an array.
7. Write a program to reverse a linked list.

8. Implement a recursive function to find the nth Fibonacci

number.

9. Write a program to implement binary search in a sorted

array.

10. Implement the Depth First Search (DFS) algorithm for a
graph.

11. Write a program to find the largest element in an array.

12. Implement a function to check if a given string is a

palindrome.
References
e Bjarne Stroustrup, "The C++ Programming Language."

o E. Balagurusamy, "Object Oriented Programming with

C++,"
o Robert Lafore, "Data Structures and Algorithms in C++."

e Mark Allen Weiss, "Data Structures and Algorithm

Analysis in C++."

DAA and Web Programming Lab - 39

