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CSM–6252: DATA STRUCTURE USING C++ 
LAB 
Structure 
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1.1 Objectives 
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1.4.3 Lab 3: Functions and Recursion 

1.4.4 Lab 4: Arrays and Strings 

1.4.5 Lab 5: Pointers and Dynamic Memory 
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1.4.7 Lab 7: Operator Overloading 
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1.4.9 Lab 9: Linked Lists 
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1.5 Summary 

1.6 Questions 

 

1.0 INTRODUCTION 
 
 

C++ is a powerful, high-performance programming language 

widely used in software development, system programming, game 

development, and real-time simulations. Its efficiency and control 
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over system resources make it an essential tool for professional 

programmers. By learning C++, you will gain a strong foundation 

in programming concepts that apply to many other languages and 

development environments. 

Data structures are critical components in computer science and 

software engineering, as they enable efficient storage, retrieval, 

and modification of data. Understanding how to implement and 

utilize data structures like arrays, linked lists, stacks, queues, trees, 

and graphs is fundamental to developing robust and efficient 

software solutions. 

1.1 OBJECTIVES 
 

The lab sessions in this manual are structured to achieve the 

following objectives: 

1. Reinforce Theoretical Concepts: Apply theoretical 

knowledge from lectures in a practical, hands-on 

environment. 

2. Develop Problem-Solving Skills: Enhance your ability to 

solve complex problems by breaking them down into 

manageable tasks. 

3. Understand Implementation Details: Gain a deeper 

understanding of how data structures are implemented and 

optimized in C++. 

4. Improve Programming Proficiency: Increase your 

proficiency in C++ through practice and real-world 

application. 

 



DAA and Web Programming Lab - 7 
 

 

1.2 LAB SETUP REQUIREMENT  
 

Software Requirements: 

 Compiler: GCC (g++), Clang, or any C++ compiler 

 IDE: Visual Studio Code, Code: Blocks, CLion, or any 

C++ IDE 

 OS: Windows, Linux, or macOS 

Steps to Set Up: 

 Install a C++ compiler. 

Detailed Explanation 

Here is the step-by-step process to download and install Dev C++ 

Compiler 

Step 1: Open google.com in the browser. Search for Dev C++ 

download as shown in the image below. 

 
 

Figure 1: Google Search 
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Step 2: Click on the link as shown below. 

 
Figure 2:  Search Result 

 

Step 3: Click on the Download button as shown in the image below. 

 
 
Step 4: Now double-click on the downloaded file and proceed with 
the installation as shown in the images below.  
 

 
Figure 3: Click on OK. 
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Step 5: Click on I Agree. 

 
 

 
 
Step 6: Click on Next. 
 
 

 
 
Step 7: Click on Install. The image below is how it looks during 
installation. 
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Step 8: Click on Finish. 
 

 
After clicking on the finish, we will be prompted with a 

configuration wizard as shown below. Now click on next. 

Step 10: Click on Next 
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Step 11: Click on Next again. 
 

 
 
Step 12: Click on OK. 

 

 
Now the installation is completed, and the editor will be opened as 

shown in the image below. 
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 Install your preferred IDE. 

List of IDES –  

 Visual Studio Code 
 Code: Blocks 
 CLion 
 Eclipse 
 Code Lit 

 Configure your IDE to recognize the compiler. 

 Create a workspace for your lab exercises. 

1.3 LAB SESSION OVERVIEW 
 

The lab sessions in this course offer a comprehensive exploration 

of C++ programming and data structures. Each session is carefully 

structured to build upon the previous one, progressively advancing 

from fundamental concepts to more complex topics. Students will 

engage in hands-on exercises designed to reinforce theoretical 

knowledge, develop problem-solving skills, and enhance 

programming proficiency. The sessions cover a wide range of 

topics, including basic syntax and control structures in C++, 

functions, recursion, arrays, strings, pointers, object-oriented 

programming principles such as classes, inheritance, and 

polymorphism, as well as fundamental data structures like linked 

lists, stacks, queues, trees, and graphs. Through a combination of 

theoretical explanations, practical exercises, and guided 

experimentation, students will gain a deep understanding of both 

C++ programming and the implementation and application of 

various data structures. The lab sessions are supplemented with a 

structured lab report template, providing students with an 

opportunity to document their work, results, and reflections, and 

facilitating assessment based on their understanding and 

proficiency demonstrated throughout the course. Overall, the lab 

sessions aim to equip students with essential programming skills 
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and knowledge that will serve as a solid foundation for their future 

studies and careers in computer science and software engineering. 

1.4 LAB EXPERIMENTS 
 

1.4.1 Lab 1: Introduction to C++ 

Objective: Understand the basic structure of a C++ program, 

compilation, and execution. 

1. Write a simple C++ program to display "Hello, World!". 

Code: 

#include <iostream> 

using namespace std; 

int main () { 

    cout << "Hello, World!" << endl; 

    return 0; 

} 

Practice Question:  Understand the usage of #include, main (), 

and basic I/O (cin and cout). 

1.4.2 Lab 2: Control Structures 

Objective: Learn the use of conditional statements and loops.  

2. Write a program to check if a number is even or odd. 

Code Example: 

#include <iostream> 

using namespace std; 
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int main () { 

    int num; 

    cout << "Enter an integer: "; 

    cin >> num; 

    if (num % 2 == 0) 

        cout << num << " is even." << endl; 

    else 

        cout << num << " is odd." << endl; 

    cout << endl; 

    return 0; 

} 

Practice Question:  Write a program to print the first 10 natural 

numbers using a for loop. 

Practice Question: Write a program to print this pattern- 

   * 

* * * 

* * * * * 

* * * * * * * 

1.4.3 Lab 3: Functions and Recursion 

Objective: Understand functions, parameter passing, and 

recursion. Tasks: 

1. Write a function to calculate the factorial of a number. 
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Code: 

#include <iostream> 

using namespace std; 

int factorial (int n) { 

    if (n == 0) 

        return 1; 

    else 

        return n * factorial (n - 1); 

} 

int main () { 

    int num; 

    cout << "Enter a number: "; 

    cin >> num; 

    cout << "Factorial of " << num << " is " << factorial(num) << 

endl; 

    return 0; 

} 

Practice Question: Implement a recursive function for computing 

the Fibonacci series up to n terms. 

1.4.4 Lab 4: Arrays and Strings 

Objective: Learn array manipulations and basic string operations. 

1. Write a program to find the largest element in an array. 
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Code Example: 

#include <iostream> 

using namespace std; 

int main () { 

    int n; 

    cout << "Enter the number of elements: "; 

    cin >> n; 

    int arr[n]; // Declare an array of size n 

    cout << "Enter " << n << " elements: "; 

    for (int i = 0; i < n; i++) { 

        cin >> arr[i]; 

    } 

    int max = arr[0]; 

    for (int i = 1; i < n; i++) { 

        if (arr[i] > max) { 

            max = arr[i]; 

        } 

    } 

    cout << "Largest element is " << max << endl; 

    return 0; 

} 

Practice Question: Write a program to reverse a string. 
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1.4.5 Lab 5: Pointers and Dynamic Memory 

Objective: Understand pointers, dynamic memory allocation, and 

pointer arithmetic.  

1. Write a program to allocate memory dynamically for an 

array and find its sum. 

Code Example: 

#include <iostream> 

using namespace std; 

int main () { 

    int n; 

    cout << "Enter the number of elements: "; 

    cin >> n; 

    // Dynamically allocate memory for the array 

    int* arr = new int[n]; 

    cout << "Enter " << n << " elements: "; 

    for (int i = 0; i < n; i++) { 

        cin >> arr[i]; 

    } 

    int sum = 0; 

    for (int i = 0; i < n; i++) { 

        sum += arr[i]; 

    } 



DAA and Web Programming Lab - 18 
 

    cout << "Sum of the elements is " << sum << endl; 

    // Deallocate the memory 

    delete [] arr; 

    return 0; 

} 

Practice Question: Implement pointer arithmetic to traverse an 

array. 

1.4.6 Lab 6: Classes and Objects 

Objective: Learn the concepts of object-oriented programming, 

including classes and objects.  

1. Create a class Rectangle with length and breadth as data 

members, and methods to calculate area and perimeter. 

Code Example: 

#include <iostream> 

using namespace std; 

class Rectangle { 

private: 

    double length; 

    double breadth; 

public: 

    // Constructor to initialize the rectangle dimensions 

    Rectangle (double l, double b) { 

        length = l; 
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        breadth = b; 

    } 

    // Method to calculate the area of the rectangle 

    double area() { 

        return length * breadth; 

    } 

    // Method to calculate the perimeter of the rectangle 

    double perimeter() { 

        return 2 * (length + breadth); 

    } 

    // Method to display the dimensions, area, and perimeter 

    void display() { 

        cout << "Length: " << length << endl; 

        cout << "Breadth: " << breadth << endl; 

        cout << "Area: " << area() << endl; 

        cout << "Perimeter: " << perimeter() << endl; 

    } 

}; 

int main() { 

    double length, breadth; 

    cout << "Enter the length of the rectangle: "; 

    cin >> length; 
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    cout << "Enter the breadth of the rectangle: "; 

    cin >> breadth; 

    // Create a Rectangle object 

    Rectangle rect(length, breadth); 

    // Display the dimensions, area, and perimeter 

    rect.display(); 

    return 0; 

} 

Practice Question: Create a class Circle and find the area and the 

Perimeter of the Circle. 

1.4.7 Lab 7: Operator Overloading 

Objective: Understand operator overloading in C++. Tasks: 

1. Overload the + operator to add two complex numbers using 

a class Complex. 

Code Example: 

#include <iostream> 

using namespace std; 

class Complex { 

private: 

    double real; 

    double image; 

public: 
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    // Constructor to initialize the complex number 

    Complex(double r = 0.0, double i = 0.0): real(r), image(i) {} 

    // Overload the + operator to add two complex numbers 

    Complex operator + (const Complex& other) const { 

        return Complex(real + other.real, image + other.image); 

    } 

    // Method to display the complex number 

    void display() const { 

        cout << real << " + " << image << "i" << endl; 

    } 

}; 

int main() { 

    double real1, imag1, real2, imag2; 

    cout << "Enter the real and imaginary parts of the first complex 

number: "; 

    cin >> real1 >> imag1; 

    cout << "Enter the real and imaginary parts of the second 

complex number: "; 

    cin >> real2 >> imag2; 

    // Create two Complex objects 

    Complex c1(real1, imag1); 

    Complex c2(real2, imag2); 
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    // Add the two complex numbers using the overloaded + 

operator 

    Complex c3 = c1 + c2; 

    // Display the result 

    cout << "Sum of the two complex numbers: "; 

    c3.display(); 

    return 0; 

}  

Practice Question: Overload the << operator for outputting the 

complex number. 

1.4.8 Lab 8: Inheritance and Polymorphism 

Objective: Explore inheritance and polymorphism in C++. Tasks: 

1. Implement a base class Shape and derive classes Circle 

and Rectangle. 

Code Example: 

#include <iostream> 

#include <cmath> // For M_PI 

using namespace std; 

// Base class Shape 

class Shape { 

public: 

    virtual double area() const = 0;    // Pure virtual function for area 
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    virtual double perimeter() const = 0; // Pure virtual function for 

perimeter 

    virtual ~Shape() {} // Virtual destructor 

}; 

// Derived class Circle 

class Circle: public Shape { 

private: 

    double radius; 

public: 

    Circle(double r): radius(r) {} 

    double area() const override { 

        return M_PI * radius * radius; 

    } 

    double perimeter() const override { 

        return 2 * M_PI * radius; 

    } 

    void display() const { 

        cout << "Circle: " << endl; 

        cout << "Radius: " << radius << endl; 

        cout << "Area: " << area() << endl; 

        cout << "Perimeter: " << perimeter() << endl; 

    } 
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}; 

// Derived class Rectangle 

class Rectangle : public Shape { 

private: 

    double length; 

    double breadth; 

public: 

    Rectangle(double l, double b) : length(l), breadth(b) {} 

    double area() const override { 

        return length * breadth; 

    } 

    double perimeter() const override { 

        return 2 * (length + breadth); 

    } 

    void display() const { 

        cout << "Rectangle: " << endl; 

        cout << "Length: " << length << endl; 

        cout << "Breadth: " << breadth << endl; 

        cout << "Area: " << area() << endl; 

        cout << "Perimeter: " << perimeter() << endl; 

    } 

}; 
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int main() { 

    double radius, length, breadth; 

    // Input and create Circle object 

    cout << "Enter the radius of the circle: "; 

    cin >> radius; 

    Circle circle(radius); 

    // Input and create a Rectangle object 

    cout << "Enter the length and breadth of the rectangle: "; 

    cin >> length >> breadth; 

    Rectangle rectangle(length, breadth); 

    // Display details of Circle 

    circle.display(); 

    // Display details of Rectangle 

    rectangle.display(); 

    return 0; 

} 

Practice Question: Demonstrate polymorphism using virtual 

functions to calculate area. 

1.4.9 Lab 9: Linked Lists 

Objective: Implement and manipulate linked lists. Tasks: 

1. Create a singly linked list and perform insertions and 

deletions. 
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Code Example: 

#include <iostream> 

using namespace std; 

class Node { 

public: 

    int data; 

    Node* next; 

        Node(int data) { 

        this->data = data; 

        this->next = nullptr; 

    } 

}; 

class SinglyLinkedList { 

private: 

    Node* head; 

    public: 

    SinglyLinkedList() { 

        head = nullptr; 

    } 

        // Function to insert a node at the beginning 

    void insertAtBeginning(int data) { 

        Node* newNode = new Node(data); 
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        newNode->next = head; 

        head = newNode; 

    } 

        // Function to insert a node at the end 

    void insertAtEnd(int data) { 

        Node* newNode = new Node(data); 

        if (head == nullptr) { 

            head = newNode; 

            return; 

        } 

        Node* temp = head; 

        while (temp->next != nullptr) { 

            temp = temp->next; 

        } 

        temp->next = newNode; 

    } 

        // Function to delete a node by value 

    void deleteByValue(int data) { 

        if (head == nullptr) { 

            cout << "List is empty." << endl; 

            return; 

        } 
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        if (head->data == data) { 

            Node* temp = head; 

            head = head->next; 

            delete temp; 

            return; 

        } 

        Node* temp = head; 

        while (temp->next != nullptr && temp->next->data != data) { 

            temp = temp->next; 

        } 

        if (temp->next == nullptr) { 

            cout << "Node with value " << data << " not found." << 

endl; 

            return; 

        } 

        Node* nodeToDelete = temp->next; 

        temp->next = temp->next->next; 

        delete nodeToDelete; 

    } 

        // Function to display the list 

    void display() { 

        if (head == nullptr) { 
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            cout << "List is empty." << endl; 

            return; 

        } 

        Node* temp = head; 

        while (temp != nullptr) { 

            cout << temp->data << " -> "; 

            temp = temp->next; 

        } 

        cout << "nullptr" << endl; 

    } 

        // Destructor to free the allocated memory 

    ~SinglyLinkedList() { 

        Node* temp = head; 

        while (temp != nullptr) { 

            Node* next = temp->next; 

            delete temp; 

            temp = next; 

        } 

    } 

}; 

int main() { 

    SinglyLinkedList list; 
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    int choice, value; 

    while (true) { 

        cout << "\nMenu:\n"; 

        cout << "1. Insert at Beginning\n"; 

        cout << "2. Insert at End\n"; 

        cout << "3. Delete by Value\n"; 

        cout << "4. Display List\n"; 

        cout << "5. Exit\n"; 

        cout << "Enter your choice: "; 

        cin >> choice; 

        switch (choice) { 

            case 1: 

                cout << "Enter value to insert at the beginning: "; 

                cin >> value; 

                list.insertAtBeginning(value); 

                break; 

            case 2: 

                cout << "Enter value to insert at the end: "; 

                cin >> value; 

                list.insertAtEnd(value); 

                break; 

            case 3: 
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                cout << "Enter value to delete: "; 

                cin >> value; 

                list.deleteByValue(value); 

                break; 

            case 4: 

                list.display(); 

                break; 

            case 5: 

                cout << "Exiting..." << endl; 

                return 0; 

            default: 

                cout << "Invalid choice. Please try again." << endl; 

        } 

    } 

    return 0; 

} 

Practice Question: Traverse the linked list and display its 

elements. 

1.4.10 Lab 10: Stacks and Queues 

Objective: Implement stack and queue data structures using arrays 

and linked lists.  

1. Implement a stack with push and pop operations. 
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Code Example: 

#include <iostream> 

using namespace std; 

class Node { 

public: 

    int data; 

    Node* next; 

        Node(int data) { 

        this->data = data; 

        this->next = nullptr; 

    } 

}; 

class Stack { 

private: 

    Node* top; 

public: 

    Stack() { 

        top = nullptr; 

    } 

    // Function to push an element onto the stack 

    void push(int data) { 

        Node* newNode = new Node(data); 
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        newNode->next = top; 

        top = newNode; 

    } 

    // Function to pop an element from the stack 

    int pop() { 

        if (top == nullptr) { 

            cout << "Stack underflow. Cannot pop from an empty 

stack." << endl; 

            return -1; 

        } 

        Node* temp = top; 

        top = top->next; 

        int poppedData = temp->data; 

        delete temp; 

        return poppedData; 

    } 

    // Function to display the stack 

    void display() { 

        if (top == nullptr) { 

            cout << "Stack is empty." << endl; 

            return; 

        } 
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        Node* temp = top; 

        while (temp != nullptr) { 

            cout << temp->data << " -> "; 

            temp = temp->next; 

        } 

        cout << "nullptr" << endl; 

    } 

    // Destructor to free the allocated memory 

    ~Stack() { 

        while (top != nullptr) { 

            Node* temp = top; 

            top = top->next; 

            delete temp; 

        } 

    } 

}; 

int main() { 

    Stack stack; 

    int choice, value; 

    while (true) { 

        cout << "\nMenu:\n"; 

        cout << "1. Push\n"; 
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        cout << "2. Pop\n"; 

        cout << "3. Display Stack\n"; 

        cout << "4. Exit\n"; 

        cout << "Enter your choice: "; 

        cin >> choice; 

        switch (choice) { 

            case 1: 

                cout << "Enter value to push: "; 

                cin >> value; 

                stack.push(value); 

                break; 

            case 2: 

                value = stack.pop(); 

                if (value != -1) { 

                    cout << "Popped value: " << value << endl; 

                } 

                break; 

            case 3: 

                stack.display(); 

                break; 

            case 4: 

                cout << "Exiting..." << endl; 
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                return 0; 

            default: 

                cout << "Invalid choice. Please try again." << endl; 

        } 

    } 

    return 0; 

} 

Practice Question: Implement a queue with enqueue and dequeue 

operations. 

1.4.11 Lab 11: Sorting and Searching 

Algorithms 

Objective: Implement common sorting and searching algorithms.  

1. Implement Bubble Sort. 

Code Example: 

#include <iostream> 

using namespace std; 

void bubbleSort(int arr[], int n) { 

    for (int i = 0; i < n - 1; i++) { 

        // Last i elements are already in place 

        for (int j = 0; j < n - i - 1; j++) { 

            // Swap if the element found is greater than the next 

element 
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            if (arr[j] > arr[j + 1]) { 

                swap(arr[j], arr[j + 1]); 

            } 

        } 

    } 

} 

int main() { 

    int arr[] = {64, 25, 12, 22, 11}; 

    int n = sizeof(arr) / sizeof(arr[0]); 

        cout << "Original array: "; 

    for (int i = 0; i < n; i++) { 

        cout << arr[i] << " "; 

    } 

    cout << endl; 

        bubbleSort(arr, n); 

    cout << "Sorted array: "; 

    for (int i = 0; i < n; i++) { 

        cout << arr[i] << " "; 

    } 

    cout << endl; 

    return 0; 

} 
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Practice Question:  

1. Implement Binary Search. 

2. Implement Insertion sort. 

3. Implement Merge Sort. 

1.5 SUMMARY 
 

The C++ Programming Lab Manual is designed to provide 

students with practical experience in programming concepts using 

the C++ language. It covers a wide range of topics, including basic 

syntax, control flow, data structures, and algorithms. Through 

hands-on exercises, students will gain proficiency in C++ 

programming, develop problem-solving skills, and acquire a solid 

understanding of fundamental data structures and algorithms. The 

lab manual aims to prepare students for real-world application 

development by providing practical experience in implementing 

C++ programs for various scenarios and applications. 

 

1.6 QUESTIONS 
 

1. Write a program to find the sum of two numbers. 

2. Implement a program to check whether a given number is 

even or odd. 

3. Write a program to find the factorial of a given number. 

4. Implement a program to swap two numbers without using a 

temporary variable. 
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5. Write a program to check if a given year is a leap year or 

not. 

6. Implement a stack using an array. 

7. Write a program to reverse a linked list. 

8. Implement a recursive function to find the nth Fibonacci 

number. 

9. Write a program to implement binary search in a sorted 

array. 

10. Implement the Depth First Search (DFS) algorithm for a 

graph. 

11. Write a program to find the largest element in an array. 

12. Implement a function to check if a given string is a 

palindrome. 
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