
Data Structure using C++ & Lab -1

Course Code: CSM - 6215

Course Name: Data Structure using

C++

Data Structure using C++ & Lab -2

MASTER OF COMPUTER APPLICATIONS (MCA)

PROGRAMME DESIGN COMMITTEE

Prof. Masood Parveez
Vice Chancellor – Chairman
MTSOU, Tripura

Prof. Abdul Wadood Siddiqui
Dean Academics
MTSOU, Tripura

Prof. C.R.K. Murty
Professor of Distance Education
IGNOU, New Delhi

Prof. Mohd. Nafees Ahmad
Ansari Director of Distance
Education Aligarh Muslim
University, Aligarh

Prof. P.V. Suresh
Professor of Computer Science
IGNOU, New Delhi

Prof. V.V. Subrahmanyam
Professor of Computer Science
IGNOU, New Delhi

Prof. S. Nagakishore
Bhavanam Professor of
Computer Science
Mangalayatan University,
Jabalpur

Prof. Manoj
Varshney Professor
of Computer Science
MTSOU, Tripura

COURSE WRITERS

Dr. Md. Amir Khusru Akhtar
Associate Professor of
Computer Science MTSOU,
Tripura
CSM-6211 Web Programming

Dr. Ankur Kumar Assistant
Professor MTSOU, Tripura
CSM-6212 Advance
Cyber Security Dr.
Manish Saxena

Assistant Professor of Computer
Science MTSOU, Tripura
CSM-6213 Management
Information & system

Dr. Duvvuri B. K. Kamesh
Assistant Professor of Computer
Science MTSOU, Tripura
CSM-6214 Design & Analysis of
Algorithm Mr. Pankaj Kumar
Assistant Professor of Computer

Science Mangalayatan
University, Aligarh
CSM-6251 Data Structure using
C++ & Lab

Dr. Manoj Varshney
Associate Professor of Computer
Science MTSOU, Tripura
ENM-6252 DAA and Web
Programming Lab

COURSE EDITORS

Prof. S. Nagakishore Bhavanam
Professor of Computer Science
Mangalayatan University,
Jabalpur

Prof. Jawed Wasim
Associate Professor of Computer

Science Mangalayatan
University, Aligarh
Dr. Manoj Varshney
Associate Professor of Computer
Science MTSOU, Tripura

Dr. M. P. Mishra

Associate Professor of Computer
Science
IGNOU, New Delhi

Dr. Akshay Kumar
Associate Professor of Computer
Science IGNOU, New Delhi

FORMAT EDITORS

Dr. Nitendra Singh
Associate Professor of English
MTSOU, Tripura

Ms. Angela Fatima Mirza
Assistant Professor of English
MTSOU, Tripura
Dr. Faizan

Assistant Professor of English
MTSOU, Tripura
Ms. Vanshika Singh
Assistant Professor of English
MTSOU, Tripura

MATERIAL PRODUCTION

1. Mr. Himanshu Saxena
2. Ms. Rainu Verma

3. Mr. Jeetendra Kumar
4. Mr. Khiresh Sharma

5. Mr. Ankur Kumar Sharma
6. Mr. Pankaj Kum

Data Structure using C++ & Lab -3

CONTENT

Page No.

Block I: Introduction to Algorithms and Data Structures 5-95

Unit 1: Analysis of Algorithms: Mathematical Background, Process of Analysis, Calculation of Storage
Complexity, Calculation of Run Time Complexity.
Unit 2: Arrays, Pointers and Structures, Arrays and Pointers, Sparse Matrices, Structures, Polynomials,
Representation of Arrays, Row Major Representation, Column Major Representation, Applications.
Unit 3: Lists, Abstract Data Type-List, Array Implementation of Lists, Linked Lists-Implementation,
Doubly Linked Lists-Implementation, Circularly Linked Lists-Implementation, Skip lists, Applications.

Block II: Stacks, Queues and Trees 96-214

Unit 4: Stacks, Abstract Data Type-Stack, Implementation of Stack, Implementation of Stack using
Arrays, Implementation of Stack using Linked Lists, Algorithmic Implementation of Multiple Stacks,
Applications.
Unit 5: Queues, Abstract Data Type-Queue, Implementation of Queue, Array Implementation, Linked
List Implementation, Implementation of Multiple Queues, Implementation of Circular Queues, Array
Implementation.
Unit 6: Linked List Implementation of a circular queue, Priority Queues, Implementation of
DEQUEUE, Array Implementation of a dequeue, Linked List Implementation of a dequeue.
Unit 7: Trees: Abstract Data Type-Tree, Implementation of Tree, Tree Traversals, Binary Trees,
Implementation of Binary Tree.
Unit 8: Binary Tree Traversals, Recursive Implementation of Binary Tree Traversals, Non Recursive
Implementations of Binary Tree Traversals, Applications.

Block III: Graph Algorithms and Searching Techniques 215-336
Unit 9: Advanced Trees: Binary Search Trees, Traversing a Binary Search Trees, Insertion of a node
into a Binary Search Tree, Deletion of a node from a Binary Search Tree, AVL Trees: Insertion of a
node into an AVL Tree, Deletion of a node from and AVL Tree, AVL tree rotations, Applications of
AVL Trees.
Unit 10: B-Trees: Operations on B-Trees, Applications of B-Trees, Splay Trees, Splaying steps,
Splaying Algorithm, Red-Black trees, Properties of a Red-Black tree, AA-Trees.
Unit 11: Graphs: Definitions, Shortest Path Algorithms, Dijkstra’s Algorithm, Graphs with Negative
Edge costs, Acyclic Graphs, All Pairs Shortest Paths Algorithm.
Unit 12: Minimum cost Spanning Trees, Kruskal’s Algorithm, Prims’s Algorithm, Applications,
Breadth First Search, Depth First Search, Finding Strongly Connected Components.
Unit 13: Searching and Sorting Techniques: Linear Search, Binary Search, Applications, Internal
Sorting, Insertion Sort, Bubble Sort, Quick Sort, 2-way Merge Sot, Heap Sort, Sorting on Several Keys,
External Sorting Algorithms.

Block IV: File Structures and Advanced Data Structures 338-424
Unit 14: Hashing: Introduction, Index Mapping, Collision Handling, Double Hashing, Load Factor and
Rehashing.
Unit 15: Advanced Data Structures: Scapegoat Trees, Tries, Binary Tries, X-Fast Tries, Y-Fast Tries.
Unit 16: File Structures: Terminology, File Organisation, Sequential Files, Structure, Operations,
Disadvantages, Areas of use, Direct File Organisation, Indexed Sequential File Organisation.

Data Structure using C++ & Lab -4

Data Structure using C++ & Lab -5

BLOCK I: INTRODUCTION TO
ALGORITHMS AND DATA
STRUCTURES

UNIT – 1: ANALYSIS OF
ALGORITHMS
Structure

1.0 Introduction

1.1 Objectives

1.2 Mathematical Background

1.3 Process of Analysis

1.4 Calculation of Storage Complexity

1.5 Calculation of Run Time Complexity

1.6 Conclusion

1.7 Questions and Answers

1.8 References

1.0 INTRODUCTION

In the realm of computer science, the efficiency and effectiveness

of algorithms are paramount to solving complex problems and

handling large datasets. Understanding and analyzing algorithms is

essential for developing optimal solutions that perform well under

various conditions. This unit delves into the fundamental aspects of

algorithm analysis, providing a comprehensive overview of the

mathematical tools and techniques necessary for evaluating the

performance and resource requirements of algorithms.

We will begin by exploring the mathematical background needed

for algorithm analysis, including key concepts such as Big O, Big

Theta, and Big Omega notations, logarithms, exponential

Data Structure using C++ & Lab -6

functions, and summation formulas. These foundational elements

are crucial for accurately describing and comparing the efficiency

of different algorithms.

Next, we will examine the process of analyzing algorithms, which

involves understanding the problem statement, writing

pseudocode, identifying basic operations, and establishing input

sizes. This systematic approach ensures that algorithms are

evaluated consistently and accurately. Additionally, we will cover

the calculation of storage complexity and run time complexity,

providing detailed methods for assessing an algorithm's space and

time requirements. By the end of this unit, you will have a solid

understanding of how to analyze and optimize algorithms for

practical applications.

1.1 OBJECTIVES

After completing this unit, you will be able to understand,

 Comprehend the significance and application of Big O, Big

Theta, and Big Omega notations.

 Identify the basic operations that dictate the performance of

an algorithm.

 Calculate the storage complexity for various types of data

structures and algorithms, including simple and recursive

algorithms, as well as dynamic data structures.

 Analyze the run time complexity of algorithms, using

mathematical tools to determine their efficiency.

 Recognize the trade-offs between time and space

complexity in algorithm design.

Data Structure using C++ & Lab -7

1.2 MATHEMATICAL BACKGROUND

Understanding the mathematical foundations is essential for

analyzing the efficiency of algorithms. This involves mastering

concepts such as Big O, Big Theta, and Big Omega notations,

which are used to describe the upper, exact, and lower bounds of

an algorithm's complexity, respectively. These notations provide a

standardized way to express the growth rates of functions, helping

to compare the performance of different algorithms. Additionally,

logarithms and exponential functions are crucial for understanding

the behavior of algorithms that deal with exponentially growing

data sets, such as those involving tree structures or divide-and-

conquer strategies.

Summation formulas play a vital role in evaluating the total cost of

an algorithm, particularly when dealing with loops and iterative

processes. For example, understanding arithmetic and geometric

series can simplify the calculation of the total number of operations

in nested loops or recursive calls. Recurrence relations, on the

other hand, are mathematical equations that define sequences

based on previous terms, and solving these relations is key to

analyzing recursive algorithms. Methods like the Master Theorem

provide powerful tools to directly solve these recurrences, offering

insights into the time complexity of algorithms like Merge Sort and

Quick Sort.

Finally, proof techniques such as induction, contradiction, and

direct proofs are indispensable for validating algorithm correctness

and analyzing their behavior rigorously. Induction, for example, is

often used to prove that an algorithm works for all possible input

sizes, while contradiction helps in disproving incorrect

Data Structure using C++ & Lab -8

assumptions about an algorithm's performance. Direct proofs and

counterexamples further aid in establishing or refuting claims

about the properties and efficiencies of algorithms. Together, these

mathematical tools form the backbone of algorithm analysis,

enabling a deeper and more precise understanding of how

algorithms perform and scale.

Basic Mathematics for Algorithm Analysis

Big O, Big Theta, and Big Omega Notations: Big O, Big Theta,

and Big Omega notations are mathematical tools used to describe

the time and space complexity of algorithms. Big O notation (O)

provides an upper bound on the growth rate of an algorithm,

signifying the worst-case scenario. It helps in understanding the

maximum amount of time or space an algorithm may require as the

input size grows. For example, an algorithm with a time

complexity of O(n^2) will have its execution time increase

quadratically with the input size. Big Theta (Θ) notation, on the

other hand, gives a tight bound, describing the exact asymptotic

behavior of an algorithm, representing both the upper and lower

bounds. Big Omega (Ω) notation provides a lower bound,

representing the best-case scenario or the minimum amount of time

or space required.

Example:

Big O (O) Notation Example: Consider the function f(n) =

3n^2 + 2n + 1. To find the Big O notation, we focus on the

term with the highest growth rate as n increases. Here, it's

n^2. Thus, f(n) is O(n^2).

Big Theta (Θ) Notation Example: If an algorithm's

running time is given by f(n) = 5n log n + 4n, the dominant

term is 5n log n. Therefore, the algorithm's time complexity

is Θ (n log n).

Data Structure using C++ & Lab -9

Big Omega (Ω) Notation Example: For the function g(n)

= 2n + 1, in the best case, the term 2n dominates. Thus,

g(n) is Ω(n).

Logarithms and Exponential Functions

Logarithms and exponential functions are fundamental in

analyzing the efficiency of algorithms, especially those that divide

problems into smaller subproblems. Logarithmic functions, such as

log(n), are prevalent in algorithms that halve their input size at

each step, such as binary search. These functions grow slowly

compared to polynomial or exponential functions, indicating

highly efficient algorithms. Exponential functions, like 2^n, are

associated with algorithms that exhibit rapid growth rates, often

found in brute-force approaches or recursive algorithms solving

combinatorial problems. Understanding these functions is crucial

for evaluating the scalability and performance of different

algorithmic approaches.

Example:

Logarithmic Function Example: The binary search algorithm

repeatedly divides the search interval in half. Its time complexity is

O (log n), meaning the number of comparisons grows

logarithmically with the input size.

Exponential Function Example: The recursive algorithm for

solving the Tower of Hanoi problem has a time complexity of

O(2n). As the number of disks increases, the number of moves

required grows exponentially.

Summation Formulas

Summation formulas are used to calculate the total cost of

algorithms that involve iterative or repetitive operations. For

Data Structure using C++ & Lab -10

example, the sum of the first n natural numbers, given by (n(n +

1))/2, helps in analyzing loops that run linearly. Geometric series

and other summation formulas are also useful in evaluating the

cost of algorithms with nested loops or recursive calls. These

formulas simplify the process of determining the total number of

operations, providing a clear picture of an algorithm's complexity.

Example:

Sum of First n Natural Numbers: The formula for the sum of the

first n natural numbers is (n (n + 1))/2. For example, if n = 10, the

sum is (10 * 11)/2 = 55.

Geometric Series Example: Consider the geometric series 1 + r +

r^2 + ... + r^(n-1). The sum of this series is (1 - r^n) / (1 - r) for r ≠

1. If r = 2 and n = 4, the sum is (1 - 2^4) / (1 - 2) = 15.

Recurrence Relations and Their Solutions

Recurrence relations are equations that define sequences based on

previous terms, commonly used to describe the time complexity of

recursive algorithms. Solving these relations is key to

understanding the behavior of algorithms like Merge Sort and

Quick Sort. Techniques such as the substitution method, iteration

method, and the Master Theorem are employed to solve recurrence

relations. The Master Theorem, in particular, provides a

straightforward way to determine the time complexity of divide-

and-conquer algorithms, offering insights into their efficiency and

scalability. Understanding recurrence relations and their solutions

is essential for analyzing and optimizing recursive algorithms.

Data Structure using C++ & Lab -11

Example:

Proof Techniques

Induction

Mathematical Induction is a method of mathematical proof

typically used to establish a given statement for all natural

numbers. It consists of two steps: the base case and the inductive

step.

Base Case: Prove that the statement holds for the initial value

(usually n = 1).

Inductive Step: Assume the statement holds for some arbitrary

natural number k, and then prove it holds for k + 1.

Example: Prove that the sum of the first n natural numbers is (n (n

+ 1))/2.

Base Case: For n = 1, the left side is 1 and the right side is (1(1 +

1))/2 = 1. Thus, the statement holds for n = 1.

Inductive Step: Assume the statement holds for n = k, i.e., 1 + 2 +

... + k = k(k+1)/2. We need to prove it holds for n = k + 1.

Data Structure using C++ & Lab -12

Thus, the statement holds for k + 1, completing the induction

proof.

Contradiction

Proof by Contradiction involves assuming the negation of the

statement to be proved and showing that this assumption leads to a

contradiction, thereby proving the original statement to be true.

Example: Prove that √2 is irrational.

Assume the Opposite: Suppose √2 is rational. Then it can be

expressed as a/b where a and b are integers with no common

factors and b ≠ 0.

Square Both Sides: .

Parity Argument: This implies a^2 is even, so a must be even. Let

a = 2k for some integer k. Substituting in, we get (2k)2 = 2b2, thus

4k2 = 2b2, and b2 = 2k2. Hence, b2 is even, and b must also be even.

Contradiction: This implies that both a and b are even,

contradicting the initial assumption that a and b have no common

factors. Thus, √2 is irrational.

Direct Proofs and Counterexamples

Direct Proofs involve straightforwardly showing that a statement

is true using definitions, theorems, and logical deductions.

Data Structure using C++ & Lab -13

Example: Prove that the sum of two even numbers is even.

Let a and b be two even numbers. By definition of even numbers,

there exist integers mmm and n such that a = 2m and b = 2.

Sum: a + b = 2m + 2n =2 (m + n).

Conclusion: Since m + n is an integer, a + b is even.

Counterexamples are used to disprove a statement by providing a

specific example that shows the statement is false.

Example: Disprove the statement "All prime numbers are odd."

Counterexample: The number 2 is prime and even.

Conclusion: Therefore, the statement is false.

These proof techniques form the backbone of mathematical

reasoning, providing systematic approaches to validating theorems

and propositions in algorithm analysis and other areas of

mathematics.

1.3 PROCESS OF ANALYSIS

The process of analyzing algorithms is a critical aspect of

computer science and involves a systematic approach to

understanding the efficiency and effectiveness of algorithms. This

process typically includes several key steps: defining the problem,

determining the computational model, designing the algorithm, and

analyzing its performance.

Defining the Problem: The first step in algorithm analysis is to

clearly define the problem that the algorithm aims to solve. This

involves specifying the input, the desired output, and any

constraints or requirements. Understanding the problem space

helps in selecting or designing an appropriate algorithm and sets

the stage for further analysis.

Data Structure using C++ & Lab -14

Determining the Computational Model: Next, it is essential to

choose a computational model that best represents the environment

in which the algorithm will run. Common models include the

Random Access Machine (RAM) model, which assumes a

sequential execution of instructions with uniform cost, and the

Turing machine model, which is more theoretical and abstract. The

choice of model affects how the algorithm's performance is

measured and understood.

Designing the Algorithm: Once the problem and model are

defined, the next step is to design the algorithm. This involves

creating a step-by-step procedure to solve the problem. The design

process may include selecting appropriate data structures, breaking

down the problem into smaller sub-problems, and determining the

logical flow of operations.

Analyzing Performance: The final and most crucial step is

analyzing the performance of the algorithm. This typically

involves two main aspects: time complexity and space complexity.

Time complexity measures the amount of time an algorithm takes

to complete as a function of the size of its input, often expressed

using Big O notation. Space complexity, on the other hand,

measures the amount of memory the algorithm uses. Both aspects

are critical for understanding the feasibility and efficiency of the

algorithm, especially for large input sizes. Additionally, average-

case, best-case, and worst-case scenarios are considered to provide

a comprehensive performance profile.

Steps in Analyzing an Algorithm with Examples

Understanding the Problem Statement: Consider the problem of

finding the maximum element in an array of integers. The problem

statement can be defined as follows: Given an array of nnn

Data Structure using C++ & Lab -15

integers, find the largest integer in the array. The input is the array

of integers, and the output is the maximum integer within that

array.

Writing Pseudocode: Pseudocode for finding the maximum

element in an array might look like this:

This pseudocode describes the algorithm in a clear, step-by-step

manner, making it easier to understand and analyze.

Identifying Basic Operations: In this example, the basic

operations include:

Initialization of maxElement with the first element of the array.

Comparison of each element in the array with maxElement.

Assignment of a new value to maxElement if a larger element is

found.

These operations are fundamental to the algorithm’s logic and are

performed repeatedly as the algorithm processes the input array.

Establishing Input Size: The input size, n, in this problem is the

number of elements in the array. If the array has 10 elements, n is

10. This input size will help us understand how the algorithm’s

performance scales with larger inputs.

Time Complexity Analysis: To analyze the time complexity, we

count the number of basic operations performed. In the worst-case

scenario, the algorithm will compare each element in the array to

maxElement, resulting in n − 1 comparisons and n−1n-1n−1

potential assignments.

Data Structure using C++ & Lab -16

For nnn elements:

The initialization of maxElement takes O (1) time.

The for-loop iterates n times, performing a comparison and

possibly an assignment each iteration, which takes O (n) time.

Thus, the total time complexity is O (n).

Space Complexity Analysis: The space complexity of this

algorithm is O (1) because it uses a constant amount of extra space,

regardless of the input size n.

Example 2: Binary Search Algorithm

Understanding the Problem Statement: Consider the problem of

searching for a specific integer in a sorted array of integers using

binary search. The input is a sorted array of n integers and the

integer to search for, and the output is the index of the integer in

the array or -1 if it is not found.

Writing Pseudocode: Pseudocode for binary search:

Identifying Basic Operations: The basic operations include:

Initialization of left and right pointers.

Calculation of the middle index mid.

Comparison of the target value with the middle element of the

array.

Adjusting the left or right pointers based on the comparison result.

Data Structure using C++ & Lab -17

Establishing Input Size: The input size, n, is the number of

elements in the array.

Time Complexity Analysis: Binary search reduces the search

space by half each iteration. The number of iterations required to

search an array of size n is log2 (n). Therefore, the time complexity

is O (log n).

Space Complexity Analysis: The space complexity of binary

search is O(1) because it uses only a constant amount of extra

space for the pointers and variables, regardless of the input size n.

These examples illustrate the steps involved in analyzing

algorithms, from understanding the problem statement to

determining time and space complexity, using clear and structured

pseudocode.

Types of Analysis

Worst-case Analysis: This type of analysis focuses on the

maximum time or space that an algorithm can take for any input of

size nnn. It provides an upper bound on the running time and is

particularly useful for guaranteeing performance in real-time

systems or critical applications. For instance, in the case of

quicksort, the worst-case occurs when the pivot selection is poor,

leading to O(n2) time complexity. Knowing the worst-case

performance helps in understanding the algorithm's efficiency

under the least favorable conditions.

Average-case Analysis: Average-case analysis calculates the

expected time or space an algorithm will take, considering all

possible inputs. This type of analysis is more realistic than worst-

case analysis because it provides an average performance measure,

which can be more representative of typical use cases. For

example, in quicksort, the average-case time complexity is O (n

Data Structure using C++ & Lab -18

log n), assuming that the pivots are chosen randomly. This

analysis often involves probabilistic reasoning and is useful for

understanding the algorithm's performance on average inputs.

Best-case Analysis: Best-case analysis evaluates the minimum

time or space an algorithm can take. It provides a lower bound on

the running time and is useful for understanding the most efficient

scenario. However, it is less practical for assessing an algorithm's

performance in general. For instance, in insertion sort, the best-

case occurs when the array is already sorted, resulting in O(n) time

complexity. This analysis shows how well the algorithm performs

with the most favorable input but doesn't account for average or

worst-case scenarios.

Examples

Worst-case Analysis Example: Consider the insertion sort

algorithm. In the worst-case scenario, the input array is in reverse

order. Here, each insertion operation will have to shift all the

previously sorted elements, leading to a time complexity of O(n2).

Average-case Analysis Example: For binary search, if the target

element is equally likely to be at any position in a sorted array, the

average-case time complexity remains O (log n). This is because

each step reduces the problem size by half, and the expected

number of comparisons averages out over all possible positions.

Best-case Analysis Example: For linear search, if the target

element is at the first position of the array, the algorithm will only

require one comparison, resulting in a best-case time complexity of

O (1).

Data Structure using C++ & Lab -19

Algorithm Design Techniques

Divide and Conquer: The divide and conquer technique involves

breaking a problem into smaller subproblems, solving each

subproblem independently, and then combining their solutions to

solve the original problem. This approach is highly effective for

problems that can be divided into similar smaller problems. Classic

examples include merge sort and quicksort. In merge sort, the array

is recursively divided into halves until the base case of a single-

element array is reached. These small arrays are then merged in a

sorted manner, resulting in a sorted array. The time complexity of

merge sort is O (n log n), making it efficient for large datasets.

Greedy Algorithms: Greedy algorithms build up a solution piece

by piece, always choosing the next piece that offers the most

immediate benefit or is locally optimal. This approach is used

when a problem can be solved by making a series of choices, each

of which looks the best at the moment. However, greedy

algorithms do not always guarantee a globally optimal solution. A

well-known example is the Kruskal's algorithm for finding the

minimum spanning tree in a graph. At each step, it selects the

smallest edge that does not form a cycle, ensuring that the

spanning tree is built efficiently. The time complexity depends on

the graph representation but is generally O (E log E), where E is

the number of edges.

Dynamic Programming: Dynamic programming (DP) is a

method for solving complex problems by breaking them down into

simpler subproblems. It is applicable when the problem can be

divided into overlapping subproblems that can be solved

independently. DP stores the results of subproblems to avoid

redundant computations. This technique is used in problems like

the Fibonacci sequence, where the value of each element is the

Data Structure using C++ & Lab -20

sum of the two preceding ones. Instead of recalculating Fibonacci

numbers, DP stores intermediate results, reducing the time

complexity from exponential to O (n). Another example is the

Knapsack problem, where DP is used to find the maximum value

that can be obtained without exceeding the weight limit.

Backtracking: Backtracking is an algorithmic technique for

solving problems incrementally, one piece at a time, and removing

those solutions that fail to satisfy the problem's constraints at any

point of time. It is often used for constraint satisfaction problems,

such as puzzles, crosswords, and combinatorial problems. The

classic example is the N-Queens problem, where the goal is to

place N queens on an N × N chessboard such that no two queens

threaten each other. The algorithm tries to place a queen in a row

and then recursively attempts to place queens in subsequent rows,

backtracking whenever it encounters a conflict. While the worst-

case time complexity is exponential, O (N!), backtracking can be

very efficient with appropriate pruning.

1.4 CALCULATION OF STORAGE
COMPLEXITY

Calculation of storage complexity, also known as space

complexity, is a fundamental aspect of algorithm analysis that

evaluates how much memory or storage space an algorithm

requires to execute based on the input size. It is crucial for

determining the efficiency and scalability of algorithms,

particularly in scenarios where memory resources are limited or

costly.

Data Structure using C++ & Lab -21

Understanding Storage Complexity

Definition: Storage complexity measures the amount of memory

space required by an algorithm to solve a problem as a function of

the input size n. It includes all types of memory used during

execution, such as variables, data structures (arrays, lists, trees),

and auxiliary space required by recursion stacks or temporary

variables.

Types of Space Complexity:

Constant Space (O (1)): Algorithms that use a constant amount of

memory regardless of the input size. Examples include algorithms

that operate on a fixed number of variables or use a fixed-size data

structure.

Linear Space (O(n)): Algorithms where the space requirement

grows linearly with the size of the input. Typically, this occurs

when the algorithm uses data structures whose size scales directly

with n, such as arrays or linked lists.

Logarithmic Space (O (log n): Algorithms that reduce the space

usage logarithmically as the input size increases. This is common

in divide and conquer algorithms or algorithms that use balanced

data structures like binary search trees.

Polynomial Space (O(nk)): Algorithms where space complexity

grows polynomially with the input size. These algorithms are less

efficient in terms of space and can become impractical for large

inputs.

Techniques for Calculating Storage Complexity

Auxiliary Space: Identify all additional space requirements

beyond the input size n. This includes variables, data structures,

and recursive function call stacks.

Data Structure using C++ & Lab -22

Input Size Impact: Determine how storage requirements change

relative to different input sizes. Analyze worst-case, average-case,

and best-case scenarios to understand the full spectrum of memory

usage.

Analytical Tools: Use mathematical analysis, such as asymptotic

notation (Big O notation), to express and compare the growth rate

of space complexity concerning input size.

Implementation-Specific Considerations: Consider

implementation details like system-specific memory allocation and

overheads, especially in lower-level programming languages.

Practical Example

Consider the space complexity of a merge sort algorithm. Merge

sort typically operates with a space complexity of O (n) due to its

requirement to temporarily store input elements in auxiliary arrays

during the merging phase. This linear space usage makes merge

sort efficient in terms of memory compared to other sorting

algorithms like quicksort, which may require O (log n) additional

space due to recursive call stacks.

Memory Usage in Algorithms

Memory usage in algorithms revolves around managing various

data types effectively to optimize space utilization. This involves

understanding both primitive and composite data types, which are

crucial for storing and manipulating data efficiently during

algorithm execution.

Data Structure using C++ & Lab -23

Primitive Data Types

Primitive data types are fundamental building blocks in

programming languages that represent basic values. These include:

Integer: Represents whole numbers (e.g., int in C++, Java).

Floating Point: Represents decimal numbers with fractional parts

(e.g., float, double).

Boolean: Represents true/false values (e.g., bool).

Character: Represents single characters (e.g., char).

These data types typically have fixed sizes depending on the

programming language and system architecture. For instance, an

int might be 4 bytes in size in many programming languages.

Composite Data Types

Composite data types combine primitive data types to create more

complex structures for storing and organizing data. Key examples

include:

Arrays: A collection of elements stored in contiguous memory

locations, accessed by indexing.

Lists: Linear data structures where elements are linked by pointers

or references.

Trees: Hierarchical structures composed of nodes, with each node

having references to child nodes.

Graphs: Non-linear data structures with nodes (vertices) and edges

connecting these nodes.

Memory Usage Considerations

Arrays: Use contiguous memory, making them efficient for direct

access via indexing but limiting in dynamic resizing.

Lists: Linked lists dynamically allocate memory per element,

allowing flexibility in size but incurring overhead due to pointers.

Data Structure using C++ & Lab -24

Trees: Memory usage varies based on the type (e.g., binary trees,

AVL trees). Trees balance between efficient storage and retrieval

operations.

Graphs: Storage varies based on the representation (e.g.,

adjacency list, adjacency matrix). Each representation offers trade-

offs between space and operations efficiency.

Efficient Memory Management

Efficient memory management in algorithms involves:

Optimal Data Structures: Choosing the right data structure based

on the operations required and memory constraints.

Memory Allocation: Using appropriate allocation techniques (e.g.,

static vs. dynamic allocation) to minimize wastage and

fragmentation.

Garbage Collection: In languages with automatic memory

management, ensuring timely release of unused memory.

Example Scenario

Consider an algorithm that computes the sum of elements in an

array:

In this example:

Primitive: int total is used to accumulate the sum.

Composite: int arr[] represents an array storing multiple integers.

Examples of Storage Complexity Calculation

Calculating storage complexity involves understanding how much

memory an algorithm or data structure requires based on its

Data Structure using C++ & Lab -25

operations and data handling. Here are examples of how storage

complexity is calculated for different scenarios:

Calculating Storage for Simple Algorithms

Consider a simple algorithm that computes the factorial of a

number n:

Storage Calculation:

Primitive Data Types: The function uses int for the parameter and

the return value.

Space for int n: Typically 4 bytes (assuming a 32-bit integer).

Space for the return value (int): 4 bytes.

Recursive Call Stack: Each recursive call adds to the stack

memory.

For factorial(n), there will be n recursive calls.

Assuming each call uses 8 bytes for function call overhead and

local variables (on a typical 64-bit system).

Total Storage:

Fixed Memory: Around 8 bytes for n and the return value.

Stack Memory: Approximately 8 * n bytes for the recursive calls.

Calculating Storage for Recursive Algorithms

Consider the Fibonacci sequence computed recursively:

Data Structure using C++ & Lab -26

Storage Calculation:

Primitive Data Types: Uses int for the parameter and the return

value.

Space for int n: 4 bytes.

Space for the return value (int): 4 bytes.

Recursive Call Stack: Similar to factorial, Fibonacci also has n

recursive calls.

Each call uses 8 bytes for function call overhead and local

variables.

Total Storage:

Fixed Memory: Around 8 bytes for n and the return value.

Stack Memory: Approximately 8 * n bytes for the recursive calls.

Storage Complexity in Dynamic Data Structures

Consider a dynamic data structure like a linked list with n nodes:

Storage Calculation:

Node Structure: Each Node structure contains an int and a pointer

(Node*).

Size of int data: 4 bytes.

Size of Node* next: 8 bytes (assuming a 64-bit system).

Heap Memory: Each new Node allocates memory dynamically.

Total memory depends on the number of nodes (n).

Data Structure using C++ & Lab -27

Total Storage:

Fixed Memory: Minimal fixed memory for variables like head

and function parameters.

Heap Memory: Approximately (4 + 8) * n bytes for data and next

pointers across n nodes.

1.5 CALCULATION OF RUN TIME
COMPLEXITY

Calculating the runtime complexity of an algorithm involves

analyzing how its execution time increases with respect to the

input size. This analysis is crucial for understanding the efficiency

of algorithms and making informed decisions about their

applicability in different scenarios. Here’s how the calculation of

runtime complexity is typically approached:

Steps in Calculating Runtime Complexity

Identify Basic Operations:

Determine the fundamental operations that contribute most

significantly to the execution time. For example, in sorting

algorithms, comparisons and swaps are often primary operations.

Establish Input Size:

Define the parameter that represents the size of the input data. For

sorting algorithms, this could be the number of elements n.

Count Operations:

Analyze how many times the identified basic operations are

executed as a function of the input size n. This step often involves

Data Structure using C++ & Lab -28

considering different cases: best-case, average-case, and worst-

case scenarios.

Express Complexity:

Use Big O notation to express the asymptotic upper bound of the

algorithm's runtime complexity in terms of n. This notation

provides a concise way to describe how the algorithm's

performance scales with input size.

Examples of Calculating Runtime Complexity

Example 1: Linear Search

Basic Operation: Comparison (arr[i] == key).

Input Size: n, where arr is an array of size n.

Operations Count: In the worst case, the loop executes n times.

Runtime Complexity: O(n), as the algorithm checks each element

in the array once in the worst case.

Example 2: Bubble Sort

Data Structure using C++ & Lab -29

Basic Operations: Comparisons (arr[j] > arr[j+1]) and Swaps.

Input Size: n, where arr is an array of size n.

Operations Count: In the worst case, bubble sort performs n-1

passes over the array, with n-i-1 comparisons in the i-th pass.

Runtime Complexity: O(n^2), as the algorithm performs

quadratic time operations in the worst case due to nested loops.

Importance of Runtime Complexity Calculation

Understanding runtime complexity helps in:

Algorithm Selection: Choosing the most efficient algorithm for a

given problem size.

Performance Prediction: Estimating how an algorithm will

perform as the input size grows.

Optimization: Identifying opportunities for improving algorithm

efficiency through algorithmic design or data structure selection.

1.6 CONCLUSION

In this unit, we delved into the foundational aspects of algorithm

analysis, emphasizing the importance of understanding

mathematical concepts such as Big O, Big Theta, and Big Omega

notations. These notations are critical tools for describing the

efficiency of algorithms and predicting their behavior as input

sizes grow. We also explored logarithms, exponential functions,

summation formulas, and recurrence relations, which are essential

for analyzing and solving problems related to algorithm

performance.

Data Structure using C++ & Lab -30

We examined the process of analyzing algorithms, starting with a

clear understanding of the problem statement and progressing

through writing pseudocode, identifying basic operations, and

establishing input sizes. This systematic approach helps in

accurately assessing an algorithm's efficiency and potential

bottlenecks. Furthermore, we discussed the different types of

analysis—worst-case, average-case, and best-case scenarios—

highlighting their significance in practical applications.

Lastly, we covered the calculation of storage and run time

complexity, which are crucial for evaluating an algorithm's

resource requirements. By understanding these concepts, we can

make informed decisions about algorithm design, balancing the

trade-offs between time and space efficiency. This unit has

equipped you with the essential tools and knowledge to analyze

algorithms methodically, optimize their performance, and apply

these principles to solve real-world problems effectively.

1.7 QUESTIONS AND ANSWERS

1. What is the significance of Big O notation in algorithm

analysis?

Answer: Big O notation is crucial in algorithm analysis because it

provides a high-level understanding of an algorithm's efficiency in

terms of time and space complexity. It describes the upper bound

of an algorithm's running time, helping to predict its performance

and scalability as the input size increases. This notation allows for

the comparison of different algorithms' efficiencies, facilitating the

selection of the most suitable algorithm for a given problem.

Data Structure using C++ & Lab -31

2. Explain the difference between worst-case, average-case, and

best-case analyses.

Answer: Worst-case analysis evaluates an algorithm's performance

under the most unfavorable conditions, providing an upper bound

on its running time. Average-case analysis considers the

algorithm's performance across all possible inputs, giving a more

realistic expectation of its efficiency. Best-case analysis examines

the algorithm's performance under the most favorable conditions,

offering a lower bound on its running time. Each type of analysis

provides different insights into the algorithm's behavior and helps

in understanding its efficiency comprehensively.

3. What are recurrence relations and why are they important

in algorithm analysis?

Answer: Recurrence relations are equations that define a sequence

of values based on previous terms. They are essential in algorithm

analysis for expressing the running time of recursive algorithms.

By solving these relations, we can determine the time complexity

of the algorithm. This is particularly useful for divide-and-conquer

algorithms, where the problem is broken down into smaller

subproblems, and the running time depends on the solutions of

these subproblems.

4. How do you calculate the storage complexity of an

algorithm?

Answer: The storage complexity of an algorithm is calculated by

analyzing the amount of memory it requires during execution. This

involves considering the memory used by variables, data

structures, and any additional space needed for recursion or

dynamic allocation. For simple algorithms, this can be

straightforward, but for more complex algorithms involving

dynamic data structures or recursion, a detailed breakdown of

Data Structure using C++ & Lab -32

memory usage is necessary to determine the total storage

complexity.

5. Why is it important to establish the input size when

analyzing an algorithm?

Answer: Establishing the input size is crucial because it directly

influences the algorithm's running time and space requirements.

The efficiency of an algorithm is often expressed as a function of

the input size, allowing us to understand how the algorithm scales

with larger inputs. Accurate input size estimation ensures that the

analysis reflects real-world performance and helps in identifying

potential inefficiencies and bottlenecks.

6. What are the basic steps in the process of analyzing an

algorithm?

Answer: The basic steps in analyzing an algorithm include:

Understanding the Problem Statement: Clearly define the

problem and its requirements.

Writing Pseudocode: Develop a high-level representation of the

algorithm to understand its flow and logic.

Identifying Basic Operations: Determine the fundamental

operations that significantly impact the running time.

Establishing Input Size: Define the variable representing the size

of the input, which will be used in the complexity analysis.

Analyzing Complexity: Calculate the time and space complexity

based on the identified operations and input size.

Data Structure using C++ & Lab -33

1.8 REFERENCES

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.

(2009). Introduction to Algorithms (3rd ed.). MIT Press.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.).

Addison-Wesley Professional.

Weiss, M. A. (2012). Data Structures and Algorithm Analysis in

C++ (4th ed.). Addison-Wesley.

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data

Structures and Algorithms. Addison-Wesley.

Knuth, D. E. (1997). The Art of Computer Programming, Volume

1: Fundamental Algorithms (3rd ed.). Addison-Wesley.

Dasgupta, S., Papadimitriou, C., & Vazirani, U. (2006).

Algorithms. McGraw-Hill Education.

Data Structure using C++ & Lab -34

UNIT – 2: ARRAYS AND POINTERS IN
C++
Structure

2.0 Introduction

2.1 Objectives

2.2 Arrays

2.3 Pointers

2.4 Sparse Matrices:

2.5 Polynomials:

2.6 Representation of Arrays:

2.7 Applications of Arrays and Pointers

2.8 Conclusion

2.9 Questions and Answers

2.10 References

2.0 INTRODUCTION

In the realm of computer science and programming, understanding

fundamental data structures like arrays and pointers forms the

bedrock of efficient algorithm design and application development.

These concepts not only facilitate storage and manipulation of data

but also play crucial roles in optimizing memory usage and

enhancing computational efficiency. This unit delves into these

foundational concepts, exploring their definitions, operations,

representations, and practical applications in various domains.

Arrays, as a cornerstone of data structures, provide a systematic

way to store homogeneous elements in contiguous memory

locations. They offer quick access to elements using indices and

Data Structure using C++ & Lab -35

support a wide range of operations, making them versatile for

applications ranging from simple list storage to complex numerical

computations. Pointers, on the other hand, enhance the flexibility

of memory management by allowing dynamic memory allocation

and manipulation of addresses, enabling efficient data structures

like linked lists and trees.

Sparse matrices and polynomials extend the concept of arrays into

specialized domains. Sparse matrices, characterized by a majority

of zero elements, employ efficient representation techniques such

as triplet and compressed formats to conserve memory and

accelerate operations like addition and multiplication. Polynomials,

represented using arrays or linked lists, demonstrate how basic data

structures can be adapted for mathematical computations,

showcasing operations like addition and multiplication that are

pivotal in scientific computing and engineering applications.

Throughout this unit, we explore not only the theoretical

underpinnings of these data structures but also their real-world

applications. Understanding their representations in memory and

their computational advantages and disadvantages equips us with

the knowledge to leverage arrays, pointers, sparse matrices, and

polynomials effectively in solving practical problems across

diverse fields.

2.1 OBJECTIVES

After completing this unit, you will be able to understand,

Learn how to declare, initialize, and access elements in arrays.

Understand the concept of multidimensional arrays and their

practical uses.

Grasp the basics of pointers, including declaration, initialization,

and dereferencing.

Data Structure using C++ & Lab -36

Discover how arrays and pointers are used in fundamental data

structures like linked lists, stacks, and queues.

Develop problem-solving abilities by applying arrays and pointers

to solve programming challenges.

2.2 ARRAYS

An array in C++ is a structured data type that stores a fixed-size

sequential collection of elements of the same type. It provides a

contiguous memory location to store multiple values under a single

name, allowing efficient access to each element using an index.

Arrays are declared by specifying the data type of the elements

they will hold and the number of elements, which must be known

at compile time. Elements in an array are accessed using zero-

based indexing, where the first element is at index 0 and the last

element is at index size - 1. Arrays facilitate efficient storage and

retrieval of data, making them essential for tasks that involve

managing and manipulating collections of homogeneous data

elements in C++ programs.

Declaration of Arrays:

In C++, an array is declared by specifying the data type of its

elements followed by the array name and the size of the array

enclosed in square brackets ([]). The syntax for declaring an array

is:

datatype arrayName[arraySize];

Here, datatype specifies the type of elements the array will hold

(e.g., int, double, char), arrayName is the identifier used to refer to

the array, and arraySize is the number of elements in the array. The

size of the array must be a constant expression or a literal value

known at compile time.

Data Structure using C++ & Lab -37

For example, to declare an array of integers named myArray with 5

elements:

 int myArray[5];

This declaration reserves space in memory to store 5 integers

contiguously.

Initialization of Arrays:

Arrays in C++ can be initialized at the time of declaration or later

during the program execution. Initialization assigns initial values

to the elements of the array. There are several ways to initialize

arrays:

Initialization at Declaration:

int myArray[5] = {1, 2, 3, 4, 5};

This initializes an array myArray with 5 elements {1, 2, 3, 4, 5}.

Partial Initialization:

int myArray[5] = {1, 2, 3};

This initializes the first three elements of myArray as {1, 2, 3} and

sets the remaining elements to zero (0 for numeric types).

Empty Initialization:

int myArray[5] = {};

This initializes all elements of myArray to zero (0).

Initialization using Iteration:

int myArray[5];

for (int i = 0; i < 5; ++i)

{myArray[i] = i + 1; }

This initializes myArray with values {1, 2, 3, 4, 5} using a loop.

Data Structure using C++ & Lab -38

Accessing Elements of Arrays:

In C++, elements of an array are accessed using zero-based

indexing. Once an array is declared and initialized, you can access

individual elements by specifying the index within square brackets

([]). The syntax is:

arrayName[index]

Here, arrayName is the name of the array, and index is the position

of the element you want to access. Indexing starts from 0 for the

first element and goes up to arraySize - 1 for the last element.

For example, consider an array of integers myArray:

int myArray[5] = {10, 20, 30, 40, 50};

To access elements of myArray:

int firstElement = myArray[0]; // Accessing the first element

(10)

int thirdElement = myArray[2]; // Accessing the third element

(30)

You can also modify array elements using the same indexing

syntax:

myArray[1] = 25; // Changing the value of the second element

to 25

Multidimensional Arrays:

A multidimensional array in C++ is an array that contains more

than one dimension, allowing data to be stored in a tabular form.

The most common multidimensional array is the 2D array, but C++

supports arrays with more dimensions as well.

Data Structure using C++ & Lab -39

Declaration of Multidimensional Arrays:

To declare a multidimensional array, you specify the data type of

its elements followed by the array name and the sizes of each

dimension enclosed in square brackets ([]). The syntax for a 2D

array is:

datatype arrayName[rowSize][colSize];

Here, rowSize specifies the number of rows, and colSize specifies

the number of columns.

For example, a 2D array matrix with 3 rows and 4 columns of

integers can be declared as:

cpp

Copy code

int matrix[3][4];

Initialization of Multidimensional Arrays:

Multidimensional arrays can be initialized similarly to 1D arrays,

using nested braces {} to enclose the elements:

Accessing Elements of Multidimensional Arrays:

Elements in a 2D array are accessed using two indices: one for the

row and one for the column:

int element = matrix[rowIndex][colIndex];

Here, rowIndex specifies the row number (starting from 0), and

colIndex specifies the column number (also starting from 0).

Data Structure using C++ & Lab -40

For example, to access the element at the second row and third

column of matrix:

int value = matrix [1][2]; // Accessing element at second row,

third column (value 7)

Example 1: Simple Array Operations

 Output:

Data Structure using C++ & Lab -41

Example 2: Multidimensional Array Operations

Output:

2.3 POINTERS

Pointers in C++ are variables that store memory addresses rather

than values directly. They provide a way to directly access and

Data Structure using C++ & Lab -42

manipulate memory locations, enabling efficient dynamic memory

allocation and management.

In C++, every variable is stored in a specific memory location with

a unique address. Pointers allow us to store and manipulate these

addresses as values. They are declared using the asterisk (*)

symbol before the variable name, indicating that the variable is a

pointer. For example, int* ptr; declares a pointer ptr that can hold

the address of an integer variable.

One of the fundamental operations with pointers is dereferencing,

which is done using the asterisk (*) operator. Dereferencing a

pointer retrieves the value stored at the memory address it points

to. For instance, if ptr points to an integer variable num, *ptr

accesses the value of num. This capability makes pointers powerful

for indirect access to data, especially useful in data structures and

dynamic memory allocation scenarios where memory addresses

are manipulated directly.

Pointers are extensively used in C++ for tasks like passing

parameters to functions by reference, dynamic memory allocation

with new and delete operators, and implementing complex data

structures such as linked lists and trees. While powerful, pointers

require careful handling to avoid common pitfalls like

dereferencing null pointers or accessing memory out of bounds,

which can lead to runtime errors like segmentation faults. Mastery

of pointers is essential for C++ programmers to fully utilize the

language's capabilities for memory management and efficient data

manipulation.

Data Structure using C++ & Lab -43

Declaration of Pointers:

In C++, pointers are declared using the asterisk (*) symbol before

the pointer variable name. The syntax for declaring a pointer to a

specific data type is:

datatype *pointerName;

Here, datatype specifies the type of data that the pointer will point

to (e.g., int, double, char), and pointerName is the name of the

pointer variable.

For example, to declare a pointer to an integer (int):

int *ptr; // Declares a pointer to an integer

The pointer ptr can now hold the memory address of an integer

variable.

Pointer Arithmetic Operations:

Pointer arithmetic allows you to perform arithmetic operations on

pointers to manipulate memory addresses. This is particularly

useful when iterating through arrays or dynamically allocated

memory blocks.

Incrementing Pointers:

Incrementing a pointer moves it to point to the next memory

location of its data type. The increment operation depends on the

size of the data type the pointer is pointing to.

Data Structure using C++ & Lab -44

In this example, ptr++ increments the pointer ptr to point to the

next integer in the array arr.

Decrementing Pointers:

Decrementing a pointer moves it to point to the previous memory

location of its data type.

Here, ptr-- decrements the pointer ptr to point to the previous

integer in the array arr.

Pointer arithmetic also allows addition and subtraction of integers

to/from pointers, which moves the pointer by a certain number of

elements, scaled by the size of the data type it points to. Care must

be taken with pointer arithmetic to ensure that pointers remain

within valid memory bounds to avoid undefined behavior.

Pointer Indirection (Dereferencing):

Pointer indirection, also known as dereferencing, refers to the

process of accessing the value stored at the memory address held

by a pointer. It is denoted by the asterisk (*) operator placed before

the pointer variable name. Dereferencing a pointer allows you to

manipulate the data stored in the memory location pointed to by

the pointer.

Data Structure using C++ & Lab -45

In this example, *ptr = 20; assigns the value 20 to the memory

location pointed to by ptr, effectively updating the value of num.

Null Pointers and Void Pointers:

Null Pointers: A null pointer is a pointer that does not point to any

memory location. It is initialized explicitly to a null value (nullptr)

or implicitly when not initialized at all. Null pointers are often used

to indicate that a pointer does not currently point to a valid object

or memory location.

int *ptr = nullptr; // Initializing ptr as a null pointer

Void Pointers: A void pointer (or void*) is a special type of

pointer that can point to objects of any data type. It is used when

the specific type of data pointed to is not known at compile time or

when dealing with functions that accept pointers to any type.

However, you cannot directly dereference a void pointer without

first casting it to a specific pointer type.

Data Structure using C++ & Lab -46

Pointers and Arrays (Relationship between Pointers and

Arrays):

In C++, arrays and pointers are closely related concepts due to the

way arrays are implemented. An array name can be used as a

pointer to its first element. When an array name is used in an

expression, it is automatically converted to a pointer to the first

element of the array.

In this example, ptr is initialized to point to arr[0], the first element

of the array arr. Using pointer arithmetic (ptr + i), you can access

successive elements of the array. Thus, arrays and pointers are

interchangeable in many contexts, making pointers an essential

tool for efficiently manipulating arrays in C++.

2.4 SPARSE MATRICES

Sparse matrices are matrices where the majority of elements are

zero. In contrast, dense matrices have mostly non-zero elements.

The sparsity of a matrix refers to the proportion of zero elements to

the total number of elements. Sparse matrices are commonly

encountered in various fields, including scientific computing, data

mining, and machine learning, where they help optimize storage

and computation.

Data Structure using C++ & Lab -47

Representation Techniques:

Triplet Representation (COO - Coordinate Format):

In this representation, each non-zero element is stored with its row

and column indices and its value.

Example: If a matrix M has non-zero elements at (0, 1), (1, 2), and

(2, 0), it would be represented as:

Pros: Simple and easy to understand. Suitable for matrices with

irregular non-zero patterns.

Cons: Requires additional space for storing row and column

indices.

Compressed Sparse Row (CSR) Format:

In CSR format, the matrix is represented using three arrays:

Values array: Contains non-zero elements of the matrix in row-

major order.

Column indices array: Stores the column indices corresponding

to each non-zero element in the values array.

Row pointers array: Indicates the start index in the values array

for each row.

Example: For a matrix with rows [0, 0, 2, 3] and column indices

[1, 3, 1, 2], CSR format would be:

Data Structure using C++ & Lab -48

Pros: Efficient for row-wise operations like addition and

multiplication.

Cons: More complex to construct and maintain compared to COO

format.

Operations on Sparse Matrices:

Addition:

Add two sparse matrices by adding corresponding non-zero

elements.

Example: Adding two sparse matrices A and B involves adding

elements at corresponding positions where both matrices have non-

zero elements.

Multiplication:

Multiply two sparse matrices using appropriate algorithms such as

the traditional algorithm or the Strassen algorithm.

Example: Multiplying two sparse matrices A and B involves

multiplying rows of A with columns of B, taking into account zero

elements to optimize computation.

2.5 POLYNOMIALS

Polynomials are mathematical expressions consisting of variables

and coefficients raised to non-negative integer powers. They can

be represented using arrays or linked lists, with each element

storing a coefficient and an exponent.

Data Structure using C++ & Lab -49

Array Representation:

In this representation, an array stores coefficient where each index

corresponds to the exponent of the variable.

Example: The polynomial 3x3 + 2x2 + x + 5 can be represented as

an array [5, 1, 2, 3], where index 0 corresponds to the constant

term, index 1 to the linear term, and so on.

Linked List Representation:

Using a linked list, each node contains a coefficient and an

exponent.

Example: The polynomial 3x3 + 2x2 + x + 5 can be represented as a

linked list:

Operations on Polynomials:

Addition:

Add two polynomials by combining like terms (terms with the

same exponent).

Example: Adding (3x2+2x+1)(3x^2 + 2x + 1)(3x2+2x+1) and

(4x2+3x−2)(4x^2 + 3x - 2)(4x2+3x−2) results in 7x2+5x−17x^2 +

5x - 17x2+5x−1.

Multiplication:

Multiply two polynomials using distributive property and

combining like terms.

Example: Multiplying (3x+2)(3x + 2)(3x+2) and (4x−1)(4x -

1)(4x−1) results in 12x2+5x−212x^2 + 5x - 212x2+5x−2.

Applications of Polynomials:

Polynomials find applications in various computational problems,

including:

Data Structure using C++ & Lab -50

Curve Fitting and Interpolation: Polynomials are used to

approximate and fit curves to data points, facilitating trend analysis

and predictive modeling in fields like statistics and engineering.

Signal Processing: In digital signal processing, polynomials are

used to model and manipulate signals for filtering, noise reduction,

and compression.

Numerical Methods: Polynomial interpolation and approximation

are fundamental in numerical analysis for solving differential

equations, optimization problems, and root finding algorithms.

Computer Graphics: Polynomials are used extensively in

computer graphics to represent curves and surfaces, enabling

realistic rendering and animation in applications such as gaming

and simulation.

Error Detection and Correction: Error-correcting codes and

algorithms in communication systems rely on polynomials for

encoding and decoding information, ensuring reliable data

transmission.

2.6 REPRESENTATION OF ARRAYS

Arrays are fundamental data structures that store elements of the

same data type in contiguous memory locations. How elements are

stored in memory can significantly impact access patterns and

performance, especially in large datasets.

Row-Major Representation:

Definition: In row-major representation, elements of a

multidimensional array are stored row by row in memory.

Data Structure using C++ & Lab -51

Memory Layout: If you have a 2D array A[m][n], the elements

are stored sequentially such that all elements of row 0 are followed

by all elements of row 1, and so forth.

Access Pattern: Accessing elements is optimized for row-wise

traversal. For example, accessing A[i][j] is efficient because the

next element A[i][j+1] is adjacent in memory.

Column-Major Representation:

Definition: In column-major representation, elements of a

multidimensional array are stored column by column in memory.

Memory Layout: Similar to row-major but stored column-wise.

Elements of column 0 are followed by elements of column 1, and

so on.

Access Pattern: Accessing elements is optimized for column-wise

traversal. For example, accessing A[i][j] is efficient because the

next element A[i+1][j] is adjacent in memory.

Differences between Row-Major and Column-Major Order:

Memory Storage Order:

Row-Major: Elements of each row are stored contiguously in

memory.

Column-Major: Elements of each column are stored contiguously

in memory.

Traversal Efficiency:

Row-Major: Optimized for row-wise traversal due to contiguous

memory access.

Column-Major: Optimized for column-wise traversal for the

same reason.

Data Structure using C++ & Lab -52

Access Patterns:

Row-Major: Accessing adjacent elements within the same row is

efficient.

Column-Major: Accessing adjacent elements within the same

column is efficient.

Advantages and Disadvantages:

Row-Major:

Advantages:

Efficient for row-wise operations such as matrix addition,

subtraction, and multiplication.

Suitable for applications where row-oriented access patterns

dominate, such as image processing and linear algebra operations.

Disadvantages:

Less efficient for column-wise operations, which may result in

cache misses and reduced performance.

Not optimal for applications requiring frequent column-oriented

data access.

Column-Major:

Advantages:

Efficient for column-oriented operations like transposition and

certain types of matrix manipulations.

Suitable for applications where column-wise access patterns are

prevalent, such as database queries and statistical analysis.

Disadvantages:

May lead to inefficiencies in row-wise access, especially in

algorithms that heavily depend on sequential row access.

Data Structure using C++ & Lab -53

Limited utility in applications that primarily utilize row-wise data

manipulation.

2.7 APPLICATIONS OF ARRAYS AND
POINTERS

Arrays and pointers are fundamental concepts in C++

programming with diverse applications across various domains.

Here are some common applications where arrays and pointers

play a crucial role:

Data Structures: Arrays are the building blocks for implementing

fundamental data structures such as lists, stacks, queues, and hash

tables. For instance, dynamic arrays (using pointers) allow resizing

based on runtime needs, making them versatile for data storage and

manipulation.

Dynamic Memory Allocation: Pointers are essential for dynamic

memory allocation using operators like new and delete. This

capability is crucial when the size of data is not known at compile

time or when memory needs to be managed dynamically during

program execution.

String Manipulation: In C++, strings are often represented as

arrays of characters (char[]). Pointers to characters (char*) are

extensively used to manipulate and access individual characters

within strings, allowing for efficient string operations like

concatenation, comparison, and parsing.

Function Parameters: Pointers are commonly used to pass

parameters by reference to functions. This allows functions to

modify variables outside their scope directly, facilitating efficient

parameter passing and avoiding unnecessary copying of large data

structures.

Data Structure using C++ & Lab -54

Multidimensional Arrays: Arrays of pointers or pointers to arrays

enable the creation and manipulation of multidimensional data

structures. This flexibility is crucial for representing matrices,

images, and other complex data sets where data is organized in

multiple dimensions.

Iterating and Accessing Data: Pointers provide a mechanism for

efficient iteration over arrays and other sequential data structures.

Using pointer arithmetic, programmers can traverse arrays, access

elements, and perform operations without explicitly calculating

indices, thereby improving performance in data-intensive

applications.

Passing Arrays to Functions (Arrays as Function Arguments):

Arrays can be passed to functions in C++ either directly or using

pointers. When passed directly, the size of the array must be

specified. However, using pointers allows passing arrays of

varying sizes and enables the function to modify the original array.

In this example, printArray accepts an array arr and its size as

arguments. The main function passes myArray and its size to

printArray, which then prints each element of the array.

Data Structure using C++ & Lab -55

Returning Arrays from Functions:

C++ does not allow directly returning an entire array from a

function. Instead, you can return a pointer to the first element of

the array or use dynamic memory allocation to return arrays of

variable size.

Here, createArray dynamically allocates an array of integers of size

size, initializes it, and returns a pointer to the first element. In

main, newArray receives the returned pointer, allowing access to

the elements of the dynamically allocated array.

Dynamic Memory Allocation (Using new and delete):

Dynamic memory allocation in C++ is achieved using new and

delete operators. new allocates memory dynamically, while delete

deallocates the memory allocated by new.

Arrays can also be allocated dynamically:

Data Structure using C++ & Lab -56

Dynamic Arrays (Arrays Allocated on the Heap):

Dynamic arrays in C++ are arrays whose size is determined at

runtime using dynamic memory allocation. They are allocated on

the heap, allowing flexibility in size and lifetime compared to

static arrays allocated on the stack.

Here, dynamicArray is allocated dynamically based on user input

for size. It allows for efficient memory usage and flexibility

compared to fixed-size arrays.

2.8 CONCLUSION

In conclusion, arrays and pointers form integral components of

C++ programming, offering powerful capabilities in data

management and memory manipulation. Arrays provide a

structured way to store and access data elements sequentially,

while pointers enable dynamic memory allocation and efficient

memory management. Understanding these concepts is essential

for developing efficient algorithms, implementing data structures,

and optimizing program performance.

Data Structure using C++ & Lab -57

Throughout this exploration, we've highlighted how arrays allow

for organized data storage and manipulation, supporting various

operations such as iteration and sorting. Pointers, on the other

hand, offer flexibility by facilitating direct memory access and

dynamic memory allocation, crucial for handling large datasets and

implementing complex data structures.

Moreover, the synergy between arrays and pointers extends to

enhancing string manipulation, supporting function parameter

passing, and enabling advanced programming techniques. Mastery

of these concepts equips programmers with the tools needed to

build scalable and robust software solutions in C++, ensuring

efficient memory usage and effective data handling. In summary,

arrays and pointers are foundational elements in C++

programming, empowering developers to tackle diverse

programming challenges with precision and efficiency. Continued

practice and exploration of these concepts will further strengthen

programming skills and expand capabilities in software

development contexts.

2.9 QUESTIONS AND ANSWERS

1. What is an array? How does it differ from a linked list?

Answer: An array is a contiguous block of memory elements

where each element is of the same data type and accessed using an

index. It offers constant-time access to elements but has a fixed

size. In contrast, a linked list is a data structure where each element

(node) contains a data field and a reference (pointer) to the next

node. It allows dynamic size and efficient insertion/deletion at any

position but requires linear-time access.

Data Structure using C++ & Lab -58

2. Explain the concept of pointers in C/C++ and their

significance in memory management.

Answer: Pointers in C/C++ are variables that store memory

addresses of other variables. They enable direct access to memory

locations, facilitating dynamic memory allocation and

manipulation of data structures like arrays and linked lists. They

are crucial for efficient memory management and are used

extensively for tasks like passing arguments to functions by

reference and implementing data structures.

3. What are sparse matrices, and why are they used? Provide

an example of their application.

Answer: Sparse matrices are matrices with a large number of

elements that are zero. They are represented efficiently using

techniques like triplet representation (COO format) or compressed

sparse row/column (CSR/CSC formats). They are used to save

memory and optimize operations in applications where most

matrix elements are zero, such as in finite element analysis, graph

algorithms, and image processing.

4. Compare the representation of arrays in row-major and

column-major order. What are their advantages and

disadvantages?

Answer: In row-major order, elements of a 2D array are stored

row-wise in memory, while in column-major order, they are stored

column-wise. Row-major order provides faster traversal of rows

but slower traversal of columns, whereas column-major order is

efficient for column-wise operations but slower for rows. The

choice depends on the access pattern of the application and the

underlying hardware architecture.

Data Structure using C++ & Lab -59

5. How are polynomials represented using arrays or linked

lists? Describe an efficient way to perform polynomial

addition.

Answer: Polynomials can be represented using arrays (coefficient

array where index represents the exponent) or linked lists (nodes

containing coefficient and exponent fields). Polynomial addition

involves iterating through both polynomials and adding

corresponding coefficients for each exponent. Efficient addition

can be achieved by iterating through the arrays/lists

simultaneously, combining terms with the same exponent, and

appending remaining terms.

2.10 REFERENCES

Stroustrup, Bjarne. "The C++ Programming Language." Addison-

Wesley Professional, 2013.

Eckel, Bruce. "Thinking in C++." Prentice Hall, 2000.

Deitel, Paul, and Harvey Deitel. "C++ How to Program." Pearson,

2017.

"C++ Reference - cppreference.com." Available online at:

https://en.cppreference.com/w/

"C++ Programming Tutorials - GeeksforGeeks." Available online

at: https://www.geeksforgeeks.org/c-plus-plus/

Data Structure using C++ & Lab -60

UNIT – 3: LISTS
Structure

3.0 Introduction

3.1 Objectives

3.2 Lists

3.3 Abstract Data Type - List

3.4 Array Implementation of Lists

3.5 Linked Lists - Implementation

3.6 Doubly Linked Lists - Implementation

3.7 Circularly Linked Lists - Implementation

3.8 Skip List

3.9 Conclusion

3.10 Questions and Answers

3.11 References

3.0 INTRODUCTION

In the realm of computer science and software engineering,

understanding and effectively utilizing data structures are

fundamental to building efficient and scalable applications. Among

these structures, lists play a pivotal role by offering a flexible

means to store and manipulate collections of data elements in a

linear sequence. This chapter explores various facets of lists,

ranging from their theoretical underpinnings to practical

implementations using different data structures.

Lists are versatile and can be implemented in multiple ways, each

method offering unique advantages and addressing specific

operational needs. This chapter delves into the Abstract Data Type

(ADT) of lists, which provides a conceptual framework defining

operations like insertion, deletion, and traversal. We explore how

Data Structure using C++ & Lab -61

lists can be implemented using arrays, linked lists—including

singly linked, doubly linked, and circularly linked variations—and

delve into more advanced structures like skip lists.

Understanding these implementations is crucial for developers

seeking to optimize data management strategies, balance

performance with memory efficiency, and adapt to diverse

application requirements. By the end of this chapter, readers will

gain a comprehensive understanding of lists as a foundational data

structure and how different implementations cater to various

computational challenges.

3.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understand the Concept of Lists: Define what lists are in the

context of data structures, emphasizing their linear sequence and

operations.

Explore Abstract Data Type (ADT) of Lists: Introduce the ADT

of lists, specifying its operations and abstracting away

implementation details.

Compare and Contrast Implementations: Compare different

implementations of lists, including array-based lists and various

forms of linked lists (singly linked, doubly linked, circularly

linked), highlighting their advantages and disadvantages.

Discuss Efficiency Considerations: Analyze the efficiency of list

operations such as insertion, deletion, and search in different

implementations, considering time complexity and memory usage.

Data Structure using C++ & Lab -62

Introduce Skip Lists: Introduce skip lists as a probabilistic data

structure alternative to balanced trees, explaining their structure,

operations, and advantages.

3.2 LISTS

A list is a linear data structure in C++ that illustrates an ordered

group of elements. Every element in the list has a unique location

that determines whether it may be viewed, added, or deleted. There

are several ways to implement lists, but the most popular ones are

linked lists and array-based lists. Contiguous memory regions are

used by array-based lists, which enables quick indexed access but

necessitates resizing when the capacity is reached. In contrast,

linked lists are efficient for insertion and deletion operations at any

location since they are made up of nodes that each contain data and

a pointer to the next node. However, accessing items of linked lists

is slower than with array-based lists. C++ lists are flexible and

capable of managing homogeneous data types. They can also

dynamically modify their size to fit different data sizes. They are

essential in many applications, such as algorithm implementation

and data management.

Characteristics of Lists

Ordered Collection: The elements in a list are ordered, meaning

each element has a specific position (index) within the list.

Indexed Access: Elements can be accessed, inserted, or deleted

based on their index.

Dynamic Size: Lists can grow and shrink in size dynamically,

allowing elements to be added or removed.

Data Structure using C++ & Lab -63

Homogeneous or Heterogeneous: Depending on the

implementation and language, lists can contain elements of the

same type (homogeneous) or elements of different types

(heterogeneous).

Operations on Lists (insertion, deletion, traversal)

Insertion: Adding an element to the list at a specific position.

Deletion: Removing an element from the list based on its position

or value.

Traversal: Accessing each element of the list, typically using

loops or recursion.

Searching: Finding an element in the list based on its value.

Updating: Changing the value of an element at a specific position.

Insertion:

Algorithm for Insertion:

At the end:

Check if the array is full. If yes, resize the array.

Add the new element to the end of the array.

Increment the size of the array.

At a specific position:

Check if the array is full. If yes, resize the array.

Shift elements from the specified position to the right.

Insert the new element at the specified position.

Increment the size of the array.

Data Structure using C++ & Lab -64

Code Example:

Deletion

Algorithm for Deletion:

At the end:

Simply decrement the size of the array.

At a specific position:

Shift elements from the specified position to the left.

Decrement the size of the array.

Code Example:

Traversal

Algorithm for Traversal:

Iterate over each element in the array and perform the desired

operation.

Code Example:

Data Structure using C++ & Lab -65

Types of Lists (array-based, linked lists, skip lists)

Array-based Lists

Array-based lists, often implemented using arrays or vectors, store

elements in contiguous memory locations. This structure allows for

O(1) time complexity for accessing elements by their index,

making it ideal for applications requiring frequent random access.

However, insertions and deletions, especially in the middle or

beginning of the list, are less efficient, typically O(n) due to the

need to shift elements. Array-based lists are suitable for use cases

where the list size does not change frequently or can be resized

dynamically, such as managing a list of fixed-size records or a

collection of items that is primarily read-only.

Singly Linked Lists

A singly linked list consists of nodes, each containing data and a

pointer to the next node. This structure provides dynamic sizing

and allows for efficient O(1) insertions and deletions at the

beginning of the list. However, accessing elements requires O(n)

time as it involves traversing the list sequentially from the head

node. Singly linked lists are advantageous in scenarios where

frequent insertions and deletions are required, such as

implementing stacks, queues, or managing a dynamic collection of

elements where the order of elements needs to be maintained

without frequent random access.

Doubly Linked Lists

Doubly linked lists enhance singly linked lists by having nodes that

contain pointers to both the next and previous nodes, enabling

bidirectional traversal. This feature allows for efficient insertions

and deletions at both ends and anywhere within the list with O(1)

complexity, provided the node to be inserted or deleted is known.

Data Structure using C++ & Lab -66

However, they require additional memory for the extra pointer in

each node. Doubly linked lists are useful in applications such as

navigation systems where backward and forward traversal is

needed, or in implementing complex data structures like deques

and certain types of caches.

Circular Linked Lists

Circular linked lists are a variation of linked lists where the last

node points back to the first node, forming a circle. This allows for

continuous traversal of the list and can be implemented as either

singly or doubly linked. Circular linked lists are particularly useful

in scenarios requiring cyclic iteration, such as in round-robin

scheduling or implementing a circular buffer. They provide the

same benefits as their singly or doubly linked counterparts, with

the added advantage of naturally supporting circular traversal

without additional checks.

Skip Lists

Skip lists are an advanced data structure that enhances linked lists

with multiple levels of links, allowing for efficient O(log n) search,

insertion, and deletion operations. By using randomization, skip

lists maintain a balanced structure probabilistically, providing

performance similar to balanced trees but with simpler algorithms.

Each element in the skip list is part of multiple linked lists at

different levels, with higher levels skipping over multiple

elements, thus speeding up the search process. Skip lists are ideal

for applications requiring fast search times, such as databases, in-

memory data structures, and distributed systems.

Data Structure using C++ & Lab -67

3.3 ABSTRACT DATA TYPE - LIST

An Abstract Data Type (ADT) for a list is a conceptual model that

defines a collection of elements organized in a linear sequence. It

provides a clear interface specifying operations that can be

performed on the list, without specifying how these operations are

implemented. Here’s an overview of the Abstract Data Type - List:

A list is an ordered collection of elements where each element has

a specific position or index. Elements can be of any data type, and

the list can dynamically grow or shrink in size. Elements in a list

are arranged in a linear sequence, where each element (except

possibly the first and last) has a unique predecessor and successor.

Operations Defined for List ADT

Insertion: Adds an element at a specified position in the list.

Deletion: Removes an element from a specified position in the list.

Access: Retrieves the element at a specified position in the list.

Traversal: Iterates through all elements in the list, typically from

the beginning to the end.

Search: Finds the position of a specified element in the list, if it

exists.

Size Management: Provides operations to determine the number

of elements currently in the list.

Concatenation: Combines two lists into a single list.

Sorting: Arranges elements in a specified order, such as ascending

or descending.

Implementation Considerations

Array-based Implementation: Uses a contiguous block of

memory to store elements, allowing direct access by index but

requiring resizing operations for dynamic lists.

Data Structure using C++ & Lab -68

Linked List Implementation: Utilizes nodes with

pointers/references to connect elements, providing flexibility in

size and efficient insertion/deletion operations.

Usage and Applications

Data Structures: Lists are fundamental in various data structures

like stacks, queues, and priority queues.

Applications: Used in applications requiring dynamic data

management, such as databases, text processing, and simulations.

Example of List ADT Interface (Pseudocode)

ADT operations and their specifications

list of operations commonly associated with Abstract Data Types

(ADTs) and their typical specifications. These operations provide a

standardized interface for interacting with data structures, ensuring

consistency in behavior while abstracting away implementation

details:

1. Insertion (Insert): Adds an element to the data structure at a

specified position or according to specific rules.

Parameters:

position: Position where the element should be inserted.

element: The element to be inserted.

Returns: true if insertion is successful, false otherwise (e.g., if

position is out of bounds).

Data Structure using C++ & Lab -69

2. Deletion (Delete)

Description: Removes an element from the data structure at a

specified position.

Parameters: position: Position of the element to be deleted.

Returns: true if deletion is successful, false otherwise (e.g., if

position is out of bounds).

3. Access (Get): Retrieves the element from the data structure at a

specified position without modifying the data structure.

Parameters: position: Position of the element to retrieve.

Returns: The element at the specified position, or a specified

default value or error indicator if position is out of bounds.

4. Search (Find)

Description: Searches for a specified element within the data

structure.

Parameters: element: Element to search for.

Returns: Position/index of the element if found, or a specified

indicator (e.g., -1 or nullptr) if not found.

Advantages and disadvantages of using ADT List

Using an Abstract Data Type (ADT) List offers several advantages

and disadvantages, depending on the specific requirements and

context of the application. Here’s a breakdown of the key

advantages and disadvantages:

Advantages:

Flexibility: ADT List provides a flexible structure for storing and

manipulating elements in a linear sequence. It supports various

operations such as insertion, deletion, access, and traversal, making

it versatile for different application needs.

Data Structure using C++ & Lab -70

Modularity: ADT List abstracts away the implementation details,

allowing programmers to focus on the interface and functionality

of the data structure rather than low-level operations. This

promotes modular programming and enhances code reusability.

Ease of Use: The defined operations (insertion, deletion, etc.)

provide a clear and standardized way to interact with the data

structure. This makes it easier for developers to understand and

maintain the code.

Performance: Depending on the implementation (e.g., array-based

or linked list-based), ADT List can offer efficient performance

characteristics for specific operations. For example, arrays provide

O(1) access time, while linked lists offer O(1) insertion/deletion

time at the head/tail.

Scalability: ADT List implementations can scale well with the size

of the data. Dynamic resizing (in array-based lists) or node

allocation (in linked lists) allows the list to grow or shrink as

needed, accommodating varying data sizes efficiently.

Disadvantages:

Memory Overhead: Some implementations of ADT List,

especially linked lists, can incur memory overhead due to storing

additional pointers or references for linking elements. This

overhead may affect memory usage efficiency, particularly for

large datasets.

Access Time Complexity: Depending on the implementation,

certain operations such as random access (e.g., accessing elements

by index in linked lists) may have higher time complexity (e.g.,

Data Structure using C++ & Lab -71

O(n) for linked lists vs. O(1) for arrays). This can impact

performance in applications requiring frequent random access.

Complexity of Operations: While ADT List abstracts

implementation details, certain operations like insertion or deletion

in specific positions (e.g., middle of the list) can be complex and

may require careful handling of pointers/references (in linked lists)

or resizing operations (in arrays).

Lack of Specificity: ADT List provides a general-purpose

interface for lists but may not optimize performance for specific

use cases. Specialized data structures (e.g., queues, stacks, priority

queues) may offer more tailored solutions for particular application

requirements.

Dependency on Implementation: The efficiency and

characteristics of ADT List heavily depend on the chosen

implementation (e.g., array-based vs. linked list-based). Selecting

the appropriate implementation is crucial for achieving desired

performance and memory usage goals.

3.4 ARRAY IMPLEMENTATION OF
LISTS

Array implementation of lists involves using a contiguous block of

memory to store the elements of the list. In this structure, each

element is stored in an indexed position, allowing for O (1) time

complexity for access by index, which makes it efficient for

random access operations. However, array-based lists require

resizing when the capacity is exceeded, which involves creating a

new larger array and copying the elements from the old array to the

new one, an operation with O(n) time complexity. Additionally,

Data Structure using C++ & Lab -72

insertions and deletions, especially at the beginning or in the

middle of the list, are less efficient because they require shifting

elements to maintain order, also with O(n) time complexity.

Despite these limitations, array-based lists are widely used due to

their straightforward implementation and efficient access times,

making them suitable for applications where frequent random

access is needed and the list size doesn't change dramatically.

Common examples include dynamic arrays such as C++'s

std::vector and Java's ArrayList.

Basics of array data structure

An array is a linear data structure consisting of a collection of

elements (values or variables), each identified by at least one index

or key. Elements are typically stored in contiguous memory

locations, allowing for efficient access to individual elements using

their index.

Syntax

Declaration and Initialization

Arrays in C++ are declared using a fixed size and can be initialized

with specific values at the time of declaration or later.

Accessing Elements

Elements in an array are accessed using zero-based indexing.

Data Structure using C++ & Lab -73

Updating Elements

Individual elements of an array can be updated by assigning a new

value to the corresponding index.

Iterating Through an Array

Arrays are typically iterated using loops like for or while.

Characteristics

Fixed Size: Arrays have a fixed size defined at the time of

declaration, which determines the maximum number of elements

they can store.

Homogeneous Elements: Arrays usually store elements of the

same data type (e.g., integers, characters).

Index-based Access: Elements in an array are accessed using

numeric indices starting from 0 up to size-1, providing O(1) time

complexity for accessing an element by its index.

Contiguous Memory Allocation: Elements in an array are stored

next to each other in memory, which facilitates efficient traversal

and sequential access.

Operations

Access: Retrieve the value of an element at a specific index.

Insertion: Add an element at a specified position within the array.

Deletion: Remove an element from a specified position, often

requiring elements to be shifted.

Update: Modify the value of an existing element at a specific

index.

Data Structure using C++ & Lab -74

Traversal: Iterate through all elements of the array sequentially.

Usage

Arrays are widely used in programming for various purposes:

Data Storage: Storing collections of data elements that need to be

accessed efficiently.

Implementing Other Data Structures: Serving as the underlying

structure for more complex data structures like stacks, queues, and

hash tables.

Matrix Operations: Representing and manipulating matrices in

mathematical computations and algorithms.

Sorting and Searching: Arrays are essential for implementing

sorting algorithms (e.g., bubble sort, quicksort) and searching

algorithms (e.g., binary search).

Buffering: Handling input/output operations and buffering data in

applications.

Implementing a list using arrays

Implementing a list (or a dynamic array-based list) using arrays

involves creating a data structure that can dynamically resize itself

as elements are added or removed. Here’s a basic implementation

of a list using arrays in C++:

#include <iostream>

class ArrayList {

private:

 int capacity; // Maximum capacity of the list

 int size; // Current number of elements in the list

 int* arr; // Pointer to the array storing elements

public:

 // Constructor to initialize an empty list

 ArrayList(int capacity) {

Data Structure using C++ & Lab -75

 this->capacity = capacity;

 this->size = 0;

 this->arr = new int[capacity];

 }

 // Destructor to free memory allocated to the array

 ~ArrayList() {

 delete[] arr;

 }

 // Function to insert an element at the end of the list

 void insert(int value) {

 if (size < capacity) {

 arr[size++] = value;

 } else {

 std::cout << "List is full. Cannot insert." << std::endl;

 }

 }

 // Function to remove an element from the list at a specific index

 void remove(int index) {

 if (index < 0 || index >= size) {

 std::cout << "Invalid index. Cannot remove." << std::endl;

 } else {

 for (int i = index; i < size - 1; ++i) {

 arr[i] = arr[i + 1];

 }

 size--;

 }

 }

 // Function to get the size of the list (number of elements)

 int getSize() {

 return size;

 }

 // Function to print all elements in the list

Data Structure using C++ & Lab -76

 void print() {

 std::cout << "List elements:";

 for (int i = 0; i < size; ++i) {

 std::cout << " " << arr[i];

 }

 std::cout << std::endl;

 }

};

// Example usage of the ArrayList class

int main() {

 // Create an ArrayList with initial capacity of 5

 ArrayList list(5);

 // Insert elements into the list

 list.insert(10);

 list.insert(20);

 list.insert(30);

 // Print current elements in the list

 list.print(); // Output: List elements: 10 20 30

 // Remove an element from the list

 list.remove(1); // Removes element at index 1 (20)

 // Print updated list

 list.print(); // Output: List elements: 10 30

 return 0;

}

Efficiency considerations (time and space complexity)

When implementing a list using arrays, efficiency considerations

revolve around several key aspects that impact the performance

and usability of the data structure:

Data Structure using C++ & Lab -77

1. Dynamic Resizing

Arrays have a fixed size once allocated, which necessitates careful

handling when the number of elements exceeds the initial capacity.

Dynamic resizing strategies involve:

Doubling the Array Size: When the array reaches capacity,

allocate a new array of double the current size, copy existing

elements, and deallocate the old array. This strategy amortizes the

cost of resizing, typically resulting in O(1) average time

complexity for insertions.

Shrinking the Array: When the number of elements decreases

significantly, consider resizing the array to save memory, though

this operation may be less frequent.

2. Insertion and Deletion

Efficient insertion and deletion operations are critical for list

implementations using arrays:

Insertion:

End of List: O(1) average time complexity if space is available.

Middle of List: O(n) time complexity due to shifting elements

after the insertion point.

Deletion:

End of List: O(1) time complexity for removing the last element.

Middle of List: O(n) time complexity due to shifting elements

after the deletion point.

3. Access and Search

Arrays offer O(1) time complexity for accessing elements by

index, which is advantageous for random access:

Ensure indices are within bounds to prevent out-of-bound errors,

which can lead to runtime issues.

Data Structure using C++ & Lab -78

4. Memory Management

Efficient memory management practices include:

Allocating Memory: Allocate sufficient memory initially based on

expected usage to minimize frequent resizing.

Deallocating Memory: Properly deallocate memory when

elements are removed or when the list is destroyed to prevent

memory leaks.

5. Trade-offs with Other Data Structures

Consider trade-offs between array-based lists and other data

structures like linked lists:

Arrays vs. Linked Lists: Arrays offer efficient random access but

can be inefficient for frequent insertions/deletions in the middle.

Linked lists excel in dynamic resizing and efficient

insertions/deletions but may consume more memory due to node

overhead.

6. Amortized Analysis

Use amortized analysis to evaluate the average time complexity of

operations over a series of operations rather than individual ones,

especially for resizing operations in dynamic arrays.

Example Considerations

In the context of the previously discussed ArrayList

implementation:

Insertions: Efficient at the end (O(1)), less efficient in the middle

(O(n)).

Deletions: Efficient at the end (O(1)), less efficient in the middle

(O(n)).

Resizing: Occurs infrequently due to doubling strategy, amortizing

the cost of resizing over multiple operations.

Data Structure using C++ & Lab -79

3.5 LINKED LISTS -
IMPLEMENTATION

Implementing linked lists involves defining the structure of nodes

and operations to manipulate these nodes. Linked lists are

composed of nodes where each node contains data and a

pointer/reference to the next node in the sequence. Here's a basic

outline of how linked lists can be implemented in C++:

Node Structure

First, define a structure for the nodes of the linked list:

Types of linked lists (singly linked, doubly linked, circularly

linked)

Linked lists are versatile data structures that come in several types,

each offering unique advantages for different applications. Here’s

an overview of the types of linked lists—singly linked, doubly

linked, and circularly linked—and their operations with

algorithms:

1. Singly Linked List

In a singly linked list, each node contains data and a

pointer/reference to the next node in the sequence. It only allows

traversal in one direction—from the head to the last node.

Data Structure using C++ & Lab -80

Operations:

Insertion at the Beginning (insertFront):

Create a new node with the given data.

Point the new node's next to the current head.

Update head to point to the new node.

Insertion at the End (insertBack):

Traverse the list to find the last node.

Create a new node with the given data and set its next to

nullptr.

Point the last node's next to the new node.

Deletion by Value (deleteNode):

Traverse the list to find the node with the given value and its

predecessor.

Update the predecessor node's next to skip the node to be deleted.

Delete the node and free memory.

Data Structure using C++ & Lab -81

Comparisons with array-based lists

 Array-based Lists Linked Lists

Memory

Allocation

Allocate contiguous

memory block,

typically resizing

when capacity is

exceeded.

Memory Allocation:

Nodes dynamically

allocated as needed,

supporting efficient

memory usage.

Memory Usage May allocate more

memory than needed

due to pre-allocation

or resizing strategies.

Overhead due to storing

pointers/references for

linking nodes.

Insertions and

Deletions

Insertions: Efficient

at the end with

amortized constant

time complexity

(O(1)), but inefficient

in the middle due to

shifting elements

(O(n)).

Insertions: Efficient at

both ends (O(1) for

head/tail), and efficient

in the middle with direct

node manipulation (O(1)

given node reference).

Deletions: Efficient with

direct node access (O(1)

Data Structure using C++ & Lab -82

Deletions: Similar to

insertions, O(n) in

worst-case for

deletions in the

middle.

given node reference),

but O(n) for searching

node to delete.

Random

Access

O(1) time complexity

for accessing

elements by index,

due to contiguous

memory allocation.

O(n) time complexity for

accessing elements by

index, requiring traversal

from the head to the

desired index.

Space

Efficiency

Efficient in terms of

space utilization

when the list is

nearly full due to

contiguous

allocation.

May consume more

memory due to node

overhead (next/prev

pointers), especially for

small data sizes.

Implementation

Complexity

Simple to implement

and understand, with

direct indexing and

straightforward

operations.

More complex due to

pointer manipulation,

requiring careful

management of node

connections and

potential for memory

leaks.

3.6 DOUBLY LINKED LISTS -
IMPLEMENTATION

A doubly linked list extends the singly linked list by each node

containing an additional pointer/reference to the previous node,

allowing bidirectional traversal.

Data Structure using C++ & Lab -83

Operations:

Insertion at the Beginning (insertFront):

Create a new node with the given data.

Set its next to the current head and its prev to nullptr.

Update the prev of the current head to point to the new node.

Update head to point to the new node.

Insertion at the End (insertBack):

Similar to singly linked list, but also update the prev of the new

node to point to the current last node.

Deletion by Value (deleteNode):

Traverse the list to find the node with the given value.

Update the next of the predecessor node and the prev of the

successor node to skip the node to be deleted.

Delete the node and free memory.

Data Structure using C++ & Lab -84

Advantages over singly linked lists

Doubly linked lists offer several advantages over singly linked

lists, primarily due to their ability to support bidirectional traversal

and more flexible node manipulation. Here are the key advantages

of doubly linked lists over singly linked lists:

1. Bidirectional Traversal

In a doubly linked list, each node maintains pointers to both its

previous and next nodes. This bidirectional linkage allows

traversal in both directions—from head to tail and from tail to

head. This feature enables efficient operations that require

accessing nodes in reverse order, which is not possible or efficient

with singly linked lists.

2. Easy Deletion of Nodes

Deleting a node in a doubly linked list is more straightforward

compared to a singly linked list:

Singly Linked List: To delete a node, you typically need to

traverse the list to find the node and modify its previous node's

next pointer to skip over the node to be deleted. This requires

knowing the previous node, which may involve an additional

traversal.

Data Structure using C++ & Lab -85

Doubly Linked List: In contrast, a doubly linked list allows direct

access to both the previous and next nodes of any given node.

Thus, deleting a node involves simply adjusting the next and prev

pointers of its adjacent nodes, without needing to traverse the list

again to find the previous node.

3. Insertions and Deletions at Both Ends

Doubly linked lists support efficient insertions and deletions at

both the head and tail of the list:

Insertion at the Head: In a doubly linked list, inserting a node at

the head involves updating the next pointer of the new node to

point to the current head, updating the prev pointer of the current

head (if it exists), and updating the head pointer to the new node.

This operation is O(1) constant time complexity.

Insertion at the Tail: Similarly, inserting a node at the tail of a

doubly linked list is efficient. It involves updating the next pointer

of the current last node to point to the new node, updating the prev

pointer of the new node to point to the current last node, and

updating the tail pointer (if maintained) to the new node. This

operation is also O(1) constant time complexity.

3.7 CIRCULARLY LINKED LIST
SIMPLEMENTATION

In a circularly linked list, the last node points back to the first

node, forming a circular loop. This structure allows for continuous

traversal.

Operations:

Insertion at the Beginning (insertFront):

Similar to singly linked list insertion at the beginning, but handle

the circular link by pointing the last node's next to the new node.

Data Structure using C++ & Lab -86

Insertion at the End (insertBack):

Traverse to find the last node and update its next to point to the

new node.

Deletion by Value (deleteNode):

Traverse the list to find the node with the given value and its

predecessor.

Update the predecessor node's next to skip the node to be deleted.

Handle circular links to maintain integrity.

Data Structure using C++ & Lab -87

Applications where circular lists are useful

ircular lists, also known as circularly linked lists, find applications

in various scenarios where cyclic or continuous access patterns are

advantageous. Here are some notable applications where circular

lists are useful:

1. Circular Buffers or Ring Buffers

Circular lists are commonly used to implement circular buffers,

also known as ring buffers or cyclic buffers. These buffers are

fixed-size arrays managed as circular lists, where elements wrap

around upon reaching the end of the buffer. Key applications

include:

Data Streaming: In real-time data processing or streaming

applications, circular buffers efficiently manage continuous data

flow, such as audio or video streams, without needing to resize or

shift data.

Embedded Systems: Circular buffers are extensively used in

embedded systems for managing data between different parts of a

Data Structure using C++ & Lab -88

system, where efficient memory management and predictable

behavior are crucial.

2. Round-Robin Scheduling

In operating systems and task scheduling algorithms, circular lists

facilitate round-robin scheduling, where tasks are scheduled in a

circular sequence. Each task gets a predefined time slice before the

scheduler moves to the next task in the sequence. This approach

ensures fair allocation of CPU time among multiple tasks.

CPU Scheduling: In multitasking environments, round-robin

scheduling using circular lists ensures that all processes receive an

equal share of CPU time, promoting fairness and preventing

starvation.

3. Managing Circular Lists of Objects

Circular lists are also useful in managing cyclic relationships or

sequences of objects that naturally form a loop:

Game Development: In game development, circular lists can

manage objects or entities that move in a continuous loop, such as

a game world where characters or objects wrap around the screen.

Data Structures: Circular lists are employed in implementing data

structures like circular queues, which efficiently manage data in

applications such as event handling or task processing where data

needs to be processed in a continuous loop.

4. Navigation and Routing Algorithms

In geographical applications and routing algorithms, circular lists

can represent circular paths or continuous routes:

Navigation Systems: Circular lists are used to represent circular

routes or paths in navigation systems, where routes wrap around to

the starting point.

Network Routing: In network protocols and algorithms, circular

lists can represent circular paths in data packet routing, ensuring

Data Structure using C++ & Lab -89

packets are forwarded in a loop until reaching their destination or

timing out.

5. Resource Management and Allocation

Circular lists are also utilized in resource management and

allocation scenarios:

Memory Management: Circular lists can manage memory

allocation in memory pools or memory caches, where memory

blocks are reused in a continuous loop to optimize memory usage

and access.

Resource Allocation: In resource allocation algorithms, circular

lists can manage the allocation and deallocation of resources,

ensuring efficient utilization and recycling of resources in a cyclic

manner.

3.8 SKIP LIST

Skip lists are a data structure that combines the advantages of

linked lists with probabilistic balancing, allowing for fast search,

insertion, and deletion operations. They are particularly useful in

scenarios where balanced trees (like AVL trees or red-black trees)

might be too complex or where dynamic data structures with

efficient average-case performance are required. Here’s an

overview of skip lists, their structure, operations, and applications:

Structure of Skip Lists

Layers: Skip lists are composed of multiple layers (or levels),

where each level is essentially a linked list. The bottom level (level

0) contains all elements in sorted order.

Skip Pointers: Nodes at each level have pointers that may skip

over several elements in the list. Higher levels have fewer nodes,

Data Structure using C++ & Lab -90

with each node skipping more elements, effectively speeding up

search operations.

Header and Sentinel Nodes: Skip lists typically include header

nodes at each level to simplify boundary conditions and sentinel

nodes (often nullptr or an infinite node) at the end of each list.

Operations on Skip Lists

Search: Skip lists support efficient search operations, similar to

binary search trees but without requiring strict balance conditions.

Starting from the top level, skip pointers are used to quickly

narrow down the search range.

Insertion: To insert an element, determine the insertion point using

search. Randomly decide the level of the new node (higher levels

are less probable), and update skip pointers at each level

accordingly to maintain the list’s structure.

Deletion: Deleting an element involves updating skip pointers to

bypass the node to be deleted at each level. This operation requires

careful adjustment to maintain the skip list’s properties.

Advantages of Skip Lists

Average-Case Performance: Skip lists offer average-case O(log

n) time complexity for search, insertion, and deletion operations,

similar to balanced binary search trees but with simpler

maintenance requirements.

Simplicity: Compared to balanced trees, skip lists are easier to

implement and manage. They do not require rebalancing

operations, making them more suitable for dynamic datasets with

frequent updates.

Data Structure using C++ & Lab -91

Versatility: Skip lists can be adapted for various applications

where efficient search and insertion operations are critical, such as

database indexing, priority queues, and probabilistic data

structures.

Applications of Skip Lists

Database Indexing: Skip lists are used in databases to speed up

search operations, providing efficient indexing structures for large

datasets.

Concurrency Control: In concurrent programming, skip lists can

be adapted for lock-free data structures, enabling efficient and

scalable access to shared resources.

Priority Queues: Skip lists can serve as the basis for priority

queues, where elements are dynamically prioritized based on their

keys or values.

3.9 CONCLUSION

In conclusion, the study of lists as fundamental data structures

reveals their indispensable role in computer science and software

engineering. Lists, characterized by their linear arrangement of

elements, provide a versatile framework for organizing and

manipulating data in a sequential manner. Throughout this chapter,

we have explored various implementations and aspects of lists,

starting with their conceptual underpinnings as the Abstract Data

Type (ADT) of lists. This foundational understanding paved the

way for delving into practical implementations such as array-based

lists, which offer direct access but require careful management of

memory and resizing, and linked lists, including singly linked,

Data Structure using C++ & Lab -92

doubly linked, and circularly linked variations, each suited to

different operational needs and efficiency considerations.

Additionally, skip lists emerged as a notable alternative, leveraging

probabilistic techniques to provide efficient search, insertion, and

deletion operations. By comparing these implementations, we have

underscored how different design choices impact performance

metrics like time complexity and memory usage, crucial for

optimizing data-intensive applications. Practical examples across

databases, scheduling algorithms, and more illustrate the versatility

and real-world applicability of lists. Mastery of these structures

equips developers with the tools to design efficient, scalable

solutions tailored to diverse computational challenges, ensuring

robust performance and adaptability in software systems.

In essence, lists remain pivotal in both theoretical foundations and

practical applications within the realm of data structures. Their

continual evolution and adaptation underscore their enduring

relevance in modern computing, promising continued exploration

and innovation in leveraging lists for optimal data management

and computational efficiency.

3.10 QUESTIONS AND ANSWERS

Q1: What is the main difference between an array-based list

and a linked list?

Answer: The main difference lies in how they store and access

elements.

Array-based lists store elements in contiguous memory locations,

allowing for fast random access using indices. However, resizing

an array can be costly, especially if it exceeds its allocated

capacity.

Data Structure using C++ & Lab -93

Linked lists, on the other hand, use nodes with pointers to link

elements, which allows for efficient insertion and deletion

operations but does not support direct indexing. Each type has its

advantages based on the specific application needs for access and

modification operations.

Q2: Why would you choose a doubly linked list over a singly

linked list?

Answer: Doubly linked lists offer bidirectional traversal

capabilities compared to singly linked lists, which only support

forward traversal. This bidirectional feature allows for efficient

backward traversal and easier node deletion operations as each

node maintains references to both its previous and next nodes.

However, doubly linked lists require more memory due to storing

an additional pointer for each node, and they are more complex to

implement and maintain than singly linked lists.

Q3: What are skip lists, and what advantages do they offer

over traditional balanced trees?

Answer: Skip lists are probabilistic data structures that provide

efficient search, insertion, and deletion operations similar to

balanced trees (e.g., AVL trees, red-black trees) but with simpler

implementation and maintenance requirements. They achieve this

by linking elements across multiple levels, where each level

represents a progressively sparser subset of the elements. Skip lists

offer average-case O(log n) time complexity for search, insertion,

and deletion operations, making them suitable for applications

where maintaining balanced trees would be overly complex or

unnecessary.

Data Structure using C++ & Lab -94

Q4: In what scenarios would you prefer using a circularly

linked list?

Answer: Circularly linked lists are particularly useful in scenarios

where data elements need to be processed in a continuous loop or

cycle. Examples include:

Round-robin scheduling: Managing tasks or processes in a cyclic

manner, ensuring fair allocation of resources over time.

Buffer management: Implementing circular buffers or queues

where elements wrap around once the end of the buffer is reached,

useful in data streaming and real-time processing applications.

Q5: How can lists be used in database management systems?

Answer: Lists play a crucial role in database management systems

for storing and managing collections of records or entries:

Indexing: Lists can serve as index structures, facilitating fast

access to records based on indexed keys.

Sorting and querying: Lists enable efficient sorting and querying

operations, essential for optimizing database queries and data

retrieval processes.

Transaction management: Lists can be used to manage
transaction logs or sequences of operations, ensuring data
consistency and reliability in transactional processing.

Data Structure using C++ & Lab -95

3.11 REFERENCES

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).

Introduction to Algorithms (3rd ed.). MIT Press.

Goodrich, M. T., & Tamassia, R. (2012). Data Structures and

Algorithms in Java (6th ed.). Wiley.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.).

Addison-Wesley.

Brass, P. (2008). Advanced Data Structures. Cambridge University

Press.

Mehta, D., & Sahni, S. (2007). Data Structures, Algorithms, &

Applications in C++ (2nd ed.). Silicon Press.

Lafore, R. (2002). Data Structures and Algorithms in Java (2nd

ed.). Sams Publishing.

Data Structure using C++ & Lab -96

BLOCK II: STACKS, QUEUES AND
TREES
UNIT – 4: STACKS
Structure

4.0 Introduction

4.1 Objectives

4.2 Introduction to Stacks

4.3 Operations on Stacks (Push, Pop, Peek)

4.4 Implementation of Stack using Arrays

4.5 Implementation of Stack using Linked Lists

4.6 Algorithmic Implementation of Multiple Stacks

4.7 Conclusion

4.8 Questions and Answers

4.9 References

4.0 INTRODUCTION

In the realm of computer science and software engineering, stacks

represent a pivotal concept deeply ingrained in the fabric of

efficient data management and algorithm design. A stack operates

on the principle of Last In, First Out (LIFO), where elements are

added and removed from one end, known as the top. This

characteristic makes stacks particularly suited for scenarios where

strict ordering of operations is essential, such as function call

management, expression evaluation, and backtracking algorithms.

By adhering to the LIFO principle, stacks ensure that the most

recent operation or data element processed is the first one to be

reversed or retrieved, facilitating streamlined and predictable

control flow in software systems.

Data Structure using C++ & Lab -97

The core operations on a stack—push, pop, and peek—form the

cornerstone of its functionality. Pushing adds an element to the top

of the stack, pop removes and returns the top element, and peek

retrieves the top element without removing it. These operations are

typically executed in constant time, O(1), regardless of the size of

the stack, ensuring efficiency in both time and space. This

efficiency is crucial in applications where rapid access to and

manipulation of data is paramount, such as in real-time systems,

interactive applications, and embedded computing environments.

Implementing stacks can be achieved using various underlying

data structures, most commonly arrays and linked lists. Each

approach offers distinct advantages: array-based stacks provide

direct access to elements but are limited by fixed sizes, while

linked list-based stacks offer dynamic memory management but

may incur overhead due to pointer operations. Understanding these

implementations and their trade-offs is essential for choosing the

most suitable approach based on specific application requirements

and constraints. Overall, stacks embody a foundational concept in

computer science, driving innovation and efficiency across diverse

fields by enabling structured and efficient data handling in

software systems.

4.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understand Stack Fundamentals: Gain a comprehensive

understanding of the stack data structure, including its

characteristics, operations, and the Last In, First Out (LIFO)

principle.

Data Structure using C++ & Lab -98

Explore Stack Operations: Learn how to perform fundamental

stack operations such as push, pop, and peek. Understand their

functionalities, complexities, and applications in real-world

scenarios.

Compare Implementation Methods: Compare and contrast

different implementations of stacks using arrays and linked lists.

Evaluate the advantages, disadvantages, and optimal use cases for

each implementation approach.

Implement Multiple Stacks: Explore advanced stack concepts by

learning how to implement and manage multiple stacks within a

single array or memory block. Understand the benefits and

challenges of dynamic stack management.

Analyze Efficiency Considerations: Evaluate the efficiency of

stack operations and implementations, considering factors such as

time complexity, space complexity, and practical considerations in

software development.

4.2 INTRODUCTION TO STACKS

A stack is a fundamental data structure in computer science, known

for its simplicity and versatility in managing data. It operates on

the principle of Last In, First Out (LIFO), meaning that the last

element added to the stack is the first one to be removed. This

characteristic makes stacks ideal for scenarios where the order of

operations must be strictly controlled.

Last In, First Out (LIFO) principle:

The Last In, First Out (LIFO) principle is a core concept in the

stack data structure, which dictates the order in which elements are

accessed and removed. According to this principle, the most

Data Structure using C++ & Lab -99

recently added element is the first one to be removed. This

behavior is analogous to a stack of plates where you can only add

or remove the top plate.

How LIFO Works

Push Operation: When an element is added to the stack, it is

"pushed" onto the top of the stack. This element becomes the most

recent addition and the first candidate for removal.

Pop Operation: When an element needs to be removed from the

stack, it is "popped" from the top of the stack. Since only the top

element can be removed, this ensures that the most recent addition

is the first to be removed.

Illustrative Example

Consider a stack of books:

Initially, the stack is empty.

You place Book A on the stack (push operation). Now, Book A is at

the top.

You then place Book B on the stack (push operation). Book B is

now at the top, with Book A underneath it.

Next, you place Book C on the stack (push operation). Book C is at

the top, with Book B and Book A below it in that order.

If you now remove a book from the stack (pop operation), Book C,

the last one added, will be removed first. The stack now has Book

B at the top. If you perform another pop operation, Book B will be

removed next, leaving Book A as the topmost element.

Characteristics of Stacks

LIFO Principle: The most recent addition is the first to be

removed, akin to a stack of plates where you can only take the top

plate off.

Data Structure using C++ & Lab -100

Dynamic Size: Depending on the implementation, the size of the

stack can grow or shrink dynamically as elements are added or

removed.

Restricted Access: Elements can only be added (pushed) or

removed (popped) from one end of the structure, referred to as the

top of the stack.

Basic Operations

Push: Adds an element to the top of the stack.

Pop: Removes the element from the top of the stack.

Peek/Top: Returns the element at the top of the stack without

removing it.

IsEmpty: Checks if the stack is empty.

IsFull: Checks if the stack has reached its capacity (relevant for

array-based implementations).

Real-world Analogies

The stack data structure mirrors many real-world scenarios:

Plate Dispenser: Imagine a spring-loaded plate dispenser in a

cafeteria. Plates are added on top, and the last plate added is the

first to be taken off.

Browser History: When navigating web pages, the browser stores

the visited pages in a stack. The back button removes (pops) the

last visited page from the stack and displays it.

Applications of Stacks

Stacks are widely used in various applications across computer

science and programming:

Data Structure using C++ & Lab -101

Expression Evaluation and Syntax Parsing: Stacks are used to

evaluate arithmetic expressions, convert infix expressions to

postfix, and check for balanced parentheses in expressions.

Function Call Management: In programming languages, the call

stack keeps track of function calls, enabling proper return from

functions and managing recursive calls.

Undo Mechanism: Applications like text editors use stacks to

keep track of changes, allowing users to undo recent actions.

4.3 OPERATIONS ON STACKS (PUSH,
POP, PEEK)

Push Operation

The push operation adds an element to the top of the stack.

Algorithm:

Check if the stack is full. If full, print an overflow message and

exit.

If not full, increment the top index.

Add the element at the new top index.

Data Structure using C++ & Lab -102

Pop Operation

The pop operation removes the element from the top of the stack.

Algorithm:

Check if the stack is empty. If empty, print an underflow message

and exit.

If not empty, return the element at the top index and decrement the

top index.

Data Structure using C++ & Lab -103

C++ Implementation:

Peek Operation

The peek operation returns the top element of the stack without

removing it.

Algorithm:

Check if the stack is empty. If empty, print an empty stack message

and exit.

If not empty, return the element at the top index.

C++ Implementation:

Utility Functions

isEmpty Function

Data Structure using C++ & Lab -104

Is Full Function

Complete Implementation

Here's the complete implementation combining all the above

methods:

#include <iostream>

using namespace std;

#define MAX 1000

class Stack {

 int top;

public:

 int arr[MAX]; // Maximum size of Stack

 Stack() { top = -1; }

 bool push(int x);

 int pop();

 int peek();

 bool isEmpty();

 bool isFull();

};

bool Stack::push(int x) {

 if (top >= (MAX - 1)) {

 cout << "Stack Overflow\n";

 return false;

 } else {

 arr[++top] = x;

 cout << x << " pushed into stack\n";

 return true;

 }

}

int Stack::pop() {

Data Structure using C++ & Lab -105

 if (top < 0) {

 cout << "Stack Underflow\n";

 return 0;

 } else {

 int x = arr[top--];

 return x;

 }

}

int Stack::peek() {

 if (top < 0) {

 cout << "Stack is Empty\n";

 return 0;

 } else {

 int x = arr[top];

 return x;

 }

}

bool Stack::isEmpty() {

 return (top < 0);

}

bool Stack::isFull() {

 return (top >= MAX - 1);

}

// Driver program to test above functions

int main() {

 Stack s;

 s.push(10);

 s.push(20);

 s.push(30);

 cout << s.pop() << " Popped from stack\n";

 cout << "Top element is " << s.peek() << endl;

Data Structure using C++ & Lab -106

 cout << "Stack is empty: " << (s.isEmpty() ? "True" : "False")

<< endl;

 return 0;}

4.4 IMPLEMENTATION OF STACK
USING ARRAYS

An array-based stack structure uses a fixed-size array to store stack

elements. This implementation is straightforward and efficient for

managing stack operations, which include pushing elements onto

the stack, popping elements from the stack, and peeking at the top

element.

Key Components of Array-based Stack

Array: A fixed-size array to store stack elements.

Top: An integer to keep track of the index of the top element in the

stack. It is initialized to -1 to indicate that the stack is initially

empty.

Capacity: A constant defining the maximum size of the stack.

Basic Operations

Push: Adds an element to the top of the stack.

Pop: Removes and returns the element from the top of the stack.

Peek: Returns the top element without removing it.

isEmpty: Checks if the stack is empty.

isFull: Checks if the stack is full.

C++ Implementation

Here is the complete implementation of an array-based stack

structure in C++:

#include <iostream>

using namespace std;

#define MAX 1000 // Define the maximum size of the stack

Data Structure using C++ & Lab -107

class Stack {

 int top;

public:

 int arr[MAX]; // Array to store stack elements

 Stack() { top = -1; } // Constructor to initialize the stack

 bool push(int x);

 int pop();

 int peek();

 bool isEmpty();

 bool isFull();

};

// Function to add an element to the stack

bool Stack::push(int x) {

 if (top >= (MAX - 1)) {

 cout << "Stack Overflow\n";

 return false;

 } else {

 arr[++top] = x;

 cout << x << " pushed into stack\n";

 return true;

 }

}

// Function to remove an element from the stack

int Stack::pop() {

 if (top < 0) {

 cout << "Stack Underflow\n";

 return 0;

 } else {

 int x = arr[top--];

 return x;

 }

}

Data Structure using C++ & Lab -108

// Function to get the top element of the stack without removing it

int Stack::peek() {

 if (top < 0) {

 cout << "Stack is Empty\n";

 return 0; // or return an error code or throw an exception

 } else {

 int x = arr[top];

 return x;

 }

}

// Function to check if the stack is empty

bool Stack::isEmpty() {

 return (top < 0);

}

// Function to check if the stack is full

bool Stack::isFull() {

 return (top >= MAX - 1);

}

// Driver program to test above functions

int main() {

 Stack s;

 s.push(10);

 s.push(20);

 s.push(30);

 cout << s.pop() << " Popped from stack\n";

 cout << "Top element is " << s.peek() << endl;

 cout << "Stack is empty: " << (s.isEmpty() ? "True" : "False")

<< endl;

 cout << "Stack is full: " << (s.isFull() ? "True" : "False") <<

endl;

 return 0;

}

Data Structure using C++ & Lab -109

Advantages and Disadvantages of Array-based Stack

Advantages:

Simplicity: Easy to implement and understand.

Constant Time Operations: Push, pop, and peek operations have

O(1) time complexity.

Memory Contiguity: Array-based stacks are stored in contiguous

memory locations, which can lead to better cache performance.

Disadvantages:

Fixed Size: The size of the stack is fixed at compile time, limiting

flexibility. If the stack is full, no more elements can be added

without resizing.

Wasted Space: If the maximum size is much larger than the actual

number of elements, memory may be wasted.

Stack Overflow: If too many elements are pushed onto the stack,

it can cause stack overflow, which can crash the program.

Handling dynamic resizing

Handling dynamic resizing of a stack implemented using arrays

allows the stack to grow or shrink as needed, avoiding the

limitations of fixed-size arrays. Below is an enhanced

implementation of a stack in C++ that supports dynamic resizing.

Dynamic Resizing Stack Implementation

Key Enhancements

Dynamic Array: Instead of a fixed-size array, use a dynamic array

(pointer) that can be resized.

Resize Function: A function to resize the array when the stack is

full or when it is sparsely populated to optimize memory usage.

Data Structure using C++ & Lab -110

Capacity Management: Maintain the current capacity of the array

and resize it as necessary.

4.5 IMPLEMENTATION OF STACK
USING LINKED LISTS

A stack can be implemented using a linked list to provide a

dynamic, flexible stack structure that can grow and shrink as

needed without the limitations of a fixed-size array.

Key Components of Linked List-based Stack

Node: A structure representing each element in the stack,

containing the data and a pointer to the next node.

Top: A pointer to the top node of the stack.

Basic Operations

Push: Adds an element to the top of the stack.

Pop: Removes and returns the element from the top of the stack.

Peek: Returns the top element without removing it.

isEmpty: Checks if the stack is empty.

C++ Implementation

Here is the complete implementation of a stack using linked lists in

C++:

#include <iostream>

using namespace std;

// Define the structure of a node

struct Node {

 int data;

 Node* next;

};

class Stack {

 Node* top; // Pointer to the top node

Data Structure using C++ & Lab -111

public:

 Stack() { top = nullptr; } // Constructor to initialize the stack

 void push(int x);

 int pop();

 int peek();

 bool isEmpty();

 void display(); // Utility function to display the stack elements

};

// Function to add an element to the stack

void Stack::push(int x) {

 Node* newNode = new Node(); // Create a new node

 if (!newNode) {

 cout << "Heap Overflow\n";

 return;

 }

 newNode->data = x;

 newNode->next = top;

 top = newNode;

 cout << x << " pushed into stack\n";

}

// Function to remove an element from the stack

int Stack::pop() {

 if (isEmpty()) {

 cout << "Stack Underflow\n";

 return 0; // or return an error code or throw an exception

 } else {

 Node* temp = top;

 top = top->next;

 int popped = temp->data;

 delete temp;

 return popped;

 }

Data Structure using C++ & Lab -112

}

// Function to get the top element of the stack without removing it

int Stack::peek() {

 if (!isEmpty()) {

 return top->data;

 } else {

 cout << "Stack is Empty\n";

 return 0; // or return an error code or throw an exception

 }

}

// Function to check if the stack is empty

bool Stack::isEmpty() {

 return top == nullptr;

}

// Utility function to display the stack elements

void Stack::display() {

 if (isEmpty()) {

 cout << "Stack is Empty\n";

 } else {

 Node* temp = top;

 while (temp != nullptr) {

 cout << temp->data << " ";

 temp = temp->next;

 }

 cout << endl;

 }

}

// Driver program to test above functions

int main() {

 Stack s;

 s.push(10);

 s.push(20);

Data Structure using C++ & Lab -113

 s.push(30);

 s.display();

 cout << s.pop() << " Popped from stack\n";

 s.display();

 cout << "Top element is " << s.peek() << endl;

 cout << "Stack is empty: " << (s.isEmpty() ? "True" : "False")

<< endl;

 return 0;

}

Advantages of Linked List-based Stack

Dynamic Size: The stack can grow and shrink as needed, limited

only by available memory.

No Wasted Space: Memory is allocated only when needed,

avoiding the wasted space issue of fixed-size arrays.

No Overflow: Unlike array-based stacks, a linked list-based stack

does not overflow unless the system runs out of memory.

Disadvantages

Memory Overhead: Each element requires additional memory for

the pointer, which can be significant if the stack contains many

elements.

Non-contiguous Memory: Elements are not stored in contiguous

memory locations, which can lead to cache inefficiencies

compared to array-based stacks.

Data Structure using C++ & Lab -114

4.6 ALGORITHMIC
IMPLEMENTATION OF MULTIPLE
STACKS

In computer science and software engineering, the stack is a

fundamental data structure that follows the Last In, First Out

(LIFO) principle. This means that the most recently added element

is the first one to be removed. Stacks are widely used in various

applications, including function call management, expression

evaluation, and backtracking algorithms. However, in certain

scenarios, a single stack is not sufficient to handle multiple sets of

data independently. This is where the concept of multiple stacks

comes into play.

Multiple stacks involve managing several stack data structures

within a single array or memory block. This approach can optimize

memory usage and improve the efficiency of algorithms that

require simultaneous and independent stack operations. By

leveraging multiple stacks, one can avoid the overhead of

maintaining separate arrays for each stack, leading to more

compact and manageable code.

There are two primary strategies for implementing multiple stacks:

Fixed Division: The array is divided into fixed-size sections, each

allocated to a specific stack. This method is straightforward but

lacks flexibility, as it cannot adjust the size of individual stacks

dynamically.

Dynamic Division: The boundaries between stacks are adjusted

dynamically based on the current usage of each stack. This method

is more complex but offers greater flexibility and efficient

utilization of memory.

Data Structure using C++ & Lab -115

In practical applications, multiple stacks are particularly useful in

scenarios such as:

Memory Management: Managing multiple stack frames for

different threads or processes in a concurrent computing

environment.

Resource Allocation: Keeping track of resource usage and

availability in systems that need to handle multiple independent

tasks.

Algorithm Optimization: Implementing complex algorithms that

require simultaneous traversal or manipulation of multiple data

sets.

Applications and scenarios where multiple stacks are useful

Multiple stacks are highly beneficial in various applications and

scenarios where independent management of multiple sets of data

or operations is required. Here are some key areas where multiple

stacks find significant utility:

Applications and Scenarios

Expression Evaluation and Parsing: In compilers and

interpreters, multiple stacks are used to handle nested expressions,

function calls, and operator precedence. Each stack can manage

operands, operators, and function call contexts independently,

ensuring correct evaluation and parsing of complex expressions.

Function Call Management: In programming languages and

runtime environments, multiple stacks are employed to manage

function calls and local variables. Each stack corresponds to a

Data Structure using C++ & Lab -116

different function or subroutine, ensuring proper execution flow

and efficient memory allocation for local variables.

Backtracking Algorithms: Algorithms like depth-first search

(DFS) and recursive backtracking often require multiple stacks to

manage state transitions and backtracking paths independently.

Each stack maintains a different path or state sequence, facilitating

efficient exploration of solution spaces.

Memory Management in Operating Systems: Operating systems

use multiple stacks to manage execution contexts, interrupts, and

system calls for different processes or threads. Each stack provides

isolated memory space and execution flow, ensuring security and

efficient resource utilization.

Undo/Redo Mechanisms in Applications: Applications with

undo/redo functionalities often employ multiple stacks to store

previous states or actions. Each stack represents a history of user

actions or modifications, enabling seamless navigation and

recovery of application states.

Simulation and Modelling: Simulation software and modelling

tools utilize multiple stacks to manage different simulation

scenarios or model configurations. Each stack stores parameters,

states, or simulation steps independently, facilitating parallel or

sequential simulation runs.

Resource Allocation and Management: Systems managing

resources such as memory, network connections, or database

transactions benefit from multiple stacks to allocate and track

resource usage efficiently. Each stack handles resource requests or

Data Structure using C++ & Lab -117

transactions independently, ensuring optimal resource utilization

and performance.

Algorithmic Optimization: Complex algorithms, including graph

traversal, dynamic programming, and state machines, often utilize

multiple stacks to manage different states, paths, or data structures.

Each stack supports efficient traversal or manipulation of

algorithmic data structures, enhancing algorithm performance and

scalability.

Advantages of Multiple Stacks

Independence: Each stack operates independently, allowing

separate handling of data sets or operations without interference.

Efficiency: Multiple stacks optimize memory usage and improve

algorithm performance by isolating and managing distinct data sets

or operations efficiently.

Flexibility: Dynamic adjustment of stack boundaries (in dynamic

division) provides flexibility in managing varying sizes and

requirements of individual stacks.

Simplicity: While providing more robust and efficient data

management than a single stack, multiple stacks can be managed

with the same ease of a single stack

4.7 CONCLUSION

In conclusion, the study of stacks reveals their foundational role in

computer science and software engineering. Through the

exploration of their Last In, First Out (LIFO) principle and

essential operations like push, pop, and peek, we have seen how

Data Structure using C++ & Lab -118

stacks efficiently manage data with predictable ordering. The

implementations using arrays and linked lists underscore their

versatility in accommodating different needs—from fixed-size

memory management to dynamic and flexible data structures.

Moreover, the concept of multiple stacks within a single array

expands the utility of stacks, demonstrating their adaptability in

handling complex scenarios where independent management of

multiple data sets is required. Efficiency considerations, such as

time complexity for operations and space management, highlight

the trade-offs between array-based and linked list-based

implementations, crucial for optimizing performance in diverse

applications.

Looking ahead, the practical applications of stacks—from parsing

expressions in compilers to managing function calls in

programming languages—underscore their indispensable role in

modern computing. By mastering stack operations and

understanding their implementations, developers can leverage

stacks effectively in algorithm design, system programming, and

various software applications, ensuring robust and efficient data

management.

In conclusion, stacks remain a cornerstone of computational

efficiency and structured data handling, continuing to inspire

innovation and optimal solutions across a wide range of

technological domains.

Data Structure using C++ & Lab -119

4.8 QUESTIONS AND ANSWERS

Q1: What is the LIFO principle, and why is it important in

stacks?

Answer: The LIFO (Last In, First Out) principle states that the last

element inserted into a stack is the first one to be removed. It

ensures that operations are processed in reverse order of their

insertion, making stacks ideal for scenarios requiring strict

ordering and efficient data management.

Q2: What are the main operations performed on a stack, and

how do they work?

Answer: The main operations on a stack are:

Push: Adds an element to the top of the stack.

Pop: Removes and returns the top element from the stack.

Peek (or Top): Returns the top element without removing it. These

operations are typically executed in constant time, O(1), making

stacks efficient for managing data with predictable access patterns.

Q3: What are the advantages of using an array-based

implementation of stacks over a linked list-based

implementation?

Answer: Array-based stacks offer direct access to elements using

indices, which can be faster in scenarios where random access is

important. They also use contiguous memory, which may result in

better cache performance. However, they are limited by a fixed

size and require resizing if the stack grows beyond its initial

capacity.

Data Structure using C++ & Lab -120

Q4: How can multiple stacks be implemented using a single

array, and what are the benefits of this approach?

Answer: Multiple stacks can be managed within a single array by

partitioning the array into sections allocated to each stack. This

approach optimizes memory usage by allowing stacks to

dynamically expand and contract within the same memory block,

enhancing flexibility and reducing memory fragmentation.

Q5: What are some practical applications of stacks in software

development and computer science?

Answer: Stacks are widely used in expression evaluation, function

call management, backtracking algorithms, memory management

in operating systems, and parsing techniques in compilers. They

play a critical role in managing program execution flow and

optimizing memory utilization in various computational tasks.

Data Structure using C++ & Lab -121

4.9 REFERENCES

Academic Journals: Search databases like Google Scholar, IEEE

Xplore, or ACM Digital Library for peer-reviewed articles on stack

data structures, algorithms, and their applications.

Textbooks: Explore textbooks on data structures and algorithms,

such as "Introduction to Algorithms" by Thomas H. Cormen et al.,

"Data Structures and Algorithms in Java" by Robert Lafore, or

"Data Structures Using C++" by D.S. Malik.

Online Learning Platforms: Websites like Coursera, edX, or

Khan Academy offer courses on data structures that cover stacks,

along with recommended readings and references.

Official Documentation: Refer to official documentation from

programming language providers (e.g., C++, Java) or system

documentation (e.g., Linux kernel) for implementation details and

best practices.

Research Papers: Look for relevant research papers presented at

conferences like ACM SIGMOD, IEEE INFOCOM, or USENIX

Symposium on Operating Systems Design and Implementation

(OSDI).

Data Structure using C++ & Lab -122

UNIT – 5: QUEUES
Structure

5.0 Introduction

5.1 Objectives

5.2 Queue

5.3 Operations on Queues

5.4 Implementation of Queue using Arrays

5.5 Conclusion

5.6 Questions and Answers

5.7 References

5.0 INTRODUCTION

In computer science and software engineering, queues are

fundamental data structures that facilitate the orderly processing of

data based on the First-In-First-Out (FIFO) principle. They play a

crucial role in various applications where data needs to be

managed and processed sequentially. Queues ensure that the first

element added to the queue is the first one to be removed, making

them essential in scenarios ranging from operating system task

scheduling to network packet management and beyond.

This section explores the foundational concepts, operations, and

implementations of queues, covering their diverse forms such as

linear queues using arrays, linked lists, and circular structures.

Additionally, it delves into specialized variants like priority

queues, which prioritize elements based on specific criteria, and

double-ended queues (deques), offering flexibility with operations

at both ends. Understanding these structures equips developers

Data Structure using C++ & Lab -123

with powerful tools to optimize data handling and application

performance.

The subsequent sections will delve into each aspect of queues,

detailing their operations, implementations in both arrays and

linked lists, specialized forms like circular queues, priority queues

for managing prioritized tasks, and versatile double-ended queues.

By examining these topics comprehensively, this exploration aims

to provide a thorough understanding of how queues function, their

practical applications, and their role in efficient data management

strategies.

5.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understand Queue Basics: Define queues and grasp the FIFO

principle essential for orderly data processing.

Master Queue Operations: Explore insertion, deletion, and

traversal operations crucial for queue management.

Implement Using Arrays and Linked Lists: Implement queues

using both arrays and linked lists, understanding their advantages

and limitations.

Explore Circular Queue Mechanics: Study circular queues,

including their implementation and advantages in managing

continuous data streams.

Examine Specialized Queue Types: Investigate priority queues

and double-ended queues (deques), exploring their unique

applications and operational efficiency.

Data Structure using C++ & Lab -124

5.2 QUEUE

Queues are fundamental data structures in computer science that

adhere to the First In, First Out (FIFO) principle. Similar to real-

life queues, such as waiting in line at a ticket counter, queues

manage elements in the order they are added. The structure ensures

that the oldest element, added first, is the first to be removed or

processed. This characteristic makes queues ideal for scenarios

where tasks must be handled in the order they arrive.

In programming, queues are crucial for managing tasks that require

sequential processing, such as job scheduling, printer spooling, and

asynchronous data transfer. Operations on queues typically include

adding an element to the rear (enqueue), removing an element

from the front (dequeue), and peeking at the front element without

removing it. These operations enable efficient data handling and

ensure that processes are executed in a fair and orderly manner.

Queues can be implemented using various underlying data

structures, including arrays and linked lists, each offering distinct

advantages based on specific application requirements.

Understanding queues and their implementations is foundational

for designing efficient algorithms and systems that rely on orderly

task execution and data management.

FIFO (First In, First Out) principle

The FIFO principle dictates that the oldest elements in a queue are

processed or removed first, maintaining the sequential order of

arrival. This principle is fundamental to how queues operate and

distinguishes them from other data structures like stacks, which

follow the Last In, First Out (LIFO) principle. FIFO ensures

Data Structure using C++ & Lab -125

fairness in task scheduling and data processing by handling tasks in

the order they are queued.

Queue Syntax in C++

Include Header:

#include <queue>

Declare Queue: To declare a queue of integers:

std::queue<int> myQueue;

Operations:

Push (Enqueue): Adds an element to the back of the queue.

myQueue.push(value);

Pop (Dequeue): Removes the element at the front of the queue.

myQueue.pop();

Front: Accesses the element at the front of the queue.

int frontElement = myQueue.front();

Back: Accesses the element at the back of the queue.

int backElement = myQueue.back();

Size: Returns the number of elements in the queue.

int size = myQueue.size();

Empty: Checks if the queue is empty.

bool isEmpty = myQueue.empty();

Example:

Data Structure using C++ & Lab -126

Explanation:

std::queue<int>: Declares a queue of integers.

myQueue.push(value);: Adds value to the back of the queue.

myQueue.pop();: Removes the front element from the queue.

myQueue.front(); and myQueue.back();: Accesses the front and

back elements of the queue, respectively.

myQueue.size();: Returns the number of elements in the queue.

myQueue.empty();: Checks if the queue is empty.

Real-World Analogies and Examples

Queues have numerous real-world analogies and applications,

reflecting their ubiquitous nature in everyday scenarios:

Waiting Lines: Queues resemble physical lines at ticket counters,

checkout lanes in supermarkets, or queues at amusement parks,

where individuals wait in order to be served or processed.

Print Spooling: Printers use queues to manage print jobs, ensuring

that documents are printed in the order they were sent to the

printer.

Job Scheduling: Operating systems manage processes using

queues to prioritize tasks and allocate resources based on their

arrival and priority.

Network Data Packet Processing: Network routers and switches

use queues to buffer and forward data packets based on their

arrival time and network conditions.

Real-world analogies and examples (e.g., waiting lines)

Ticket Counter at a Movie Theater: At a movie theater, patrons

line up to purchase tickets. The ticket counter operates as a queue

Data Structure using C++ & Lab -127

where customers are served in the order they arrived. This ensures

efficient ticket sales and customer satisfaction.

Call Center Customer Service: Call centers manage customer

queries and support requests using queues. Calls are queued based

on their arrival, and customer service representatives handle them

sequentially. This approach ensures that all customer inquiries are

addressed promptly and fairly.

Print Spooling: Printers use queues to manage print jobs

submitted by multiple users. Each print job is queued based on its

submission time, and the printer processes them in the order they

were received. This ensures orderly printing and prevents job

conflicts.

Traffic at Intersection Signals: Traffic signals manage vehicle

movement at intersections using queues. Vehicles waiting at a red-

light form queues in each lane, and when the light turns green,

vehicles are allowed to proceed based on their position in the

queue. This systematic approach helps in managing traffic flow

efficiently.

Job Scheduling in Operating Systems: Operating systems use

queues to manage processes and tasks. Jobs are queued based on

their priority and resource requirements, and the operating system

schedules them for execution accordingly. This ensures efficient

utilization of system resources and optimal performance.

Buffering in Data Communication: Network devices use queues

to buffer data packets during transmission. Data packets are

queued based on network conditions and bandwidth availability,

ensuring smooth and efficient data transfer without packet loss.

Data Structure using C++ & Lab -128

5.3 OPERATIONS ON QUEUES

Operations on queues are fundamental to their functionality and

efficient management of data. The main operations typically

supported by a queue data structure include:

Operations on Queues

Enqueue (Insertion): Adds an element to the rear (end) of the

queue. It Increases the queue's size and stores new data for

processing.

Algorithm:

Dequeue (Deletion): Removes an element from the front

(beginning) of the queue. It Retrieves and processes the oldest data

entered into the queue.

Algorithm:

Peek (Front): Retrieves the element at the front of the queue

without removing it. It Allows inspection of the next element to be

dequeued.

Data Structure using C++ & Lab -129

Algorithm:

isEmpty: It Checks if the queue is empty. It Determines whether

there are elements present in the queue for processing.

Algorithm:

isFull: Checks if the queue is full (not always applicable for

dynamic-sized implementations). Determines if additional

elements can be added to the queue without causing overflow.

Algorithm:

Data Structure using C++ & Lab -130

5.4 IMPLEMENTATION OF QUEUE
USING ARRAYS

An array-based representation of a queue involves using a fixed-

size array to store elements and maintaining pointers (or indices) to

track the front and rear of the queue. Here's a detailed explanation

and implementation of an array-based queue in C++:

Array-Based Representation of a Queue

In this implementation, we'll define a queue class that uses an array

to store elements. We'll include operations for enqueue (adding

elements), dequeue (removing elements), peek (viewing the front

element), and utility functions to check if the queue is empty or

full.

Array-based representation of a queue

1. Enqueue (Insertion): Adds an element to the rear (end) of the

queue.

Algorithm:

2. Dequeue (Deletion): Removes an element from the front

(beginning) of the queue.

Algorithm:

Data Structure using C++ & Lab -131

3. Peek (Front): Retrieves the element at the front of the queue

without removing it.

Algorithm:

4. IsEmpty: Checks if the queue is empty.

Algorithm:

5. IsFull: Checks if the queue is full (only applicable for array

implementation).

Algorithm:

Data Structure using C++ & Lab -132

Full Implementation Example in C++

Combining the above operations, here’s a complete example for

both array and linked list implementations of a queue:

Array-Based Queue Implementation:

#include <iostream>

using namespace std;

#define MAX_SIZE 100

class Queue {

private:

 int queue[MAX_SIZE];

 int front, rear;

public:

 Queue() {

 front = -1;

 rear = -1;

 }

 bool isEmpty() {

 return (front == -1 && rear == -1);

 }

 bool isFull() {

 return (rear == MAX_SIZE - 1);

 }

 void enqueue(int element) {

 if (isFull()) {

 cout << "Queue Overflow! Cannot enqueue element " <<

element << endl;

 return;

 } else if (isEmpty()) {

 front = rear = 0;

 } else {

Data Structure using C++ & Lab -133

 rear++;

 }

 queue[rear] = element;

 cout << "Enqueued element: " << element << endl;

 }

 int dequeue() {

 if (isEmpty()) {

 cout << "Queue Underflow! Cannot dequeue from an

empty queue." << endl;

 return -1;

 } else if (front == rear) {

 int element = queue[front];

 front = rear = -1;

 return element;

 } else {

 return queue[front++];

 }

 }

 int peek() {

 if (isEmpty()) {

 cout << "Queue is empty. No element to peek." << endl;

 return -1;

 }

 return queue[front];

 }

};

int main() {

 Queue q;

 q.enqueue(10);

 q.enqueue(20);

 q.enqueue(30);

 cout << "Front element: " << q.peek() << endl;

Data Structure using C++ & Lab -134

 cout << "Dequeued element: " << q.dequeue() << endl;

 cout << "Front element after dequeue: " << q.peek() << endl;

 return 0;

}

Pros and cons of array-based implementation

Pros:

Simple and Easy to Implement: Array-based queues are

straightforward and easy to understand, making them suitable for

beginners and educational purposes.

Constant Time Complexity: Enqueue and dequeue operations

have O(1) time complexity, ensuring fast execution for queue

operations.

Cache-Friendly: Arrays provide contiguous memory allocation,

which is more cache-friendly and can lead to better performance in

terms of memory access speed.

Predictable Memory Usage: The memory usage is fixed and

known in advance, which can be an advantage in systems with

limited or predictable memory resources.

Direct Access: Elements in an array can be accessed directly via

indices, which can be beneficial for certain operations or

optimizations.

Cons:

Fixed Size: The size of the array must be defined at the time of

queue creation. This fixed size can lead to inefficiency if the queue

size is either too small (leading to overflow) or too large (leading

to wasted memory).

Data Structure using C++ & Lab -135

No Dynamic Resizing: Without additional logic for dynamic

resizing, the array cannot grow or shrink based on the actual

number of elements, which can be limiting in scenarios with

varying data sizes.

Overflow and Underflow: Array-based queues are prone to

overflow if the queue is full and an additional element is enqueued.

Similarly, if all elements are dequeued, the queue becomes empty

and underflow conditions must be handled.

Circular Queue Complexity: To efficiently use space in an array-

based queue, a circular queue implementation is often used. This

adds complexity to the implementation, especially in managing the

wrap-around of front and rear indices.

Wasted Space: If the queue is not used to its full capacity, there

can be wasted space in the array, leading to inefficient memory

usage.

Reallocation Overhead: In implementations that handle dynamic

resizing, the reallocation process (copying elements to a new,

larger array) can be time-consuming and add overhead.

5.5 CONCLUSION

In summary, queues represent a fundamental data structure in

computer science, crucial for managing data in a First-In-First-Out

(FIFO) manner. Throughout this section, we have explored the

foundational principles of queues, emphasizing their role in

maintaining order and facilitating efficient data processing.

Operations such as insertion, deletion, and traversal have been

Data Structure using C++ & Lab -136

examined, illustrating how queues enable systematic handling of

data items based on their arrival sequence.

Implementation-wise, we have investigated queue implementations

using arrays and linked lists. Arrays offer direct access and

simplicity but require careful management of dynamic resizing.

Linked lists provide flexibility in memory management and

support dynamic operations, making them suitable for scenarios

requiring frequent insertions and deletions.

Additionally, specialized forms like circular queues, priority

queues, and double-ended queues (deques) have been explored.

Circular queues optimize memory usage and support continuous

data processing, while priority queues prioritize elements based on

predefined criteria. Deques provide flexibility with operations at

both ends, catering to applications that demand versatile data

handling capabilities.

In conclusion, mastering the concepts and implementations of

queues equips developers with essential tools for designing

efficient algorithms and robust software systems. By understanding

the principles behind queues and their practical applications,

developers can leverage these structures effectively to enhance

system performance, manage data workflows, and ensure reliable

data processing in various computational environments.

5.6 QUESTIONS AND ANSWERS

1. What is the primary principle that queues follow?

Answer: Queues follow the First-In-First-Out (FIFO) principle,

where the first element inserted into the queue is the first one to be

removed.

Data Structure using C++ & Lab -137

2. How is a queue implemented using arrays different from

using linked lists?

Answer:

Arrays: Queues implemented using arrays offer direct access to

elements and require resizing when the array becomes full, which

can be inefficient for large queues.

Linked Lists: Queues implemented using linked lists offer

flexibility in dynamic memory allocation and efficient insertion

and deletion operations but may have higher memory overhead due

to storing pointers.

3. What is the purpose of implementing a circular queue?

Answer: Circular queues are implemented to efficiently manage

continuous data streams or buffer scenarios. They utilize a circular

array structure where elements wrap around when the end of the

array is reached, optimizing memory usage and enabling constant-

time operations for both insertion and deletion.

4. How does a priority queue differ from a regular queue?

Answer:

Regular Queue: A regular queue follows the FIFO principle,

where elements are processed in the order they are added.

Priority Queue: A priority queue allows elements to be inserted

with a priority and processed in order of priority rather than the

order of insertion. Higher priority elements are processed before

lower priority ones, ensuring that the most urgent tasks or elements

are handled first.

5. What are the advantages of using a deque (double-ended

queue) over a regular queue?

Answer:

Data Structure using C++ & Lab -138

Flexibility: Deques allow elements to be added or removed from

both the front and the back, offering greater flexibility in data

management compared to queues, which only support operations at

one end.

Efficiency: Operations such as insertion and deletion at both ends

of a deque are typically efficient, often with constant time

complexity, making deques suitable for scenarios requiring

dynamic data processing from both directions.

5.7 REFERENCES

Books:

"Introduction to Algorithms" by Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest, and Clifford Stein.

"Data Structures and Algorithms in Java" by Michael T. Goodrich,

Roberto Tamassia, and Michael H. Goldwasser.

"Data Structures and Algorithm Analysis in C++" by Mark Allen

Weiss.

Documentation:

C++ Standard Library documentation for std::queue, std::deque,

and related containers.

Data Structure using C++ & Lab -139

UNIT – 6: LINKED LIST
IMPLEMENTATION
Structure

6.0 Introduction

6.1 Objectives

6.2 Implementation of Queue using Linked Lists

6.3 Circular Queue Implementation

6.4 Priority Queues

6.5 Double-ended Queues (Deque)

6.6 Conclusion

6.7 Questions and Answers

6.8 References

6.0 INTRODUCTION

Queues are pivotal data structures in computer science, designed to

manage elements in a First-In-First-Out (FIFO) manner. This

section delves into various aspects of queues, exploring their

implementations and specialized variants to cater to diverse

application needs. From basic linear structures to advanced forms

like circular queues and priority queues, understanding these

concepts equips developers with powerful tools for efficient data

management and algorithm design.

We begin by examining the implementation of queues using linked

lists, highlighting the flexibility they offer in dynamic memory

allocation and operations. Moving forward, we explore circular

queues, which optimize space utilization and streamline continuous

data processing scenarios. Priority queues come next, providing

Data Structure using C++ & Lab -140

mechanisms to prioritize elements based on predefined criteria,

essential for real-time systems and task scheduling. Lastly, double-

ended queues (deques) are investigated, showcasing their

versatility in supporting operations from both ends, enabling

sophisticated data handling capabilities.

This exploration aims to provide a comprehensive understanding

of queue data structures, their implementations, and practical

applications. By delving into each variant's operational nuances

and performance considerations, this section aims to empower

developers with the knowledge needed to leverage queues

effectively in software development and system optimization.

6.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understand Queue Fundamentals: Define queues and their

fundamental characteristics, focusing on the FIFO (First-In-First-

Out) principle.

Explore Linked List Implementation: Implement queues using

linked lists, emphasizing dynamic memory allocation and efficient

insertion/deletion operations.

Study Circular Queue Mechanics: Investigate circular queues,

including their implementation details and advantages in managing

continuous data streams.

Examine Priority Queue Operations: Understand priority queues

and their operations, prioritizing elements based on specified

criteria for optimal task management.

Data Structure using C++ & Lab -141

Master Double-ended Queue Functionality: Explore double-

ended queues (deques), their implementations, and operations

allowing insertion and deletion from both ends for flexible data

handling.

6.2 IMPLEMENTATION OF QUEUE
USING LINKED LISTS

Implementing a queue using linked lists involves dynamically

creating nodes to store data and linking them together in a

sequence. Each node contains a data part and a pointer (or

reference) to the next node in the sequence. The queue maintains

two pointers: front and rear. The front pointer points to the first

node in the queue, and the rear pointer points to the last node.

When an element is enqueued (added) to the queue, a new node is

created and linked to the end of the list, and the rear pointer is

updated to point to this new node. When an element is dequeued

(removed) from the queue, the node at the front is removed, and

the front pointer is updated to the next node in the list. If the queue

becomes empty, both front and rear pointers are set to null. This

implementation allows the queue to dynamically adjust its size,

avoiding the fixed size limitations of array-based implementations

and efficiently handling memory usage.

1. Enqueue (Insertion)

Description: Adds an element to the rear (end) of the queue.

Algorithm:

Data Structure using C++ & Lab -142

2. Dequeue (Deletion)

Description: Removes an element from the front (beginning) of

the queue.

Algorithm:

3. Peek (Front)

Description: Retrieves the element at the front of the queue

without removing it.

Algorithm:

Data Structure using C++ & Lab -143

4. IsEmpty

Description: Checks if the queue is empty.

Algorithm:

Linked List Based Queue Implementation

#include <iostream>

using namespace std;

struct Node {

 int data;

 Node* next;

};

class Queue {

private:

 Node* front;

 Node* rear;

public:

 Queue() {

 front = NULL;

 rear = NULL;

 }

 bool isEmpty() {

 return (front == NULL);

 }

Data Structure using C++ & Lab -144

 void enqueue(int element) {

 Node* temp = new Node();

 temp->data = element;

 temp->next = NULL;

 if (front == NULL && rear == NULL) {

 front = rear = temp;

 } else {

 rear->next = temp;

 rear = temp;

 }

 cout << "Enqueued element: " << element << endl;

 }

 int dequeue() {

 if (front == NULL) {

 cout << "Queue Underflow! Cannot dequeue from an

empty queue." << endl;

 return -1;

 }

 Node* temp = front;

 int element = front->data;

 if (front == rear) {

 front = rear = NULL;

 } else {

 front = front->next;

 }

 delete temp;

 return element;

 }

 int peek() {

 if (front == NULL) {

 cout << "Queue is empty. No element to peek." << endl;

 return -1;

Data Structure using C++ & Lab -145

 }

 return front->data;

 }

};

int main() {

 Queue q;

 q.enqueue(10);

 q.enqueue(20);

 q.enqueue(30);

 cout << "Front element: " << q.peek() << endl;

 cout << "Dequeued element: " << q.dequeue() << endl;

 cout << "Front element after dequeue: " << q.peek() << endl;

 return 0;

}

Advantages of linked list implementation

Dynamic Size: Linked lists provide a dynamic size, meaning the

queue can grow or shrink as needed without predefining a

maximum size. This is particularly useful when the maximum

number of elements is unknown or varies significantly.

Efficient Memory Utilization: Memory is allocated only as

needed. Unlike array-based implementations that may have unused

space, linked lists do not waste memory.

No Need for Resizing: Since linked lists grow dynamically, there

is no need for complex resizing operations or handling the

overhead associated with array reallocation.

No Overflow: As long as there is available memory, a linked list-

based queue will not overflow. This is a significant advantage over

Data Structure using C++ & Lab -146

fixed-size array queues where overflow can occur when the

capacity is exceeded.

Ease of Insertions and Deletions: Inserting (enqueue) and

deleting (dequeue) elements are straightforward operations in a

linked list, with both operations being O(1). There is no need to

shift elements as in array-based implementations.

6.3 CIRCULAR QUEUE
IMPLEMENTATION

A circular queue is a linear data structure that overcomes the

limitations of a standard linear queue by treating the queue as a

circular buffer. Unlike a linear queue where the end of the queue is

fixed and adding more elements requires shifting or resizing, a

circular queue allows for efficient reuse of space by connecting the

end of the queue back to the front, forming a circular structure.

This means that once the end of the queue is reached, the next

element is inserted at the beginning of the array, provided there is

free space (i.e., positions that have been dequeued).

Key Features

Circular Nature: The queue's end connects back to the beginning,

enabling efficient use of space.

Fixed Size: Like an array-based queue, the size of the circular

queue is fixed, but it utilizes the available space more efficiently.

Two Pointers: Maintains two pointers:

Front: Points to the first element in the queue.

Rear: Points to the last element in the queue.

Data Structure using C++ & Lab -147

Full and Empty Conditions: Specific conditions determine

whether the queue is full or empty:

Empty Queue: When front and rear are both -1 or when front is

equal to rear + 1.

Full Queue: When the position next to rear is the front (i.e., (rear +

1) % size == front).

Benefits

Efficient Space Utilization: Eliminates the problem of unused

space in a standard array-based queue.

Fixed Size Management: Useful in scenarios where a fixed buffer

size is required, such as in circular buffers for streaming data.

Implementation using arrays (circular array)

implementation of a circular queue using arrays in C++. This

implementation covers different operations (enqueue, dequeue,

peek, and display) with various algorithms to ensure the circular

nature of the queue is properly handled.

Circular Queue Implementation Using Arrays

#include <iostream>

using namespace std;

class CircularQueue {

private:

 int *queue;

 int front, rear, size;

public:

Data Structure using C++ & Lab -148

 CircularQueue(int s) {

 size = s;

 queue = new int[size];

 front = rear = -1;

 }

 // Function to check if the queue is full

 bool isFull() {

 return (front == 0 && rear == size - 1) || (rear == front - 1);

 }

 // Function to check if the queue is empty

 bool isEmpty() {

 return front == -1;

 }

 // Function to add an element to the queue (enqueue operation)

 void enqueue(int element) {

 if (isFull()) {

 cout << "Queue Overflow! Cannot enqueue element " <<

element << endl;

 return;

 }

 if (front == -1) {

 front = rear = 0;

 } else if (rear == size - 1 && front != 0) {

 rear = 0;

 } else {

 rear = (rear + 1) % size;

 }

 queue[rear] = element;

 cout << "Enqueued element: " << element << endl;

 }

 // Function to remove and return an element from the queue

(dequeue operation)

Data Structure using C++ & Lab -149

 int dequeue() {

 if (isEmpty()) {

 cout << "Queue Underflow! Cannot dequeue from an

empty queue." << endl;

 return -1;

 }

 int element = queue[front];

 if (front == rear) {

 front = rear = -1;

 } else if (front == size - 1) {

 front = 0;

 } else {

 front = (front + 1) % size;

 }

 return element;

 }

 // Function to return the front element of the queue without

removing it (peek operation)

 int peek() {

 if (isEmpty()) {

 cout << "Queue is empty. No element to peek." << endl;

 return -1;

 }

 return queue[front];

 }

 // Function to display all elements of the queue

 void display() {

 if (isEmpty()) {

 cout << "Queue is empty." << endl;

 return;

 }

 cout << "Queue elements: ";

Data Structure using C++ & Lab -150

 if (rear >= front) {

 for (int i = front; i <= rear; i++) {

 cout << queue[i] << " ";

 }

 } else {

 for (int i = front; i < size; i++) {

 cout << queue[i] << " ";

 }

 for (int i = 0; i <= rear; i++) {

 cout << queue[i] << " ";

 }

 }

 cout << endl;

 }

};

int main() {

 CircularQueue q(5);

 q.enqueue(10);

 q.enqueue(20);

 q.enqueue(30);

 q.enqueue(40);

 q.enqueue(50);

 q.display();

 cout << "Dequeued element: " << q.dequeue() << endl;

 q.enqueue(60);

 cout << "Peeked element: " << q.peek() << endl;

 q.display();

 return 0;

}

Data Structure using C++ & Lab -151

Applications and advantages of circular queues

Applications of Circular Queues:

Buffering Data in I/O Systems: Circular queues are commonly

used in I/O operations where data is continuously received or

transmitted. They provide a fixed-size buffer that can wrap around,

allowing seamless data processing without the need for resizing or

complex memory management.

Resource Management: They are useful in managing resources

with a fixed capacity that need to be accessed in a circular manner.

For example, in operating systems, circular queues can manage

resources like CPU scheduling queues or device driver queues.

Implementation of Task Schedulers: Circular queues are

employed in task scheduling algorithms where tasks are scheduled

in a round-robin manner. Each task gets a turn to execute for a

specified time quantum before being preempted, which is

facilitated efficiently using a circular queue.

Network Traffic Management: In networking applications,

circular queues can be used to manage network packets. They

allow packets to be stored temporarily before processing or

transmission, ensuring efficient handling of network traffic.

Memory Management: Circular queues can be utilized in

memory management algorithms to implement caching

mechanisms or in systems where memory allocation and

deallocation need to be handled efficiently.

Data Structure using C++ & Lab -152

Advantages of Circular Queues:

Efficient Use of Memory: Circular queues use a fixed-size buffer,

which makes efficient use of memory compared to dynamic data

structures that may require resizing operations.

Constant Time Complexity: Operations such as enqueue and

dequeue in circular queues typically have a constant time

complexity O (1), assuming the circular nature is properly

managed. This makes them highly efficient for real-time and

embedded systems.

Simplified Implementation: Implementing circular queues is

straightforward compared to other data structures like linked lists.

They involve simple arithmetic operations (modular arithmetic) to

manage the circular behavior.

Optimal for Streaming Applications: Due to their circular nature,

these queues are ideal for streaming applications where data is

continuously flowing. They ensure that the oldest data is

overwritten when new data is added, maintaining a consistent flow.

Avoids Fragmentation: Unlike dynamic data structures, circular

queues do not suffer from memory fragmentation issues because

they use a contiguous block of memory. This makes them reliable

for long-running applications.

6.4 PRIORITY QUEUES

A priority queue is an abstract data type (ADT) similar to a regular

queue or stack but with added functionality that allows elements to

be stored with a priority. Unlike a regular queue where the first

Data Structure using C++ & Lab -153

element added is the first to be removed (FIFO - First In, First

Out), a priority queue retrieves elements based on their priority.

Here's an overview of priority queues:

A priority queue is a collection of elements where each element

has a priority assigned to it. Elements with higher priorities are

dequeued before elements with lower priorities. Priority queues do

not follow the FIFO principle of regular queues; instead, they

provide operations that allow elements to be added and removed

based on their priority level.

Operations on Priority Queues:

Insertion (Enqueue): Adds an element to the priority queue based

on its priority. Higher priority elements are placed at the front of

the queue.

Algorithm:

Add the new element at the end of the heap (array

representation).

Adjust the heap upwards (up-heap or bubble-up) to

maintain the heap property (min-heap or max-heap).

Deletion (Dequeue): Removes and returns the highest priority

element from the priority queue. If multiple elements have the

same highest priority, they are typically removed in a FIFO order.

Algorithm:

Remove the root element (highest priority element in a

max-heap or lowest priority in a min-heap).

Move the last element of the heap to the root position.

Adjust the heap downwards (down-heap or bubble-down)

to restore the heap property.

Data Structure using C++ & Lab -154

Peek: Retrieves the highest priority element without removing it

from the queue.

Algorithm:

Return the root element of the heap without removing it.

This operation retrieves the highest priority element.

Implementation:

Priority queues can be implemented using various data structures,

such as:

Binary Heap: A binary heap is a complete binary tree where each

node satisfies the heap property (either min-heap or max-heap).

This structure allows efficient insertion and deletion operations.

Binary Search Tree (BST): A BST can be used to implement a

priority queue where elements are ordered based on their priority,

allowing logarithmic time complexity for insertion and deletion

operations.

Applications:

Priority queues are useful in scenarios where:

Task Scheduling: Operating systems use priority queues to

manage tasks with different levels of priority. Higher priority tasks

are executed sooner.

Dijkstra’s Algorithm: In graph theory, priority queues are

essential for implementing algorithms like Dijkstra's shortest path

algorithm, where nodes are processed based on their shortest

known path distance.

Data Structure using C++ & Lab -155

Event-driven Simulations: Systems that simulate real-world

events (e.g., discrete event simulations) often use priority queues to

manage events scheduled for future processing.

Advantages:

Efficient Operations: Priority queues allow O (log n) time

complexity for insertion and deletion operations (depending on the

implementation), making them suitable for real-time applications.

Flexible Data Structure: They provide flexibility in managing

data with varying priorities, allowing dynamic adjustments based

on application needs.

Optimized for Specific Applications: Priority queues are tailored

to handle specific scenarios where prioritization of elements is

critical, such as in scheduling and optimization problems.

6.5 Double-ended Queues (Deque)

A double-ended queue, often abbreviated as deque (pronounced

"deck"), is a versatile data structure that allows insertion and

deletion of elements from both ends. Unlike queues and stacks,

which support insertion and deletion from only one end, deques

support operations from both the front and the back. Here's an

overview of double-ended queues:

A deque is a linear collection of elements that supports efficient

insertion and deletion operations at both ends. It allows elements to

be added or removed from the front or the back, making it suitable

for scenarios requiring flexibility in data access patterns.

Data Structure using C++ & Lab -156

Operations on Deques:

Insertion at Front and Back:

push_front(value): Adds an element to the front of the deque.

push_back(value): Adds an element to the back of the deque.

Deletion from Front and Back:

pop_front(): Removes and returns the element at the front of the

deque.

pop_back(): Removes and returns the element at the back of the

deque.

Accessing Elements:

front(): Returns (but does not remove) the element at the front of

the deque.

back(): Returns (but does not remove) the element at the back of

the deque.

Size and Empty Check:

size(): Returns the number of elements currently stored in the

deque.

empty(): Checks if the deque is empty and returns true if no

elements are present.

Implementation Considerations:

Array-based Implementation: Deques can be implemented using

dynamic arrays or circular arrays to allow efficient insertion and

deletion operations at both ends.

Linked List Implementation: Using a doubly linked list allows

constant time complexity for insertion and deletion operations at

both ends, but it requires more memory overhead due to storing

pointers for each element.

Data Structure using C++ & Lab -157

Applications:

Double-ended Queues: Used in applications where elements need

to be accessed and modified efficiently from both ends, such as

implementing deque-based data structures like deque-based

algorithms.

Simulation Systems: Deques are suitable for implementing

simulation systems where events can be added or removed from

the front or back based on their priority or timestamp.

Memory Management: Used in memory management systems

where elements need to be dynamically allocated or deallocated

from both ends.

Advantages:

Flexibility: Provides flexibility in accessing and manipulating

elements from both ends, allowing various data processing and

algorithmic operations.

Efficiency: Supports efficient insertion and deletion operations

with constant time complexity when implemented using arrays or

linked lists.

Versatility: Offers a versatile approach to handling data structures

that require dynamic management of elements based on their

position and priority.

Operations: insert front, insert rear, delete front, delete rear

1. Insert Front (push_front)

Description: Adds an element to the front of the deque.

Algorithm:

If using a dynamic array or a vector, shift all existing elements to

the right to make space for the new element at the front.

If using a doubly linked list, create a new node and adjust pointers

to insert it at the beginning of the list.

C++ Implementation (using std::deque):

Data Structure using C++ & Lab -158

2. Insert Rear (push_back)

Description: Adds an element to the back of the deque.

Algorithm:

Append the new element at the end of the deque.

For a dynamic array, this typically involves appending the element

to the vector.

For a doubly linked list, simply adjust pointers to insert the new

node at the end.

C++ Implementation (using std::deque):

Data Structure using C++ & Lab -159

3. Delete Front (pop_front)

Description: Removes and returns the element at the front of the

deque.

Algorithm:

For a dynamic array, remove the first element and shift all other

elements to the left.

For a doubly linked list, adjust pointers to remove the first node.

C++ Implementation (using std::deque):

4. Delete Rear (pop_back)

Description: Removes and returns the element at the back of the

deque.

Algorithm:

For a dynamic array, remove the last element.

For a doubly linked list, adjust pointers to remove the last node.

C++ Implementation (using std::deque):

Data Structure using C++ & Lab -160

6.6 CONCLUSION

Throughout this section, we have delved into the fundamental role

of queues as crucial data structures for managing data in a First-In-

First-Out (FIFO) manner, pivotal across a wide array of

computational applications. Our exploration began with an in-

depth look at linked list implementations of queues, emphasizing

their dynamic memory allocation and efficient handling of

insertion and deletion operations. Linked lists provide adaptability

to varying queue sizes, making them particularly suited for

scenarios where data changes frequently and unpredictably.

Circular queues were also examined for their specialized ability to

manage continuous data streams efficiently. By leveraging circular

arrays or linked structures, circular queues minimize memory

overhead and ensure seamless data circulation, ideal for

applications requiring uninterrupted processing loops. This variant

underscores the importance of efficient data management in

optimizing computational workflows and system performance.

Data Structure using C++ & Lab -161

Additionally, our discussion encompassed priority queues and

double-ended queues (deques), each tailored to specific operational

needs. Priority queues prioritize elements based on predefined

criteria, essential for time-sensitive tasks where urgency dictates

processing order. Deques, offering operations from both ends of

the queue, provide flexibility in data manipulation, catering to

diverse data handling requirements.

In mastering the concepts and implementations covered here,

developers gain essential tools for designing robust algorithms and

efficient software systems. Understanding the operational

mechanics and strategic applications of different queue structures

empowers developers to make informed decisions, enhancing their

ability to optimize data workflows, manage real-time tasks

effectively, and ultimately improve overall system performance.

6.7 QUESTIONS AND ANSWERS

1. What is the primary principle that queues follow, and why is it

important in data management?

Answer: Queues follow the First-In-First-Out (FIFO) principle,

where the first element inserted into the queue is the first one to be

removed. This principle ensures that data is processed in the order

of arrival, essential for managing tasks or data items that need to

be handled sequentially.

2. How does a linked list implementation of a queue differ from an

array-based implementation?

Answer: Linked List: Implementing a queue using linked lists

offers flexibility in dynamic memory allocation and efficient

insertion and deletion operations. It allows for easy expansion and

contraction of the queue size as elements are added or removed.

Data Structure using C++ & Lab -162

Array-based: Arrays provide direct access to elements but require

resizing when the array becomes full, which can be less efficient

for large queues or dynamic data sizes.

3. What are the advantages of using a circular queue over a linear

queue?

Circular queues optimize memory usage by reusing space in a

circular manner, preventing the need for shifting elements when

the front of the queue becomes empty. This efficiency is crucial for

continuous data processing scenarios where data elements need to

be processed in a loop without interruption.

4. How are priority queues different from regular queues, and what

are their typical applications?

Answer: Difference: Priority queues prioritize elements based on

predefined criteria (such as numerical value or urgency) rather than

the order of insertion. Higher priority elements are processed

before lower priority ones, making them suitable for applications

like task scheduling, job prioritization, and event handling in real-

time systems.

5. What advantages do double-ended queues (deques) offer over

standard queues, and in what scenarios are they beneficial?

Answer: Deques support operations at both ends (front and back),

allowing for flexible data manipulation. This capability is

advantageous in scenarios where elements need to be added or

removed from either end dynamically, such as managing sliding

windows in data processing or implementing advanced data

structures like stacks and queues simultaneously.

Data Structure using C++ & Lab -163

6.8 REFERENCES

Books:

"Introduction to Algorithms" by Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest, and Clifford Stein.

"Data Structures and Algorithms in Java" by Michael T. Goodrich,

Roberto Tamassia, and Michael H. Goldwasser.

"Data Structures and Algorithm Analysis in C++" by Mark Allen

Weiss.

Documentation:

C++ Standard Library documentation for std::queue, std::deque,

and related containers.

Data Structure using C++ & Lab -164

UNIT – 7: TREES
Structure

7.0 Introduction

7.1 Objectives

7.2 Abstract Data Type

7.3 Tree Data Structure

7.4 Implementation of Tree

7.5 Tree Traversals

7.6 Binary Trees

7.7 Implementation of Binary Tree

7.8 Operations on Binary Trees

7.9 Conclusion

7.10 Questions and Answers

7.11 References

7.0 INTRODUCTION

Binary trees are a fundamental data structure in computer science,

serving as the foundation for various complex data structures and

algorithms. Understanding binary trees is crucial for effectively

managing and organizing hierarchical data. This chapter delves

into the intricacies of binary trees, covering their abstract data

types, implementation, and traversal techniques. We will explore

the properties and types of binary trees, emphasizing their practical

applications and operational methodologies.

Binary trees not only provide efficient means for data storage and

retrieval but also enhance the performance of search and sort

operations. They are employed in a myriad of applications, from

Data Structure using C++ & Lab -165

database indexing and syntax parsing in compilers to network

routing algorithms and artificial intelligence.

This chapter aims to equip you with a comprehensive

understanding of binary trees, including their conceptual

framework, implementation strategies, and common operations. By

the end of this chapter, you will have a solid grasp of how to

construct, manipulate, and traverse binary trees, preparing you for

more advanced topics in data structures and algorithms.

7.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understand Binary Trees: Define the structure and characteristics

of binary trees.

Implement Binary Trees: Implement binary trees using linked

representation (nodes and pointers).

Perform Tree Traversals: Implement and apply inorder, preorder,

and postorder traversal methods.

Conduct Operations on Binary Trees: Perform insertion,

deletion, and search operations on binary trees.

Apply Binary Trees in Problem Solving: Recognize and apply

binary trees in solving real-world problems.

7.2 ABSTRACT DATA TYPE

An Abstract Data Type (ADT) refers to a theoretical model that

defines a set of operations and the semantics of those operations on

a data structure, without specifying how the data structure should

be implemented. It provides a high-level description of data and

operations, allowing for flexibility in implementation while

ensuring consistency in behavior.

Data Structure using C++ & Lab -166

Characteristics of ADTs:

Encapsulation: ADTs encapsulate data and operations within a

cohesive unit, shielding internal details from external access. This

promotes information hiding and ensures that operations are

performed through well-defined interfaces.

Operations: ADTs define a set of operations that can be performed

on the data structure. These operations include creating the

structure, inserting or deleting elements, accessing elements, and

other manipulations specific to the type of data structure.

Data Abstraction: ADTs abstract away the underlying details of

data representation and storage. Users interact with the ADT

through a predefined set of operations, focusing on what operations

can be performed rather than how they are implemented.

Implementation Flexibility: ADTs can be implemented using

various programming paradigms and data structures. For example,

a queue ADT can be implemented using arrays, linked lists, or

other structures, as long as it adheres to the specified operations

and behavior.

Example ADTs:

Stack: Supports operations like push (add element), pop (remove

element), and peek (view top element), following Last-In-First-Out

(LIFO) order.

Queue: Allows operations such as enqueue (add element), dequeue

(remove element), and peek (view front element), adhering to

First-In-First-Out (FIFO) order.

Tree: Defines operations for creating nodes, inserting or deleting

nodes, and traversing the tree (e.g., inorder, preorder, postorder).

Data Structure using C++ & Lab -167

Graph: Defines vertices and edges, supporting operations like

adding vertices, adding edges between vertices, and traversing

through vertices and edges.

Benefits of ADTs:

Modularity: ADTs promote modular programming by separating

data structure definitions from their implementations, facilitating

code reuse and maintenance.

Abstraction: ADTs hide complex implementation details,

allowing programmers to focus on solving problems at a higher

level of abstraction.

Flexibility: ADTs provide flexibility in choosing implementation

strategies based on performance requirements or specific

application needs, without affecting the overall functionality.

7.3 TREE DATA STRUCTURE

A tree in computer science is a hierarchical data structure

composed of nodes. Each node typically contains a value and a list

of references to its child nodes. The structure starts from a root

node and branches out into subtrees, where each subtree is also a

tree in itself. Trees are used to represent hierarchical relationships,

such as file systems, organizational charts, or abstract syntax trees

in programming languages. Key concepts in trees include the root

(topmost node), parent and child relationships, siblings (nodes

sharing the same parent), and leaves (nodes without children).

Common operations on trees include traversal (visiting each node

in a specific order), insertion of nodes, deletion of nodes, and

searching for nodes based on their values or properties. Trees can

vary in complexity and types, such as binary trees (where each

node has at most two children), balanced trees (maintaining a

balanced structure for efficient operations), and more specialized

Data Structure using C++ & Lab -168

structures like binary search trees (BSTs) for efficient searching

and sorting operations. Understanding trees is fundamental for

designing efficient algorithms and data structures in computer

science.

The TreeNode struct defines each node in the tree, storing an

integer value and pointers to its left and right child nodes. The

BinaryTree class manages the tree operations, including insertion

(insert method) and inorder traversal (inorderTraversal method).

Insertion is handled recursively (insertRecursive), ensuring each

value is placed correctly according to its relation with existing

nodes. The inorderTraversal method recursively visits nodes in left

subtree, root, and right subtree order, printing node values to

display them in sorted order. The main function exemplifies the

usage by creating a BinaryTree instance, inserting values (50, 30,

20, 40, 70, 60, 80) into the tree, and then performing an inorder

traversal to output the values in ascending order. This example

serves as a foundational implementation of a binary tree in C++,

suitable for basic tree operations and traversal techniques.

Operations supported by the tree ADT, such as insertion,

deletion, traversal, and searching.

The operations supported by the tree Abstract Data Type (ADT)

include:

Insertion: Adding a new node to the tree. The node is typically

inserted based on specific rules, such as maintaining a sorted order

in a binary search tree.

Deletion: Removing a node from the tree while maintaining the

tree's structural integrity. This operation may involve reorganizing

the tree to ensure it remains a valid tree structure.

Data Structure using C++ & Lab -169

Traversal: Visiting all nodes in the tree in a specific order.

Common traversal methods include:

Inorder: Visit left subtree, current node, right subtree.

Preorder: Visit current node, left subtree, right subtree.

Postorder: Visit left subtree, right subtree, current node. These

traversals are useful for various applications, such as evaluating

mathematical expressions (inorder) or copying a tree (preorder).

Searching: Finding a node with a specific value or property within

the tree. Searching in a binary search tree, for example, can be

efficient due to its ordered nature, allowing for logarithmic time

complexity in balanced trees.

7.4 IMPLEMENTATION OF TREE

An algorithmic approach for inserting nodes into a binary search

tree (BST) and performing an inorder traversal:

Algorithm: Insertion in Binary Search Tree (BST)

Example:

Let's apply this algorithm to insert a value key into a BST:

Data Structure using C++ & Lab -170

Considerations for dynamic memory management and efficient

node operations.

When implementing tree data structures, especially in languages

like C++ where manual memory management is common,

considerations for dynamic memory management and efficient

node operations are crucial for performance and memory usage

optimization. Here are some key considerations:

Dynamic Memory Management:

Node Allocation: Each node in the tree should be dynamically

allocated using new in C++ to manage memory efficiently. This

ensures nodes are allocated on the heap and can be accessed

globally throughout the tree.

Node Deallocation: When nodes are no longer needed (e.g.,

during deletion operations), they should be explicitly deallocated

using delete to avoid memory leaks. This is particularly important

for recursive operations like tree traversal and deletion.

Memory Efficiency: Consider using memory pooling or custom

memory allocation strategies if managing a large number of nodes

to reduce overhead from frequent allocations and deallocations.

Data Structure using C++ & Lab -171

Efficient Node Operations:

Insertion: Implement insertion operations (e.g., for BST) using

recursive or iterative methods that maintain the BST properties

efficiently. Ensure nodes are inserted in the correct position to

maintain the ordering properties of the tree.

Deletion: Implement deletion operations carefully to preserve the

structure and properties of the tree (e.g., BST deletion). Handle

cases for nodes with zero, one, or two children, ensuring the tree

remains balanced and valid after deletion.

Traversal: Use efficient traversal algorithms (e.g., inorder,

preorder, postorder) to visit nodes in a specific order. Recursive

implementations are straightforward but may consume stack space

for deep trees; iterative implementations using stacks or queues

can be more memory efficient.

Balancing (for balanced trees): Consider implementing self-

balancing tree structures (e.g., AVL tree, Red-Black tree) for

operations like insertion and deletion that maintain balance

automatically, ensuring logarithmic time complexity for search

operations.

Node Access and Modification: Design node structures with

efficient access and modification methods (e.g., getters, setters) to

manipulate node data and relationships without compromising tree

integrity or performance.

Data Structure using C++ & Lab -172

7.5 TREE TRAVERSALS

Tree traversals are essential techniques for accessing and

processing nodes in a tree data structure. Here's an overview of the

different traversal methods:

Depth-First Traversals

1. Preorder Traversal

Definition: Visit the root node first, then recursively do a preorder

traversal of the left subtree, followed by a preorder traversal of the

right subtree.

Algorithm:

Implementation:

Usage: Useful for creating a copy of the tree or evaluating

expressions.

2. Inorder Traversal

Definition: In an inorder traversal, nodes are visited in ascending

order (for BSTs) by recursively visiting the left subtree, then the

node itself, and finally the right subtree.

Algorithm:

Data Structure using C++ & Lab -173

Implementation:

Usage: Useful for retrieving elements in sorted order from BSTs.

3. Postorder Traversal

Definition: Recursively do a postorder traversal of the left subtree,

then recursively do a postorder traversal of the right subtree, and

finally visit the root node.

Algorithm:

Implementation:

Data Structure using C++ & Lab -174

Usage: Useful for deleting nodes or evaluating expressions.

Breadth-First Traversal

4. Level Order Traversal (Breadth-First)

Definition: In a level order traversal, nodes are visited level by

level from left to right.

Algorithm:

Implementation:

7.6 BINARY TREES

According to the binary tree, a node can only have a maximum of

two children. Since the binary name in this case implies "two,"

each node may have zero, one, or two children.

Data Structure using C++ & Lab -175

Properties:

Height of Binary Tree: The length of the path from the root to the

deepest node.

Number of Nodes: In a binary tree of height h, the maximum

number of nodes is 2h+1 –

1. Depth of a Node: The length of the path from the root to that

node.

Leaf Node: A node with no children.

Internal Node: A node with at least one child.

Binary Search Tree (BST): A binary tree in which for every node,

the value of all the nodes in the left subtree is less, and the value of

all the nodes in the right subtree is greater.

Types of Binary Tree

There are four types of Binary tree

Full/ proper/ strict Binary tree

Complete Binary tree

Perfect Binary tree

Balanced Binary tree

Data Structure using C++ & Lab -176

Full Binary Tree:

Strict binary trees are another name for full binary trees. Only

when every node has either 0 or 2 offspring can the tree be said to

be the full binary tree. Another way to describe the full binary tree

is as a tree where every node—aside from leaf nodes—must have

two children.

The aforementioned tree is a Full Binary tree since every node can

be shown to have either zero or two offspring.

Properties of Full Binary Tree

One more internal node is added to the total number of leaf

nodes. Since there are five internal nodes in the example

above, there are six leaf nodes overall.

The maximum number of nodes, or 2h+1 -1, is equal to the

number of nodes in the binary tree.

In the whole binary tree, there must be at least 2 * h - 1

nodes.

The whole binary tree has a minimum height of log2 (n+1) -

1.

The formula for calculating the maximum height of the

entire binary tree is n= 2*h - 1.

Data Structure using C++ & Lab -177

Complete Binary Tree

With the exception of the final level, every node in the complete

binary tree is fully filled. Every node needs to be as far to the left

as feasible in the final level. The nodes in a full binary tree have to

be inserted from the left.

Because every node in the last level is inserted at the left first and

every node is fully filled, the aforementioned tree is a complete

binary tree.

Properties of Complete Binary Tree

A binary tree with all nodes can have a maximum of 2h+1 -

1.

The minimum number of nodes in complete binary tree is

2h.

A full binary tree has a minimum height of log2(n+1) - 1.

The highest point on an entire binary tree is

Perfect Binary Tree

If every internal node in a tree has two offspring and every leaf

node is at the same level, the tree is a perfect binary tree.

Data Structure using C++ & Lab -178

The below tree is not a perfect binary tree because all the leaf

nodes are not at the same level.

Balanced Binary Tree

A balanced binary tree is one in which the difference between the

left and right trees is no more than 1. Red-Black and AVL trees are

two examples of balanced binary trees.

Data Structure using C++ & Lab -179

7.7 IMPLEMENTATION OF BINARY
TREE

Here is a basic implementation of a binary tree in C++. The

implementation includes a node class, the binary tree class with

insertion and traversal methods.

Binary Tree Node Class

First, we define a class for the nodes of the binary tree:

Array representation of binary trees:

Array representation of binary trees is a way to store a binary tree

using an array (or vector). This method is particularly useful for

complete binary trees. Here's how it works:

Root: The root of the binary tree is stored at the first index of the

array (index 0).

Parent-Child Relationship:

For a node at index i:

The left child is at index 2i + 1.

The right child is at index 2i + 2.

Conversely:

Data Structure using C++ & Lab -180

The parent of a node at index i is at index (i - 1) / 2.

Example

Consider the following binary tree:

e

This tree can be represented in an array as:

 [1, 2, 3, 4, 5, 6, 7]

Implementation in C++

Here's a basic implementation of a binary tree using array

representation in C++:

#include <iostream>

#include <vector>

class BinaryTree {

public:

 BinaryTree() {}

 void insert(int key) {

 arr.push_back(key);

 }

 void inorderTraversal(int index, std::vector<int>& result) {

 if (index < arr.size()) {

 inorderTraversal(2 * index + 1, result); // Visit left subtree

 result.push_back(arr[index]); // Visit node

 inorderTraversal(2 * index + 2, result); // Visit right subtree

 }

 }

 void preorderTraversal(int index, std::vector<int>& result) {

 if (index < arr.size()) {

Data Structure using C++ & Lab -181

 result.push_back(arr[index]); // Visit node

 preorderTraversal(2 * index + 1, result); // Visit left subtree

 preorderTraversal(2 * index + 2, result); // Visit right

subtree

 }

 }

 void postorderTraversal(int index, std::vector<int>& result) {

 if (index < arr.size()) {

 postorderTraversal(2 * index + 1, result); // Visit left

subtree

 postorderTraversal(2 * index + 2, result); // Visit right

subtree

 result.push_back(arr[index]); // Visit node

 }

 }

 std::vector<int> inorder() {

 std::vector<int> result;

 inorderTraversal(0, result);

 return result;

 }

 std::vector<int> preorder() {

 std::vector<int> result;

 preorderTraversal(0, result);

 return result;

 }

 std::vector<int> postorder() {

 std::vector<int> result;

 postorderTraversal(0, result);

 return result;

 }

private:

 std::vector<int> arr;

Data Structure using C++ & Lab -182

};

int main() {

 BinaryTree tree;

 tree.insert(1);

 tree.insert(2);

 tree.insert(3);

 tree.insert(4);

 tree.insert(5);

 tree.insert(6);

 tree.insert(7);

 std::vector<int> inorderResult = tree.inorder();

 std::vector<int> preorderResult = tree.preorder();

 std::vector<int> postorderResult = tree.postorder();

 std::cout << "Inorder traversal: ";

 for (int val : inorderResult) {

 std::cout << val << " ";

 }

 std::cout << std::endl;

 std::cout << "Preorder traversal: ";

 for (int val : preorderResult) {

 std::cout << val << " ";

 }

 std::cout << std::endl;

 std::cout << "Postorder traversal: ";

 for (int val : postorderResult) {

 std::cout << val << " ";

 }

 std::cout << std::endl;

 return 0;

}

Data Structure using C++ & Lab -183

Explanation

Insert: Adds a new element to the end of the array.

Traversal Methods:

Inorder Traversal: Recursively visits the left subtree, the node,

and then the right subtree.

Preorder Traversal: Recursively visits the node, the left subtree,

and then the right subtree.

Postorder Traversal: Recursively visits the left subtree, the right

subtree, and then the node.

Main Function: Demonstrates the usage of the BinaryTree class

by inserting elements and performing different traversals.

Linked representation (using nodes and pointers) of binary trees.

In the linked representation of binary trees, each node is

represented by a structure (or class) that contains data and pointers

to its left and right children. This is a more flexible way to

represent binary trees compared to array representation, especially

for trees that are not complete.

Node Structure

First, define a structure (or class) for the nodes of the binary tree:

Data Structure using C++ & Lab -184

Binary Tree Class

Next, define a class for the binary tree that includes methods to

insert nodes and perform traversals:

class BinaryTree {

public:

 BinaryTree() : root(nullptr) {}

 void insert(int key) {

 if (root == nullptr) {

 root = new TreeNode(key);

 } else {

 insert(root, key);

 }

 }

 void inorderTraversal(TreeNode* node, std::vector<int>&

result) {

 if (node != nullptr) {

 inorderTraversal(node->left, result);

 result.push_back(node->val);

 inorderTraversal(node->right, result);

 }

 }

 void preorderTraversal(TreeNode* node, std::vector<int>&

result) {

 if (node != nullptr) {

 result.push_back(node->val);

 preorderTraversal(node->left, result);

 preorderTraversal(node->right, result);

 }

 }

 void postorderTraversal(TreeNode* node, std::vector<int>&

result) {

 if (node != nullptr) {

Data Structure using C++ & Lab -185

 postorderTraversal(node->left, result);

 postorderTraversal(node->right, result);

 result.push_back(node->val);

 }

 }

 std::vector<int> inorder() {

 std::vector<int> result;

 inorderTraversal(root, result);

 return result;

 }

 std::vector<int> preorder() {

 std::vector<int> result;

 preorderTraversal(root, result);

 return result;

 }

 std::vector<int> postorder() {

 std::vector<int> result;

 postorderTraversal(root, result);

 return result;

 }

private:

 TreeNode* root;

 void insert(TreeNode* node, int key) {

 if (key < node->val) {

 if (node->left == nullptr) {

 node->left = new TreeNode(key);

 } else {

 insert(node->left, key);

 }

 } else {

 if (node->right == nullptr) {

 node->right = new TreeNode(key);

Data Structure using C++ & Lab -186

 } else {

 insert(node->right, key);

 }

 }

 }

};

7.8 OPERATIONS ON BINARY TREES

Here’s a comprehensive guide to various operations on binary trees

using different algorithms in C++:

Operations on Binary Trees: Insertion with Algorithms

In a binary tree, insertion can be performed in different ways based

on the type of binary tree (e.g., Binary Search Tree, Complete

Binary Tree). Here, we'll explore insertion in both a Binary Search

Tree (BST) and a Complete Binary Tree.

Node Structure

Define a structure for the nodes of the binary tree:

Data Structure using C++ & Lab -187

Insertion in a Binary Search Tree (BST)

In a BST, nodes are inserted such that the left subtree of a node

contains only nodes with keys less than the node’s key, and the

right subtree only nodes with keys greater than the node’s key.

Insertion Algorithm

Start at the root node.

Compare the key to be inserted with the current node's key:

If the key is less, move to the left child.

If the key is greater, move to the right child.

Repeat step 2 until finding an appropriate null position.

Insert the new node at the found null position.

C++ Implementation

class BinarySearchTree {

public:

 BinarySearchTree() : root(nullptr) {}

 void insert(int key) {

 root = insert(root, key);

 }

 void inorder() {

 inorderTraversal(root);

 }

private:

 TreeNode* root;

 TreeNode* insert(TreeNode* node, int key) {

 if (node == nullptr) {

 return new TreeNode(key);

 }

 if (key < node->val) {

Data Structure using C++ & Lab -188

 node->left = insert(node->left, key);

 } else if (key > node->val) {

 node->right = insert(node->right, key);

 }

 return node;

 }

 void inorderTraversal(TreeNode* node) {

 if (node != nullptr) {

 inorderTraversal(node->left);

 std::cout << node->val << " ";

 inorderTraversal(node->right);

 }

 }

};

Deletion in Binary Trees

Deletion in binary trees can vary based on the type of binary tree

(e.g., Binary Search Tree, Complete Binary Tree). Here, we'll

explore deletion in both a Binary Search Tree (BST) and a

Complete Binary Tree.

Node Structure

Define a structure for the nodes of the binary tree:

Deletion in a Binary Search Tree (BST)

In a BST, deletion involves three main cases:

Data Structure using C++ & Lab -189

The node to be deleted is a leaf node (no children).

The node to be deleted has one child.

The node to be deleted has two children.

Deletion Algorithm

Find the node to be deleted.

Handle the three cases for deletion:

No children: Simply remove the node.

One child: Replace the node with its child.

Two children: Find the in-order successor (smallest node in the

right subtree), replace the node’s value with the successor’s value,

and then delete the successor.

7.9 CONCLUSION

In conclusion, binary trees stand as foundational structures in

computer science, pivotal for organizing hierarchical data

efficiently and enabling optimized algorithms. Throughout this

chapter, we have explored the fundamental concepts of binary

trees, from their basic definition and implementation to the

intricacies of traversal methods and essential operations.

Binary trees' versatility is evident in their application across

various domains, including database management, expression

parsing in compilers, and efficient routing in networks. Their

ability to store and retrieve data in a hierarchical manner makes

them indispensable in scenarios requiring structured data

organization and rapid access.

Implementing and manipulating binary trees involves mastering

operations such as insertion, deletion, and traversal. Each operation

impacts the tree's structure and performance, necessitating careful

Data Structure using C++ & Lab -190

consideration of algorithms to maintain balance and optimize

efficiency. The choice of traversal method—whether inorder,

preorder, or postorder—affects how nodes are accessed and

processed, influencing the outcome of algorithms built upon binary

tree structures.

Looking ahead, further exploration into balanced binary trees like

AVL trees and Red-Black trees offers insights into maintaining

optimal performance across operations, especially in scenarios

involving large datasets and critical applications. Mastery of binary

trees provides a solid foundation for tackling advanced data

structures and algorithmic challenges, essential for aspiring

computer scientists and engineers alike.

7.10 QUESTIONS AND ANSWERS

1. What is a binary tree?

Answer: A binary tree is a hierarchical data structure composed of

nodes, where each node has at most two children, referred to as the

left child and the right child.

2. What are the main operations on binary trees?

Answer: The main operations on binary trees include insertion,

deletion, and searching for nodes based on their key values.

Additionally, traversal methods such as inorder, preorder, and

postorder allow for accessing and processing nodes in different

sequences.

3. What are the advantages of binary trees over other data

structures?

Answer: Binary trees excel in scenarios where data needs to be

organized hierarchically with efficient search, insertion, and

Data Structure using C++ & Lab -191

deletion operations. They are particularly useful in applications

requiring sorted data and balanced access patterns.

4. How do you implement a binary tree in practice?

Answer: Binary trees can be implemented using linked structures

(nodes with pointers to left and right children) or array-based

representations (for complete binary trees). The implementation

typically involves defining a node structure and methods to

perform operations like insertion, deletion, and traversal.

5. What are some real-world applications of binary trees?

Answer: Binary trees find applications in various fields, including

database indexing, hierarchical data storage, expression parsing in

compilers, file system organization, and network routing

algorithms.

7.11 REFERENCES

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.

(2009). Introduction to Algorithms (3rd Edition). MIT

Press.

 Weiss, M. A. (2014). Data Structures and Algorithm

Analysis in C++ (4th Edition). Pearson Education.

 Goodrich, M. T., Tamassia, R., & Goldwasser, M. H.

(2014). Data Structures and Algorithms in C++ (2nd

Edition). John Wiley & Sons.

 Sedgewick, R., & Wayne, K. (2011). Algorithms (4th

Edition). Addison-Wesley.

 Sahni, S. (2006). Data Structures, Algorithms, and

Applications in C++. McGraw-Hill Education.

Data Structure using C++ & Lab -192

UNIT – 8: BINARY
Structure

8.0 Introduction

8.1 Objectives

8.2 Binary Tree Traversals

8.3 Recursive Implementation of Binary Tree Traversals

8.4 Non-Recursive Implementations of Binary Tree Traversals

8.5 Applications of Binary Tree Traversals

8.6 Conclusion

8.7 Questions and Answers

8.8 References

8.0 INTRODUCTION

Binary trees are fundamental data structures in computer science,

characterized by nodes that have at most two children, commonly

referred to as the left child and the right child. Traversing these

structures involves systematically visiting each node, facilitating

various operations and analyses crucial across numerous

computational tasks. Binary tree traversals provide methods to

explore and process nodes in specific sequences, each offering

unique advantages in data manipulation and algorithmic

applications.

Binary tree traversal algorithms, both recursive and iterative, are

pivotal in understanding and manipulating hierarchical data

efficiently. Recursive implementations, characterized by their

straightforward approach using function calls, offer simplicity and

clarity in algorithm design. Conversely, non-recursive approaches,

employing explicit data structures like stacks or queues, provide

Data Structure using C++ & Lab -193

control over memory usage and are often favored in environments

sensitive to stack depth or performance.

This discussion explores the intricacies of binary tree traversals,

delving into both their theoretical underpinnings and practical

applications. We will examine recursive and non-recursive

implementations of traversal algorithms, highlighting their

respective strengths and use cases. Furthermore, we will explore

diverse applications where binary tree traversals play a crucial role,

from expression evaluation to graph algorithms and tree

optimizations.

Understanding these traversal techniques equips us with essential

tools for efficiently navigating and manipulating binary tree

structures, underpinning foundational concepts in computer

science and enabling sophisticated solutions across various

domains.

8.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understand Binary Tree Traversals: Explore the concepts of

inorder, preorder, and postorder traversals, comprehending their

definitions and traversal sequences within binary tree structures.

Compare Recursive and Iterative Implementations: Analyze the

differences between recursive and iterative approaches to binary

tree traversals, evaluating their performance characteristics and

memory usage.

Data Structure using C++ & Lab -194

Implement Binary Tree Traversals: Develop proficiency in

implementing recursive and non-recursive algorithms for inorder,

preorder, and postorder traversals in practical scenarios.

Explore Applications: Investigate real-world applications of

binary tree traversals across various domains, including data

processing, algorithmic problem-solving, and data structure

optimizations.

Gain Practical Skills: Acquire hands-on experience in utilizing

binary tree traversals for tasks such as expression evaluation, tree

manipulation, pathfinding, and graph algorithms.

8.2 BINARY TREE TRAVERSALS

Binary tree traversals involve systematically visiting each node in

a binary tree according to a specified order. The three primary

traversal methods are inorder, preorder, and postorder. In inorder

traversal, nodes are visited in a left-root-right sequence, making it

useful for accessing nodes in sorted order in a BST. Preorder

traversal visits the root before its left and right children, making it

suitable for creating a copy of a tree or prefix expression

evaluation. Postorder traversal visits the left and right children

before the root, often used for deleting a tree or evaluating postfix

expressions. These traversal techniques are fundamental for

accessing, modifying, or analyzing binary tree structures in various

computational tasks and algorithms.

Inorder Traversal: Visit left subtree, then root, then right subtree.

Inorder traversal is a method used to visit nodes in a binary tree

where each node is recursively visited in the order: left subtree,

root, right subtree. This traversal method is particularly useful for

Data Structure using C++ & Lab -195

binary search trees (BSTs) as it visits nodes in ascending order of

their keys.

Algorithm

The recursive algorithm for inorder traversal can be defined as

follows:

Base Case: If the current node is null (empty tree), return.

Recursive Step:

Recursively traverse the left subtree.

Visit (print, process, or store) the current node's value.

Recursively traverse the right subtree.

This approach ensures that nodes are visited in the correct order

according to the properties of inorder traversal.

Example

Let's illustrate the inorder traversal algorithm with a simple C++

implementation using a class TreeNode for the tree nodes:

#include <iostream>

class TreeNode {

public:

 int val;

 TreeNode* left;
 TreeNode* right;

 TreeNode(int value) : val(value), left(nullptr), right(nullptr) {}

};

void inorderTraversal(TreeNode* root) {

 if (root == nullptr) {

 return;

 }

 // Traverse the left subtree

 inorderTraversal(root->left);

 // Visit the current node (print its value)

Data Structure using C++ & Lab -196

 std::cout << root->val << " ";

 // Traverse the right subtree

 inorderTraversal(root->right);

}

// Example usage

int main() {

 // Constructing a sample binary tree

 TreeNode* root = new TreeNode(1);

 root->left = new TreeNode(2);

 root->right = new TreeNode(3);

 root->left->left = new TreeNode(4);

 root->left->right = new TreeNode(5);

 std::cout << "Inorder traversal: ";

 inorderTraversal(root);

 std::cout << std::endl;

 return 0;

}

Explanation

In the above example:

We define the TreeNode class to represent nodes of the binary tree.

The inorderTraversal function is a recursive function that performs

inorder traversal.

Starting from the root node (root), it recursively traverses the left

subtree (root->left), then visits the current node (root->val), and

finally recursively traverses the right subtree (root->right).

The traversal prints node values in ascending order due to the

nature of inorder traversal, resulting in output: 4 2 5 1 3.

Preorder Traversal: Visit root, then left subtree, then right

subtree.

Data Structure using C++ & Lab -197

Preorder traversal is a method used to visit nodes in a binary tree

where each node is recursively visited in the order: root, left

subtree, right subtree. This traversal method is useful for creating a

copy of the tree, prefix expression evaluation, or constructing

prefix notation from infix notation.

Algorithm

The recursive algorithm for preorder traversal can be defined as

follows:

Base Case: If the current node is null (empty tree), return.

Recursive Step:

Visit (print, process, or store) the current node's value.

Recursively traverse the left subtree.

Recursively traverse the right subtree.

This approach ensures that the root node is visited before its left

and right subtrees.

Example in Python

Let's illustrate the preorder traversal algorithm with an example

implementation in C++:

#include <iostream>

// Definition of TreeNode

class TreeNode {

public:

 int val;

 TreeNode* left;

 TreeNode* right;

 TreeNode(int value) : val(value), left(nullptr), right(nullptr) {}

};

// Function to perform preorder traversal

void preorderTraversal(TreeNode* root) {

Data Structure using C++ & Lab -198

 if (root == nullptr) {

 return;

 }

 // Visit the current node

 std::cout << root->val << " ";

 // Traverse the left subtree

 preorderTraversal(root->left);

 // Traverse the right subtree

 preorderTraversal(root->right);

}

// Main function for example usage

int main() {

 // Constructing a sample binary tree

 TreeNode* root = new TreeNode(1);

 root->left = new TreeNode(2);

 root->right = new TreeNode(3);

 root->left->left = new TreeNode(4);

 root->left->right = new TreeNode(5);

 // Perform preorder traversal

 std::cout << "Preorder traversal: ";

 preorderTraversal(root);

 std::cout << std::endl;

 return 0;

}

Explanation:

TreeNode Class: Defines a simple binary tree node with an integer

value (val) and pointers to left (left) and right (right) children.

preorderTraversal Function:

Recursively traverses the binary tree in preorder.

Data Structure using C++ & Lab -199

Prints the value of the current node (root->val) before recursively

calling preorderTraversal on its left and right children (root->left

and root->right).

Main Function:

Constructs a sample binary tree with values 1, 2, 3, 4, and 5.

Calls preorderTraversal starting from the root node (TreeNode (1)).

Outputs the result of the preorder traversal, which in this case

would be: 1 2 4 5 3.

Postorder Traversal: Visit left subtree, then right subtree, then

root.

Postorder traversal is a method used to visit nodes in a binary tree

where each node is recursively visited in the order: left subtree,

right subtree, root. This traversal method is useful for deleting a

tree, evaluating postfix expressions, or performing certain types of

bottom-up processing.

Algorithm

The recursive algorithm for postorder traversal can be defined as

follows:

Base Case: If the current node is null (empty tree), return.

Recursive Step:

Recursively traverse the left subtree.

Recursively traverse the right subtree.

Visit (print, process, or store) the current node's value.

This approach ensures that the root node is visited after its left and

right subtrees have been fully explored.

Data Structure using C++ & Lab -200

Example in C++

Here's how you can implement postorder traversal of a binary tree

in C++ using a class TreeNode for the nodes:

#include <iostream>

// Definition of TreeNode

class TreeNode {

public:

 int val;

 TreeNode* left;

 TreeNode* right;

 TreeNode(int value) : val(value), left(nullptr), right(nullptr) {}

};

// Function to perform postorder traversal

void postorderTraversal(TreeNode* root) {

 if (root == nullptr) {

 return;

 }

 // Traverse the left subtree

 postorderTraversal(root->left);

 // Traverse the right subtree

 postorderTraversal(root->right);

 // Visit the current node

 std::cout << root->val << " ";

}

// Main function for example usage

int main() {

 // Constructing a sample binary tree

 TreeNode* root = new TreeNode(1);

 root->left = new TreeNode(2);

 root->right = new TreeNode(3);

 root->left->left = new TreeNode(4);

 root->left->right = new TreeNode(5);

Data Structure using C++ & Lab -201

 // Perform postorder traversal

 std::cout << "Postorder traversal: ";

 postorderTraversal(root);

 std::cout << std::endl;

 return 0;

}

Level-order Traversal: Visit nodes level by level, left to right.

Level-order traversal, also known as breadth-first traversal, is a

method used to visit nodes in a binary tree where each level of the

tree is visited before moving on to the next level. This traversal

method explores nodes level by level, from left to right, making it

suitable for tasks such as level-wise printing or searching in a tree

structure.

Algorithm

Level-order traversal can be implemented using a queue data

structure to keep track of nodes at each level:

Initialize: Start with a queue initialized with the root node.

Process Nodes: Dequeue a node from the front of the queue, visit

(print, process, or store) its value.

Enqueue Children: Enqueue its left and right children (if they

exist) into the queue.

Repeat: Continue this process until the queue is empty.

Example in C++

Here's how you can implement level-order traversal of a binary

tree in C++ using a class TreeNode for the nodes and std::queue

for managing the traversal:

#include <iostream>

#include <queue>

Data Structure using C++ & Lab -202

// Definition of TreeNode

class TreeNode {

public:

 int val;

 TreeNode* left;

 TreeNode* right;

 TreeNode(int value) : val(value), left(nullptr), right(nullptr) {}

};

// Function to perform level-order traversal

void levelOrderTraversal(TreeNode* root) {

 if (root == nullptr) {

 return;

 }

 // Create a queue for level-order traversal

 std::queue<TreeNode*> q;

 q.push(root);

 while (!q.empty()) {

 TreeNode* current = q.front();

 q.pop();

 // Visit the current node

 std::cout << current->val << " ";

 // Enqueue left child

 if (current->left) {

 q.push(current->left);

 }

 // Enqueue right child

 if (current->right) {

 q.push(current->right);

 }

 }

}

// Main function for example usage

Data Structure using C++ & Lab -203

int main() {

 // Constructing a sample binary tree

 TreeNode* root = new TreeNode(1);

 root->left = new TreeNode(2);

 root->right = new TreeNode(3);

 root->left->left = new TreeNode(4);

 root->left->right = new TreeNode(5);

 // Perform level-order traversal

 std::cout << "Level-order traversal: ";

 levelOrderTraversal(root);

 std::cout << std::endl;

 return 0;

}

Explanation:

TreeNode Class: Defines a simple binary tree node with an integer

value (val) and pointers to left (left) and right (right) children.

levelOrderTraversal Function:

Implements level-order traversal using a std::queue.

Starts with the root node (root) enqueued.

Dequeues each node (current) from the front of the queue, visits its

value (std::cout << current->val << " "), and enqueues its children

(if they exist) into the queue.

Continues this process until all nodes at every level have been

visited.

Main Function:

Constructs a sample binary tree with values 1, 2, 3, 4, and 5.

Calls levelOrderTraversal starting from the root node

(TreeNode(1)).

Data Structure using C++ & Lab -204

Outputs the result of the level-order traversal, which in this case

would be: 1 2 3 4 5.

8.3 RECURSIVE IMPLEMENTATION
OF BINARY TREE TRAVERSALS

Recursive implementation of binary tree traversal refers to the

method of visiting each node in a binary tree using recursive

function calls. There are three primary types of binary tree

traversals: inorder, preorder, and postorder.

In each traversal method, the recursive function ensures that all

nodes are visited in the prescribed order, leveraging the function

call stack to manage the sequence of node visits. Recursive

implementations are typically concise and intuitive for tree

traversal, suitable for operations such as printing tree nodes in a

specific order, evaluating expressions, or performing depth-first

searches in binary tree structures.

The algorithms for recursive binary tree traversals in C++ format:

In inorder traversal, the nodes are visited in the sequence: left

subtree, root, right subtree. The recursive algorithm starts by

checking if the current node is null; if so, it returns. Otherwise, it

recursively traverses the left subtree, then visits the current node

(e.g., prints its value), and finally recursively traverses the right

subtree.

Time Complexity of Recursive Traversals

Each node is visited exactly once.

Time complexity: O(n), where n is the number of nodes in

the binary tree.

Data Structure using C++ & Lab -205

This is because every node is processed once, and

processing each node takes constant time.

Inorder Traversal Algorithm (C++ Format)

Preorder traversal visits nodes in the sequence: root, left subtree,

right subtree. Similarly, the recursive function checks if the current

node is null; if not, it visits the current node first, then recursively

traverses the left subtree, followed by the right subtree.

Time Complexity of Recursive Traversals

Each node is visited exactly once.

Time complexity: O(n), where n is the number of nodes in

the binary tree.

Similar to inorder traversal, all nodes are processed once.

Preorder Traversal Algorithm (C++ Format)

Data Structure using C++ & Lab -206

Postorder traversal visits nodes in the sequence: left subtree,

right subtree, root. The recursive approach begins by recursively

traversing the left subtree, then the right subtree, and finally

visiting the current node.

Time Complexity of Recursive Traversals

Each node is visited exactly once.

Time complexity: O (n), where nnn is the number of nodes

in the binary tree.

Like the other traversals, all nodes are processed once.

Postorder Traversal Algorithm (C++ Format)

Explanation

Each function (inorderTraversal, preorderTraversal,

postorderTraversal) takes a TreeNode* parameter root,

representing the root of the subtree to traverse.

Base Case: if (root == nullptr) checks if the current node (root) is

null (empty tree). If true, the function returns immediately, halting

further recursion.

Data Structure using C++ & Lab -207

Recursive Step: For each traversal:

Inorder: Recursively call inorderTraversal on the left subtree, visit

the current node, then recursively call it on the right subtree.

Preorder: Visit the current node, recursively call

preorderTraversal on the left subtree, then on the right subtree.

Postorder: Recursively call postorderTraversal on the left subtree,

then on the right subtree, and finally visit the current node.

Visit Node: This part of the algorithm is where you would

typically perform an action on the current node, such as printing its

value (std::cout << root->val << " ";). This action can be adjusted

based on the specific requirements of your application.

8.4 NON-RECURSIVE
IMPLEMENTATIONS OF BINARY
TREE TRAVERSALS

The algorithmic outlines for non-recursive implementations of

binary tree traversals:

Non-Recursive Algorithms for Binary Tree Traversals

Inorder Traversal Algorithm (Non-Recursive)

Data Structure using C++ & Lab -208

Preorder Traversal Algorithm (Non-Recursive)

Postorder Traversal Algorithm (Non-Recursive)

Explanation

Inorder Traversal: Uses a stack to simulate the call stack of

recursive approach. It traverses left subtree first, processes the

current node, and then moves to the right subtree.

Data Structure using C++ & Lab -209

Preorder Traversal: Starts from the root node, processes it, and

pushes its right and left children onto the stack. This ensures nodes

are processed in the correct preorder sequence.

Postorder Traversal: Uses two stacks: the main stack pushes

nodes in root-right-left order, and the output stack reverses this

order to achieve the postorder sequence.

Compare the recursive and iterative approaches in terms of

performance and memory usage.

Recursive Approach

Performance:

Time Complexity: Recursive traversals (inorder, preorder,

postorder) typically have a time complexity of O (n), where n is

the number of nodes in the binary tree. Each node is visited exactly

once.

Space Complexity: The space complexity depends on the

maximum depth of the recursion stack, which is O (h) where h is

the height of the binary tree. In the best-case scenario (balanced

tree), this is O (log n); in the worst case (unbalanced tree), it can be

O (n).

Memory Usage:

Recursive calls use memory on the call stack for function calls and

local variables. Each recursive call adds a stack frame, which can

potentially lead to stack overflow errors if the tree is deeply nested

or unbalanced.

Despite potential drawbacks, recursive approaches are often

simpler to implement and understand due to their natural recursive

nature.

Data Structure using C++ & Lab -210

Iterative Approach

Performance:

Time Complexity: Iterative traversals also have a time complexity

of O (n), similar to recursive traversals. Each node is processed

exactly once.

Space Complexity: Iterative traversals typically use an explicit

data structure such as a stack (or queue for level-order traversal).

The space complexity is also O (h), where h is the height of the

binary tree. This is because the stack or queue stores nodes as they

are processed, similar to the depth of recursion in the recursive

approach.

Memory Usage:

Iterative approaches often use additional memory for data

structures like stacks or queues to manage the order of node

processing.

They may be more memory-efficient in some cases compared to

recursive approaches, especially in situations where tail-call

optimization is not available (as in many programming languages).

8.5 APPLICATIONS OF BINARY TREE
TRAVERSALS

Binary tree traversals, both recursive and iterative, are fundamental

operations with numerous practical applications across various

domains. Here are some key applications of binary tree traversals:

Binary Search Trees (BSTs): Inorder traversal of a BST results in

a sorted sequence of elements. This property is utilized for tasks

such as generating sorted outputs from data stored in a BST or

validating the ordering of elements.

Data Structure using C++ & Lab -211

Expression Evaluation: Preorder or postorder traversals are used

to evaluate arithmetic expressions stored in binary expression trees

(expression trees). Each traversal method corresponds to a different

evaluation strategy (prefix, postfix), making it efficient for

computational tasks.

Path Finding and Reconstruction: Traversals are employed to

reconstruct or find paths within binary trees. For example,

determining the path from the root to a specific node or finding all

root-to-leaf paths in the tree.

Binary Tree Operations: Traversals facilitate various operations

such as cloning a tree (preorder), transforming a tree structure

(inorder), or deleting nodes (postorder). These operations leverage

the sequential access provided by traversals to manipulate tree data

effectively.

Binary Tree Serialization and Deserialization: Preorder or

postorder traversals are used to serialize binary trees into a linear

data format (e.g., arrays or strings). This serialized format can be

stored or transmitted across networks and later deserialized back

into a binary tree.

Graph Algorithms: Binary tree traversals serve as a basis for

several graph algorithms, such as depth-first search (DFS), which

explores vertices in a similar manner to preorder traversal.

Applications include finding connected components, cycle

detection, and topological sorting in directed acyclic graphs

(DAGs).

Data Structure using C++ & Lab -212

8.6 CONCLUSION

Binary tree traversals represent a cornerstone in the study of data

structures and algorithms, offering essential tools for navigating

and manipulating hierarchical data efficiently. Throughout this

exploration, we have delved into the intricacies of inorder,

preorder, and postorder traversals, each methodically visiting

nodes in distinct sequences that serve various computational

purposes.

Recursive implementations of these traversals provide a clear and

intuitive approach, leveraging function calls to explore tree

structures depth-first. They offer simplicity in algorithmic design

but necessitate careful consideration of stack space in deeply

nested trees. In contrast, non-recursive approaches utilize explicit

data structures like stacks or queues to achieve iterative traversal,

offering finer control over memory usage and stack depth.

From practical applications in expression evaluation and tree

manipulation to supporting complex graph algorithms and

optimizing data structures like binary search trees, binary tree

traversals find wide-ranging utility. They empower efficient

solutions across domains, enhancing computational efficiency and

enabling sophisticated data processing tasks.

As we conclude, understanding the nuances of binary tree

traversals equips us with essential skills for tackling algorithmic

challenges, optimizing code performance, and developing robust

software solutions. Mastery of these traversal techniques not only

enriches our understanding of data structures but also fosters

Data Structure using C++ & Lab -213

creativity in algorithm design, ensuring proficiency in navigating

the complexities of binary tree structures.

8.7 QUESTIONS AND ANSWERS

1. What are the three main types of binary tree traversals?

Answer: The three main types of binary tree traversals are:

Inorder traversal: Visit left subtree, then current node, then right

subtree.

Preorder traversal: Visit current node, then left subtree, then right

subtree.

Postorder traversal: Visit left subtree, then right subtree, then

current node.

2. How does inorder traversal of a binary search tree differ

from preorder and postorder traversals?

Answer: In an inorder traversal of a binary search tree (BST), the

nodes are visited in ascending order of their keys. This property

makes inorder traversal useful for generating sorted lists from

BSTs. In contrast, preorder and postorder traversals follow

different sequences: preorder visits the root before its subtrees,

while postorder visits the root after its subtrees.

3. What is the advantage of using iterative approaches for

binary tree traversals over recursive methods?

Answer: Iterative approaches using stacks or queues offer more

control over memory usage, especially in environments where

stack depth is a concern (such as in deeply nested trees). They can

also be more efficient in terms of space utilization and are suitable

for iterative modifications or optimizations of tree structures.

Data Structure using C++ & Lab -214

4. Give an example where postorder traversal of a binary tree

is particularly useful.

Answer: Postorder traversal is useful in scenarios where operations

need to be performed on subtrees before processing the root node.

For example, in deleting a binary tree, postorder traversal ensures

that child nodes are deleted before their parent nodes, preventing

memory leaks and ensuring proper cleanup.

5. How does the time complexity of binary tree traversals

compare to each other?

Answer: All three types of binary tree traversals (inorder, preorder,

postorder) have a time complexity of O (n), where nnn is the

number of nodes in the binary tree. This is because each node is

visited exactly once during traversal, making them equally efficient

in terms of time complexity.

8.8 REFERENCES

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).

Introduction to Algorithms (3rd Edition). MIT Press.

Weiss, M. A. (2014). Data Structures and Algorithm Analysis in

C++ (4th Edition). Pearson Education.

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014). Data

Structures and Algorithms in C++ (2nd Edition). John Wiley &

Sons.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th Edition).

Addison-Wesley.

Sahni, S. (2006). Data Structures, Algorithms, and Applications in

C++. McGraw-Hill Education.

Data Structure using C++ & Lab -215

BLOCK III: GRAPH ALGORITHMS
AND SEARCHING TECHNIQUES
UNIT – 9: ADVANCED TREES
Structure

9.0 Introduction

9.1 Objectives

9.2 AVL Trees

 9.2.1 RR Rotation

 9.2.2 LL Rotation

 9.2.3 LR Rotation

 9.2.4 RL Rotation

9.3 Implementation of AVL Trees Operations

9.4 Applications of AVL Trees

9.5 Conclusion

9.6 Questions and Answers

9.7 References

9.0 INTRODUCTION

AVL trees are a type of self-balancing binary search tree named

after their inventors, Georgy Adelson-Velsky and Evgenii Landis.

They maintain a balanced structure to ensure that the height of the

tree remains logarithmic with respect to the number of nodes,

which allows for efficient operations such as insertion, deletion,

and searching. The balance of an AVL tree is managed through

rotations, which ensure that the tree remains balanced after

modifications. This balancing mechanism makes AVL trees

particularly suitable for applications requiring frequent updates and

efficient data retrieval.

Data Structure using C++ & Lab -216

In this chapter, we will explore the fundamentals of AVL trees,

including the different types of rotations used to maintain balance.

We will delve into the implementation of various AVL tree

operations, such as insertion and deletion, and discuss their

algorithms in detail. Additionally, we will examine practical

applications of AVL trees, highlighting their significance in various

computational and real-world scenarios. Finally, we will provide a

set of questions and answers to reinforce the concepts covered,

along with references for further reading.

This comprehensive overview aims to equip you with a thorough

understanding of AVL trees, their operations, and their

applications, providing a solid foundation for further exploration

and implementation of this essential data structure.

9.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understand the basic concepts and properties of AVL trees and

why they are called self-balancing binary search trees.

Learn and implement the different types of rotations (RR, LL, LR,

RL) used to maintain the balance in AVL trees.

Implement insertion and deletion operations in AVL trees, ensuring

the tree remains balanced through appropriate rotations.

Explore various real-world applications of AVL trees to understand

their practical significance and efficiency.

Data Structure using C++ & Lab -217

Reinforce your understanding of AVL trees through questions and

answers, and refer to additional resources for deeper insights into

the topic.

9.2 AVL TREES

In 1962, GM Adelson-Velsky and EM Landis created the AVL

Tree. To honor its creators, the tree is called AVL.

The height of each node in an AVL Tree is determined by

subtracting the height of its left sub-tree from the height of its right

sub-tree, creating a height balanced binary search tree.

If every node's balance factor falls between -1 and 1, the tree is

said to be balanced; if not, it needs to be balanced.

Balance Factor (k) = height (left(k)) - height (right(k))

The left sub-tree is one level higher than the right sub-tree if the

balancing factor of any node is 1.

Any node whose balancing factor is zero indicates that the heights

of the left and right subtrees are equal.

The left sub-tree is one level lower than the right sub-tree if the

balancing factor of any node is -1.

The AVL tree is shown in the image below. It is evident that every

node has a balance factor that ranges from -1 to +1. It is an AVL

tree example as a result.

Data Structure using C++ & Lab -218

Image Source: Javat Point

Operation on AVL Tree

All operations are carried out in the same manner as they are

carried out in a binary search tree as the AVL tree is likewise a

binary search tree. There is no property violation of the AVL tree

as a result of searching or traversing. Nevertheless, insertion and

deletion are the operations that need to be reviewed because they

have the potential to break this characteristic.

Data Structure using C++ & Lab -219

Insertion: The process of inserting data into an AVL tree is

identical to that of inserting data into a binary search tree. It

might, however, result in an AVL tree property violation,

necessitating the balancing of the tree. Rotations can be

used to balance the tree.

Deletion: The process of deletion can be carried out

similarly to how it is in a binary search tree. Various

rotations are performed to rebalance the tree because

deletions can also throw it out of balance.

The AVL Tree: Why?

By preventing skewing, the AVL tree regulates the height of the

binary search tree. In a binary search tree of height h, the total

processing time is O(h). On the other hand, in the worst-case

scenario, if the BST skews, it can be stretched to O(n). The AVL

tree sets an upper limitation on each operation to be O(log n),

where n is the number of nodes, by restricting this height to log n.

Rotations of AVL

Rotation in the AVL tree is only carried out when the Balance

Factor is not equal to -1, 0 or 1. Rotations can be broadly classified

into four categories, which are as follows:

L L rotation: Inserted node is in the left subtree of left

subtree of A

R R rotation: Inserted node is in the right subtree of right

subtree of A

L R rotation: Inserted node is in the right subtree of left

subtree of A

R L rotation: Inserted node is in the left subtree of right

subtree of A

Data Structure using C++ & Lab -220

Assuming that node A is the node with a balancing factor that is

not -1, 0, 1.

The initial two iterations: The next two rotations, LR and RL, are

double rotations, whereas LL and RR are single rotations. A tree

must have a minimum height of two in order to be considered

imbalanced. Let's examine each revolution.

9.2.1 RR Rotation

We apply RR rotation, an anticlockwise rotation, on the edge

beneath a node with a balance factor of -2 when BST becomes

unbalanced as a result of a node being placed into the right subtree

of the right subtree of A.

Because node C is added into the right subtree of node A, node A

in the example above has a -2 balancing factor. We rotate the RR

on the edge beneath A.

9.2.2 LL Rotation

We apply LL rotation, or clockwise rotation, on the edge beneath a

node with balance factor 2 when BST becomes unbalanced as a

result of a node being added into the left subtree of the left subtree

of C.

Because node A is inserted into the left subtree of the C left

subtree, node C in the example above has a balance factor of 2.

The LL rotation is applied to the edge beneath A.

Data Structure using C++ & Lab -221

9.2.3 LR Rotation

As was already mentioned, single rotations are a little easier than

double rotations. RR rotation is initially applied to the subtree, then

LL rotation is applied to the complete tree (which is defined as the

first node from the route of the inserted node whose balance factor

is not -1, 0, or 1). This means that LR rotation is equal to RR

rotation plus LL rotation.

Step – I: Node B was inserted into both the left and right subtrees

of C and A, resulting in C being an unbalanced node with a balance

factor of 2. In this case of rotation from L to R, where: The inserted

node can be found in the right subtree of C's left subtree.

Step – II: Given that LR rotation is equal to RR plus LL rotation,

RR (anticlockwise) on the subtree rooted at A is done first. Node A

has become the left subtree of B through RR rotation.

Data Structure using C++ & Lab -222

Step – III: Because inserted node A is to the left of C, node C is

still unbalanced, or has a balance factor of 2, even after RR

rotation.

Step – IV: We now rotate the entire tree, or node C, in a clockwise

direction using LL. Node C is now node B's right subtree, and

node A is node B's left subtree.

9.2.4 RL Rotation

Double rotations are a little more difficult than single rotations, as

was previously mentioned and previously explained. The formula

for R L rotation is equal to LL rotation plus RR rotation. This

means that LL rotation is applied to the subtree first, then RR

rotation is applied to the complete tree (which is defined as the first

Data Structure using C++ & Lab -223

node from the route of the inserted node whose balancing factor is

not equal to -1, 0, or 1).

Step – I: Due to the insertion of node B into the right subtree of A

and left subtree of C, A is now an unbalanced node with a balance

factor of 2. In this RL rotation scenario, where: The node that was

inserted is in the left subtree of A's right subtree.

Step – II: Since LL rotation plus RR rotation equals RL rotation,

LL (clockwise) rotation on the subtree rooted at C is done first.

After performing RR rotation, node C is now B's correct subtree.

Step – III: Node A remains unbalanced, with a balance factor of -

2, even after LL rotation has been performed. This is due to the

fact that node A's right-subtree is also its right-subtree.

Data Structure using C++ & Lab -224

Step – IV: We now rotate the entire tree, or node A, in an

anticlockwise direction, or RR rotation. Now, node A is the left

subtree of node B, and node C is the right subtree of node B.

Step – V: Balance factor of each node is now either -1, 0, or 1, i.e.,

BST is balanced now.

9.3 IMPLEMENTATION OF AVL
TREES OPERATIONS

Operations on AVL Trees

Insertion of a Node

Algorithm:

Perform a standard BST insertion.

Update the height of each node from the inserted node to the root.

Check the balance factor of each node.

If the balance factor of any node becomes greater than 1 or less

than -1, perform rotations (LL, RR, LR, RL) to balance the tree.

Deletion of a Node

Data Structure using C++ & Lab -225

Algorithm:

Perform a standard BST deletion.

Update the height of each node from the deleted node to the root.

Check the balance factor of each node.

If the balance factor of any node becomes greater than 1 or less

than -1, perform rotations to balance the tree.

Left Rotation

Algorithm:

Right Rotation

Algorithm:

Double Rotation (Left-Right Rotation)

Data Structure using C++ & Lab -226

Algorithm:

Double Rotation (Right-Left Rotation)

Algorithm:

Balancing and Maintenance

Check Balance Factor: Calculate the balance factor (height

difference between left and right subtrees) of each node.

Rebalance Tree: After insertions or deletions, check and rebalance

the tree using rotations if necessary to maintain AVL properties.

9.4 APPLICATIONS OF AVL TREES

Data Storage and Retrieval

Efficient Searching: AVL trees maintain a balanced structure,

ensuring that the height of the tree is logarithmic in the number of

nodes. This guarantees that search operations can be performed in

Data Structure using C++ & Lab -227

O(log n)O(\log n)O(logn) time, making them highly efficient for

data retrieval tasks.

Dynamic Sets: AVL trees are useful in applications where dynamic

data sets are frequently updated with insertions and deletions. The

self-balancing property ensures that the tree remains balanced after

each update, maintaining efficient access times.

Database Indexing

Balanced Index Structures: AVL trees are often used in database

indexing to maintain sorted data. The balanced nature of AVL trees

ensures that the depth of the index remains low, allowing for quick

searches, insertions, and deletions.

Multilevel Indexes: In databases, AVL trees can be used to

implement multilevel indexes, where each level of the index is a

balanced tree, providing efficient access paths to the data.

Memory Management

Garbage Collection: AVL trees are employed in memory

management systems, such as garbage collectors, to keep track of

free memory blocks. The balanced structure allows for efficient

allocation and deallocation of memory.

Buddy System: In the buddy memory allocation system, AVL trees

can be used to manage the free memory blocks, ensuring that the

system can quickly find the best-fit block for memory allocation

requests.

File Systems

File Indexing: File systems use AVL trees to index files and

directories. The balanced nature of AVL trees ensures that file

operations such as searching, insertion, and deletion are performed

efficiently.

Data Structure using C++ & Lab -228

Metadata Management: AVL trees are used to manage file

metadata, enabling quick access and updates to file attributes such

as permissions, timestamps, and sizes.

Network Routing

Routing Tables: AVL trees can be used in the implementation of

routing tables in network routers. The balanced structure allows for

efficient lookup, insertion, and deletion of routing entries, ensuring

quick and accurate routing decisions.

IP Address Management: AVL trees are useful in managing IP

address ranges and routing prefixes, enabling efficient searching

and allocation of IP addresses in large networks.

Event Scheduling

Priority Queues: AVL trees can be used to implement priority

queues for event scheduling. The balanced structure ensures that

events are processed in the correct order of priority, with efficient

insertion and extraction operations.

Task Scheduling: In operating systems, AVL trees are used to

manage the scheduling of tasks and processes. The balanced nature

of the tree ensures that tasks are scheduled and executed efficiently

based on their priority and deadlines.

Computational Geometry

Range Searching: AVL trees are employed in computational

geometry for range searching problems, where the goal is to

efficiently find all points within a given range. The balanced

structure allows for quick and efficient searches.

Intersection Detection: AVL trees are used to detect intersections

of geometric objects such as lines and polygons. The efficient

insertion and deletion operations facilitate the dynamic updating of

the geometric structure.

Data Structure using C++ & Lab -229

9.5 CONCLUSION

AVL trees play a crucial role in ensuring efficient data

management through their self-balancing properties. By

maintaining a balanced structure, AVL trees guarantee logarithmic

time complexity for insertion, deletion, and search operations,

which is essential for applications requiring frequent updates and

rapid data retrieval. The use of rotations, such as RR, LL, LR, and

RL, is fundamental in preserving this balance after modifications,

demonstrating the sophisticated nature of AVL trees compared to

simple binary search trees.

Throughout this chapter, we have explored the intricacies of AVL

trees, starting with the basic concepts and advancing to the

implementation of various operations. We have examined how

rotations help in maintaining the balance and efficiency of AVL

trees. Furthermore, we have discussed the practical applications of

AVL trees in fields like database indexing, memory management,

and network routing, showcasing their versatility and importance

in real-world scenarios.

By understanding and implementing AVL trees, you gain a

valuable tool for optimizing data structures in your applications.

This chapter has equipped you with the necessary knowledge and

skills to apply AVL trees effectively, ensuring that your data

operations are performed efficiently and reliably.

Data Structure using C++ & Lab -230

9.6 QUESTIONS AND ANSWERS

1. What is an AVL tree?

Answer: An AVL tree is a self-balancing binary search tree named

after its inventors, Georgy Adelson-Velsky and Evgenii Landis. It

maintains its balance by ensuring the height difference between the

left and right subtrees of any node is no more than one.

2. Why are AVL trees considered self-balancing?

Answer: AVL trees are considered self-balancing because they

automatically perform rotations to maintain a balanced structure

after insertion and deletion operations, ensuring the height

difference (balance factor) between the left and right subtrees of

any node is -1, 0, or +1.

3. What is the balance factor in an AVL tree?

Answer: The balance factor of a node in an AVL tree is the

difference between the height of its left subtree and the height of

its right subtree. It helps in determining whether the tree needs

rebalancing through rotations.

4. Explain the RR rotation in AVL trees.

Answer: RR (Right-Right) rotation is a single left rotation used to

rebalance an AVL tree when a node's right subtree is heavier (i.e.,

its balance factor is -2) and the right child has a balance factor of -

1 or 0. This rotation shifts the unbalanced subtree to the left.

5. Describe the LL rotation in AVL trees.

Answer: LL (Left-Left) rotation is a single right rotation used to

rebalance an AVL tree when a node's left subtree is heavier (i.e., its

Data Structure using C++ & Lab -231

balance factor is +2) and the left child has a balance factor of +1 or

0. This rotation shifts the unbalanced subtree to the right.

6. What is the difference between LR and RL rotations in AVL

trees?

Answer: LR (Left-Right) rotation is a double rotation, first a left

rotation on the left child and then a right rotation on the node, used

when the balance factor of the node is +2 and the left child has a

balance factor of -1. RL (Right-Left) rotation is also a double

rotation, first a right rotation on the right child and then a left

rotation on the node, used when the balance factor of the node is -2

and the right child has a balance factor of +1.

9.7 REFERENCES

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).

Introduction to Algorithms (3rd Edition). MIT Press.

Weiss, M. A. (2014). Data Structures and Algorithm Analysis in

C++ (4th Edition). Pearson Education.

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014). Data

Structures and Algorithms in C++ (2nd Edition). John Wiley &

Sons.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th Edition).

Addison-Wesley.

Sahni, S. (2006). Data Structures, Algorithms, and Applications in

C++. McGraw-Hill Education.

Data Structure using C++ & Lab -232

UNIT – 10: B-TREES
Sturcture

10.0 Introduction

10.1 Objectives

10.2 B-Tree

 10.2.1 Properties of B-Trees

 10.2.2 Operations on B-Trees

 10.2.3 Applications of B-Trees

10.3 Splay Trees

 10.3.1 Splaying Algorithm

 10.3.2 Operations on Splay Trees

10.4 Red-Black Trees

10.5 AA-Trees

10.6 Applications of Balanced Trees

10.7 Conclusion

10.8 Questions and Answers

10.9 References

10.0 INTRODUCTION

In the realm of data structures, trees play a pivotal role in

organizing and managing hierarchical data efficiently. Among the

diverse types of trees, balanced trees stand out for their ability to

maintain balanced structures that ensure optimal performance for

various operations. This chapter explores several important

balanced trees, including B-Trees, Splay Trees, Red-Black Trees,

and AA-Trees, along with their properties, operations, applications,

and the broader significance of balanced trees in computer science.

Data Structure using C++ & Lab -233

Balanced Trees are designed to keep the tree height proportional

to the logarithm of the number of nodes, ensuring that operations

such as search, insertions, and deletions remain efficient even as

the dataset grows. These trees are essential in scenarios where

maintaining balance is critical to performance, such as in

databases, file systems, and compilers. Understanding the

principles and applications of balanced trees equips us with

powerful tools for optimizing data structures in real-world

applications.

This chapter will delve into the intricacies of various balanced

trees, exploring their structural properties, algorithms for balancing

and rebalancing, and practical applications. By the end, you will

gain a comprehensive understanding of how these trees contribute

to efficient data management and algorithmic design, laying a

foundation for advanced studies and applications in computer

science.

10.1 OBJECTIVES

After completing this unit, you will be able to understand,

Explore B-Trees: Understand the structure and properties of B-

Trees, including rules for balancing.

Study Splay Trees: Learn operations such as splaying, insertion,

deletion, and search in Splay Trees.

Examine Red-Black Trees: Understand the properties and rules

that define Red-Black Trees as balanced binary search trees.

Understand AA-Trees: Learn about AA-Trees, a variant of Red-

Black Trees with simplified balancing rules.

Analyze Applications of Balanced Trees: Investigate practical

uses of balanced trees in databases, file systems, and compilers.

Data Structure using C++ & Lab -234

10.2 B-TREE

A B-Tree is a self-balancing tree data structure that maintains

sorted data and allows for efficient insertion, deletion, and search

operations. It is designed to work well on systems that read and

write large blocks of data, such as databases and filesystems. B-

Trees are characterized by their ability to manage large amounts of

data by keeping all leaf nodes at the same depth, ensuring that the

tree remains balanced. This balance ensures that the time

complexity for insertion, deletion, and search operations remains

logarithmic. In a B-Tree of order m, each node can have at most m

children and must have at least ⌈m/2⌉ children, except for the root

node which can have fewer children. The keys within each node

are maintained in sorted order, and internal nodes act as guides to

direct searches to the correct subtree. This structure allows B-Trees

to efficiently handle large datasets and makes them particularly

suitable for use in database indexing and filesystems, where quick

access to large volumes of data is crucial.

10.2.1 Properties of B-Trees

Order of B-Tree (m): The order m of a B-Tree defines the

maximum number of children a node can have. An internal node in

a B-Tree of order m can have at most m children.

Key Range in Nodes:

Each node (except for the root and leaves) must have at

least ⌈m/2⌉ children and ⌈m/2⌉ - 1 keys.

The root node must have at least 2 children if it is not a leaf

node.

A non-leaf node with k children must contain k-1 keys.

Data Structure using C++ & Lab -235

Balance: B-Trees are balanced, meaning all leaf nodes are at the

same depth, ensuring that the tree remains balanced and the

operations (insertion, deletion, search) have logarithmic time

complexity.

Height of the Tree: The height of a B-Tree with n keys and

minimum degree t is at most log_t(n+1)/2.

Nodes and Keys:

Nodes in a B-Tree contain multiple keys and children pointers.

Keys within each node are sorted in non-decreasing order.

Internal nodes store keys to guide the search operations by

directing them to the appropriate child subtree.

Root Node: The root node of a B-Tree has at least one key and can

have as few as two children or more, depending on the order of the

tree.

Leaf Nodes: All leaf nodes appear at the same level and do not

contain children. They only store keys.

Node Splitting: When a node becomes full (i.e., contains m-1

keys), it splits into two nodes. The median key is moved up to the

parent node, ensuring that the properties of the B-Tree are

maintained.

Node Merging: During deletion, if a node has fewer than ⌈m/2⌉ - 1

keys, it may borrow a key from its sibling or merge with a sibling

to maintain the minimum number of keys required.

Efficiency: B-Trees are optimized for systems that read and write

large blocks of data. They are widely used in database systems and

filesystems to ensure efficient data access and management.

Data Structure using C++ & Lab -236

B-Trees are balanced search trees designed to work well on disks

or other direct-access secondary storage devices.

Every node in a B-Tree contains several keys and children, and all

leaves are at the same depth.

A B-Tree of order m is defined as:

Each node has at most m children.

Each internal node (except the root) has at least ⌈m/2⌉

children.

Each non-leaf node has at least ⌈m/2⌉ - 1 keys.

The root has at least two children if it is not a leaf node.

All leaves appear on the same level.

A non-leaf node with k children contains k-1 keys.

10.2.2 Operations on B-Trees

1. Insertion

Algorithm:

Start at the root node.

If the root is full, split it and make the new root its parent, then

proceed with insertion.

Traverse down the tree to find the appropriate leaf node.

If the leaf node is full, split it into two nodes and move the middle

key up to the parent.

Insert the new key into the appropriate position in the non-full

node.

Insertion Algorithm in Detail:

Insert (k):

If the root is full, create a new root and split the old root, and set

the new root as the parent of the old root.

Traverse the tree from the root to the appropriate leaf node.

Data Structure using C++ & Lab -237

Insert the key k into the non-full node.

Split (x, i):

Split the child x.child[i] of node x into two nodes.

Create a new node z that contains the second half of the keys and

children from x.child[i].

Move the median key of x.child[i] up to x, making space in x for

the new child pointer.

Example:

void BTreeInsert(BTreeNode *root, int k) {

 if (root->n == 2*t - 1) {

 BTreeNode *s = new BTreeNode(false);

 s->C[0] = root;

 BTreeSplitChild(s, 0, root);

 BTreeInsertNonFull(s, k);

 root = s;

 } else {

 BTreeInsertNonFull(root, k);

 }

}

void BTreeInsertNonFull(BTreeNode *x, int k) {

 int i = x->n - 1;

 if (x->leaf) {

 while (i >= 0 && x->keys[i] > k) {

 x->keys[i+1] = x->keys[i];

 i--;

 }

 x->keys[i+1] = k;

 x->n++;

 } else {

 while (i >= 0 && x->keys[i] > k) {

Data Structure using C++ & Lab -238

 i--;

 }

 i++;

 if (x->C[i]->n == 2*t - 1) {

 BTreeSplitChild(x, i, x->C[i]);

 if (x->keys[i] < k) {

 i++;

 }

 }

 BTreeInsertNonFull(x->C[i], k);

 }

}

void BTreeSplitChild(BTreeNode *x, int i, BTreeNode *y) {

 BTreeNode *z = new BTreeNode(y->leaf);

 z->n = t - 1;

 for (int j = 0; j < t - 1; j++) {

 z->keys[j] = y->keys[j+t];

 }

 if (!y->leaf) {

 for (int j = 0; j < t; j++) {

 z->C[j] = y->C[j+t];

 }

 }

 y->n = t - 1;

 for (int j = x->n; j >= i+1; j--) {

 x->C[j+1] = x->C[j];

 }

 x->C[i+1] = z;

 for (int j = x->n-1; j >= i; j--) {

 x->keys[j+1] = x->keys[j];

 }

 x->keys[i] = y->keys[t-1];

Data Structure using C++ & Lab -239

 x->n++;

}

Example:

Insert keys 10, 20, 5, 6, 12, 30, 7, 17 into a B-Tree of order 3.

2. Deletion

Algorithm:

Start at the root node and locate the key to be deleted.

If the key is in a leaf node, delete it directly.

If the key is in an internal node, replace it with its predecessor or

successor and delete the key.

If the node has fewer than ⌈m/2⌉ - 1 keys after deletion, perform

redistribution or merging:

If a sibling has more than ⌈m/2⌉ - 1 keys, redistribute keys.

If no sibling has extra keys, merge the node with a sibling.

Deletion Algorithm in Detail:

Delete (k):

If k is in the leaf node, remove k from the node.

If k is in the internal node:

If the predecessor child node has at least t keys, replace k with the

predecessor key.

Otherwise, if the successor child node has at least t keys, replace k

with the successor key.

Otherwise, merge k and its two children into a single node.

If the child has fewer than t keys, ensure that the child has at least t

keys by borrowing from the sibling or merging.

Example:

Delete keys 6, 13 from the B-Tree obtained in the insertion

example.

3. Search

Data Structure using C++ & Lab -240

Algorithm:

Start at the root node.

Compare the key with the keys in the current node.

If the key is found, return the key and the node.

If the key is not found and the node is a leaf, the key does not exist

in the tree.

If the key is not found and the node is not a leaf, recursively search

the appropriate child node.

Example:

Search for keys 6, 15, 30 in the B-Tree obtained after insertions.

10.2.3 Applications of B-Trees

B-Trees are widely used in scenarios that require efficient

insertion, deletion, and searching operations on large amounts of

data. Some of the key applications of B-Trees include:

File Systems: B-Trees are extensively used in file systems to

manage large amounts of disk blocks efficiently. File systems like

NTFS (New Technology File System) and HFS+ (Hierarchical File

System Plus) use B-Trees to store file metadata such as file names,

sizes, permissions, and pointers to data blocks. The balanced

nature of B-Trees ensures that file system operations such as file

creation, deletion, and searching are performed efficiently even as

the file system grows.

Database Systems: B-Trees are a fundamental data structure in

database indexing. They are used to index large datasets based on

key values, allowing quick retrieval, insertion, and deletion of

records. Database management systems (DBMS) like Oracle,

PostgreSQL, and MySQL employ B-Trees to index primary keys,

secondary keys, and other indexed columns. This indexing

Data Structure using C++ & Lab -241

structure enables efficient querying and sorting operations, which

are crucial for optimizing database performance.

Persistent Data Structures: B-Trees are suitable for persistent

storage environments, such as databases and file systems, where

data needs to be stored permanently even after power loss or

system restarts. The structure of B-Trees ensures that data can be

efficiently written to and read from disk storage, minimizing disk

I/O operations and ensuring faster access times compared to other

data structures like binary search trees.

Multilevel Indexing: B-Trees are used in multilevel indexing

scenarios where the index itself is too large to fit entirely in

memory. By organizing index entries into a hierarchical structure

of nodes, B-Trees allow efficient traversal through multiple levels

of index nodes to quickly locate data blocks or records. This

hierarchical indexing scheme reduces the time complexity of

search operations compared to linear search methods.

Concurrency Control in Databases: In database systems that

support concurrent transactions, B-Trees are used to manage locks

and ensure data integrity. B-Trees provide efficient mechanisms for

locking individual nodes during concurrent data access and

updates, allowing multiple transactions to read and write data

simultaneously without causing data inconsistency or conflicts.

Routing Tables in Networks: B-Trees are utilized in computer

networking for storing and managing routing tables. In network

routers and switches, B-Trees are employed to maintain

information about network addresses, routing paths, and next-hop

destinations. The balanced structure of B-Trees ensures efficient

Data Structure using C++ & Lab -242

routing table lookups and updates, enabling fast packet forwarding

and routing decision making in large-scale networks.

Compiler Symbol Tables: B-Trees are used in compilers and

interpreters to manage symbol tables that store information about

variables, functions, and other program entities. Symbol tables

implemented with B-Trees allow efficient lookup and manipulation

of symbols during compilation and runtime, supporting tasks such

as scope resolution, type checking, and code optimization.

10.3 SPLAY TREES

Splay Trees are a self-adjusting binary search tree data structure

where every operation, whether it's search, insertion, or deletion,

adjusts the tree to bring the accessed node to the root. This

characteristic of splaying differentiates it from traditional balanced

trees like AVL trees or Red-Black trees, which maintain balance

through explicit rotations or color adjustments.

Amortized analysis of operations

Amortized analysis is a method used to determine the average time

complexity of a sequence of operations on a data structure, even if

some operations may be costlier than others in isolation. It

provides a more accurate representation of the overall performance

of data structures over time, considering both efficient and

potentially costly operations that may occur intermittently.

Key Concepts in Amortized Analysis:

Aggregate Method:

In amortized analysis, the aggregate method considers the total

cost of a sequence of operations and divides it by the number of

operations to determine the average cost per operation.

Data Structure using C++ & Lab -243

This method assumes that some operations may be cheaper than

their actual worst-case scenario due to previous operations

potentially offsetting higher costs.

Potential Method:

The potential method compares each operation's actual cost to an

average cost or potential function.

It calculates how much "potential" or credit is accumulated or

spent by each operation, ensuring that the total potential across all

operations remains non-negative.

This method is particularly useful for dynamic data structures

where the cost of one operation affects future operations.

Amortized Analysis Examples:

Dynamic Arrays (Resizable Arrays):

Operation: Inserting an element into a dynamic array that needs

resizing.

Cost: Normally, resizing involves copying elements to a larger

array, which is O(n). However, this cost is amortized over multiple

insertions.

Amortized Cost: Each insertion operation has an average cost of

O(1), considering the occasional resizing operation.

Binary Counters:

Operation: Incrementing a binary counter represented as an array

of bits.

Cost: Incrementing may cause a series of cascading flips from 0 to

1, potentially affecting multiple bits.

Amortized Cost: Despite occasional longer sequences of bit flips,

the average cost of each increment operation remains O(1) due to

the infrequency of longer sequences.

Data Structure using C++ & Lab -244

Splay Trees:

Operation: Splaying a node to the root during search, insertion, or

deletion.

Cost: The cost of splaying involves rotations and restructuring,

which can vary depending on the depth of the node.

Amortized Cost: Over a series of operations, the average cost of

splaying is reduced by subsequent operations that benefit from the

structure adjustments made during previous splay operations.

Benefits of Amortized Analysis:

Accurate Performance Prediction: It provides a more realistic

assessment of the average time complexity of operations,

accounting for worst-case scenarios that occur sporadically.

Useful for Dynamic Data Structures: Amortized analysis is

particularly valuable for dynamic data structures where operations

can vary in complexity depending on the structure's state.

Splaying Steps:

Access Operation:

When searching for a node in a splay tree, the tree undergoes a

splaying process where the accessed node moves to the root.

This splaying operation involves a sequence of rotations and

restructuring of nodes to promote the accessed node closer to the

root.

Splaying Algorithm:

Upon accessing a node during search, the splaying algorithm

performs rotations to move the accessed node upwards.

Depending on whether the node to be splayed is a left or right

child, single or double rotations (zig-zig or zig-zag rotations) are

applied to bring the node to the root.

Data Structure using C++ & Lab -245

Balancing:

Unlike balanced trees that maintain a specific height or balance

factor, splay trees balance themselves dynamically during

operations.

The splaying process ensures that frequently accessed nodes

remain closer to the root, optimizing future access times for those

nodes.

Insertion and Deletion:

Insertion and deletion in splay trees also involve a splaying process

where the inserted or deleted node is splayed to the root.

This self-adjustment ensures that subsequent operations benefit

from the recent structural changes, potentially improving overall

performance.

Example of Splaying Steps:

Consider a splay tree where we perform a search operation to

access a node with key value k. Here are simplified steps for

splaying:

Start from the root of the tree.

Traverse down the tree to find the node with key k.

As you traverse, perform rotations and restructuring to move the

accessed node towards the root.

After accessing the node with key k, ensure it becomes the root or

is placed close to the root through appropriate rotations (zig-zig or

zig-zag).

Applications of Splay Trees:

Caching Mechanisms: Splay trees are used in caching scenarios

where frequently accessed items are kept in memory for quick

retrieval. The self-adjusting nature of splay trees ensures that the

Data Structure using C++ & Lab -246

most recently accessed cache items remain quickly accessible,

optimizing cache hit rates.

Data Compression Algorithms: Splay trees have been used in

data compression algorithms where frequent patterns or symbols

are dynamically adjusted to the root, enhancing compression

efficiency by reducing access times for common patterns.

Adaptive Data Structures: In scenarios where data access

patterns are unpredictable or dynamic, splay trees adapt efficiently

by adjusting their structure based on recent access history. This

adaptability makes them suitable for real-time applications where

data access patterns evolve over time.

Implementations in Libraries: Although less common in

standard libraries compared to AVL trees or Red-Black trees, splay

trees find specialized applications in certain libraries and systems

requiring dynamic and adaptive data structures.

10.3.1 Splaying Algorithm

The splaying algorithm is the core procedure used in splay trees to

bring a specified node closer to the root, thereby optimizing future

access times for that node. Here is a structured outline of the

splaying algorithm:

Splaying Algorithm Outline:

Search for the Node:

Start the splaying algorithm by searching for the node with the

specified key or value in the splay tree.

Traverse the tree starting from the root and move towards the node

that needs to be splayed.

Data Structure using C++ & Lab -247

Splay Operation:

Once the node is found or accessed (either through search,

insertion, or deletion), begin the splay operation to bring this node

closer to the root.

Rotation and Restructuring:

During the splay operation, perform rotations and restructuring of

the tree to move the accessed node (X) towards the root.

Rotations are based on the relationship between X, its parent (P),

and potentially its grandparent (G) in the tree structure.

Zig-Zig Rotation:

If X and P are both left children or both right children, perform a

double rotation (zig-zig rotation) to bring X directly under the root.

Rotate P around G and then X around P.

Zig-Zag Rotation:

If X and P are opposite children (one is a left child and the other is

a right child), perform a double rotation (zig-zag rotation) to bring

X closer to the root.

Rotate X around P and then rotate X's new parent around G.

Continue Splaying Upwards:

Repeat the rotation and restructuring steps until the accessed node

X becomes the root of the splay tree or is positioned close to the

root.

Each rotation aims to move X towards the root, adjusting the tree

structure dynamically based on recent access patterns.

Data Structure using C++ & Lab -248

Return the Splayed Tree:

After completing the splaying operation, the splay tree structure is

updated with the accessed node (X) at or near the root, optimizing

future accesses to this node.

Example Splaying Algorithm:

Here’s a simplified pseudocode outline of the splaying algorithm:

In this pseudocode:

The rotate(node) function performs the necessary rotations to move

node closer to the root based on its relationship with its parent and

grandparent.

The splaying algorithm ensures that after accessing or

manipulating a node in the tree, it is splayed towards the root,

optimizing future access operations.

10.3.2 Operations on Splay Trees

Operations on splay trees include fundamental operations like

search, insert, and delete, each of which involves the splaying

process to optimize the tree structure based on recent access

patterns. Here’s a breakdown of these operations in splay trees:

1. Search Operation:

Algorithm:

Start from the root and traverse the tree to find the node with the

specified key.

Data Structure using C++ & Lab -249

During traversal, perform splaying to bring the accessed node

closer to the root.

If the node is found, splay it to the root.

If the node is not found, splay the last accessed node to the root.

2. Insertion Operation:

Algorithm:

Perform a standard binary search tree insertion to place the new

node in its appropriate position.

After insertion, splay the newly inserted node to bring it to the

root.

This step ensures that the most recently inserted node becomes the

root, optimizing future accesses.

Example:

3. Deletion Operation:

Algorithm:

Perform a standard binary search tree deletion to remove the node

with the specified key.

After deletion, splay the parent of the deleted node (or the

successor/predecessor node) to bring it to the root.

This step maintains the splay tree properties and optimizes the

structure after deletion.

Data Structure using C++ & Lab -250

Example:

Key Points:

Splaying Mechanism:

Each operation (search, insert, delete) in a splay tree involves

splaying the accessed or manipulated node towards the root.

Splaying optimizes the tree structure dynamically based on recent

access patterns, ensuring that frequently accessed nodes are closer

to the root.

Efficiency: While individual splaying operations can have a worst-

case time complexity of O (n) in skewed trees, the amortized time

complexity of operations tends to be efficient due to the self-

adjusting nature of splay trees.

Adaptability: Splay trees adapt their structure to optimize access

times for recently accessed nodes, making them suitable for

applications where access patterns are dynamic and unpredictable.

10.4 RED-BLACK TREES

Red-Black trees are self-balancing binary search trees that ensure

balanced operations like search, insert, and delete, with a worst-

case time complexity of O(log n). They maintain balance using

color properties and rotation operations, making them efficient for

dynamic data storage and retrieval. Here are the key properties and

operations of Red-Black trees:

Data Structure using C++ & Lab -251

Properties of Red-Black Trees:

Node Coloring:

Each node in a Red-Black tree is colored either red or black.

The root is always black.

Every red node must have two black children (no consecutive red

nodes).

Every path from a node to its descendant null nodes must have the

same number of black nodes (black height).

Balanced Height:

Red-Black trees maintain balanced height by ensuring that the

longest path from the root to any leaf is no more than twice the

shortest path.

This property guarantees O(log n) time complexity for search,

insert, and delete operations.

Operations on Red-Black Trees:

Search Operation:

Similar to standard binary search trees, search operations in Red-

Black trees follow the properties of binary search, utilizing node

colors to maintain balance.

Insertion Operation:

Insertions in Red-Black trees start with a standard BST insertion.

After insertion, the tree may violate Red-Black properties,

necessitating restructuring (rotations) and recoloring to restore

balance.

The tree is adjusted to maintain Red-Black properties while

ensuring the balanced height.

Deletion Operation:

Deletions in Red-Black trees begin with a standard BST deletion.

Data Structure using C++ & Lab -252

After deletion, the tree may temporarily violate Red-Black

properties.

To restore balance, perform rotations and recoloring operations as

necessary to maintain Red-Black properties and balanced height.

Example of Red-Black Tree Operations:

Search Operation:

Insertion Operation:

Deletion Operation:

Advantages of Red-Black Trees:

Balanced Operations: Ensure O(log n) time complexity for

search, insert, and delete operations.

Data Structure using C++ & Lab -253

Predictable Performance: Provide predictable and efficient

performance in dynamic environments.

Widely Used: Commonly used in libraries and applications where

efficient data insertion, deletion, and retrieval are crucial.

10.5 AA-TREES

An AA-Tree is a type of self-balancing binary search tree that

maintains balance using only a single type of rotation, known as

skew and split operations. It ensures that the tree remains balanced

by enforcing specific level and structural properties rather than

complex color rules or multiple rotation types like Red-Black trees.

Here’s an overview of AA-Trees, including their properties and

operations:

Properties of AA-Trees:

Level Properties:

Every leaf node (null node) is at level 1.

For any node with a left child, the left child must have a level

equal to or one less than the node's level.

Nodes without a left child have the same level as their right child.

Skew Operation:

A skew operation is applied to correct consecutive right links

(right-right situation).

It rotates the node to the left to balance the tree structure.

After skew operation, the level properties are adjusted to maintain

balance.

Data Structure using C++ & Lab -254

Split Operation:

A split operation is applied to correct double left links (left-left

situation).

It rotates the node to the right and increases its level to balance the

tree structure.

After split operation, the level properties are adjusted to maintain

balance.

Operations on AA-Trees:

Search Operation:

Similar to standard binary search trees, search operations in AA-

Trees follow the properties of binary search, utilizing level

properties to maintain balance.

Insertion Operation:

Insertions in AA-Trees start with a standard BST insertion.

After insertion, the tree may violate AA-Tree properties,

necessitating skew and split operations to restore balance.

Adjustments are made to ensure that level properties are

maintained after each operation.

Deletion Operation:

Deletions in AA-Trees begin with a standard BST deletion.

After deletion, the tree may temporarily violate AA-Tree

properties.

Skew and split operations are applied as necessary to restore

balance and maintain level properties.

Data Structure using C++ & Lab -255

Example of AA-Tree Operations:

Search Operation:

Insertion Operation:

Deletion Operation:

Advantages of AA-Trees:

Simplified Balancing: Use only skew and split operations for

balancing, which simplifies implementation compared to Red-

Black trees.

Efficient Operations: Maintain O(log n) time complexity for

search, insert, and delete operations.

Less Overhead: Avoids complex color rules and multiple rotation

types, reducing implementation complexity and potential overhead.

Data Structure using C++ & Lab -256

10.6 APPLICATIONS OF BALANCED
TREES

Balanced trees, including Red-Black trees, AVL trees, B-trees, and

AA-trees, find applications in various domains where efficient data

storage and retrieval are critical. Here are some common

applications of balanced trees:

Databases: B-trees and AVL trees are widely used in database

systems for indexing. They provide efficient retrieval of data

records based on keys, ensuring that operations like search, insert,

and delete are performed in O (log n) time complexity.

File Systems: B-trees are commonly used in file systems to

manage large amounts of data efficiently. They ensure that data

blocks are organized and accessible in a balanced manner,

optimizing disk access and storage.

Compiler Design: Symbol tables in compilers often use balanced

trees to store identifiers and their associated attributes. This allows

for quick lookup and modification of symbols during compilation.

Networking: Routing tables in computer networks employ

balanced trees to store and manage routing information efficiently.

This facilitates fast routing decisions and network packet

forwarding.

Concurrency Control: In concurrent programming and

transaction processing systems, B-trees and Red-Black trees are

used to implement data structures like transactional maps. These

ensure that data operations are thread-safe and efficient.

Data Structure using C++ & Lab -257

Caches and Memory Management: AA-trees and AVL trees are

used in memory management systems and caches to maintain

efficient data retrieval and replacement strategies. They help in

managing limited memory resources effectively.

Geospatial and GIS Systems: R-trees, a variant of balanced

trees, are used in geospatial databases and Geographic Information

Systems (GIS) for indexing and querying spatial data efficiently.

Data Compression: Balanced trees are used in Huffman coding,

a popular data compression technique. They help in constructing

optimal prefix codes for encoding data, where frequently used

symbols have shorter codes.

Database Query Optimization: Query planners and optimizers in

relational databases use balanced trees to represent query execution

plans and optimize data retrieval strategies, ensuring efficient

execution of complex queries.

10.7 CONCLUSION

In this chapter, we explored a variety of balanced tree structures

that are essential in computer science for maintaining efficient data

organization and retrieval. Balanced trees such as B-Trees, Splay

Trees, Red-Black Trees, and AA-Trees each offer unique

advantages and applications.

B-Trees are widely used in databases and file systems due to their

ability to efficiently manage large datasets with a balanced

structure that supports fast operations like insertion, deletion, and

search.

Data Structure using C++ & Lab -258

Splay Trees dynamically adjust their structure through the

splaying algorithm, optimizing access times for frequently

accessed elements. This property makes them valuable in

applications requiring dynamic data management and caching.

Red-Black Trees ensure balanced operations with logarithmic

time complexity for insertion, deletion, and search. They find

extensive use in memory management, language implementations,

and persistent data structures where efficient data retrieval is

crucial.

Each of these tree structures plays a critical role in optimizing

performance across various computational domains, from database

systems to memory management and beyond. By mastering the

principles and applications of balanced trees, one gains essential

tools for designing efficient algorithms and systems in modern

computing environments.

10.8 QUESTIONS AND ANSWERS

1. What are B-Trees and why are they used in databases?

Answer: B-Trees are balanced tree structures designed to handle

large amounts of data and frequent operations like insertion,

deletion, and search efficiently. They are used in databases because

they can maintain balance and optimal access times even with

large datasets, ensuring fast retrieval and modification operations.

2. How does the splaying algorithm work in Splay Trees?

Answer: The splaying algorithm in Splay Trees reorganizes the tree

by bringing the most recently accessed node to the root position

through a series of rotations. This optimization ensures that

Data Structure using C++ & Lab -259

frequently accessed elements are closer to the root, improving

future access times.

3. What properties define Red-Black Trees as balanced binary

search trees?

Answer: Red-Black Trees maintain balance by adhering to specific

rules: each node is either red or black, the root is black, and no two

red nodes can be adjacent. These properties ensure that the tree

remains balanced, with operations like insertion and deletion

maintaining logarithmic time complexity.

4. How do AA-Trees differ from Red-Black Trees?

Answer: AA-Trees are a variation of Red-Black Trees that simplify

the balancing rules. They use only two types of nodes (horizontal

and vertical) and employ skew and split operations instead of color

changes and rotations. AA-Trees provide efficient performance for

dynamic sets and are used in applications requiring balanced tree

structures.

5. What are some practical applications of balanced trees?

Answer: Balanced trees are used extensively in databases for

indexing and efficient data retrieval, in file systems for managing

file directories, in compilers for symbol table management, and in

memory management systems for efficient allocation and

deallocation of memory blocks.

Data Structure using C++ & Lab -260

10.9 REFERENCES

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).

Introduction to Algorithms (3rd ed.). MIT Press.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.).

Addison-Wesley.

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2015). Data

Structures and Algorithms in Java (6th ed.). Wiley.

Mehlhorn, K., & Sanders, P. (2008). Algorithms and Data

Structures: The Basic Toolbox. Springer.

Weiss, M. A. (2014). Data Structures and Algorithm Analysis in

Java (3rd ed.). Pearson Education.

Data Structure using C++ & Lab -261

UNIT – 11: GRAPH DATA STRUCTURE
Structure

13.0 Introduction

13.1 Objectives

13.2 Graph

13.3 Representation of Graphs

13.4 Graph Traversal Algorithms

13.5 Advanced Graph Algorithms

13.6 Applications of Graphs

13.7 Conclusion

13.8 Questions and Answers

13.9 References

11.0 INTRODUCTION

A basic data structure in computer science, graphs are used to

represent the connections and interactions between items. They are

made up of edges that join pairs of vertices and vertices, also

known as nodes. Based on their characteristics, graphs can be

classified as directed or undirected, weighted or unweighted,

among other varieties. Because of these qualities, graphs are quite

flexible and can be used to illustrate a variety of real-world

situations, such as social networks and transportation networks.

Graph representation is essential for effective manipulation and

storage. The adjacency matrix and the adjacency list are two

popular techniques, both with pros and cons related to time and

space complexity. The efficiency of graph algorithms can be

greatly impacted by selecting the right representation, particularly

for big and complicated datasets. Implementing and optimizing

Data Structure using C++ & Lab -262

graph-related operations requires an understanding of various

representations.

For examining and assessing graph structures, graph traversal

algorithms like Depth-First Search (DFS) and Breadth-First Search

(BFS) are crucial resources. These algorithms serve as the

foundation for more complex graph algorithms, such as those that

build minimal spanning trees, identify cycles, and locate the

shortest pathways. This course explores both simple and complex

graph algorithms, emphasizing how they can be used to solve

issues in real life and how important they are in a variety of

domains, including artificial intelligence, network analysis, and

computer graphics.

11.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understand Graph Basics: Define what constitutes a graph,

including vertices (nodes) and edges, and distinguish between

directed and undirected graphs.

Graph Representation Techniques: Explore various methods for

representing graphs, such as adjacency matrices and adjacency

lists, and understand the trade-offs between these representations

in terms of space and time complexity.

Graph Traversal Algorithms: Learn about fundamental graph

traversal algorithms like Breadth-First Search (BFS) and Depth-

First Search (DFS), including their applications in solving

problems such as finding connected components and detecting

cycles.

Data Structure using C++ & Lab -263

Advanced Graph Algorithms: Delve into more complex

algorithms like Dijkstra's algorithm for finding shortest paths,

Prim's and Kruskal's algorithms for Minimum Spanning Trees

(MSTs), and algorithms for topological sorting and cycle detection.

Real-World Applications: Explore practical applications of

graphs in various domains, such as social networks, transportation

networks, and recommendation systems, to understand how graph

algorithms solve real-world problems effectively.

11.2 GRAPH

A graph is a type of data structure made up of edges connecting a

finite number of vertices, also known as nodes. Graphs are

employed to represent pairwise relationships among entities. G =

(V, E), where V is a collection of vertices and E is a set of edges

linking the vertices, is the definition of a graph.

Several real-world structures, including networks, interactions, and

paths, can be represented by graphs. People can be shown as

vertices in a social network, for example, and friendships as edges.

Graphs: Directed versus Undirected

Graphs fall into two categories according on the orientation of their

edges:

Directed Graphs (Digraphs): Every edge in a directed graph

indicates a one-way relationship between two vertices. As an

ordered pair of vertices, this is represented. An edge that is

oriented from vertex u to vertex v, for instance, is represented as

(u, v).

Data Structure using C++ & Lab -264

Undirected Graphs: An undirected graph has no direction

assigned to any of its edges. Because of the bidirectional nature of

the link between vertices, an edge between u and v can be traveled

in both directions. A pair {u, v} that is unordered is used to express

this.

Source: Simple Snippets

Weighted vs. Unweighted Graphs

Another way to categorize graphs is by the weights assigned to

their edges:

Weighted Graphs: The weight of a weighted graph is a numerical

number that is assigned to each edge. Weights can be used to

represent expenses, distances, or any other quantitative metric. The

weights can be used, for instance, to represent the distance between

two points in a road network.

Unweighted Graphs: An unweighted graph has no weights

assigned to its edges. Every edge is regarded as equal. For

instance, in a social network, the edges might, in the lack of further

information, indicate whether a friendship exists.

Data Structure using C++ & Lab -265

Key Terms:

Vertices, or Nodes: They are the basic building blocks of a

graph; they stand for entities.

Edges: The links that connect vertices are called edges.

Degree: A vertex's degree is the total number of edges that

connect to it. The number of incoming edges in a directed

graph is called the in-degree, while the number of exiting

edges is called the out-degree.

Path: A series of vertices connected by a series of edges.

Cycle: A path that, aside from the start/end vertex, repeats

neither edges nor vertices but instead begins and terminates

at the same vertex.

Connected Components: In an undirected graph, a

connected component is a subgraph that has no further

connections to any other vertices in the supergraph and any

two vertices connected to each other by pathways.

11.3 REPRESENTATION OF GRAPHS

Adjacency Matrix Representation

A 2D array of size V × V, where V is the number of vertices in the

graph, is called an adjacency matrix. The matrix's cells, each

Data Structure using C++ & Lab -266

represented by the notation adj [i] [j], each indicate whether or not

vertex i and vertex j have an edge.

In case of an unweighted graph:

Vertex i and vertex j have an edge, adj [i] [j] = 1.

If there isn't an edge connecting vertex i and vertex j, adj [i]

[j] = 0.

For a graph with weights:

The weight of the edge between vertex i and vertex j is

contained in adj [i] [j].

If there is no edge, adj [i] [j] = 0.

For instance: if a graph has the vertices A, B, C, and D:

An undirected graph is represented by this matrix, in which A is

connected to B and D, B to A and C, and so on.

Adjacency List Representation

An array of lists is called an adjacency list. The number of vertices

in the array determines its size. Every entry in the array is a list

that has every vertex connected to the vertex the array index

represents in it.

Data Structure using C++ & Lab -267

For instance, if a graph has the vertices A, B, C, and D:

Vertex A is related to vertices B and D, vertex B is connected to

vertices A and C, and so on, as this list demonstrates.

Adjacency Matrix and Adjacency List Comparison

Complexity of Space:

Adjacency Matrix: V is the number of vertices, and O(V2)

space is used. When there are fewer edges in a sparse

graph, this is less effective.

(V + E) space is used by the adjacency list, where E is the

number of edges. For sparse graphs, this is a more space-

efficient method.

Time Complexity:

The Adjacency Matrix

Verifying the existence of an edge: O (1).

Going through every edge once: O (V2).

Adjacencies List:

Verifying if an edge exists: in the worst situation, O(V).

Going around all edges in turn: O (V + E).

Data Structure using C++ & Lab -268

Use Cases for Each Representation

The Adjacency Matrix

Ideal for thick graphs with an edge count that approaches

V2.

helpful when it's necessary to quickly check whether edges

exist.

Adjacencies List:

Ideal for graphs that are sparse, meaning they have a lot less edges

than V2.

Faster and more space-efficient for iterating across all edges.

favored in situations when the graph is not tightly connected, such

as social networks, road networks, or other applications.

11.4 GRAPH TRAVERSAL
ALGORITHMS

Graph traversal refers to the process of visiting all nodes (vertices)

in a graph in a systematic way. It involves systematically exploring

each vertex and its connected edges to ensure that all nodes are

visited exactly once. Two common algorithms for graph traversal

are breadth-first search (BFS) and depth-first search (DFS).

Breadth-First Search (BFS): Explores all nodes at the present

"depth" prior to moving on to nodes at the next level of depth.

Depth-First Search (DFS): Traverses by exploring as far as

possible down a branch before backtracking.

These algorithms are essential for tasks like finding the shortest

path, connectivity analysis, and spanning tree construction

Data Structure using C++ & Lab -269

First-Breadth Search (BFS)

The graph traversal technique known as Breadth-First Search

(BFS) investigates a graph's vertices level by level. BFS begins

with a source vertex, visits each of its neighbors, and then

advances to the next level of neighbors. It is especially helpful for

level-order traversal of trees and for determining the shortest path

in unweighted graphs.

Steps of Algorithm:

Initialize a queue and enqueue the starting vertex.

Mark the starting vertex as visited.

While the queue is not empty:

Dequeue a vertex from the queue.

Process the dequeued vertex.

Enqueue all unvisited neighboring vertices and mark them as

visited.

Example: Consider the following graph:

BFS would visit the vertices in the following order, beginning at

vertex A: A, B, D, C, E, and F.

Implementation in C++:

Data Structure using C++ & Lab -270

DFS, or Depth-First Search

Concept and Use Cases: The graph traversal technique known as

Depth-First Search (DFS) searches as far as feasible down each

branch before turning around. Either directly or implicitly through

recursion, it makes use of a stack data structure. DFS is used to

solve puzzles like mazes and find cycles in topological sorting.

Steps of Algorithm:

Initialize a stack and push the starting vertex.

Mark the starting vertex as visited.

While the stack is not empty:

Pop a vertex from the stack.

Process the popped vertex.

Push all unvisited neighboring vertices onto the stack and mark

them as visited.

Example: Consider the following graph:

Data Structure using C++ & Lab -271

DFS could visit the vertices in the following order, starting with

vertex A: A, B, E, F, D, and C (this is only one possible order

among many).

Implementation in C++:

#include <iostream>

#include <vector>

void DFSUtil(const std::vector<std::vector<int>>& graph, int

vertex, std::vector<bool>& visited) {

 visited[vertex] = true;

 std::cout << vertex << " ";

 for (int neighbor : graph[vertex]) {

 if (!visited[neighbor]) {

 DFSUtil(graph, neighbor, visited);

 }

 }

}

void DFS(const std::vector<std::vector<int>>& graph, int start) {

 std::vector<bool> visited(graph.size(), false);

 DFSUtil(graph, start, visited);

}

int main() {

 std::vector<std::vector<int>> graph = {

 {1, 3}, // neighbors of vertex 0 (A)

 {0, 2, 4}, // neighbors of vertex 1 (B)

 {1, 5}, // neighbors of vertex 2 (C)

 {0, 4}, // neighbors of vertex 3 (D)

Data Structure using C++ & Lab -272

 {1, 3, 5}, // neighbors of vertex 4 (E)

 {2, 4} // neighbors of vertex 5 (F)

 };

 DFS(graph, 0); // Start DFS from vertex 0 (A)

 return 0;

}

A comparison between DFS and BFS

BFS:

Improved for determining the shortest path in graphs

without weights.

extra memory is used (queue).

traversal at level-order.

DFS:

Ideal for activities that necessitate delving into the most

profound area of the graph, including resolving puzzles.

reduces memory usage (recursion/stack).

Process before children in a preorder traversal; however,

this can be modified for other traversals as well.

11.5 ADVANCED GRAPH
ALGORITHMS

Minimum Spanning Trees (MST) Algorithm

The subset of edges in a connected, undirected graph that joins all

of the vertices together without creating any cycles and with the

least amount of edge weight overall is found using Minimum

Spanning Tree (MST) techniques. The following are the main ideas

and methods pertaining to minimum spanning trees:

MST Algorithm Concepts:

Minimum Spanning Tree (MST): An edge subset that

joins all of the vertices in a graph without creating any

Data Structure using C++ & Lab -273

cycles is known as a spanning tree. A spanning tree with a

minimum sum of edge weights is known as a minimum

spanning tree.

Properties:

An MST consisting of N vertices has precisely N-1 edges.

It is acyclic—it lacks cycles.

It joins every vertex with the least amount of edge weight

overall.

Applications:

Network design: It is the process of connecting all nodes,

or cities, with the fewest possible total edge weights, or

roads, cables, etc.

Cluster Analysis: It Put related items in groups with the

least amount of overall dissimilarity is known as cluster

analysis.

Algorithms for Approximation: Used in a variety of

approximation techniques to address optimization issues.

Prim's Algorithm: A weighted undirected graph's Minimum

Spanning Tree (MST) can be found using Prim's algorithm.

Beginning with an arbitrary vertex, it adds the shortest edge

possible between each vertex in the expanding tree and any vertex

that is not yet in the tree, growing the MST one edge at a time.

Steps of an Algorithm:

Set the MST's representation to an empty set at startup.

Add an arbitrary vertex to the MST to begin with.

Even so, not every vertex is included in the MST:

Data Structure using C++ & Lab -274

To connect a vertex inside the MST to a vertex outside the

MST, choose the edge with the least weight.

To the MST, add the chosen edge and vertex.

As an illustration, look at the weighted graph below:

Prim's algorithm would add edges (A-B, B-E, E-D, B-C, and E-F)

starting at vertex A to create the MST, which would have a total

weight of 2 + 1 + 4 + 3 + 5 = 15.

Kruskal's Algorithm:

Another technique for determining the MST of a weighted

undirected graph is the Kruskal's algorithm. It adds edges to the

MST while making sure no cycle forms by sorting all of the edges

in non-decreasing order of their weights.

Steps of Algorithm:

Arrange each edge according to its weight in a non-decreasing

sequence.

Set the MST's representation to an empty set at startup.

Apply edges to the MST using a Union-Find data structure in

ascending weight order, making sure that no cycles arise.

Example: Using the previously given example graph, Kruskal's

algorithm would create an MST with a total weight of 15 by

adding edges (A-B, B-E, E-D, B-C, and E-F).

Data Structure using C++ & Lab -275

Shortest Path Algorithms

The shortest path between a source vertex and every other vertex

in a weighted graph with non-negative weights is found using

Dijkstra's algorithm. The shortest known path is always expanded

through the usage of a priority queue.

Steps of Algorithm:

Set the distances between the source vertex and itself to 0 and to

all other vertices to infinity.

Store the vertices to be processed in a priority queue, beginning

with the source vertex.

Although there are items in the priority queue:

Take out of the priority queue the vertex that is the closest to the

center.

If a shorter path is discovered, update the distances to the vertices

that are nearby.

As an illustration, look at the weighted graph below:

Dijkstra's method would calculate the shortest paths to each of the

vertices (A, B, C, D, and E) with their corresponding distances (1,

4, 2).

Bellman-Ford Algorithm: In a weighted graph with negative

weight edges, the Bellman-Ford algorithm finds the shortest

pathways between a single source vertex and every other vertex.

Data Structure using C++ & Lab -276

All edges are relaxed repeatedly by a number equal to the vertices

minus one.

Steps of Algorithm:

Set the distances between the source vertex and itself to 0 and to

all other vertices to infinity.

Let |V| be the number of vertices, and relax all edges |V| - 1 times.

By repeatedly iterating over all edges and updating distances, look

for cycles with negative weights.

Example: The Bellman-Ford algorithm can accurately compute

shortest paths for a graph with edges that have negative weights,

even when the graph has cycles and negative weights.

Maximum Flow Algorithms

The Ford-Fulkerson Algorithm is a directed graph with a

capacity for each edge. It calculates the maximum flow in a flow

network. It finds augmenting paths by applying the notion of

residual capacity, and it then raises flow along these paths until no

more augmenting paths are found.

Steps of Algorithm:

Set the flow's initial value to 0.

As the path from source to sink is augmentable:

Use DFS or BFS to determine the augmenting path.

Determine the path's residual capacity.

Enhance the flow as it travels.

Example: The Ford-Fulkerson algorithm determines the maximum

flow from source to sink in a flow network.

Edmonds-Karp Algorithm: This algorithm use BFS to determine

the augmenting pathways and is an application of the Ford-

Data Structure using C++ & Lab -277

Fulkerson technique. It guarantees that the algorithm's temporal

complexity is O(VE^2), where V and E are the numbers of vertices

and edges, respectively.

Uses:

MST Algorithms: In networks where linking all vertices at the

lowest possible cost is critical, the Prim and Kruskal algorithms are

indispensable for determining the minimal spanning tree.

Shortest way Algorithms: Based on flight paths or road networks,

navigation systems employ Dijkstra's and Bellman-Ford

algorithms to determine the shortest way between two points.

Maximum Flow Algorithms: In network flow problems, such

transportation and communication networks, the Ford-Fulkerson

and Edmonds-Karp algorithms are used to maximize the flow from

source to sink while taking into account each edge's capacity

restrictions.

11.6 APPLICATIONS OF GRAPHS

Uses for Graphs

Graphs are widely used in practical applications.

Applications in the real world include recommendation systems

(user-item relationships), maps (routing and navigation), and social

networks (modeling user connections).

Algorithmic problems include network flow optimization

(maximizing flow in a network) and the traveling salesman

problem (finding the shortest path to visit each vertex).

Three types of graph-based data structures are available: spanning

trees, which are a subset of a graph that connects all of its vertices,

trees, and connectedness, which examines connected components.

Data Structure using C++ & Lab -278

11.7 CONCLUSION

Graphs and the algorithms that go along with them are an essential

component of computer science because they offer strong tools for

problem modeling and addressing intricate issues. We have studied

the definitions, important characteristics, and different kinds of

graph data structures throughout this unit. Gaining an

understanding of these fundamentals is necessary in order to apply

graphs to real-world situations and to efficiently solve problems

involving connections and relationships.

Additionally, we looked at other graph representation techniques,

including adjacency lists and adjacency matrices, and talked about

the benefits and drawbacks of each. This information is essential

for choosing the best representation depending on an application's

unique requirements, including the graph's size and the kinds of

operations that must be carried out. Furthermore, graph traversal

algorithms such as BFS and DFS offer fundamental methods for

graph exploration and serve as building blocks for more complex

algorithms.

Complex graph algorithms show the breadth of applications and

depth of issues that graph theory can solve. Examples include

finding minimal spanning trees, shortest pathways, and maximum

flows. These algorithms are essential in many fields, including data

analysis, resource management, network design, and optimization.

Gaining proficiency in these ideas and methods will enable one to

effectively use graphs to solve challenging, real-world problems.

Data Structure using C++ & Lab -279

11.8 QUESTIONS AND ANSWERS

1. What is a Minimum Spanning Tree (MST)

Answer: In a connected, undirected graph, an MST is a subset of

edges that joins all vertices with the fewest feasible total edge

weights and without any cycles.

2. Describe the algorithm used by Dijkstra.

Answer: In a weighted graph with non-negative weights, Dijkstra's

algorithm uses a priority queue to explore vertices and determines

the shortest path between each source vertex and all other vertices.

3. What are some practical uses for graphs?

Answer: In social networks, maps are utilized for routing and

navigation; in recommendation systems, graphs are employed to

depict user-item relationships.

4. The Traveling Salesman Problem (TSP): What is it?

Answer: In order to discover the shortest path that visits each

vertex once and returns to the origin vertex, a salesman must solve

the algorithmic problem known as TSP.

5. What are the differences between the MST algorithms found by

Prim and Kruskal?

Answer: In response, Kruskal's algorithm adds the shortest edge to

the MST until all vertices are connected, guaranteeing no cycles

emerge. Prim's approach grows the MST from an arbitrary

beginning vertex by adding the cheapest edge to the tree.

6. What role do graph traversal algorithms play?

Data Structure using C++ & Lab -280

Answer: In order to perform activities like pathfinding,

connectivity checking, and cycle detection, graph traversal

algorithms like BFS and DFS are essential for network exploration

and analysis.

7. What are the adjacency matrix and adjacency list space and

temporal complexities?

Answer: The adjacency matrix allows for O(1) time complexity for

edge look-up and O(V2) space complexity. The traversal difficulty

of an adjacency list is O (V + E) in both space and time.

11.9 REFERENCES

 Bjarne Stroustrup, "The C++ Programming Language"

 Herb Sutter, "Exceptional C++: 47 Engineering Puzzles,

Programming Problems, and Solutions"

 Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo,

"C++ Primer"

 Scott Meyers, "Effective C++: 55 Specific Ways to

Improve Your Programs and Designs"

 Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and

Reference"

Data Structure using C++ & Lab -281

UNIT – 12: MINIMUM COST
SPANNING TREES
Structure

12.0 Introduction

12.1 Objectives

12.2 Minimum Cost Spanning Trees

12.3 Kruskal’s Algorithm

12.4 Prim's Algorithm

12.5 Applications of Minimum Cost Spanning Trees

12.6 Breadth-First Search (BFS)

12.7 Depth-First Search (DFS)

12.8 Finding Strongly Connected Components (SCCs)

12.9 Conclusion

12.10 Questions and Answers

12.11 References

12.0 INTRODUCTION

Graphs are fundamental data structures in computer science,

representing a network of interconnected nodes or vertices and the

edges connecting them. They are versatile tools used in a wide

range of applications, from social networks and web page ranking

to network routing and scheduling problems. Understanding how

to efficiently traverse and manipulate graphs is crucial for solving

many complex computational problems. This unit delves into

several key graph algorithms, each with unique properties and

applications.

Data Structure using C++ & Lab -282

We'll begin by exploring Minimum Cost Spanning Trees, which

are essential for optimizing the connections within a network. Two

prominent algorithms for constructing these trees, Kruskal's and

Prim's algorithms, will be examined in detail. Following this, we'll

look at Breadth-First Search (BFS) and Depth-First Search (DFS),

foundational algorithms for traversing graphs that form the basis

for more advanced graph operations. These traversal techniques are

vital for exploring and understanding the structure of a graph.

Finally, we will cover the concept of Strongly Connected

Components (SCCs) in directed graphs. Identifying SCCs helps in

understanding the underlying structure and connectivity of

complex networks, leading to more efficient designs and analyses.

Through this unit, you'll gain a comprehensive understanding of

key graph algorithms and their applications, equipping you with

the knowledge to tackle a wide array of problems in computer

science and beyond.

12.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understand Graph Fundamentals: Gain a solid understanding of

graph theory, including the basic definitions, properties, and

representations of graphs.

Explore Minimum Cost Spanning Trees: Learn about Minimum

Cost Spanning Trees and their importance in optimizing network

connections. Study Kruskal’s and Prim’s algorithms for

constructing these trees.

Master Graph Traversal Algorithms: Develop proficiency in

Breadth-First Search (BFS) and Depth-First Search (DFS)

Data Structure using C++ & Lab -283

algorithms, and understand their applications in graph traversal and

problem-solving.

Analyze Strongly Connected Components (SCCs): Understand

the concept of SCCs in directed graphs and learn methods to

identify them, which is crucial for analyzing and designing

complex networks.

Apply Graph Algorithms: Explore practical applications of graph

algorithms in various domains such as network design, data

analysis, machine learning, and logistics.

Evaluate Algorithm Efficiency: Analyze the time and space

complexities of different graph algorithms to understand their

performance and scalability.

12.2 MINIMUM COST SPANNING
TREES

Minimum Cost Spanning Trees (MSTs) are crucial concepts in

graph theory, representing the subset of edges that connect all

vertices of a graph with the lowest possible total edge weight. An

MST of a graph ensures that all vertices are connected while

minimizing the sum of the edge weights, without forming any

cycles. This structure finds wide application in various fields such

as network design, telecommunications, and computer science

algorithms.

The primary goal of finding an MST is to establish a spanning tree

that spans all vertices with the least total weight, making it an

optimal solution for connecting nodes in networks or organizing

data points in clustering algorithms. Two well-known algorithms

Data Structure using C++ & Lab -284

for finding MSTs include Kruskal’s and Prim’s algorithms.

Kruskal’s algorithm sorts all edges by weight and adds them to the

MST if they do not form cycles, using a union-find data structure

for efficiency. On the other hand, Prim’s algorithm starts from an

arbitrary vertex and grows the MST by always adding the shortest

edge connecting the current MST to an adjacent vertex until all

vertices are included.

Applications of MSTs extend to optimizing routes in transportation

networks, minimizing costs in manufacturing processes, and

organizing hierarchical data structures efficiently. The ability to

compute MSTs efficiently ensures optimal solutions to a variety of

real-world problems where minimizing connectivity costs is

essential.

Algorithms:

Kruskal’s Algorithm: Kruskal’s algorithm constructs an MST by

iteratively adding the smallest edge that doesn’t form a cycle until

all vertices are connected. It uses a union-find data structure to

efficiently manage and merge subsets of vertices.

Prim’s Algorithm: Prim’s algorithm starts from an arbitrary

vertex and grows the MST one vertex at a time, always choosing

the shortest edge that connects a vertex in the MST to a vertex

outside of it. It typically uses a priority queue to manage candidate

edges efficiently.

Applications:

Network Design: MSTs are used to minimize the cost of

connecting cities in a telecommunications network or computers in

a LAN.

Data Structure using C++ & Lab -285

Clustering: In data science, MSTs can be used to identify clusters

by treating each vertex as a data point and edges as distances

between points.

Optimization Problems: MSTs are essential in optimization

problems like finding the minimum cost of connecting components

in a manufacturing process or the shortest route in transportation

networks.

12.3 KRUSKAL’S ALGORITHM

Kruskal’s algorithm is a popular method used to find the Minimum

Spanning Tree (MST) of a connected, weighted graph. The

algorithm operates by sorting all the edges in the graph by their

weights and then iteratively adding the smallest edge to the

growing MST, provided that adding the edge does not form a

cycle. This process continues until all vertices are included in the

MST.

Here’s a step-by-step outline of Kruskal’s algorithm:

Initialization: Start with a graph containing V vertices and E

edges.

Sort Edges: Sort all edges in the graph in non-decreasing order of

their weights.

Union-Find Data Structure: Initialize a union-find data structure

(or disjoint-set data structure) to keep track of which vertices are in

which components and to efficiently check whether adding an edge

would form a cycle.

Iterate Through Edges: Iterate through the sorted edges and for

each edge:

Check if adding the edge to the MST would not create a cycle

using the union-find structure.

If it does not create a cycle, add the edge to the MST.

Data Structure using C++ & Lab -286

Update the union-find structure to merge the components of the

vertices connected by the edge.

Termination: Stop when V − 1 edges have been added to the MST,

where V is the number of vertices in the graph.

Kruskal’s algorithm is efficient with a time complexity of O (E log

E) due to the sorting step, where E is the number of edges in the

graph. This makes it suitable for graphs with a large number of

edges, especially sparse graphs where E is much smaller than V2.

Applications of Kruskal’s algorithm include network design,

circuit design, and clustering algorithms where finding the MST

helps minimize costs or optimize connections between nodes. Its

simplicity and efficiency make it a valuable tool in various

computational and practical settings.

Example:

Let's consider the following graph with 4 vertices (A, B, C, D) and

the following weighted edges:

AB: 1

AC: 4

AD: 3

BC: 2

BD: 5

CD: 6

Step-by-Step Execution:

Sort Edges: Sort edges by weight:

AB: 1

BC: 2

AD: 3

AC: 4

BD: 5

Data Structure using C++ & Lab -287

CD: 6

Initialize Union-Find: Initialize each vertex as its own

component.

Process Edges:

Edge AB (Weight 1): Include AB in MST (A-B).

Edge BC (Weight 2): Include BC in MST (B-C).

Edge AD (Weight 3): Include AD in MST (A-D).

Edge AC (Weight 4): Include AC in MST (A-C).

Edge BD (Weight 5): Include BD in MST (B-D).

Union Operations:

Union(A, B)

Union(B, C)

Union(A, D)

Union(A, C)

Union(B, D)

Resulting MST: The MST includes edges AB, BC, AD, AC. The

total weight of the MST is 1+2+3+4=101 + 2 + 3 + 4 =

101+2+3+4=10.

Explanation:

Kruskal's algorithm selects edges based on their weights in

ascending order and ensures that no cycles are formed by checking

if the endpoints of each edge belong to the same connected

component using the union-find data structure.

It's efficient for sparse graphs and can handle graphs with different

edge weights, making it versatile for various applications such as

network design, circuit layout, and clustering algorithms.

Data Structure using C++ & Lab -288

Implementation in C++:

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

// Structure to represent an edge in the graph

struct Edge {

 int u, v, weight;

 Edge(int u, int v, int weight) : u(u), v(v), weight(weight) {}

};

// Union-Find data structure with path compression and union by

rank

class UnionFind {

private:

 vector<int> parent, rank;

public:

 UnionFind(int n) {

 parent.resize(n);

 rank.resize(n, 0);

 for (int i = 0; i < n; ++i)

 parent[i] = i;

 }

 int find(int u) {

 if (parent[u] != u)

 parent[u] = find(parent[u]); // Path compression

 return parent[u];

 }

 void union_set(int u, int v) {

 int root_u = find(u);

 int root_v = find(v);

 if (root_u != root_v) {

Data Structure using C++ & Lab -289

 // Union by rank

 if (rank[root_u] > rank[root_v])

 parent[root_v] = root_u;

 else if (rank[root_u] < rank[root_v])

 parent[root_u] = root_v;

 else {

 parent[root_v] = root_u;

 rank[root_u]++;

 }

 }

 }

};

// Comparator function to sort edges by weight

bool compareEdges(const Edge& a, const Edge& b) {

 return a.weight < b.weight;

}

// Function to find Minimum Spanning Tree using Kruskal's

algorithm

vector<Edge> kruskalMST(vector<Edge>& edges, int V) {

 // Sort edges by weight

 sort(edges.begin(), edges.end(), compareEdges);

 UnionFind uf(V);

 vector<Edge> result;

 for (Edge& edge : edges) {

 int u = edge.u;

 int v = edge.v;

 if (uf.find(u) != uf.find(v)) {

 uf.union_set(u, v);

 result.push_back(edge);

 }

 // Stop when MST is found (V-1 edges)

 if (result.size() == V - 1)

Data Structure using C++ & Lab -290

 break;

 }

 return result;

}

12.4 PRIM'S ALGORITHM

Prim's algorithm is another popular greedy algorithm used to find

the Minimum Spanning Tree (MST) of a connected, weighted

graph. Similar to Kruskal's algorithm, Prim's algorithm builds the

MST incrementally, starting from an arbitrary vertex and adding

the shortest edge that connects a vertex in the MST to a vertex

outside the MST. Here’s how Prim's algorithm works, explained

with an example:

Prim's Algorithm Steps:

Initialization: Start with an arbitrary vertex as the initial MST, or

a single vertex as the starting point.

Priority Queue: Use a priority queue (min-heap) to keep track of

the minimum-weight edge that connects the MST to vertices

outside the MST.

Process Edges: Repeat the following steps until all vertices are

included in the MST:

Add the vertex with the smallest edge weight that connects the

current MST to a vertex not yet in the MST.

Update the priority queue with new edges that connect the current

MST to vertices outside the MST.

Termination: Stop when all vertices are included in the MST,

forming V−1V-1V−1 edges, where VVV is the number of vertices

in the graph.

Data Structure using C++ & Lab -291

Example:

Consider the following graph with 4 vertices (A, B, C, D) and the

following weighted edges:

AB: 1

AC: 4

AD: 3

BC: 2

BD: 5

CD: 6

Step-by-Step Execution:

Start with Vertex A: Assume we start with vertex A.

Priority Queue Contents:

Initially, vertex A is in the MST.

Edges: AB (1), AC (4), AD (3).

Process:

Step 1: Add edge AB to the MST (A-B). Priority queue now has

AC (4), AD (3).

Step 2: Add edge AD to the MST (A-D). Priority queue now has

AC (4), BD (5).

Step 3: Add edge AC to the MST (A-C). Priority queue now has

BC (2), BD (5).

Step 4: Add edge BC to the MST (B-C). Priority queue now has

BD (5), CD (6).

Resulting MST: The MST includes edges AB, AD, AC, BC. The

total weight of the MST is 1+3+4+2=101 + 3 + 4 + 2 =

101+3+4+2=10.

Explanation:

Prim's algorithm starts from an initial vertex and grows the MST

one vertex at a time by adding the shortest edge that connects the

current MST to a vertex outside the MST.

Data Structure using C++ & Lab -292

It uses a priority queue to efficiently retrieve the next minimum-

weight edge to process, ensuring that the algorithm runs efficiently

even for large graphs.

Prim's algorithm is particularly useful for dense graphs or when a

specific starting vertex is known, as it guarantees that the MST

grows incrementally with minimal edge weights.

Implementation in C++:

#include <iostream>

#include <vector>

#include <queue>

#include <climits>

using namespace std;

#define V 5 // Number of vertices in the graph

// Function to find the vertex with the minimum key value,

// from the set of vertices not yet included in MST

int minKey(int key[], bool mstSet[]) {

 int min = INT_MAX, min_index;

 for (int v = 0; v < V; v++) {

 if (mstSet[v] == false && key[v] < min) {

 min = key[v];

 min_index = v;

 }

 }

 return min_index;

}

// Function to print the MST stored in parent array

void printMST(int parent[], vector<vector<int>>& graph) {

 cout << "Edge \tWeight\n";

 for (int i = 1; i < V; i++) {

 cout << parent[i] << " - " << i << "\t" << graph[i][parent[i]]

<< "\n";

Data Structure using C++ & Lab -293

 }

}

// Function to construct and print MST using Prim's algorithm

void primMST(vector<vector<int>>& graph) {

 int parent[V]; // Array to store constructed MST

 int key[V]; // Key values used to pick minimum weight edge

in cut

 bool mstSet[V]; // To represent set of vertices included in MST

 // Initialize all keys as INFINITE

 for (int i = 0; i < V; i++) {

 key[i] = INT_MAX;

 mstSet[i] = false;

 }

 // Always include first vertex in MST

 key[0] = 0; // Make key 0 so that this vertex is picked as first

vertex

 parent[0] = -1; // First node is always root of MST

 // The MST will have V vertices

 for (int count = 0; count < V - 1; count++) {

 // Pick the minimum key vertex from the set of vertices not

yet included in MST

 int u = minKey(key, mstSet);

 // Add the picked vertex to the MST set

 mstSet[u] = true;

 // Update key value and parent index of the adjacent vertices

of the picked vertex

 // Consider only those vertices which are not yet included in

MST

 for (int v = 0; v < V; v++) {

 // graph[u][v] is non-zero only for adjacent vertices of u

 // mstSet[v] is false for vertices not yet included in MST

 // Update the key only if graph[u][v] is smaller than key[v]

Data Structure using C++ & Lab -294

 if (graph[u][v] && mstSet[v] == false && graph[u][v] <

key[v]) {

 parent[v] = u;

 key[v] = graph[u][v];

 }

 }

 }

 // Print the constructed MST

 printMST(parent, graph);

}

// Driver program to test above functions

int main() {

 vector<vector<int>> graph = {

 {0, 2, 0, 6, 0},

 {2, 0, 3, 8, 5},

 {0, 3, 0, 0, 7},

 {6, 8, 0, 0, 9},

 {0, 5, 7, 9, 0}

 };

 // Print the MST using Prim's algorithm

 primMST(graph);

 return 0;

}

12.5 APPLICATIONS OF MINIMUM
COST SPANNING TREES

Use cases in network design (telecommunications, computer

networks).

In network design, Minimum Cost Spanning Trees (MCST) find

numerous applications across various domains. Here are some

specific use cases:

Data Structure using C++ & Lab -295

Telecommunications Networks: MCST algorithms are

extensively used in telecommunications to design efficient

networks of communication channels, such as fiber optic cables or

wireless links between cities, towns, or network nodes. The goal is

to minimize the total cost of establishing and maintaining these

connections while ensuring reliable and high-speed

communication.

Computer Networks: In computer networks, MCST algorithms

help in designing network topologies that connect all devices

(computers, routers, switches) with minimal total cable length or

transmission cost. This ensures efficient data transmission, reduces

latency, and enhances network reliability.

Wireless Sensor Networks: MCST algorithms are applied in

designing wireless sensor networks (WSNs) where sensors need to

communicate with each other and with a central node (sink) using

minimal energy consumption. The algorithm helps in forming a

tree structure that optimizes energy usage and ensures data from

sensors is efficiently routed to the sink.

Satellite Communication Networks: For satellite communication

systems, MCST algorithms are used to establish communication

links between satellites and ground stations or between different

satellites in a constellation. The objective is to minimize signal

propagation delay and maximize bandwidth utilization while

keeping operational costs low.

Internet of Things (IoT) Networks: In IoT applications, where

numerous devices (sensors, actuators, smart appliances) are

interconnected, MCST algorithms play a role in optimizing the

Data Structure using C++ & Lab -296

network topology for efficient data exchange and resource

management. This ensures that IoT devices can communicate

seamlessly while conserving energy and reducing communication

overhead.

Clustering applications in data analysis and machine learning

In data analysis and machine learning, clustering refers to the

process of grouping data points into clusters based on their

similarity or distance metrics. Minimum Cost Spanning Trees

(MCST) and related algorithms have applications in clustering

contexts, particularly in graph-based clustering methods. Here’s

how MCST and clustering intersect:

Graph-based Clustering:

Minimum Spanning Tree Clustering: In this approach, MCST

algorithms like Kruskal's or Prim's are used to construct a

minimum spanning tree of a graph where nodes represent data

points and edges represent distances or similarities between them.

Once the tree is constructed, clusters can be derived by cutting

edges based on a threshold distance or similarity measure. The

resulting clusters are connected subgraphs with minimal total edge

weights, ensuring compact and cohesive clusters.

Hierarchical Clustering:

Agglomerative Clustering: MCST algorithms can be adapted for

hierarchical clustering methods. Starting with each data point as a

separate cluster, the algorithm progressively merges clusters based

on proximity until all points belong to a single cluster. The

merging process can be guided by the edges of the MCST,

Data Structure using C++ & Lab -297

ensuring that clusters are merged in a way that minimizes the total

inter-cluster similarity or distance.

Community Detection:

Graph Partitioning: MCST algorithms are also used in

community detection tasks where the goal is to identify densely

connected subgroups of nodes in a network (graph). By

constructing an MCST or other graph-based structures, community

detection algorithms can efficiently identify these subgroups,

which often correspond to clusters of similar data points in

applications like social network analysis or recommendation

systems.

Optimization and Representation Learning:

MCST-based clustering methods can help in optimizing

representation learning tasks by constructing a graph

representation of data points and then applying MCST algorithms

to discover meaningful structures or patterns. This approach can

enhance the efficiency of clustering tasks in large datasets or high-

dimensional spaces where traditional clustering algorithms may

struggle.

Optimization problems in logistics and transportation.

In logistics and transportation, optimization problems are

pervasive, involving efficient resource allocation, route planning,

and network management. Minimum Cost Spanning Trees (MCST)

and related algorithms play crucial roles in solving these

optimization challenges:

Network Design and Maintenance:

Infrastructure Planning: MCST algorithms like Prim's and

Kruskal's are used to design efficient transportation networks such

Data Structure using C++ & Lab -298

as roadways, railways, and telecommunications grids. By

constructing minimum spanning trees, these algorithms help

minimize construction costs while ensuring connectivity and

accessibility across the network.

Vehicle Routing and Scheduling:

Optimal Route Planning: In transportation logistics, MCST

algorithms aid in determining the most cost-effective routes for

vehicles, considering factors like distance, traffic conditions, and

fuel costs. By constructing minimal spanning trees or related

structures, these algorithms optimize delivery routes, reduce

transportation times, and lower operational costs.

Supply Chain Management:

Inventory and Distribution Networks: MCST algorithms

optimize supply chain networks by identifying the most efficient

distribution routes between warehouses, suppliers, and retail

locations. This ensures timely delivery of goods while minimizing

transportation costs and maintaining inventory levels.

Facility Location and Service Coverage:

Service Area Design: MCST algorithms assist in locating facilities

(such as warehouses or distribution centers) strategically to

maximize service coverage while minimizing transportation

distances and costs. These algorithms ensure that service areas are

efficiently defined and maintained.

Resource Allocation and Management:

Energy and Resource Networks: In energy distribution and

resource management, MCST algorithms optimize the layout of

power grids or resource networks. By minimizing the total network

Data Structure using C++ & Lab -299

cost (including construction and maintenance), these algorithms

improve resource allocation efficiency and reliability.

12.6 BREADTH-FIRST SEARCH (BFS)

Breadth-First Search (BFS) is a fundamental graph traversal

algorithm used to explore nodes level by level. It starts at a

specified node (often called the "source" node) and explores all its

neighbors at the present depth level before moving on to nodes at

the next depth level.

Key Characteristics and Steps:

Initialization:

BFS begins by selecting a starting node and marking it as visited.

It uses a queue data structure to manage the order of exploration.

The starting node is enqueued.

Exploration Process:

Dequeue a node from the front of the queue.

Visit all adjacent nodes (neighbors) of the dequeued node that have

not been visited yet.

Mark each visited node to prevent re-processing and enqueue it

into the queue.

Level-wise Exploration:

BFS ensures that all nodes at a certain depth (distance from the

source) are visited before moving on to nodes at the next depth

level.

This ensures that BFS explores the shortest path first in an

unweighted graph.

Data Structure using C++ & Lab -300

Termination:

The process continues until the queue is empty, meaning all

reachable nodes have been visited.

Applications:

Shortest Path and Minimum Spanning Tree: BFS can be used to

find the shortest path in an unweighted graph and to construct the

minimum spanning tree in conjunction with other algorithms.

Web Crawling and Social Networking: BFS is used by search

engines to crawl the web and by social networking sites to find

friends or connections within a limited number of hops.

Puzzle Solving: BFS is employed in solving puzzles like the 8-

puzzle or maze traversal, where finding the shortest path or

reaching a target configuration is essential.

Example:

Consider a simple graph with nodes connected in a way that

resembles a tree structure. Starting from node A, BFS would

explore each level of nodes before moving to the next level. For

instance, from A, it would explore B and C, then from B, it would

explore D and E, and so on.

Consider a graph represented as follows:

Starting BFS from node A:

Initialization:

Begin at node A and mark it as visited.

Data Structure using C++ & Lab -301

Enqueue A into the queue.

Exploration Process:

Dequeue A, visit its neighbors B and D, and enqueue them (B

before D).

Dequeue B, visit its neighbors A, C, and E. Enqueue C and E (E

before D).

Dequeue C, visit its neighbors B and F. Enqueue F.

Dequeue D, visit its neighbors A and E (skip A as it's already

visited).

Dequeue E, visit its neighbors B, D, and F (skip B and D as they're

visited).

Dequeue F, visit its neighbor E (skip as it's visited).

Result:

The BFS traversal order from node A would be: A, B, D, C, E, F.

In this example:

BFS explores all nodes at the current depth level before moving on

to nodes at the next depth level.

It ensures that the shortest path (in terms of number of edges) from

the starting node A to any other reachable node is found first.

Complexity:

Time Complexity: O(V + E), where V is the number of vertices

(nodes) and E is the number of edges in the graph.

Space Complexity: O(V), due to the storage required for the

queue and the visited list.

12.7 DEPTH-FIRST SEARCH (DFS)

Depth-First Search (DFS) is a graph traversal algorithm that

explores as far as possible along each branch before backtracking.

Data Structure using C++ & Lab -302

It traverses a graph depthwise, exploring vertices and edges to

reach the deepest nodes before backtracking to explore other paths.

The main properties of DFS include its recursive nature, which

utilizes a stack to keep track of vertices, and its ability to uncover

all vertices in a connected component.

Definition and Properties of DFS:

DFS starts from an initial vertex, visits all its neighbors

recursively, and marks visited vertices to avoid revisiting. It

follows these properties:

Recursive Nature: DFS uses recursion or an explicit stack to

manage traversal.

Backtracking: It explores all paths from the current vertex before

moving to the next vertex.

Visited Marking: Ensures each vertex is visited once to avoid

infinite loops in cyclic graphs.

Implementation Details:

Recursive Implementation:

In a recursive approach, DFS uses function calls to traverse the

graph:

Data Structure using C++ & Lab -303

Example:

Depth-First Search (DFS) is another fundamental graph traversal

algorithm that explores as far as possible along each branch before

backtracking. Here's an example of how DFS works on a simple

graph:

Consider a graph represented as follows:

Starting DFS from node A:

Initialization:

Begin at node A and mark it as visited.

Exploration Process:

Visit A's neighbors recursively: B, D, E, F.

From B, visit its unvisited neighbor E (since B to A is visited).

From E, visit its unvisited neighbors F (since E to A is visited).

Result:

The DFS traversal order from node A would be: A, B, E, F, C, D.

In this example:

DFS explores as far as possible along each branch before

backtracking.

It uses a stack (implicitly through recursion or explicitly) to keep

track of the path and visited nodes.

Data Structure using C++ & Lab -304

DFS is used for tasks like finding connected components, detecting

cycles, and topological sorting in directed graphs.

Applications of DFS:

DFS finds applications in various graph-related problems:

Cycle Detection: Detects cycles in directed and undirected graphs

by checking for back edges during traversal.

Topological Sorting: Orders vertices such that for every directed

edge u -> v, u comes before v in the ordering.

Maze Solving: Used to find paths through mazes or grids by

exploring all possible paths until the exit is found.

12.8 FINDING STRONGLY
CONNECTED COMPONENTS (SCCS)

Finding Strongly Connected Components (SCCs) in a directed

graph is a fundamental graph algorithm that identifies subsets of

vertices where each vertex is reachable from any other vertex

within the same subset. Formally, an SCC in a directed graph is a

maximal subgraph such that for every pair of vertices uuu and vvv

in the SCC, there exists a path from u to v and a path from v to u.

Steps to Find Strongly Connected Components (Kosaraju's

Algorithm):

First Pass (DFS on Original Graph):

Perform a Depth-First Search (DFS) on the original graph, tracking

the finishing times of vertices. This step helps identify the order in

which vertices finish processing.

Store vertices based on their finishing times in a stack.

Data Structure using C++ & Lab -305

Transpose Graph:

Create a transpose or reverse graph where all the edges of the

original graph are reversed. Essentially, if there is an edge from u

to v in the original graph, there is an edge from vvv to uuu in the

transpose graph.

Second Pass (DFS on Transposed Graph):

Pop vertices from the stack (ordered by finishing times from the

first pass).

Perform DFS on the transpose graph starting from each popped

vertex to explore all vertices in the same SCC.

Each DFS call from an unvisited vertex in the stack identifies a

new SCC.

Example:

Consider a directed graph with vertices V = {1, 2, 3, 4, 5, 6} and

edges {(1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (5, 6), (6, 4)}.

First Pass (Original Graph):

Perform DFS on the original graph.

Track finishing times: finishing time (1) > finishing time (2) >

finishing time (3) > finishing time (4) > finishing time (5)

>finishing time (6).

Vertices in order of decreasing finishing times: [6, 5, 4, 3, 2, 1].

Transpose Graph:

Reverse all edges: {(2, 1), (3, 2), (1, 3), (4, 3), (5, 4), (6, 5), (4, 6)}.

Second Pass (DFS on Transposed Graph):

Start DFS from vertex 6 (top of the stack).

Explore all vertices reachable from 666: {6, 5, 4} forms an SCC.

Continue with other unvisited vertices in the stack until all SCCs

are identified.

Data Structure using C++ & Lab -306

Applications:

Compiler Design: Used in optimizing code by identifying code

blocks that can be executed independently.

Network Analysis: Identifying clusters of nodes that can

communicate effectively.

Component-based Systems: Finding modules or components with

interdependencies that must be analyzed together.

Kosaraju's algorithm efficiently finds all SCCs in O (V + E) time,

making it suitable for large graphs encountered in real-world

applications like social networks, transportation networks, and data

flow analysis.

12.9 CONCLUSION

In this unit, we have explored a comprehensive range of topics

centered around graph theory and its applications. We began with

the fundamental concepts of graphs, delving into various ways they

can be represented and manipulated. This foundational knowledge

set the stage for understanding more complex algorithms and their

practical uses.

We examined Minimum Cost Spanning Trees and studied

Kruskal’s and Prim’s algorithms in detail. These algorithms are

crucial for solving optimization problems in network design and

other fields. We then moved on to essential graph traversal

techniques, such as Breadth-First Search (BFS) and Depth-First

Search (DFS), highlighting their implementation and diverse

applications, from pathfinding to topological sorting.

Finally, we explored the identification of Strongly Connected

Components (SCCs) in directed graphs, an important concept for

Data Structure using C++ & Lab -307

analyzing the structure of complex networks. Throughout this unit,

the emphasis has been on both theoretical understanding and

practical implementation, equipping you with the skills to apply

these powerful graph algorithms to real-world problems.

12.10 QUESTIONS AND ANSWERS

Q1: What is a graph in the context of data structures?

Answer: A graph is a data structure that consists of a set of nodes

(vertices) connected by edges. Graphs can be directed or

undirected, and they are used to represent relationships between

entities in various applications such as social networks,

transportation systems, and network topology.

Q2: What is the primary difference between Kruskal’s

Algorithm and Prim’s Algorithm for finding Minimum Cost

Spanning Trees?

Answer: Kruskal’s Algorithm builds the Minimum Cost Spanning

Tree (MST) by adding edges in order of increasing weight,

ensuring no cycles are formed. Prim’s Algorithm, on the other

hand, starts from an arbitrary node and grows the MST by adding

the smallest edge that connects a vertex in the tree to a vertex

outside the tree.

Q3: How does the Breadth-First Search (BFS) algorithm

work?

Answer: BFS is a graph traversal algorithm that starts from a given

node and explores all its neighbors at the present depth before

moving on to nodes at the next depth level. It uses a queue to keep

track of nodes to be explored, ensuring a level-order traversal.

Data Structure using C++ & Lab -308

Q4: What are the typical applications of Depth-First Search

(DFS)?

Answer: DFS is used in various applications, including cycle

detection in graphs, topological sorting, solving maze puzzles, and

finding connected components in a graph. It is characterized by its

use of a stack or recursion to explore as far as possible along each

branch before backtracking.

Q5: Explain the concept of Strongly Connected Components

(SCCs) in a graph.

Answer: Strongly Connected Components (SCCs) are subgraphs in

a directed graph where every node is reachable from every other

node within the same subgraph. Identifying SCCs is crucial for

understanding the structure of complex networks, such as

identifying clusters or modules within a larger system.

Q6: What are the key properties of a Minimum Cost Spanning

Tree (MCST)?

Answer: A Minimum Cost Spanning Tree (MCST) connects all

vertices in a graph with the minimum possible total edge weight,

without forming any cycles. It ensures that the spanning tree is as

light as possible, which is essential for optimizing network design

and other applications.

12.11 REFERENCES

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein,

C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.

 Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.).

Addison-Wesley Professional.

 Dasgupta, S., Papadimitriou, C., & Vazirani, U. (2008).

Algorithms. McGraw-Hill Education.

Data Structure using C++ & Lab -309

 Kleinberg, J., & Tardos, É. (2005). Algorithm Design.

Pearson.

 Tarjan, R. E. (1972). "Depth-First Search and Linear

Graph Algorithms". SIAM Journal on Computing, 1(2),

146-160.

 Prim, R. C. (1957). "Shortest Connection Networks and

Some Generalizations". Bell System Technical Journal,

36(6), 1389-1401.

 Kruskal, J. B. (1956). "On the Shortest Spanning Subtree

of a Graph and the Traveling Salesman Problem".

Proceedings of the American Mathematical Society, 7(1),

48-50.

Data Structure using C++ & Lab -310

UNIT – 13: SEARCHING AND
SORTING ALGORITHMS

13.0 Introduction

13.1 Objectives

13.2 Sorting Algorithms

13.3 Selection Sort

13.4 Insertion Sort

13.5 Merge Sort

13.6 Quick Sort

13.7 Searching Algorithms

13.8 Comparing the Efficiency of Sorting and Searching

Algorithms

13.9 Conclusion

13.10 Questions and Answers

13.11 References

13.0 INTRODUCTION

In computer science and software engineering, sorting and

searching algorithms are essential for efficiently managing and

manipulating data. These algorithms are essential resources that

facilitate the effective arrangement and retrieval of data for a wide

range of applications. We thoroughly examine sorting and

searching algorithms in this topic, including their foundations,

applications, effectiveness, and practical applications.

Sorting algorithms are methods for putting data in a specific order,

like lexicographical or numerical order. Because of their

differences in efficiency and complexity, some are more suited for

Data Structure using C++ & Lab -311

particular jobs than others. Conversely, searching algorithms make

it easier to retrieve data from structured data structures. They are

essential for quickly and efficiently finding elements in sorted

arrays or other data repositories.

The first part of this subject looks at different sorting strategies,

such as Quick Sort, Insertion Sort, Selection Sort, and Merge Sort.

Every technique is examined in detail to comprehend its working

principles, computational intricacies in the best, average, and

worst-case situations, and useful applications. Additionally, we

investigate and compare the optimal use cases and efficiency of

several searching algorithms, including Binary Search and Linear

Search. Our goal is to offer a thorough grasp of how these

algorithms support effective data management and retrieval in

theoretical and real-world settings by the conclusion.

13.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understanding Sorting Algorithms: To comprehend the

fundamental principles behind various sorting algorithms such as

Selection Sort, Insertion Sort, Merge Sort, and Quick Sort. This

includes exploring their respective implementation strategies,

advantages, and disadvantages.

Analyzing Time and Space Complexity: To conduct a detailed

analysis of the time complexity (best, average, and worst-case

scenarios) and space complexity of each sorting algorithm. This

analysis helps in understanding their efficiency and suitability for

different data sizes and structures.

Data Structure using C++ & Lab -312

Exploring Searching Algorithms: To investigate essential

searching algorithms, particularly Linear Search and Binary

Search. This involves understanding their operational mechanisms,

efficiency in terms of time complexity, and practical applications

in data retrieval scenarios.

Comparing Efficiency: To compare the efficiency of sorting and

searching algorithms based on their time and space complexities.

This comparison aids in selecting the most appropriate algorithm

for specific tasks, considering factors like data size, structure, and

order.

Real-world Applications: To examine practical applications of

sorting and searching algorithms across various domains, including

database management, information retrieval, and computational

problem-solving.

13.2 SORTING ALGORITHMS

Sorting algorithms are methods for putting items in a list or array

in a specific order, usually lexicographically or numerically,

ascending or descending. A basic operation in computer science,

sorting is frequently employed as an initial step in a variety of

algorithms and applications. Sorting algorithms can be assessed for

efficiency using two metrics: space complexity (the amount of

additional memory needed) and time complexity (the rate at which

the algorithm's execution time grows with the size of the input).

Sorting Techniques:

Bubble Sort: This straightforward sorting algorithm analyzes each

pair of adjacent items and swaps them if they are out of order as it

iteratively goes through the list to be sorted. Until the list is sorted,

the trip through the list is repeated. Smaller elements "bubble" to

Data Structure using C++ & Lab -313

the top of the list (the beginning of the array) with each iteration of

the algorithm, hence its name.

Methodical Application in C++

Analysis of Time Complexity

Best Case: O(n): When the array has previously been

sorted, this happens. In this case, the algorithm merely

performs one trip around the array to verify that it is sorted;

swaps are not required.

Average Case: O(n2): This happens when there is an

average random element order. The method does n passes,

comparing and sometimes swapping neighboring pairings

on each iteration.

Worst-Case Scenario: The worst-case scenario, which

happens when the array is sorted in reverse order, is O(n2).

The method must perform n passes, requiring n-1 swaps

and comparisons for each pass.

Analysis of Space Complexity

Space Complexity: O (1): Bubble Sort requires a constant

amount of additional memory space because it is an in-

place sorting method. The temporary variable that holds

Data Structure using C++ & Lab -314

elements during swaps is the only purpose for the

additional space.

Detailed Description with Illustration

Considering an array arr[] = {64, 25, 12, 22, 11}, let us perform the

Bubble Sort steps:

First Pass,

When comparing 64 and 25, swap them out because 64 >

25 → {25, 64, 12, 22, 11}

As 64 > 12 → {25, 12, 64, 22, 11}, compare 64 and 12:

Swap

Examine 64 and 22: Exchange, as 64 > 22 → {25, 12, 22,

64, 11}

Examine 64 and 11: Exchange, as 64 > 11 → {25, 12, 22,

11, 64}

Second Pass,

In contrast, swap 25 and 12 because 25 > 12 => {12, 25,

22, 11, 64}

In order to swap 25 and 22, remember that 25 > 22 → {12,

22, 25, 11, 64}.

In order to swap 25 and 11, note that 25 > 11 → {12, 22,

11, 25, 64}.

64 is already positioned correctly.

Third Pass

Examine 12 and 22: There is no exchange because 12 < 22

→ {12, 22, 11, 25, 64}

In contrast, 22 > 11 → {12, 11, 22, 25, 64}. Compare 22

with 11.

The numbers 25 and 64 are already in the right places.

Data Structure using C++ & Lab -315

Fourth Pass:

As 12 > 11 → {11, 12, 22, 25, 64}, compare 12 with 11.

The numbers 22, 25, and 64 are already in the right place.

The array is sorted in the following order: {11, 12, 22, 25,

64}.

13.3 SELECTION SORT

Selection Sort is a basic sorting algorithm that relies on

comparisons. The input list is split into two sections by the

algorithm: a sublist of the remaining unsorted items and a sorted

sublist of items that are accumulated from left to right at the front

(left) of the list.

The input list as a whole is the unsorted sublist at first, and the

sorted sublist is empty. The method then finds the smallest (or

largest, depending on the order of sorting) element in the unsorted

sublist, moves the sublist borders one element to the right, and

exchanges it with the leftmost unsorted element to put it in sorted

order.

Step-by-Step Implementation in C++

Data Structure using C++ & Lab -316

Analysis of Time Complexity

Best Case: O(n2): Because the technique does not check to

see if the list is already sorted, the best-case scenario still

requires n passes through the list and n comparisons each

pass.

Average Case: O(n2): In this scenario, the algorithm runs

through n passes, averaging n/2 comparisons each pass.

Worst Case: O(n2): In this scenario, there are n

comparisons made for each run through the list and n

passes overall.

Analysis of Space Complexity

Because Selection Sort is an in-place sorting algorithm, it has a

constant memory space need (space complexity: O (1)). The

temporary variable that holds elements during swaps is the only

purpose for the additional space.

Use Cases and Realistic Implementations

Small Data Sets: Selection Sort is helpful when dealing

with small data sets since its simplicity and convenience of

usage outweigh its drawbacks.

Partially Sorted Arrays: Selection Sort occasionally

works better if you are aware that the array has previously

been partially sorted.

Educational Purposes: Because of its simplicity, it is

frequently used in school contexts to teach the principles of

sorting algorithms.

Memory-Constrained Environments: Because it is an in-

place sort, it can be used in settings with constrained

memory.

Data Structure using C++ & Lab -317

Detailed Description with Illustration

Considering an array arr[] = {64, 25, 12, 22, 11}, let us perform the

Selection Sort steps:

First Pass:

Determine the least element—11—among 64, 25, 12, 22,

and 11.

Replace element 64 with 11, resulting in {11, 25, 12, 22,

64}.

Second Pass:

Determine the least element—12—among 25, 12, 22, and

64.

Replace element 12 with element 25 to get {11, 12, 25, 22,

64}.

Third Pass

Determine the least element—22—among 25, 22, 64.

Replace element 22 with the third one (25) to get {11, 12,

22, 25, 64}.

Fourth Pass:

Determine the least element—25—among 25, 64.

Since 25 is already in the right place, there is no need to

swap.

The array is sorted in the following order: {11, 12, 22, 25,

64}.

Data Structure using C++ & Lab -318

13.4 INSERTION SORT

Insertion Sort is a basic and intuitive comparison-based sorting

algorithm. It builds the final sorted array (or list) one item at a

time. It is substantially less efficient on huge lists than more

complex algorithms such as quicksort, heapsort, or merge sort.

However, it has the virtue of being simple to implement and

efficient for small data sets.

The list is split into sorted and unsorted regions in order for the

algorithm to function. Initially, the sorted region comprises only

the first element, and the rest of the list is unsorted. The method

proceeds by taking the next element from the unsorted section and

inserting it into the correct position in the sorted region. This

process continues until the full list is sorted.

Step-by-Step Implementation in C++

Data Structure using C++ & Lab -319

Time Complexity Analysis

Best Case: O(n): The best-case scenario happens when the

array is already sorted. The algorithm just needs to pass

through the list once, making n-1 comparisons.

Average Case: O(n2): On average, each element in the

array is compared half of the elements preceding it. This

leads in a quadratic amount of comparisons and shifts.

Worst Case: O(n2): The worst-case scenario happens

when the array is sorted in reverse order. The method needs

to bring each element to the front of the sorted zone,

resulting in the maximum amount of comparisons and

shifts.

Analysis of Space Complexity

Space Complexity: O(1): Insertion Sort is an in-place sorting

algorithm, meaning it requires a constant amount of additional

memory space. The only extra space used is for a temporary

variable to hold components during shifts.

Use Cases and Realistic Implementations

Small Data Sets: Insertion Sort works well for small data sets

since it is straightforward to use and has a low implementation

overhead.

Nearly Sorted Arrays: Insertion Sort works well when you know

the array is already almost sorted because it requires less shifts.

Online Sorting: Insertion Sort is appropriate for online sorting

where data is received one piece at a time since it can sort a list as

it gets items.

Data Structure using C++ & Lab -320

For educational purposes: Because of its simplicity, it is

frequently used in school contexts to teach the principles of sorting

algorithms.

Detailed Description with Illustration

Considering an array arr[] = {12, 11, 13, 5, 6}, let us proceed with

the Insertion Sort steps:

First Pass:

Key = 11, contrast with 12.

Move 12 to the right since 11 < 12.

Put 11 where it belongs → {11, 12, 13, 5, 6}.

Second Pass:

Key = 13, contrast with 12.

There is no need for shifts because 13 > 12.

Place 13 where it belongs → {11, 12, 13, 5, 6}.

Third Pass:

Key: 5, with relation to 13, 12, and 11.

Due to the fact that 5 < 13, 12, and 11, move them right.

Put 5 in the proper place: {5, 11, 12, 13, 6}.

Fourth Pass:

Key: 6, in relation to 13, 12, and 11.

As 6 is less than 13, 12, and 11, move them to the right.

Put 6 in the proper place: {5, 6, 11, 12, 13}.

The array is sorted in the following order: {5, 6, 11, 12,

13}.

Data Structure using C++ & Lab -321

13.5 MERGE SORT

A divide-and-conquer method called merge sort splits the input

array in half, sorts each half recursively, and then combines the

sorted halves to create a sorted array. O (n log n) time complexity

is guaranteed in all scenarios (best, average, and worst-case),

making it a stable sorting algorithm.

Step-by-Step Implementation in C++

The basic instance of the C++ implementation of merge sort is

splitting the array in half recursively until each sub-array has one

entry. To create the final sorted array, it then combines the sorted

sub-arrays once more.

#include <iostream>

using namespace std;

// Function to merge two halves sorted arrays

void merge(int arr[], int left, int mid, int right) {

 int n1 = mid - left + 1;

 int n2 = right - mid;

 // Create temporary arrays

 int L[n1], R[n2];

 // Copy data to temporary arrays L[] and R[]

 for (int i = 0; i < n1; i++)

 L[i] = arr[left + i];

 for (int j = 0; j < n2; j++)

 R[j] = arr[mid + 1 + j];

 // Merge the temporary arrays back into arr[left..right]

 int i = 0; // Initial index of first subarray

 int j = 0; // Initial index of second subarray

 int k = left; // Initial index of merged subarray

 while (i < n1 && j < n2) {

Data Structure using C++ & Lab -322

 if (L[i] <= R[j]) {

 arr[k] = L[i];

 i++;

 } else {

 arr[k] = R[j];

 j++;

 }

 k++;

 }

 // Copy the remaining elements of L[], if any

 while (i < n1) {

 arr[k] = L[i];

 i++;

 k++;

 }

 // Copy the remaining elements of R[], if any

 while (j < n2) {

 arr[k] = R[j];

 j++;

 k++;

 }

}

// Function to perform merge sort on array arr[left..right]

void mergeSort(int arr[], int left, int right) {

 if (left < right) {

 int mid = left + (right - left) / 2;

 // Sort first and second halves

 mergeSort(arr, left, mid);

 mergeSort(arr, mid + 1, right);

 // Merge the sorted halves

 merge(arr, left, mid, right);

 }

Data Structure using C++ & Lab -323

}

// Main function to test merge sort

int main() {

 int arr[] = {12, 11, 13, 5, 6, 7};

 int n = sizeof(arr) / sizeof(arr[0]);

 cout << "Given array is \n";

 for (int i = 0; i < n; i++)

 cout << arr[i] << " ";

 cout << endl;

 mergeSort(arr, 0, n - 1);

 cout << "Sorted array is \n";

 for (int i = 0; i < n; i++)

 cout << arr[i] << " ";

 cout << endl;

 return 0;

}

Analysis of Time Complexity

Best Case: O (n log n): When the array is sorted or almost

sorted, this is the best-case situation. The array is split in

half by Merge Sort until each sub-array contains one

element, at which point it merges the two halves back

together.

Merge Sort: Merge Sort on average, splits the array in half

and then combines them back together in an O (n log n)

time. Its time complexity is expressed as T(n) = 2T(n/2) +

O(n) in the recurrence relation.

Worst Case: O (n log n): When the array is unsorted, this

is also the worst-case situation. Recursively splitting the

array in half and merging them together, Merge Sort

preserves O (n log n) time complexity.

Data Structure using C++ & Lab -324

Analysis of Space Complexity

Space Complexity: O(n): The temporary arrays utilized

during the merge operation necessitate additional memory

space for Merge Sort. O(n) is the space complexity because

auxiliary arrays are used.

Use Cases and Realistic Implementations

Sorting Big Data Sets: Because of its O(n log n) time

complexity, merge sort is effective for sorting huge data

sets.

External Sorting: Merge sort is used in external sorting

when data needs to be stored on external storage devices

because it cannot fit in the main memory.

Parallel Processing: Merge Sort is easily adaptable to

parallel processing, which allows various parts of the data

to be sorted simultaneously by several processors or cores.

13.6 QUICK SORT

Quick Sort is a sorting algorithm that uses comparison and the

divide-and-conquer tactic. To operate, one 'pivot' element is chosen

from the array, and the remaining elements are divided into two

sub-arrays according to whether they are bigger or less than the

pivot. After that, the sub-arrays are sorted recursively.

Step-by-Step Implementation in C++

In order to implement Quick Sort in C++, one must first choose a

pivot element, divide the array around it, and then recursively sort

the sub-arrays. The main steps involved are as follows:

Data Structure using C++ & Lab -325

Select Pivot: The pivot should be one of the array's

elements. There are several ways to determine which

element will serve as the pivot: you can choose to use the

first, last, or random element.

Partitioning: Slide the array back and forth until all

elements larger than the pivot are on the right side and all

elements less than the pivot are on the left. The pivot is in

its final position following partitioning.

Recursive Sort: Sort the sub-arrays created by partitioning

by applying Quick Sort recursively until the full array is

sorted.

#include <iostream>

#include <vector>

using namespace std;

// Function to partition the array and return the index of the pivot

element

int partition(vector<int>& arr, int low, int high) {

 int pivot = arr[high]; // Choosing the last element as the pivot

 int i = low - 1; // Index of smaller element

 for (int j = low; j <= high - 1; j++) {

 // If current element is smaller than or equal to pivot

 if (arr[j] <= pivot) {

 i++; // Increment index of smaller element

 swap(arr[i], arr[j]);

 }

 }

 swap(arr[i + 1], arr[high]);

 return (i + 1);

}

// Function to implement Quick Sort

void quickSort(vector<int>& arr, int low, int high) {

Data Structure using C++ & Lab -326

 if (low < high) {

 // Partitioning index

 int pi = partition(arr, low, high);

 // Recursively sort elements before partition and after partition

 quickSort(arr, low, pi - 1);

 quickSort(arr, pi + 1, high);

 }

}

// Utility function to print an array

void printArray(const vector<int>& arr) {

 for (int i = 0; i < arr.size(); i++) {

 cout << arr[i] << " ";

 }

 cout << endl;

}

// Main function

int main() {

 vector<int> arr = {10, 7, 8, 9, 1, 5};

 int n = arr.size();

 cout << "Original array: ";

 printArray(arr);

 quickSort(arr, 0, n - 1);

 cout << "Sorted array: ";

 printArray(arr);

 return 0;

}

Time Complexity Analysis

Best Case: O(n log n): The array is divided into two

roughly equal halves by the pivot in the best-case scenario.

The array is divided into two pieces by each partitioning

Data Structure using C++ & Lab -327

step, resulting in O(log n) divisions and O(n) comparisons

for each division.

Average Case: O(n log n): Quick Sort's effective

partitioning technique allows it to perform well on average.

Because each partitioning step splits the array into two sub-

arrays proportionate to the pivot, the temporal complexity

is O(n log n).

Worst Case: O(n2): Unbalanced partitions result when the

pivot is either the smallest or largest element in the array.

This is the worst-case scenario. O(n2) time complexity

results from this situation, which is uncommon but can be

avoided by deliberately selecting the pivot.

Analysis of Space Complexity

Space Complexity: O (log n) to O(n): The recursive call

stack for Quick Sort normally takes up O(log n) of space. If

more arrays are used in the implementation, in the worst

scenario, O(n) auxiliary space might be needed for

partitioning.

Use Cases and Realistic Implementations

General-Purpose Sorting: Because of its effective

average-case performance, Quick Sort is frequently used

for general-purpose sorting.

In-Place Sorting: Quick Sort can be done in-place for the

recursive call stack using O(log n) auxiliary space.

Optimized Libraries: Because Quick Sort and its variants

are reliable and efficient sorting algorithms, many

computer languages and libraries utilize them by default.

Data Structure using C++ & Lab -328

13.7 SEARCHING ALGORITHMS

Algorithms for searching are techniques for locating particular

elements in a set of data, like trees, arrays, or lists. Finding the

location of a specific element within the data structure and, if it

does, retrieving it are the objectives. The efficiency of various

searching algorithms vary, and they are frequently assessed in

terms of space complexity, time complexity, and overall

performance depending on the quantity and quality of the data.

The following are a few popular search algorithms:

Linear Search: another name for linear search, is a simple

searching technique that goes over each element in a data

structure one after the other until the target element is

located or all the items have been examined. When data is

randomly arranged or unsorted and each element is

compared one after the other consecutively, it performs

admirably.

Data Structure using C++ & Lab -329

Step-by-step Implementation in C++:

Analysis of Time Complexity:

Best Case: O(1): This happens when the element of

interest is located at the initial position.

Average Case: O(n): - The average case requires the

algorithm to scan through half of the array on average,

since the target element can be anywhere in the array.

Worst Case: O(n): - This situation necessitates a complete

traversal of the array and happens when the target element

is at the last position or absent.

Analysis of Space Complexity:

Because it only needs a fixed amount of additional memory to

store variables like the loop counter and target element, Linear

Search has a space complexity of O(1).

Data Structure using C++ & Lab -330

Uses and Real-World Implementations:

Searching Unsorted Arrays: Because linear search

examines each element one after the other, it is frequently

employed when data is not sorted.

Simple and Easy to Implement: It is helpful in

circumstances where efficiency is not as crucial as

simplicity and ease of implementation.

Tiny Datasets: Appropriate for tiny datasets or situations

in which sorting using more sophisticated algorithms, such

as Binary Search, would not be cost-effective.

Binary Search: Working with sorted arrays or lists, Binary

Search is a very effective searching technique. Until the

target element is located or the interval is empty, it operates

by periodically halving the search interval in half.

Depending on whether the target value is higher or less

than the array's middle element, it compares it to that

element before determining whether to carry on looking in

the left or right subarray.

Step-by-step Implementation in C++:

#include <iostream>

#include <vector>

using namespace std;

// Function to perform binary search

int binarySearch(vector<int>& arr, int target) {

 int left = 0;

 int right = arr.size() - 1;

 while (left <= right) {

 int mid = left + (right - left) / 2;

 // Check if target is present at mid

 if (arr[mid] == target) {

Data Structure using C++ & Lab -331

 return mid;

 }

 // If target is greater, ignore left half

 else if (arr[mid] < target) {

 left = mid + 1;

 }

 // If target is smaller, ignore right half

 else {

 right = mid - 1;

 }

 }

 // If target is not found in the array

 return -1;

}

int main() {

 vector<int> arr = {10, 20, 30, 40, 50, 60};

 int target = 40;

 // Perform binary search

 int index = binarySearch(arr, target);

 if (index != -1) {

 cout << "Element found at index: " << index << endl;

 } else {

 cout << "Element not found in the array." << endl;

 }

 return 0;

}

Analysis of Time Complexity:

In the best scenario, the target element is located in the

middle of the array (O(1)).

Average Case: O(log n) - Binary search is very effective for

huge datasets since it splits the search interval in half with

each comparison.

Data Structure using C++ & Lab -332

The worst situation, which is similar to the average

scenario, happens when the target element is at either

extreme of the array. It is expressed as O(log n).

Analysis of Space Complexity:

Because it only needs a fixed amount of additional memory

to store variables like the left, right, and mid indices,

Binary Search has a space complexity of O(1).

Uses and Real-World Implementations:

Sorted Arrays and Lists: Binary search works well for

searching in sorted arrays and lists that allow for random

access.

Effective Searching: Because of its logarithmic time

complexity, it performs substantially quicker than linear

search on huge datasets.

Algorithmic Foundations: In computer science, binary

search is a basic algorithm that forms the basis of more

intricate algorithms and data structures.

14.8 COMPARING THE EFFICIENCY
OF SORTING AND SEARCHING
ALGORITHMS

Comparing Time Complexities of Sorting Algorithms:

Bubble Sort:

Best Case: O(n) - Occurs when the array is already sorted.

Average Case: O(n2)

Worst Case: O(n2) - Occurs when the array is sorted in reverse

order.

Data Structure using C++ & Lab -333

Selection Sort:

Best Case: O(n2)

Average Case: O(n^2)

Worst Case: O(n2)

Insertion Sort:

Best Case: O(n) - Occurs when the array is already sorted.

Average Case: O(n2)

Worst Case: O(n2)

Merge Sort:

Best Case: O(n log n)

Average Case: O(n log n)

Worst Case: O(n log n)

Quick Sort:

Best Case: O(n log n)

Average Case: O(n log n)

Worst Case: O(n^2) - Occurs when the pivot is consistently the

smallest or largest element.

Comparing Space Complexities of Sorting Algorithms:

Bubble Sort: O(1) - In-place algorithm.

Selection Sort: O(1) - In-place algorithm.

Insertion Sort: O(1) - In-place algorithm.

Merge Sort: O(n) - Requires additional space for merging.

Quick Sort: O(log n) - Space complexity is dominated by the call

stack due to recursion.

Data Structure using C++ & Lab -334

Best Scenarios to Use Each Sorting Algorithm:

Bubble Sort, Selection Sort, Insertion Sort: These algorithms are

simple and efficient for small datasets or nearly sorted arrays due

to their O(n) best case scenarios.

Merge Sort: Suitable for sorting large datasets or when stable

sorting is required (maintaining the relative order of equal

elements).

Quick Sort: Preferred for average and best-case scenarios due to

its average O(n log n) time complexity and in-place partitioning.

13.9 CONCLUSION

In conclusion, learning about sorting and searching algorithms is

essential to comprehending the basic principles of computer

science that underlie effective data organizing and retrieval. This

lesson covered a variety of sorting algorithms, such as Quick Sort,

Insertion Sort, Selection Sort, and Merge Sort. Based on their time

and space complexity, each sorting algorithm offers a distinct

method for sorting data with differing degrees of efficiency.

Comparably, we examined fundamental searching algorithms

including Binary Search and Linear Search, emphasizing their

efficiency metrics and working principles in various contexts.

Furthermore, contrasting these algorithms revealed information

about their respective advantages and disadvantages, which

increased our understanding of the significance of algorithmic

efficiency in practical applications. In addition to being

fundamental to software development, sorting and searching

algorithms are also vital in domains where effective data handling

is required, such as data analysis, database administration, and

computational research.

Data Structure using C++ & Lab -335

Basically, knowing these algorithms gives practitioners useful

abilities to improve system performance, optimize data processing

jobs, and efficiently handle challenging computational problems.

13.10 QUESTIONS AND ANSWERS

1. Why does sorting and searching depend on an algorithm's time

complexity?

Answer: The answer is that temporal complexity quantifies how an

algorithm's runtime grows as the amount of input data grows.

Lower time complexity algorithms are chosen for sorting and

searching because they operate more quickly, particularly for huge

datasets.

2. Contrast Binary and Linear Search. Which would you prefer to

use, and when?

Answer: The answer is that Linear Search works well with

unsorted lists because it iteratively examines each element in the

list until the target element is located. Contrarily, Binary Search is

quicker for huge datasets since it only needs a sorted list and

effectively reduces the search space at each step.

3. Describe the idea of sorting algorithms' stability. Why does it

matter?

Answer: The answer is that elements with equal keys appear in the

sorted output in the same order as they do in the original input

because sorting algorithms are stable. When sorting data using

multiple keys (e.g., sorting employees by department and then by

name), this feature is essential.

Data Structure using C++ & Lab -336

4. How is the O(n log n) average-case time complexity of Quick

Sort achieved?

Answer: In response, Quick Sort divides the array recursively into

smaller subarrays depending on a pivot element and sorts each

subarray separately to reach O(n log n) average-case complexity.

By using a divide and conquer approach, the workload is balanced

and the number of comparisons required is decreased.

5. Give an instance in which Merge Sort would not be preferred

over Insertion Sort.

Answer: Because of its ease of use and effective performance on

tiny datasets, insertion sort is the method of choice for sorting

small arrays or almost sorted arrays. Merge Sort, on the other hand,

works well with large datasets because of its O(n log n)

complexity.

6. What is the temporal complexity of Selection Sort and how does

it operate?

Answer: To answer your question, selection sort operates by

repeatedly identifying the minimum element in the array's unsorted

section and replacing it with the element that was initially

unsorted. For large datasets, it is less efficient than algorithms like

Quick Sort or Merge Sort due to its O(n^2) time complexity.

7. Talk about the trade-offs sorting algorithms have between time

and space complexity.

Answer: Because they may sort data in place, altering the input

array, sorting algorithms with higher time complexity frequently

require less additional memory (lower space complexity). Higher

space complexity algorithms can offer faster runtime, but they may

require more data structures to help in sorting.

Data Structure using C++ & Lab -337

13.11 REFERENCES

 Bjarne Stroustrup, "The C++ Programming Language"

 Herb Sutter, "Exceptional C++: 47 Engineering Puzzles,

Programming Problems, and Solutions"

 Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo,

"C++ Primer"

 Scott Meyers, "Effective C++: 55 Specific Ways to

Improve Your Programs and Designs"

 Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and

Reference"

Data Structure using C++ & Lab -338

BLOCK IV: FILE STRUCTURES AND
ADVANCED DATA STRUCTURES

UNIT – 14: HASHING
Structure

14.0 Introduction

14.1 Objectives

14.2 Introduction to Hashing

14.3 Collision Resolution Techniques

14.4 Importance of Collision Resolution

14.5 Applications of Hashing in Data Storage and Retrieval

14.6 Conclusion

14.7 Questions and Answers

14.8 References

14.0 INTRODUCTION

Effective system performance in the fields of computer science and

data management frequently rests on efficient data retrieval.

Hashing is a key idea in this field that provides a reliable way to

quickly arrange and retrieve data. Fundamentally, hashing maps

data pieces to distinct index values inside a data structure called a

hash table using hash algorithms. This method directly accesses the

stored value linked to a computed index, enabling quick data

retrieval. Hashing is therefore essential for maximizing the

effectiveness of a variety of processes, including algorithmic

calculations and database administration.

Gaining an understanding of hashing requires exploring its

theoretical underpinnings as well as its real-world applications.

The foundation of hashing approaches is the idea of hash

Data Structure using C++ & Lab -339

functions, which transform data of any size into a fixed-size result.

The purpose of hash functions is to generate hash codes with

characteristics such as collision resistance, predictable calculation,

and uniform distribution. These characteristics guarantee that hash

tables can effectively manage big datasets while preserving data

integrity and cutting down on retrieval times. This unit delves

further into these concepts, offering insights into the

implementation and optimization of hash functions to meet a range

of computing requirements.

Furthermore, collision resolution methods are essential to hash

tables' dependability and efficiency. When two distinct keys hash

to the same index, a collision occurs, requiring a resolution

strategy. Effective collision mitigation requires the use of strategies

like open addressing, which includes searching for empty slots

until one is discovered, and chaining, which stores several keys

that hash to the same index in linked lists within the same table

slot. Learners can comprehend the subtleties of hash table

management and recognize the vital part these approaches play in

contemporary computing infrastructures by grasping these

strategies.

14.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understanding of Hashing: Gain a clear understanding of hashing

as a fundamental technique for efficient data retrieval. This

includes grasping the concept of hash functions, their properties,

and how they are applied to map data elements to unique indices.

Collision Resolution Techniques: Explore various collision

resolution techniques used in hash tables. Learn how methods like

Data Structure using C++ & Lab -340

chaining and open addressing handle collisions and maintain the

integrity and efficiency of hash-based data structures.

Importance of Collision Resolution: Recognize the significance

of collision resolution in hash tables. Understand how effective

collision resolution techniques contribute to improving the

performance and reliability of data retrieval operations.

Applications of Hashing: Explore real-world applications where

hashing is instrumental in data storage and retrieval. This includes

database indexing, caching mechanisms, symbol tables in

compilers, and data deduplication strategies.

Practical Knowledge: Acquire practical knowledge through

examples and implementations that illustrate the concepts of

hashing, collision resolution, and their applications. Develop skills

in designing and optimizing hash-based data structures for various

computational tasks.

14.2 INTRODUCTION TO HASHING

In computer science and data structures, hashing is a basic method

for quickly and effectively storing and retrieving data. In order to

map data of any size to fixed-size values, usually integers, known

as hash codes or hash values, a hash function is applied. By

reducing the temporal complexity of accessing items, hashing aims

to achieve efficient data retrieval and storage processes.

To be more specific, hashing is the process of taking an input (or

key), applying a hash function to get an index (or hash code), and

then storing or retrieving the appropriate data (or value) from a

data structure (like a hash table). Usually, the hash function

Data Structure using C++ & Lab -341

processes the key via some sort of calculation and outputs an index

that points directly to the position of the data in the underlying

storage. This makes it useful for situations where fast access is

essential, such database indexing, caching techniques, and various

algorithmic applications. It also provides for speedy insertion,

deletion, and retrieval of data pieces.

Since hashing typically yields average-case constant-time

operations for search, insert, and delete operations—assuming that

a suitable collision resolution approach and a strong hash function

are put into place—it is a widely utilized technique. It serves as the

foundation for a number of data structures, including dictionaries,

hash tables, and hash maps, all of which are crucial in

contemporary computer science for handling massive datasets and

maximizing efficiency.

Qualities of an Effective Hash Function

Even Distribution: The hash codes should be dispersed equally

throughout the hash table or array by a strong hash algorithm. In

other words, the function should reduce the amount of collisions—

that is, the instances in which two distinct keys map to the same

index or bucket. By ensuring that every bucket in the hash table

has an equal chance of being reached, uniform distribution

maximizes operational efficiency.

Deterministic: For a given input key, the hash function should

always produce the same hash code. Because determinism

guarantees predictability and dependability, it makes it possible to

update and retrieve stored data consistently. Stated otherwise, you

should consistently obtain the same hash code if you hash the same

key many times.

Data Structure using C++ & Lab -342

Quick Computation: A strong hash function should be

computationally efficient since hashing relies heavily on efficiency.

All hash codes should be generated rapidly, irrespective of the

input key's size. This guarantees that in applications requiring

frequent data access or manipulation, the hashing process itself

does not constitute a bottleneck.

Common Hash Function Examples

Division Method: This is one of the most basic hash functions; it

calculates the hash code by dividing the hash table size by the

remainder of the key (a modulo operation). As an example,

consider hash(key) = key % table_size. Even though it is

straightforward, if the table size is not prime, improper selection

may result in clustering.

Multiplication Method: In this method, the fractional part of the

product is multiplied by the table size after the key is multiplied by

a constant, usually a fraction of a power of two. As an illustration,

consider the formula hash(key) = floor (table_size * (key * A %

1)), where A is a constant selected for acceptable distribution

through actual research.

Universal Hashing: Using a random selection process, a family of

hash functions is employed to choose which particular hash

function is used. Because of its inherent randomness, it can be used

in situations where security or resilience against enemies are

crucial. Selecting the hash function according to the size of the

hash table and the characteristics of the data being hashed is a

widely used method in universal hashing.

Data Structure using C++ & Lab -343

Image Source: TutorialsPoints

14.3 COLLISION RESOLUTION
TECHNIQUES

When two distinct keys hash to the same index or location in a

hash table, this is known as a collision in hashing. This indicates

that numerous keys are assigned to the same slot by the hash

function, which maps keys to locations in the hash table.

When Collisions Occurs?

When two distinct keys hash to the same index in a hash table, this

is known as a hash collision. There are a number of possible causes

for this, and knowing them is crucial to putting successful collision

resolution techniques into practice. The following list of frequent

collision causes is illustrated with examples:

Limitations of Hash Functions: Generally speaking, hash

functions convert an infinite number of keys into a finite

number of hash values, or indices. Collisions are

unavoidable because of this mapping constraint,

particularly when the number of unique keys (domain of

Data Structure using C++ & Lab -344

input) surpasses the total number of potential hash values

(range of output).

As an illustration, let's say we have a basic hash function

that calculates the index by taking the table size and the

modulo of the key. The hash function for keys 15

(hashValue = 15% 10) and 25 (hashValue = 25% 10) yields

5, for example, if the table size is 10 (TABLE_SIZE = 10).

Cause: If keys are not evenly distributed, the hash

function's simplicity and lack of complexity may lead to

multiple keys mapping to the same index.

Limited Hash Table Size: When hashing a large number

of keys, collisions become more likely if the hash table has

a restricted number of buckets (or slots).

As an illustration, let's look at a hash table with the size

TABLE_SIZE = 5. All of these keys will compute to index

2 (hashValue = key % 5), if we hash them 12, 22, 32, 42,

and 52.

Cause: Collisions become more common when there are

substantially less potential hash values (depending on table

size) than there are keys being hashed.

Example Scenario

Examine a hash table that employs a basic modulo hashing

method:

Data Structure using C++ & Lab -345

Handling Collisions:

There are various approaches to successfully manage collisions:

Chaining: When using chaining, every hash table slot

keeps track of every key that hashes to the same index in a

linked list or other data structure. The new key is added to

the linked list at the appropriate slot in the event of a

collision. Every bucket in the hash table is a linked list

when using distinct chaining. The colliding elements (key-

value pairs) are added to the linked list that corresponds to

their hash index in order to handle collisions.

For illustration, let's say we have a hash table with ten

buckets. The keys "apple" and "banana" hash to the same

index, which is, for example, index 3. Rather than replacing

"apple" with "banana," "banana" is added to index 3 of the

linked list. This produces a structure similar to:

Data Structure using C++ & Lab -346

Benefits: Easy to implement, effectively manages several

collisions.

Drawbacks: If many keys hash to the same index, performance

suffers and there is additional memory expense because of linked

lists.

Open Addressing: When a collision occurs, it can be avoided by

probing or looking through the hash table's alternate slots until an

empty one is located. Common methods of probing include double

hashing (calculating the next slot using a secondary hash function),

quadratic probing (using a quadratic function to identify the next

slot), and linear probing (examining successive slots).

Idea: In open addressing, a different place is found (by probing)

inside the hash table to resolve clashes.

Example: If a collision happens at a certain index using linear

probing, the algorithm successively tries the next index until it

locates an empty slot. In case "apple" hashes to index 3 and it's

filled, the algorithm proceeds to check index 4, then 5 and so on

until it finds an empty space.

Benefits: Less need for extra data structures, faster cache operation

than chaining.

Drawbacks: It includes the possibility of performance loss with

high load factors and increased clustering.

Double Hashing: This technique determines the time between

probes by using a second hash function to handle collisions.

Data Structure using C++ & Lab -347

As an illustration, a secondary hash function decides the step size

for probing if a collision happens at index 3. For instance, the

algorithm would investigate index 5 (3 + 2) if the secondary hash

function yielded a result of 2 for "apple".

Benefits: Effective for a variety of keys, helps prevent major

clustering problems.

Cons: To guarantee uniform distribution, the secondary hash

function must be implemented carefully.

Example Scenario

Think about a hash table that uses distinct chaining:

14.4 IMPORTANCE OF COLLISION
RESOLUTION

For hash tables to continue operating effectively and performing as

intended, efficient collision resolution is essential. Negatively

handled collisions can make a hash-based data structure less

Data Structure using C++ & Lab -348

effective overall by lengthening search times and decreasing

operational efficiency.

For instance:

Consider a hash table with the numbers 0 through 9 as the slots. A

collision happens when two keys—let's say "apple" and

"banana"—hash to the same index—let's say index 3. The hash

table would either store both keys in a linked list at index 3

(chaining) or select an alternate slot (open addressing) for one of

the keys to avoid overlap, depending on the collision resolution

approach used.

Different kinds of collision-resolution methods:

In a hash table, collision resolution strategies are ways to deal with

the case where several keys hash to the same index. The following

are some typical methods for resolving collisions:

Chaining: When using chaining, every hash table slot keeps track

of all the keys that hash to the same index in a linked list or other

data structure. The new key-value pair is added to the linked list at

the appropriate place in the event of a collision.

Benefits: Easy to set up and doesn't need any more room than

what the hash table itself requires.

Cons: If linked lists get too big, there may be an increase in

memory overhead and a possible decline in speed.

Open Addressing: In this method, collisions are avoided by

locating a different slot inside the hash table.

Data Structure using C++ & Lab -349

Probing Techniques:

Linear Probing: Slots are examined one after the other until an

empty slot or a slot holding a deleted item is discovered.

Quadratic Probing: A quadratic function is used to identify the

next slot to probe, as opposed to inspecting each one one after the

other.

Double Hashing: To improve dispersion and lessen clustering, this

technique uses a second hash function to determine the next slot to

explore.

Benefits: Due to proximity of reference, cache performance may

be improved; also, memory overhead may be reduced in

comparison to chaining.

Drawbacks: Can be more difficult to execute than chaining and

necessitates careful selection of probing techniques to prevent

clustering.

Robin Hood Hashing: This method seeks to lessen the possibility

of chaining-related volatility in chain length (linked lists). If the

new object is closer to the start of its chain than the old item when

it collides with it, it may "steal" a position from the existing item.

Benefits: May improve average search times and contribute to the

maintenance of a more balanced hash table.

Cons: It could take more calculation to decide whether or not the

elements in the hash table need to be rearranged.

Selecting a Method for Resolving Collisions:

Data Structure using C++ & Lab -350

Hash Table Size: When memory is an issue or the hash table is

relatively tiny, open addressing approaches may be more effective.

Expected Number of Collisions: Chaining is appropriate when

collisions are anticipated to occur frequently since it can smoothly

tolerate a higher number of collisions.

Performance Requirements: The technique to use may depend

on the application and the trade-offs between memory utilization,

retrieval speed, and insertion speed.

14.5 APPLICATIONS OF HASHING IN
DATA STORAGE AND RETRIEVAL

Because hashing allows for quick access and efficiently manages

big datasets, it is essential for many applications that require

efficient data storage and retrieval. The following are some

important uses for hashing:

Indexing in Databases: Hashing is a common technique used in

databases to index records. Data may be quickly retrieved based on

a key thanks to hash functions, which map keys to particular places

in a hash table. This greatly enhances query performance when

compared to linear search techniques.

Use of Hash Functions:

Mapping Keys to Addresses: In a hash table, keys—typically

primary keys or unique identifiers—are mapped to particular

addresses using hash functions. Direct access to the records

connected to those keys is made possible by this mapping,

eliminating the need to search through the whole dataset.

Data Structure using C++ & Lab -351

Effective Recovery:

Quick Access: Hashing offers a constant-time complexity of O(1)

for average-case lookups in place of a linear search through the

database, which can be laborious, particularly for large datasets.

This effectiveness is attained by calculating a key's hash value and

using it as an index to get the associated record quickly.

Database Systems Examples and Use Cases

Primary Key Lookup: To enable quick access to certain rows in

tables, primary keys in relational databases are frequently hashed.

For example, if a database table contains a primary key on a

unique identifier column called "user_id," the location of each

user's data in the database can be found by applying a hash

function to the "user_id" values.

Hash-based Indexing Structures: Hash tables and hash indexes

are examples of hash-based indexing structures that database

management systems (DBMS) implement. Key-value pairs are

stored in these structures; the keys are hashed, and the values are

pointers to the real data records or locations. Use of hash indexes

in NoSQL databases such as MongoDB for fast document retrieval

based on unique identifiers is one example.

Enhancement of Performance: The efficiency of database

operations like searching, inserting, and removing records is

greatly enhanced by hash-based indexing. Databases can handle

massive volumes of data more effectively, guaranteeing quick

query response times, by lowering the average time complexity of

data access operations to O(1).

Handling Collisions: Although hash algorithms make every effort

to provide each key a unique address, collisions—two keys

Data Structure using C++ & Lab -352

hashing to the same index—can nevertheless happen. In hash-

based indexing, strategies like chaining or open addressing are

used to control collisions and guarantee reliable data retrieval

mechanisms.

Caching Management: In order to improve access speeds, data is

temporarily cached via caching methods, where hashing is

essential. It makes retrieval processes more efficient by storing

cached objects in hash tables, which enables speedy lookup of

recently used items.

Using Hash Tables to Put Caches in Place

LRU Cache (Least Recently Used):

Concept: When an LRU cache fills up, it starts with the least

recently used items and removes them one at a time.

Implementation with Hash Tables:

Hash Map: The cache makes use of a hash map, in which values

hold the content that has been cached (such as a web page or file

contents) and keys represent the identifier of the cached item (such

as a URL or file name).

Doubly Linked List: In addition, a doubly linked list makes sure

that the items that have been accessed the most recently are at the

head of the list by maintaining the order of access.

Instances and Advantages for Performance:

Online Browser Caching: To save online pages, pictures, and

scripts, contemporary web browsers employ caches. The browser

uses a hash table lookup to swiftly obtain content from its cache

when a user returns to a page. This lowers bandwidth use and

loading times.

Data Structure using C++ & Lab -353

Operating System Caches: To speed up disk access times,

operating systems use caches for frequently accessed file system

data. Cache data blocks are indexed using hash tables, facilitating

quick lookup and retrieval.

Database Caching: Caches are used by database systems to hold

the answers to frequently asked queries. Hash tables speed up

query response times by effectively managing query IDs and

stored results.

Performance Advantages

Quick Access: Hash tables offer insertion, deletion, and lookup

operations with average-case constant-time O (1) complexity. This

guarantees that, irrespective of the cache size, data access from the

cache is efficient and consistent.

Space Efficiency: By compactly storing key-value pairs, hash

tables maximize memory use, enabling caches to hold vast

amounts of data with fast access times.

Scalability: Because hash tables can split data evenly among

buckets and manage collisions well, they continue to operate at a

steady pace even as the number of cached items increases.

Compiler Design: Symbol tables are essential data structures in

compiler design that are used to store and organize information

about symbols (such as variables, functions, and identifiers) that

are encountered during compilation. Because hash tables may

quickly look up values based on mapped symbols to attributes or

information, they are essential for effectively implementing and

using symbol tables. An outline of how hash tables are used in

compiler symbol tables is provided below:

Data Structure using C++ & Lab -354

Hash tables' function in symbol tables

Effective Search and Insertion:

Hashing Mechanism: To find their storage location in the hash

table, symbols are hashed using a hash function.

Quick Access: During compilation stages such as parsing,

semantic analysis, and code generation, hash tables guarantee fast

access to symbol information by offering average-case constant-

time O (1) complexity for lookups and insertions.

Handling Declarations and Scope:

Scope Management: By classifying symbols according to their

lexical scope (local, global, function-level), hash tables make

scope management easier.

Collision Handling: Even with enormous symbol tables,

collisions can be effectively handled using methods like chaining

(using linked lists) or open addressing (probing), which ensure

minimum influence on lookup performance.

Illustrations and Significance

Lexical Analysis: The compiler uses hash tables to identify tokens

(such as keywords, identifiers, and literals) and stores them in the

symbol table. This makes it possible for later compiler stages to

quickly access and validate symbols.

Semantic Analysis: Hash tables help to ensure proper usage

throughout the program by confirming symbol definitions and

types. For example, comparing function prototypes and variable

declarations to definitions kept in the symbol table.

Data Structure using C++ & Lab -355

Improving Compiler Performance: Compiler efficiency is

increased when symbol tables are managed effectively using hash

tables. Compilers are able to efficiently handle big codebases by

decreasing lookup times and memory cost, which enhances

compilation responsiveness and speed.

Relevance to the Design of Compilers

Error Detection: By helping to identify mistakes like undeclared

variables or conflicting declarations, hash tables improve the

compiler's capacity to give developers precise diagnostics and

error messages.

Code Optimization: Symbol tables play a crucial role in code

optimization stages, when compilers examine and modify code to

increase efficiency. Hash tables guarantee that all symbol

dependencies and references are appropriately taken into account

during efficient code generation.

In compiler symbol tables, hashing is essential because it allows

variable names or identifiers to be promptly resolved in terms of

their characteristics or memory locations throughout the

compilation and execution stages.

Data Deduplication: By taking advantage of hash functions'

special characteristics, duplicate data saved across many systems

can be found and removed. This is a summary of the use of hash

functions in data deduplication, including practical applications

and efficiency considerations:

Data Structure using C++ & Lab -356

Data Deduplication Using Hash Functions

Hashing chunks of data:

Hash Function Selection: The process of selecting an appropriate

hash function involves taking into account several aspects, such as

uniformity of distribution and collision resistance. Cryptographic

hashes like MD5, SHA-1, and SHA-256 are popular options, as are

non-cryptographic hashes like MurmurHash.

Chunking Data: Chunking data is the process of dividing large

files or information into smaller bits or chunks.

Computing Hashes: A unique hash value, which is typically

expressed as a fixed-length hexadecimal string, is produced by

hashing each piece of data using the chosen hash algorithm.

Recognizing Duplicates

Comparing generated hash values allows for the identification of

duplicate chunks. Hash values are identical when data chunks are

identical.

Effective Lookup: To store and retrieve hash values of previously

processed data chunks fast, hash tables or hash-based data

structures (such as hash maps) are used.

Reducing Redundancy

Keeping Unique Data: The storage system only keeps unique

chunks (chunks with unique hash values) permanently. We locate

and remove duplicate pieces.

Data Structure using C++ & Lab -357

Storage Optimization: Deduplication saves a lot of storage space

by storing only one copy of each unique chunk. This is especially

useful in contexts where there is a lot of data redundancy.

Examples and Thoughts on Efficiency

Cloud Storage: Data deduplication employing hash functions in

cloud storage systems optimizes storage use amongst several users

and organizations sharing storage resources. By identifying

duplicate files or chunks at the data center level, redundant data

storage is reduced.

Backup Systems: To cut down on backup times and storage

expenses, backup systems make use of hash-based deduplication

techniques. Backup systems are able to handle massive amounts of

data backups with efficiency by recognizing and preserving

distinct data blocks.

Efficiency: The effectiveness of the deduplication algorithm and

the collision resistance of the selected hash function determine the

efficiency of data deduplication. Accurate detection of duplicate

data is ensured by hash algorithms with low collision probabilities,

and quick lookup and comparison operations are provided by

effective hash table implementations.

Storage of Passwords: One essential cybersecurity practice is to

store and secure passwords using hashing algorithms to prevent

unauthorized access to user credentials. Here are some examples of

secure hash algorithms and their uses, as well as a summary of

how hashing is used to save passwords:

Data Structure using C++ & Lab -358

Techniques for Hashing Passwords

Password hashing:

Hash Function Selection: Secure hash functions are selected

based on their cryptographic characteristics, such as resistance to

collisions and preimages. A few examples include bcrypt, Argon2,

SHA-3, SHA-256 (Secure Hash Algorithm 256-bit), and PBKDF2

(Password-Based Key Derivation Function 2).

Salting: Before hashing a password, a unique random value known

as a salt is applied to protect against assaults such as rainbow table

attacks. By using salting, two users with the same password will

nonetheless have distinct hashed results.

Keeping Passwords Hashed:

Storage of Hashed Passwords: The database only contains the

hashed password and, if applicable, the salt that goes with it, rather

than the plaintext passwords.

Verification: The user-entered password is hashed with the salt

that has been stored during authentication, and the resulting hash is

compared to the hash that has been stored. If they line up, the

password is regarded as legitimate.

Applications and Examples of Secure Hash Algorithms

SHA-256: This popular cryptographic hash algorithm generates a

hash value of 256 bits, or 32 bytes. It belongs to the SHA-2 family

and is regarded as safe for use in hashing passwords, among other

purposes.

bcrypt: The Blowfish cipher is the foundation of the bcrypt

password hashing algorithm. It is immune to brute-force attacks

because it includes a cost element (work factor) that establishes the

computational complexity of the hashing operation.

Data Structure using C++ & Lab -359

Argon2: The Password Hashing Competition (PHC) winner,

Argon2 is built to fend off side-channel and GPU-accelerated

attacks alike. By offering customizable options to modify memory

consumption and processing duration, it makes brute-force attacks

more challenging.

Uses

Web authentication: Hash functions are used by websites and

web apps to safely store user passwords. Hashed passwords shield

user accounts against intrusion even in the event that the database

is compromised.

Database security: By hashing passwords prior to database

storage, confidential data is shielded against security lapses and

unwanted access by bad actors.

Compliance Requirements: In order to safeguard user data and

guarantee privacy compliance, a number of cybersecurity standards

and laws (such as GDPR and HIPAA) require the adoption of

secure password storage methods like hashing.

Security and cryptography: In many applications, hash functions

are essential for preserving data integrity and guaranteeing the

legitimacy of data. This study examines the role that hashing

methods, such as the Secure Hash Algorithm (SHA), have in

maintaining data integrity:

Verification of Data Integrity

Hash Functions as Digital Fingerprints: From any size of input

data, hash functions like SHA-256 produce fixed-size hash values,

Data Structure using C++ & Lab -360

or digests. These hash values function as distinct checksums or

digital fingerprints of the original material.

Identifying Data Alterations: Hashing values can be calculated at

the sender and recipient ends when data is sent over networks or

kept in databases. It confirms that no changes have been made to

the data during transmission if the hash value received and the

hash value computed at the sender's end match.

Use Cases: Applications where data integrity is crucial, including

the following, heavily utilize hashing.

File Integrity Checking: By comparing hash values, hashing

verifies that files are received exactly as sent before sending them

over the internet.

Digital Signatures: Hashing functions produce a message digest,

which is then signed using a private key in digital signature

technology. By using the public key of the signer, the recipient can

confirm the message's integrity.

Password Storage: Hashing secures passwords before storing

them in databases by transforming them into hash values. The

password entered by the user is hashed and compared with the

hash value that has been stored during authentication.

Hash Function Examples

The Secure Hash Algorithm (SHA) family of hash functions,

which includes SHA-1, SHA-256, SHA-384, and SHA-512, is

extensively utilized. They are intended to be collision-resistant,

which means it is computationally impossible to find two separate

Data Structure using C++ & Lab -361

inputs that result in the same hash value. They produce hash values

of specified lengths (256 bits for SHA-256, for example).

Message Digest Algorithm 5, or MD5, was once extensively used

for digital signatures and integrity verification even though it was

less secure than SHA-256. A 128-bit hash value is generated.

Maintaining Data Integrity

Checksums and Validation: Hash values are used as checksums

to verify the integrity of the data. It is simple to identify changes

since even a small change in the input data produces a drastically

different hash value.

Cryptographic Strength: SHA-256 and other contemporary hash

functions are resistant to a variety of assaults, including collision

attacks, in which two different inputs result in the same hash value.

14.6 CONCLUSION

In summary, research on hashing and collision resolution methods

shows how important a role they play in contemporary computing

and data management. Rapid data retrieval and storage procedures

are made possible by hashing, which offers an effective way to

map data items to unique identifiers. Potential conflicts inside hash

tables are efficiently controlled by means of collision resolution

techniques like chaining and open addressing, guaranteeing the

integrity and performance of data structures even in the face of

heavy loads.

Furthermore, hashing finds use in a wide range of fields, including

security protocols, compiler design, database indexing, and

caching techniques. Every application makes use of hashing

algorithms' speed and dependability to improve system

Data Structure using C++ & Lab -362

performance and optimize data access. Recognizing these uses

emphasizes how crucial it is to understand hashing and related

methods in computer science and other fields.

Robust data storage and retrieval solutions are still essential as

long as technology keeps developing. Hashing is the foundation of

many contemporary data structures and algorithms, especially

when combined with efficient collision resolution techniques.

Professionals and students alike can help solve increasingly

difficult computational problems and create more effective systems

by grasping these ideas.

14.7 QUESTIONS AND ANSWERS

1. How does hashing function in data storage and what does it

entail?

Answer: The process of mapping arbitrary-sized data to fixed-size

values—usually integers—known as hash codes is called hashing.

To create the hash code, which is used as an index to quickly store

or retrieve data in a hash table, the data must first be subjected to a

hash function.

2. What are collision resolution methods, and what makes hashing

require them?

Answer: In response to a question like this, collision resolution

techniques are ways to deal with scenarios in which two or more

different data pieces produce the same hash code. Among the

methods are open addressing (identifying different locations within

the hash table) and chaining (using linked lists or other structures

at the same hash index). Because they guarantee that all data can

be saved and retrieved correctly, they are essential to preserving

the efficiency and integrity of hash tables.

Data Structure using C++ & Lab -363

3. Chaining and open addressing for hash table collision resolution

are compared and contrasted.

Answer: The process of chaining entails building linked lists or

other structures to hold numerous data components with the same

hash code at each index of the hash table. Although it is easy to

implement, there may be more memory overhead. Open

addressing, on the other hand, looks for different places to put

colliding components directly within the hash table. It is more

memory-efficient but can cause clustering and calls for cautious

probing techniques like linear or quadratic probing.

4. What are the primary uses of hashing for storing and retrieving

data?

Answer: The answer is that hashing is widely employed in symbol

tables in compilers to effectively handle identifiers, caching

systems to store frequently accessed data, and database indexing

for speedy data retrieval. It is also essential to cryptographic

algorithms that verify data integrity and secure passwords.

5. Describe the idea of the quality of a hash function. How should

a hash function be designed?

Answer: To reduce collisions, a good hash function should

distribute hash codes evenly throughout the hash table. It should be

resistant to hash collisions from identical inputs (avalanche effect),

computationally efficient, and deterministic (same input creates

same output). Division, multiplication, and cryptographic hash

functions like SHA (Secure Hash Algorithm) are a few examples.

Data Structure using C++ & Lab -364

14.8 REFERENCES

 Bjarne Stroustrup, "The C++ Programming Language"

 Herb Sutter, "Exceptional C++: 47 Engineering Puzzles,

Programming Problems, and Solutions"

 Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo,

"C++ Primer"

 Scott Meyers, "Effective C++: 55 Specific Ways to

Improve Your Programs and Designs"

 Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and

Reference"

Data Structure using C++ & Lab -365

UNIT – 15: ADVANCED DATA
STRUCTURES
Structure

15.0 Introduction

15.1 Objectives

15.2 Scapegoat Trees

15.3 Tries

15.4 Binary Tries

15.5 X-Fast Tries

15.6 Conclusion

15.7 Questions and Answers

15.8 References

15.0 INTRODUCTION

In the ever-evolving field of computer science, advanced data

structures play a pivotal role in optimizing performance and

solving complex problems. This unit delves into several

sophisticated data structures, each with unique characteristics and

applications. We will explore Scapegoat Trees, a self-balancing

binary search tree that offers an efficient alternative to other

balanced trees. Additionally, we will cover Tries and their variants,

including Binary Tries, X-Fast Tries, and Y-Fast Tries, which are

crucial for efficient information retrieval and prefix matching.

Understanding these advanced data structures is essential for

enhancing the efficiency of algorithms, particularly in scenarios

that require fast data access and manipulation. Scapegoat Trees

provide a robust method for maintaining balanced trees without the

Data Structure using C++ & Lab -366

need for frequent rotations, while Tries and their derivatives excel

in tasks such as dictionary implementation, autocomplete features,

and IP routing.

By the end of this unit, you will gain a comprehensive

understanding of these advanced data structures, their

implementation, and practical applications. This knowledge will

enable you to make informed decisions about selecting the

appropriate data structure for specific computational problems,

ultimately improving the performance and scalability of your

software solutions.

15.1 OBJECTIVES

After completing this unit, you will be able to understand,

Understand the concept and properties of Scapegoat Trees.

Explore the structure and properties of Tries.

Understand the structure and properties specific to Binary Tries.

Explore the structure and properties unique to X-Fast Tries.

Discuss the theoretical and practical applications of Y-Fast Tries in

computational problems.

15.2 SCAPEGOAT TREES

Scapegoat trees are a type of self-balancing binary search tree

designed to maintain an efficient average-case performance with

logarithmic depth. Unlike other balanced trees such as AVL or

Red-Black trees, scapegoat trees do not perform rebalancing after

every insertion or deletion. Instead, they monitor the tree's balance

and only rebalance when the tree becomes significantly

unbalanced. The key concept is to identify a scapegoat node,

whose subtree is then rebuilt to restore balance. This approach

Data Structure using C++ & Lab -367

simplifies the implementation while ensuring that the tree remains

reasonably balanced over time, providing efficient average-case

time complexity for insertion, deletion, and search operations.

The insertion process in a scapegoat tree involves standard BST

insertion followed by a check for imbalance, which may trigger the

identification and rebalancing of the scapegoat subtree if

necessary. Deletion similarly follows standard BST procedures but

includes periodic rebalancing to maintain overall tree balance. The

tree maintains a balance factor, typically a constant between 0 and

1, which helps determine when rebalancing is needed. This method

ensures that most operations are performed in O (log n) time on

average, with occasional O (n) operations when rebalancing is

required, making scapegoat trees suitable for applications like

database indexing and memory management where dynamic data

and efficient performance are crucial.

Characteristics of scapegoat trees

Scapegoat trees possess several distinctive characteristics that

differentiate them from other self-balancing binary search trees:

Amortized Rebalancing: Scapegoat trees do not rebalance after

every insertion or deletion. Instead, they perform rebalancing

operations in an amortized manner, meaning that the cost of

rebalancing is spread out over multiple operations. This helps

maintain efficient performance over a sequence of operations

without the overhead of constant rebalancing.

Balance Factor: A scapegoat tree maintains a balance factor,

denoted by α, which is typically a constant between 0 and 1

(commonly set to 2/3). This balance factor is used to determine

whether a node in the tree is unbalanced. If the size of a subtree

Data Structure using C++ & Lab -368

exceeds a certain threshold relative to α, the subtree is identified

for rebalancing.

Scapegoat Identification: When the tree detects an imbalance, it

identifies a scapegoat node. A scapegoat node is an ancestor of the

recently inserted or deleted node whose subtree size violates the

balance factor. The subtree rooted at the scapegoat node is then

rebuilt to restore balance. This approach ensures that the tree does

not become excessively unbalanced.

Efficient Average-Case Performance: Scapegoat trees are

designed to provide efficient average-case time complexity for

insertion, deletion, and search operations. While individual

rebalancing operations can be costly, occurring in O (n) time, the

amortized cost remains O (log n) over a series of operations. This

ensures that the tree performs well in practical applications.

Simple Implementation: Compared to other balanced trees like

AVL or Red-Black trees, scapegoat trees have a simpler

implementation. They avoid the need for complex rotations and

color properties, making them easier to implement and understand

while still maintaining balanced tree properties.

Operations on Scapegoat Trees

Scapegoat trees involve several operations such as insertion,

deletion, and searching. Below are the key operations along with

their algorithms in C++.

1. Insertion

The insertion operation involves adding a new node to the tree and

checking if the tree remains balanced. If the balance condition is

violated, a scapegoat node is identified and the subtree is rebuilt.

Data Structure using C++ & Lab -369

Algorithm:

Insert the new node as in a standard binary search tree.

Check if the tree is unbalanced.

If unbalanced, identify the scapegoat node.

Rebuild the subtree rooted at the scapegoat node.

C++ Implementation:

#include <iostream>

#include <vector>

#include <algorithm>

template<typename T>

class ScapegoatTree {

public:

 struct Node {

 T key;

 Node *left, *right;

 Node(T k) : key(k), left(nullptr), right(nullptr) {}

 };

 ScapegoatTree(double alpha) : root(nullptr), alpha(alpha),

maxSize(0) {}

 void insert(T key) {

 root = insert(root, key);

 if (size(root) > maxSize) maxSize = size(root);

 }

private:

 Node* root;

 double alpha;

 int maxSize;

 Node* insert(Node* node, T key) {

 if (!node) return new Node(key);

 if (key < node->key) node->left = insert(node->left, key);

 else node->right = insert(node->right, key);

Data Structure using C++ & Lab -370

 if (!isBalanced(node)) {

 node = rebuild(node);

 }

 return node;

 }

 bool isBalanced(Node* node) {

 return size(node) <= alpha * size(parent(node));

 }

 Node* parent(Node* node) {

 // Function to find the parent of a node.

 // This function's implementation depends on the context and

additional bookkeeping.

 return nullptr;

 }

 Node* rebuild(Node* node) {

 std::vector<Node*> nodes;

 flatten(node, nodes);

 return buildTree(nodes, 0, nodes.size());

 }

 void flatten(Node* node, std::vector<Node*>& nodes) {

 if (!node) return;

 flatten(node->left, nodes);

 nodes.push_back(node);

 flatten(node->right, nodes);

 }

 Node* buildTree(std::vector<Node*>& nodes, int start, int end)

{

 if (start >= end) return nullptr;

 int mid = (start + end) / 2;

 Node* node = nodes[mid];

 node->left = buildTree(nodes, start, mid);

 node->right = buildTree(nodes, mid + 1, end);

Data Structure using C++ & Lab -371

 return node;

 }

 int size(Node* node) {

 if (!node) return 0;

 return 1 + size(node->left) + size(node->right);

 }

};

2. Deletion

The deletion operation involves removing a node and checking the

balance of the tree. If the tree becomes unbalanced, it is

restructured to maintain balance.

Algorithm:

Delete the node as in a standard binary search tree.

Check if the tree is unbalanced.

If unbalanced, rebuild the entire tree if the current size is

less than half of the maximum size.

C++ Implementation:

#include <iostream>

#include <vector>

#include <algorithm>

template<typename T>

class ScapegoatTree {

public:

 struct Node {

 T key;

 Node *left, *right;

 Node(T k) : key(k), left(nullptr), right(nullptr) {}

 };

Data Structure using C++ & Lab -372

 ScapegoatTree(double alpha) : root(nullptr), alpha(alpha),

maxSize(0) {}

 void insert(T key) {

 root = insert(root, key);

 if (size(root) > maxSize) maxSize = size(root);

 }

 void remove(T key) {

 root = remove(root, key);

 if (size(root) < maxSize / 2) {

 root = rebuild(root);

 maxSize = size(root);

 }

 }

private:

 Node* root;

 double alpha;

 int maxSize;

 Node* insert(Node* node, T key) {

 if (!node) return new Node(key);

 if (key < node->key) node->left = insert(node->left, key);

 else node->right = insert(node->right, key);

 if (!isBalanced(node)) {

 node = rebuild(node);

 }

 return node;

 }

 Node* remove(Node* node, T key) {

 if (!node) return nullptr;

 if (key < node->key) node->left = remove(node->left, key);

 else if (key > node->key) node->right = remove(node->right,

key);

Data Structure using C++ & Lab -373

 else {

 if (!node->left) {

 Node* rightChild = node->right;

 delete node;

 return rightChild;

 } else if (!node->right) {

 Node* leftChild = node->left;

 delete node;

 return leftChild;

 } else {

 Node* minNode = findMin(node->right);

 node->key = minNode->key;

 node->right = remove(node->right, minNode->key);

 }

 }

 if (!isBalanced(node)) {

 node = rebuild(node);

 }

 return node;

 }

 Node* findMin(Node* node) {

 while (node && node->left) {

 node = node->left;

 }

 return node;

 }

 bool isBalanced(Node* node) {

 return size(node) <= alpha * size(parent(node));

 }

 Node* parent(Node* node) {

 // Function to find the parent of a node.

Data Structure using C++ & Lab -374

 // This function's implementation depends on the context and

additional bookkeeping.

 return nullptr;

 }

 Node* rebuild(Node* node) {

 std::vector<Node*> nodes;

 flatten(node, nodes);

 return buildTree(nodes, 0, nodes.size());

 }

 void flatten(Node* node, std::vector<Node*>& nodes) {

 if (!node) return;

 flatten(node->left, nodes);

 nodes.push_back(node);

 flatten(node->right, nodes);

 }

 Node* buildTree(std::vector<Node*>& nodes, int start, int end)

{

 if (start >= end) return nullptr;

 int mid = (start + end) / 2;

 Node* node = nodes[mid];

 node->left = buildTree(nodes, start, mid);

 node->right = buildTree(nodes, mid + 1, end);

 return node;

 }

 int size(Node* node) {

 if (!node) return 0;

 return 1 + size(node->left) + size(node->right);

 }

};

3. Searching

Data Structure using C++ & Lab -375

The search operation is similar to that in a standard binary search

tree, where we traverse the tree based on the comparison of the

search key with the node keys.

C++ Implementation:

template<typename T>

class ScapegoatTree {

public:

 struct Node {

 T key;

 Node *left, *right;

 Node(T k) : key(k), left(nullptr), right(nullptr) {}

 };

 ScapegoatTree(double alpha) : root(nullptr), alpha(alpha),

maxSize(0) {}

 void insert(T key) {

 root = insert(root, key);

 if (size(root) > maxSize) maxSize = size(root);

 }

 bool search(T key) {

 return search(root, key);

 }

private:

 Node* root;

 double alpha;

 int maxSize;

 Node* insert(Node* node, T key) {

 if (!node) return new Node(key);

 if (key < node->key) node->left = insert(node->left, key);

 else node->right = insert(node->right, key);

 if (!isBalanced(node)) {

 node = rebuild(node);

Data Structure using C++ & Lab -376

 }

 return node;

 }

 bool search(Node* node, T key) {

 if (!node) return false;

 if (node->key == key) return true;

 if (key < node->key) return search(node->left, key);

 return search(node->right, key);

 }

 bool isBalanced(Node* node) {

 return size(node) <= alpha * size(parent(node));

 }

 Node* parent(Node* node) {

 // Function to find the parent of a node.

 // This function's implementation depends on the context and

additional bookkeeping.

 return nullptr;

 }

 Node* rebuild(Node* node) {

 std::vector<Node*> nodes;

 flatten(node, nodes);

 return buildTree(nodes, 0, nodes.size());

 }

 void flatten(Node* node, std::vector<Node*>& nodes) {

 if (!node) return;

 flatten(node->left, nodes);

 nodes.push_back(node);

 flatten(node->right, nodes);

 }

 Node* buildTree(std::vector<Node*>& nodes, int start, int end)

{

 if (start >= end) return nullptr;

Data Structure using C++ & Lab -377

 int mid = (start + end) / 2;

 Node* node = nodes[mid];

 node->left = buildTree(nodes, start, mid);

 node->right = buildTree(nodes, mid + 1, end);

 return node;

 }

 int size(Node* node) {

 if (!node) return 0;

 return 1 + size(node->left) + size(node->right);

 }

};

Balancing and Restructuring

Balancing and restructuring are essential aspects of maintaining the

efficiency of scapegoat trees. These processes ensure that the tree

remains balanced, providing efficient access times for insertion,

deletion, and search operations. Below are the details about the

conditions for imbalance and techniques for rebalancing.

Conditions for Imbalance

A scapegoat tree becomes imbalanced when a node's subtree size

exceeds a certain threshold compared to its parent. Specifically, the

imbalance condition is determined by a parameter α\alphaα, where

0 < α < 1. This parameter is used to maintain a balance between the

left and right subtrees of any node. The imbalance condition can be

defined as:

Imbalance Condition: A node v in a scapegoat tree is considered

unbalanced if the size of any of its child subtrees exceeds α\alphaα

times the size of v's subtree.

Data Structure using C++ & Lab -378

Techniques for Rebalancing

When an imbalance is detected, the subtree rooted at the scapegoat

node is rebuilt to restore balance. The techniques for rebalancing

involve the following steps:

Identify the Scapegoat Node:

Traverse up from the newly inserted or deleted node to find the

first ancestor node that violates the balance condition.

Rebuild the Subtree:

Flatten the subtree rooted at the scapegoat node into a sorted array.

Rebuild the balanced subtree from the sorted array.

Algorithm for Rebalancing:

Identify the Scapegoat Node:

Start from the node where the imbalance is detected.

Move up the tree to find the first node that violates the balance

condition.

Flatten the Subtree:

Perform an in-order traversal of the subtree rooted at the scapegoat

node to create a sorted array of nodes.

Rebuild the Subtree:

Use the sorted array to construct a balanced subtree.

Recursively split the array to ensure the tree remains balanced.

C++ Implementation:

#include <iostream>

#include <vector>

#include <algorithm>

template<typename T>

Data Structure using C++ & Lab -379

class ScapegoatTree {

public:

 struct Node {

 T key;

 Node *left, *right;

 Node(T k) : key(k), left(nullptr), right(nullptr) {}

 };

 ScapegoatTree(double alpha) : root(nullptr), alpha(alpha),

maxSize(0) {}

 void insert(T key) {

 root = insert(root, key);

 if (size(root) > maxSize) maxSize = size(root);

 }

 void remove(T key) {

 root = remove(root, key);

 if (size(root) < maxSize / 2) {

 root = rebuild(root);

 maxSize = size(root);

 }

 }

private:

 Node* root;

 double alpha;

 int maxSize;

 Node* insert(Node* node, T key) {

 if (!node) return new Node(key);

 if (key < node->key) node->left = insert(node->left, key);

 else node->right = insert(node->right, key);

 if (!isBalanced(node)) {

 node = rebuild(node);

 }

 return node;

Data Structure using C++ & Lab -380

 }

Node* remove(Node* node, T key) {

if (!node) return nullptr;

 if (key < node->key) node->left = remove(node->left, key);

else if (key > node->key) node->right = remove(node->right, key);

else {

if (!node->left) {

Node* rightChild = node->right;

delete node;

return rightChild;

} else if (!node->right) {

Node* leftChild = node->left;

delete node;

return leftChild;

} else {

Node* minNode = findMin(node->right);

node->key = minNode->key;

node->right = remove(node->right, minNode->key);

}

}

if (!isBalanced(node)) {

node = rebuild(node);

}

return node;

}

Node* findMin(Node* node) {

while (node && node->left) {

node = node->left;

}

return node;

}

bool isBalanced(Node* node) {

Data Structure using C++ & Lab -381

return size(node) <= alpha * size(parent(node));

 }

 Node* parent(Node* node) {

 // Function to find the parent of a node.

 // This function's implementation depends on the context and

additional bookkeeping.

 return nullptr;

 }

 Node* rebuild(Node* node) {

 std::vector<Node*> nodes;

 flatten(node, nodes);

 return buildTree(nodes, 0, nodes.size());

 }

 void flatten(Node* node, std::vector<Node*>& nodes) {

 if (!node) return;

 flatten(node->left, nodes);

 nodes.push_back(node);

 flatten(node->right, nodes);

 }

 Node* buildTree(std::vector<Node*>& nodes, int start, int end)

{

 if (start >= end) return nullptr;

 int mid = (start + end) / 2;

 Node* node = nodes[mid];

 node->left = buildTree(nodes, start, mid);

 node->right = buildTree(nodes, mid + 1, end);

 return node;

 }

 int size(Node* node) {

 if (!node) return 0;

 return 1 + size(node->left) + size(node->right);

 }

Data Structure using C++ & Lab -382

};

Time Complexity Analysis

Here's a breakdown of the time complexity analysis for the

operations in a Scapegoat Tree:

Insertion (insert function):

Average Case: O(log n)

Worst Case (Rebuilding): O(n log n) due to the need to rebuild

the tree when a rebalance condition is violated.

Deletion (remove function):

Average Case: O(log n)

Worst Case (Rebuilding): O(n log n) due to potential tree

rebuilds.

Search (assuming balanced tree):

Average Case: O(log n)

Worst Case: O(log n)

Rebuilding (rebuild function):

Time Complexity: O(n)

Size Calculation (size function):

Time Complexity: O(n)

Explanation:

Insertion and Deletion: In the average case, insertion and deletion

operations perform in O(log n) time due to the binary search tree

properties of the Scapegoat Tree. However, when the tree needs

rebalancing (when the size condition is violated), rebuilding the

tree takes O(n log n) time as it involves flattening the subtree and

reconstructing it. This worst-case scenario occurs when the tree

becomes highly unbalanced.

Data Structure using C++ & Lab -383

Search: Searching in a balanced Scapegoat Tree also operates in

O(log n) time in both average and worst cases, similar to standard

binary search trees.

Rebuilding: The rebuild function is triggered when an imbalance

is detected and requires flattening the subtree and reconstructing it

in sorted order, resulting in a time complexity of O(n), where n is

the number of nodes in the subtree.

Size Calculation: The size function computes the number of nodes

in a subtree, requiring traversal of all nodes, leading to a time

complexity of O(n).

Applications

Scapegoat Trees find applications in scenarios where a balance

between efficient search, insertion, and deletion operations is

crucial, and where the tree structure needs to adapt dynamically to

changing data sizes. Some common applications include:

Database Indexing: Scapegoat Trees are used in database systems

for indexing large datasets efficiently. They provide logarithmic

time complexity for search operations, making them suitable for

fast retrieval of indexed data.

Dynamic Data Structures: Due to their self-adjusting nature,

Scapegoat Trees are employed in applications where the dataset

size varies over time. This includes real-time systems, web servers,

and applications handling streams of data.

File Systems: They are used in file systems for managing directory

structures efficiently. Scapegoat Trees allow quick lookup and

Data Structure using C++ & Lab -384

modification of file paths, ensuring efficient file management

operations.

Networking: In networking applications, Scapegoat Trees can be

used for routing tables, where fast lookup and updates are essential

for handling network traffic and routing decisions.

Compiler Design: Scapegoat Trees are utilized in compilers for

symbol table management. They facilitate quick insertion and

retrieval of identifiers and variables during the compilation

process.

Key-Value Stores: In systems like distributed databases and key-

value stores, Scapegoat Trees offer an efficient data structure for

storing and retrieving key-value pairs with logarithmic time

complexity.

15.3 TRIES

Tries, also known as prefix trees or digital trees, are tree-based data

structures used for efficient storage and retrieval of strings or keys.

Each node in a trie represents a character, and paths from the root

to the leaf nodes correspond to sequences of characters (strings).

This structure allows for rapid prefix-based operations such as

search, insert, and delete. Tries are particularly useful in scenarios

where fast autocomplete functionalities or efficient dictionary

lookups are required.

Operations on tries involve traversing the tree from the root based

on the characters of the key being processed. Insertion involves

creating new nodes as necessary to build the path for a new key.

Searching in a trie involves following the path corresponding to the

Data Structure using C++ & Lab -385

characters of the search key; if the path exists to a leaf node, the

key is present. Deletion can be more complex as it might involve

pruning nodes that are no longer part of any stored key's path. Tries

are space-efficient when keys share common prefixes but can

consume more memory compared to other data structures when

dealing with large alphabets or sparse data. They find applications

in areas such as autocomplete systems, spell-checking, IP routing

tables, and data compression algorithms like Huffman coding.

Trie Node Structure

Key properties of tries include:

Prefix-based Storage: Tries excel in storing keys with common

prefixes efficiently. Each node along a path in the trie corresponds

to a character in the key, allowing for rapid prefix-based

operations.

Search Complexity: Searching in a trie is efficient, typically in

O(m) time complexity, where m is the length of the key being

searched. This efficiency arises because the search operation

involves following a path from the root to a leaf or until no further

nodes can be traversed.

Insertion and Deletion: Inserting a key into a trie involves

creating nodes as necessary to form the path for the key. Deletion

Data Structure using C++ & Lab -386

can be more complex, potentially requiring the removal of nodes if

they no longer correspond to any other keys' prefixes.

Space Efficiency: Tries can be memory-intensive, especially for

large alphabets or sparse data, due to the potentially large number

of nodes. However, they are efficient in scenarios where keys share

common prefixes, thereby reducing redundant storage of prefixes.

Applications: Tries find applications in various domains such as

autocomplete systems, spell-checking, IP routing tables, and

database indexing. They are particularly useful in scenarios

requiring fast prefix matching or predictive text functionality.

Operations on Tries

Here's a brief overview of operations on tries:

Insertion: Inserting a new key into a trie involves traversing the

trie based on the characters of the key. Starting from the root, each

character in the key determines the path through the trie. If a path

corresponding to the key doesn't exist, new nodes are created. At

the end of the key, a flag or marker is typically set to indicate that

the key exists in the trie.

Insertion: The insert function iterates through each character of

the word. If the character doesn't exist in the current node's

Data Structure using C++ & Lab -387

children map, it creates a new node. At the end of the word, it

marks the isEndOfWord flag as true.

Deletion: Deleting a key from a trie requires traversing the trie

similarly to insertion, but instead of adding nodes, nodes

corresponding to the key may be removed. This operation can be

more complex than insertion because nodes might need to be

pruned to maintain trie properties. Removal typically involves

checking if the key exists, then removing nodes upwards if they are

no longer needed.

Deletion: The remove function calls a helper function

deleteHelper, which recursively traverses the Trie until the end of

the word. If the word is found, it marks isEndOfWord as false. If a

node has no children after deletion, its mapping in the parent's

children map is erased recursively.

Searching: Searching in a trie involves traversing nodes based on

the characters of the key. Starting from the root, each character

determines the next node to visit. If the key exists in the trie, the

search will successfully find the key by following the path

corresponding to its characters. If any character path is missing

Data Structure using C++ & Lab -388

during traversal, the search concludes that the key is not present in

the trie.

Searching: The search function traverses the Trie starting from the

root. It checks if each character of the word exists in the children

map of the current node. If it reaches the end of the word and

isEndOfWord is true, it returns true; otherwise, false.

Types of Tries

Standard Tries (Prefix Trees): Standard Tries, also known as

Prefix Trees, are fundamental data structures where each node

represents a single character of the stored keys. They efficiently

support operations like insertion, deletion, and searching based on

prefixes. Standard Tries are versatile and used in scenarios where

efficient prefix-based lookups are required, such as autocomplete

systems and dictionary implementations.

Compressed Tries: Compressed Tries, also called Radix Trees or

Compact Prefix Trees, optimize space by compressing nodes that

have a single child into one. This compression reduces memory

usage compared to Standard Tries while maintaining fast prefix

search capabilities. Compressed Tries are useful in applications

where storage efficiency is critical, such as in memory-constrained

Data Structure using C++ & Lab -389

environments or when storing large sets of keys with common

prefixes.

Suffix Tries: Suffix Tries store all suffixes of a given text string.

Each node represents a suffix rather than a prefix. They are

particularly useful in string processing tasks like pattern matching,

substring search, and text indexing. Suffix Tries facilitate fast

searches for specific patterns within a text corpus and are integral

to algorithms like the construction of suffix arrays and suffix trees.

15.4 BINARY TRIES

Binary Tries, also known as Radix Tries or Patricia Tries, are

specialized data structures that store keys in a binary format rather

than a character-by-character manner like Standard Tries. In Binary

Tries, each node represents a bit in the binary representation of the

key. This approach allows for efficient storage and retrieval of keys

that are typically represented in binary form, such as IP addresses

or binary-encoded data.

The nodes in Binary Tries can have up to two children,

representing '0' and '1' branches corresponding to the binary digits.

This binary representation ensures that searches, insertions, and

deletions in Binary Tries operate efficiently, often in logarithmic

time relative to the length of the keys. Binary Tries are particularly

useful in applications where keys are binary data or where efficient

bitwise operations are required, such as in network routing tables

or database indexing systems that handle binary-coded data

formats. Their structure lends itself well to scenarios where

memory efficiency and quick lookup times are crucial.

Data Structure using C++ & Lab -390

Structure and properties of binary tries

Binary Tries, also known as Radix Tries or Patricia Tries, are

structured similarly to standard tries but are optimized for storing

keys represented in binary format. Here's an outline of their

structure and properties:

Node Structure: Each node in a Binary Trie contains:

Children Pointers: Typically two pointers, representing '0' and '1',

corresponding to the binary digits.

Key: Optionally, a node may store part or all of the key associated

with the node.

Properties:

Binary Representation: Keys are stored in a compressed binary

format, where each node represents a bit in the key.

Efficient Storage: Compared to standard tries, binary tries can

save space by combining nodes along paths that share prefixes.

Prefix Matching: Like standard tries, binary tries support prefix

matching efficiently, making them suitable for applications

requiring fast lookups based on binary data.

Operations: Binary tries support operations such as insertion,

deletion, and searching, typically in logarithmic time relative to the

length of the keys.

Operations on Binary Tries

Binary Tries, also known as Patricia Tries, are a type of trie data

structure optimized for storing keys that can be represented as

sequences of bits. Here’s how insertion, deletion, and searching

operations are typically implemented in Binary Tries:

Data Structure using C++ & Lab -391

Insertion

Algorithm: Insert (Binary Trie T, Key k)

Initialization: Start from the root of the trie.

Traversal: For each bit in the key k:

If the current node does not have a child corresponding to the

current bit of k, create a new node and attach it as a child.

Move to the child node corresponding to the current bit.

Leaf Node Marking: Once all bits of k are processed, mark the

current node as a leaf node and store k in it.

Insertion: Inserts a key k into the trie by following the bits of k

and creating nodes as necessary. At the end of the insertion, a leaf

node is marked with k.

Deletion

Algorithm: Delete (Binary Trie T, Key k)

Traversal: Start from the root and traverse the trie following the

bits of k.

Marking for Deletion: If k exists in the trie (i.e., you reach a leaf

node marked with k):

Mark the leaf node as deleted or remove the key from the leaf

node.

Data Structure using C++ & Lab -392

Pruning: Check if any parent node of the leaf node can be pruned

(i.e., it has no other children). If so, continue pruning up to the root

as long as it does not violate trie properties.

Deletion: Deletes a key k from the trie by finding the leaf node

marked with k and removing it. It then prunes unnecessary nodes

from the trie to maintain efficiency.

Searching

Algorithm: Search (Binary Trie T, Key k)

Traversal: Start from the root and follow the bits of k.

Existence Check: If all bits of k are found in the trie:

Check if the node corresponding to the last bit of k is a leaf node

and not marked as deleted.

Return true if k is found; otherwise, return false.

Data Structure using C++ & Lab -393

Searching: Searches for a key k in the trie by following the bits of

k. It checks if k exists by ensuring that the path ends at a leaf node

marked with k and not deleted.

15.5 X-FAST TRIES

X-Fast Tries are a type of data structure that extends the concept of

binary tries (or Patricia Tries) to efficiently support dynamic sets of

keys drawn from a universe of size U. They are designed to

provide fast operations for searching, insertion, deletion, and

predecessor/successor queries, all in O (log log U) time

complexity.

Structure and Properties

X-Fast Tries are structured as a hierarchical set of binary search

trees where each level iii corresponds to a trie storing keys of

length iii. At the lowest level, the leaves store the actual keys, and

each internal node at level iii maintains pointers to predecessor and

successor nodes in the trie. This structure allows for rapid traversal

and query operations.

Data Structure using C++ & Lab -394

Operations on X-Fast Tries

X-Fast Tries are advanced data structures that support efficient

operations on dynamic sets of keys. Here's how each operation is

performed:

Insertion

Search for Insertion Point:

Begin at the root of the X-Fast Trie and traverse down through

levels according to the bits of the key being inserted.

Determine the path in the trie that matches the key's bits until you

reach the leaf level.

Update Predecessor and Successor Pointers:

Once the correct leaf node is found (or created if the key doesn't

exist), update the predecessor and successor pointers at each level

of the trie.

Ensure that these pointers correctly reflect the position of the new

key relative to existing keys in the trie.

Balance and Maintenance:

Adjust the trie structure as necessary to maintain the O (log log U)

time complexity for predecessor/successor queries.

This may involve splitting nodes or merging nodes to balance the

trie.

Deletion

Search for the Key:

Start at the root and traverse the trie to locate the node that

contains the key to be deleted.

Data Structure using C++ & Lab -395

Adjust Predecessor and Successor Pointers:

Update the predecessor and successor pointers at each level to

reflect the removal of the key.

Ensure that the trie remains balanced and maintains the desired

time complexity for queries.

Remove the Key:

Once the correct node is found, remove the key from the trie

structure.

Adjust the trie as needed to maintain its integrity and balance.

Searching

Search Operation:

Begin at the root of the trie and traverse down through levels

according to the bits of the search key.

Follow the path in the trie that matches the bits of the key until you

reach the leaf level.

Validation:

Check if the key exists in the leaf node reached by the traversal.

If the key is found, return the corresponding data or indicate its

presence.

Handling Non-existent Keys:

Data Structure using C++ & Lab -396

If the key is not found during the traversal, handle the search

operation accordingly (e.g., returning a null value or indicating

absence).

15.6 CONCLUSION

Since the introduction of advanced data structures like Scapegoat

Trees, Tries, Binary Tries, X-Fast Tries, and Y-Fast Tries, we have

explored their unique characteristics and operations. Each structure

offers distinct advantages in terms of efficiency and applicability

across different problem domains.

Scapegoat Trees provide a balanced tree structure with efficient

insertion, deletion, and search operations, leveraging a dynamic

resizing mechanism to maintain balance. Tries, known for their

suitability in string-related applications, offer fast prefix search

capabilities and are used extensively in dictionary implementations

and autocomplete features. Binary Tries extend this concept to

binary structures, accommodating more diverse data types and

enhancing search efficiency.

The introduction of X-Fast Tries introduces a hierarchical approach

to searching, leveraging hash tables at multiple levels for rapid

data retrieval. Similarly, Y-Fast Tries further optimize this structure

by addressing the limitations of X-Fast Tries, particularly in terms

of space complexity and query performance.

Data Structure using C++ & Lab -397

In conclusion, these advanced data structures represent significant

advancements in data management and algorithm design, catering

to modern computational needs across various industries.

Understanding their intricacies and applications equips developers

with powerful tools to tackle complex data organization and

retrieval challenges effectively.

15.7 QUESTIONS AND ANSWERS

1. What are the main characteristics of Scapegoat Trees?

Answer: Scapegoat Trees are self-balancing binary search trees

that maintain balance through periodic rebuilding. They ensure that

no node's height exceeds a certain threshold, balancing the tree by

performing partial or complete rebuilds when necessary. This

results in efficient insertion, deletion, and search operations with

guaranteed logarithmic time complexity.

2. How do Tries differ from traditional binary search trees?

Answer: Tries are specialized tree-like data structures used for

storing associative arrays, typically strings. Unlike binary search

trees that compare entire keys, Tries store characters of keys at

each node, enabling efficient prefix-based searching. This makes

Tries especially useful for applications like autocomplete and spell

checkers.

3. What are Binary Tries and how are they utilized?

Answer: Binary Tries are a variation of Tries optimized for binary

data. Each node in a Binary Trie represents a bit in the key, leading

to a maximum tree height equal to the bit-length of the keys. They

are commonly used in networking for IP routing and prefix

matching due to their efficient handling of binary data.

Data Structure using C++ & Lab -398

4. Explain the concept of X-Fast Tries.

Answer: X-Fast Tries are advanced data structures that use a

combination of Trie structures and hash tables to achieve efficient

lookups, insertions, and deletions. They reduce the height of the

Trie by storing nodes at various levels in hash tables, allowing for

faster access times compared to traditional Tries.

5. What advantages do Y-Fast Tries offer over X-Fast Tries?

Answer: Y-Fast Tries improve upon X-Fast Tries by further

optimizing space and query efficiency. They use a hierarchical

structure where elements are grouped into buckets, each managed

by a balanced binary search tree. This allows for efficient space

usage while maintaining fast query performance.

6. In what scenarios would you prefer using a Scapegoat Tree

over other balanced trees like AVL or Red-Black Trees?

Answer: Scapegoat Trees are particularly useful when insertions

and deletions are more frequent and when predictable performance

is essential. Their periodic rebalancing mechanism can be

advantageous in environments where maintaining strict balance at

all times (like in AVL or Red-Black Trees) might introduce

overhead.

7. Can you give an example of a real-world application of

Tries?

Answer: One common real-world application of Tries is in

implementing autocomplete features in search engines. As users

type in search queries, the Trie structure allows for efficient prefix

matching, quickly suggesting possible completions based on the

input provided so far.

Data Structure using C++ & Lab -399

15.8 REFERENCES

 Bjarne Stroustrup, "The C++ Programming Language"

 Herb Sutter, "Exceptional C++: 47 Engineering Puzzles,

Programming Problems, and Solutions"

 Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo,

"C++ Primer"

 Scott Meyers, "Effective C++: 55 Specific Ways to

Improve Your Programs and Designs"

 Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and

Reference"

Data Structure using C++ & Lab -400

UNIT – 16: FILE STRUCTURES
Structure

16.0 Introduction

16.1 Objectives

16.2 File structures

16.3 Sequential File Organization

16.4 Direct (Random) File Organization

16.5 Indexed Sequential File Organization

16.6 File Operations

16.7 Applications

16.8 Conclusion

16.9 Questions and Answers

16.10 References

16.0 INTRODUCTION

In the realm of data management, efficient storage, organization,

and retrieval of information are paramount. File structures play a

critical role in achieving these objectives by providing systematic

methods to manage data within files. The selection of an

appropriate file structure can greatly impact the performance,

accessibility, and overall efficiency of data handling operations.

This unit delves into various file structures, including sequential,

direct (random), and indexed sequential file organizations. Each of

these structures offers distinct advantages and is suitable for

different types of applications, depending on the specific

requirements of data access patterns and storage needs.

Understanding these structures is essential for optimizing data

storage and retrieval processes in various computing environments.

Data Structure using C++ & Lab -401

Moreover, we will explore fundamental file operations that are

crucial for manipulating and managing files effectively. This

includes file creation, opening, closing, reading, writing, and

deletion. Additionally, we will examine practical applications of

these file structures in real-world scenarios, highlighting their

significance in database management systems, information

retrieval systems, and file management systems. This

comprehensive overview will provide a solid foundation for

understanding the importance of file structures and their practical

applications in data management.

16.1 OBJECTIVES

After completing this unit, you will be able to underst and,

Understand Different File Structures: Gain a comprehensive

understanding of various file structures, including sequential,

direct (random), and indexed sequential file organizations, and

their respective advantages and disadvantages.

Learn File Operations: Explore the fundamental file operations

such as creation, opening, closing, reading, writing, and deletion,

and understand their implementation and usage in different file

structures.

Analyze File Organization Types: Examine the characteristics,

benefits, and limitations of different file organization types, and

understand how they impact data storage, retrieval efficiency, and

overall system performance.

Apply Knowledge to Real-World Scenarios: Investigate practical

applications of different file structures in various domains such as

Data Structure using C++ & Lab -402

database management systems, information retrieval systems, and

file management systems, and understand how to choose the

appropriate file structure for specific use cases.

Develop Skills in Implementing Algorithms: Gain hands-on

experience in implementing algorithms for file operations and file

structures, particularly in the C++ programming language, to

solidify theoretical knowledge through practical application.

16.2 FILE STRUCTURES

File structures in data structures encompass various methodologies

for organizing and managing data within computer systems. At its

core, file structures refer to how data is stored, accessed, and

manipulated in files, which are logical collections of records.

File structures refer to the organization and layout of data in

computer files, essential for efficient data storage, retrieval, and

management. The structure of a file determines how data is stored

within it, the methods used to access and modify that data, and the

overall efficiency of operations performed on the file.

The primary components of file structures include:

Record Format: Defines how data is organized within each

record, specifying the type and order of fields (data elements)

stored in the file. Records can be of fixed length or variable length,

depending on the application's requirements.

A record format defines how data is structured and organized

within each record in a file. It specifies the layout, type, and order

of data elements (fields) stored in the record. The format chosen

depends on the nature of the data being stored and the

requirements of the application accessing the file.

Data Structure using C++ & Lab -403

Key aspects of a record format include:

Field Definition: Each field represents a data item of a specific

type (integer, floating-point number, string, etc.). Fields are

typically defined with a fixed length or a maximum length for

variable-length fields.

Field Order: Specifies the sequence in which fields are arranged

within the record. This order is crucial for correctly interpreting

and accessing the data during read and write operations.

Field Attributes: Attributes such as field names, data types (e.g.,

integer, character, date), and constraints (e.g., maximum length,

allowed values) are defined to ensure data integrity and facilitate

efficient querying and manipulation.

Delimiter or Separator: In some formats, especially text-based

ones, fields may be separated by delimiters (e.g., commas, tabs,

spaces) or have fixed positions within the record structure.

Padding: Padding refers to the addition of extra characters or bytes

to ensure that each field occupies its allotted space within the

record. This helps maintain alignment and facilitates efficient

storage and retrieval operations.

File Organization: File organization refers to the way data is

stored and structured within files on a computer's storage system. It

encompasses various methods and techniques designed to optimize

data access, retrieval, and management. The choice of file

organization depends on factors such as the type of data, access

patterns, and efficiency considerations. It describes how records

are physically arranged within the file. Common file organizations

Data Structure using C++ & Lab -404

include sequential, indexed sequential, direct (or hashed), and

more complex structures like B-trees for large-scale databases.

Each organization method offers different trade-offs in terms of

access speed, storage efficiency, and ease of modification.

Access Methods: Determine how data can be retrieved from or

stored into the file. Sequential access reads data in order from start

to end, making it suitable for batch processing. Direct access

allows quick retrieval of records based on their storage location,

beneficial for random access operations. Indexed access combines

the benefits of both, using a separate index structure to facilitate

fast lookups based on keys.

Access methods in the context of file organization refer to the

techniques and algorithms used to retrieve and manipulate data

stored within files. These methods are crucial for efficient data

access and retrieval in computer systems. Here’s an overview of

common access methods:

Types of Access Methods:

Sequential Access:

Description: In sequential access, data is accessed in a linear or

sequential manner, starting from the beginning of the file and

proceeding sequentially to the end.

Usage: Suitable for applications that process data in a batch mode

or require full file scans, such as processing logs or sequential data

streams.

Advantages: Simple to implement and efficient for reading large

amounts of data sequentially.

Data Structure using C++ & Lab -405

Disadvantages: Not efficient for random access or frequent

updates, as accessing data out of sequence requires scanning

through all preceding records.

Direct Access:

Description: Direct access allows data to be accessed randomly by

specifying a key or address associated with each record. This

method enables quick retrieval and modification of specific records

without needing to traverse others.

Usage: Ideal for applications that require frequent random access

to data, such as databases and real-time systems.

Advantages: Enables fast retrieval and modification of records

using direct addressing based on keys or addresses.

Disadvantages: More complex to implement compared to

sequential access; may lead to fragmentation of data and increased

storage overhead.

Indexed Access:

Description: Indexed access combines the benefits of sequential

and direct access methods. It involves maintaining an index

structure alongside the main data file, which maps keys to physical

addresses or offsets of records.

Usage: Suitable for applications that require both sequential and

random access patterns, balancing efficient access with flexibility.

Advantages: Provides efficient retrieval and modification

operations using indexed lookup, supports both sequential and

random access patterns.

Data Structure using C++ & Lab -406

Disadvantages: Requires additional storage for maintaining index

structures; insertion and deletion operations may be slower due to

index maintenance.

Hashing:

Description: Hashing involves mapping keys directly to addresses

using a hash function, which calculates the storage location based

on the key's value. It enables rapid access to data by reducing

search time to constant time complexity.

Usage: Commonly used in hash tables and hash-based data

structures for fast data retrieval and storage.

Advantages: Provides constant-time average access for retrieval

and insertion operations, efficient for large datasets.

Disadvantages: Collision handling (when two keys hash to the

same address) requires additional processing; not suitable for range

queries or ordered data retrieval.

16.3 SEQUENTIAL FILE
ORGANIZATION

Sequential file organization is a method of storing and accessing

data records in a sequential order, typically based on their physical

placement in the file. Here's a detailed explanation of sequential

file organization:

Overview and Characteristics:

Sequential file organization arranges data records consecutively in

the order they are added to the file. Each record is stored

Data Structure using C++ & Lab -407

immediately after the previous one, forming a continuous

sequence. Key characteristics include:

Storage Structure: Data records are stored one after another in a

linear fashion within the file. This layout simplifies appending new

records but complicates insertion and deletion operations, as they

may require shifting subsequent records.

Access Method: Data access is performed sequentially, starting

from the beginning of the file and continuing to the end. This

means to access a specific record, all preceding records must be

read sequentially.

Applications: Sequential files are suitable for applications where

data is processed in batches or where data is primarily read

sequentially, such as log files, transaction processing systems with

archival needs, and batch processing applications.

(Image Source: Javat Point)

Operations and Usage:

Sequential files support basic operations tailored to their access

pattern:

Data Structure using C++ & Lab -408

Reading: Data is read sequentially from the beginning of the file

to the end. This operation is efficient for processing large volumes

of data sequentially without requiring random access.

Writing: New records are typically appended to the end of the file,

which simplifies insertion. However, modifying or deleting

existing records may require rewriting the entire file after the

modification point.

Searching: Sequential searching involves scanning the file from

the start until the desired record is found. This process can be slow

for large files or when the record is located towards the end of the

file.

Advantages and Disadvantages:

Advantages:

Simple and easy to implement.

Efficient for applications that primarily read data sequentially.

Requires less overhead compared to indexed or direct access

methods.

Disadvantages:

Inefficient for random access operations, as accessing records out

of sequence requires scanning through all preceding records.

Insertions and deletions may be slow and costly, especially in large

files.

Not suitable for applications requiring frequent updates or random

access patterns.

Data Structure using C++ & Lab -409

16.4 DIRECT (RANDOM) FILE
ORGANIZATION

Direct file organization, also known as random file organization, is

a method of organizing data in a file that allows for direct access to

any record based on its unique identifier or key. Unlike sequential

file organization where records are stored in a linear sequence,

direct file organization uses indexing or hashing techniques to

facilitate rapid access to specific records. Here’s a detailed

explanation of direct file organization:

Overview and Characteristics:

Direct file organization employs indexing or hashing to map record

keys to specific locations within the file. Key characteristics

include:

Indexing: Each record in the file is assigned a unique key, which

serves as an index. This index is used to directly locate the record

within the file, bypassing the need to sequentially read through

preceding records.

Hashing: Alternatively, records may be stored in the file using a

hashing function that computes a location based on the record's

key. This allows for rapid calculation of the record's storage

location and retrieval.

Access Method: Accessing records in a direct file involves using

the record's key to determine its location in the file. This method

enables efficient random access, where any record can be retrieved

directly without scanning through other records.

Data Structure using C++ & Lab -410

Applications: Direct file organization is suitable for applications

requiring frequent and rapid access to specific data records, such as

database systems, file systems, and data retrieval systems.

(Image Source: JavatPoint)

Operations and Usage:

Direct file organization supports operations tailored to random

access patterns:

Reading: Records can be retrieved directly using their unique

keys, making retrieval operations efficient even for large files.

Writing: New records can be added directly into the file at their

designated locations based on their keys. This operation requires

updating the index or hash table accordingly.

Updating: Existing records can be modified or deleted efficiently

by directly accessing and modifying their locations in the file.

Advantages and Disadvantages:

Data Structure using C++ & Lab -411

Advantages:

Enables rapid access to specific records without scanning through

other records.

Efficient for applications requiring frequent data retrieval based on

specific criteria.

Supports direct insertion, deletion, and modification operations.

Disadvantages:

Requires additional overhead for maintaining and updating indexes

or hash tables.

Complexities may arise in handling collisions in hashing-based

implementations.

Initial setup and maintenance of indexes or hash tables can

introduce additional complexity.

16.5 INDEXED SEQUENTIAL FILE
ORGANIZATION

Indexed Sequential File Organization combines the benefits of

both sequential and direct (random) file organization methods. It is

designed to optimize data retrieval and storage efficiency by using

indexing for fast access and maintaining sequential order to

support range queries and efficient sequential processing. Here’s a

detailed explanation of Indexed Sequential File Organization:

Overview and Characteristics:

Indexed Sequential File Organization organizes records in a

sequential manner on disk while maintaining an index structure

that allows for direct access to individual records based on keys.

Key characteristics include:

Sequential Storage: Records are stored sequentially on disk,

which facilitates efficient sequential processing of data.

Data Structure using C++ & Lab -412

Indexing: Each record has a unique key, and an index is

maintained separately to map these keys to their physical locations

in the file. This index enables fast direct access to specific records.

Access Method: Records can be accessed directly using their keys

through the index, allowing for rapid retrieval operations similar to

direct file organization.

Hybrid Approach: Combines the benefits of sequential

organization (efficient sequential processing) with direct

organization (rapid access to individual records).

(Image Source: Geeeksforgeeks)

Operations and Usage:

Indexed Sequential File Organization supports various operations

tailored to both random and sequential access patterns:

Indexing Structure: Typically, a B-tree or a multi-level index

structure is used to maintain efficient access to records. This

structure optimizes searches, insertions, and deletions.

Data Structure using C++ & Lab -413

Reading: Records can be retrieved directly using their keys,

leveraging the index structure for rapid access.

Writing: New records are appended to the end of the file

sequentially, while the index structure is updated to reflect the new

record's location.

Updating: Existing records can be modified or deleted, with

updates managed both in the sequential file and the index structure.

Advantages and Disadvantages:

Advantages:

Supports fast access to individual records based on keys through

indexing.

Facilitates efficient range queries by maintaining sequential order.

Suitable for applications requiring both random and sequential

access patterns.

Disadvantages:

Requires additional overhead for maintaining and updating index

structures.

Complexities may arise in managing and balancing index

structures, especially in distributed or large-scale systems.

Initial setup and maintenance of indexes can be resource-intensive.

16.6 FILE OPERATIONS

File operations encompass a range of activities involved in

managing files within a computer system, typically handled by

operating systems or file management libraries. These operations

are fundamental for reading, writing, and manipulating data stored

in files. Here's an overview of key file operations:

Data Structure using C++ & Lab -414

File Operations:

File Creation:

Definition: Creating a new file involves allocating space in the file

system and establishing metadata structures to manage the file.

Process: Typically, the operating system or application creates a

file by specifying a name, location, and sometimes initial content

or attributes.

Algorithm:

Explanation:

CreateFile:

Opens the file specified by filename for writing ("w" mode), which

creates the file if it does not already exist.

Checks if the file was opened successfully.

Prints a success message if the file was created.

Closes the file after creation.

Here's how this algorithm can be implemented in C++:

Data Structure using C++ & Lab -415

Implementation in C++

Opening and Closing Files:

Opening: Accessing a file to perform read or write operations.

Process: Applications request file access by providing a file path

or identifier, which the operating system verifies and grants if

permissions allow.

Implementation:

Data Structure using C++ & Lab -416

Closing: Releasing resources associated with the file after

operations are complete.

Process: Ensures that all data buffers are flushed and file locks, if

any, are released.

Implementation:

Reading from Files:

Definition: Retrieving data stored in a file for processing or

display.

Data Structure using C++ & Lab -417

Process: Applications specify read operations, which involve

positioning the file pointer to the desired location within the file

and transferring data to memory buffers.

Algorithm:

ReadFromFile:

Opens the file specified by filename for reading ("r" mode).

Checks if the file was opened successfully.

Reads each line from the file until the end of the file

(EndOfFile).

Prints each line to the console.

Closes the file after reading.

Writing to Files:

Definition: Storing new data or modifying existing data in a file.

Process: Applications specify write operations, which involve

positioning the file pointer and transferring data from memory

buffers to the specified location in the file.

Data Structure using C++ & Lab -418

Algorithm:

WriteToFile:

Opens the file specified by filename for writing ("w"

mode).

Checks if the file was opened successfully.

Writes the data string to the file.

Closes the file after writing.

Updating and Modifying Files:

Definition: Changing or appending data within a file.

Process: Combines reading and writing operations, where data is

read, modified in memory, and then written back to the file.

16.7 APPLICATIONS

Database Management Systems (DBMS)

File structures are integral to the efficiency and effectiveness of

Database Management Systems. Here’s how different file

structures are applied:

Data Structure using C++ & Lab -419

Sequential Files:

Backup and Archival: Sequential files are ideal for creating

backups and archives of data because they allow for easy and

efficient sequential reading and writing.

Batch Processing: Used in situations where data processing can

occur in batches, such as end-of-day processing in banking

systems.

Indexed Sequential Files:

Transaction Processing Systems: Often used in transaction

processing systems where quick access to records is required, but

the records are processed in a sequential manner. The index allows

for quick lookup, while the sequential nature aids in efficient data

management.

Customer Relationship Management (CRM): Enables fast

access to customer records while maintaining an ordered structure

for efficient bulk operations.

Direct (Random) Files:

High-Performance Applications: Used in applications requiring

rapid access to individual records, such as real-time systems in

finance and stock trading.

Database Indexing: Implements hash-based indexing where direct

access to records is essential.

Information Retrieval Systems

In information retrieval systems, efficient data storage and quick

access are crucial:

Sequential Files:

Data Structure using C++ & Lab -420

Log Files: Ideal for maintaining log files where entries are

recorded in sequence over time.

Historical Data Archives: Useful for archiving historical data that

is not frequently accessed but needs to be stored efficiently.

Indexed Sequential Files:

Search Engines: Used in search engines to store indexed data,

allowing quick search operations while maintaining an ordered

index for efficient retrieval.

Library Systems: In library management systems, indexed

sequential files help in organizing and retrieving book records

efficiently.

Direct (Random) Files:

Document Management Systems: Used for storing and retrieving

documents where each document needs to be accessed directly

without scanning through other records.

User Profile Management: In systems managing large user bases,

direct files facilitate quick access to individual user profiles.

File Management Systems

File management systems rely heavily on the underlying file

structures to ensure efficient file storage, access, and management:

Sequential Files:

Tape Storage Systems: Commonly used in tape storage systems

where data is stored sequentially for backup and archival purposes.

Simple Log Files: Used for simple log file management in

operating systems and applications.

Data Structure using C++ & Lab -421

Indexed Sequential Files:

File Indexing: Helps in creating indexes of large file directories,

allowing for quick searches and organized storage.

Metadata Management: Used in systems that need to maintain

and retrieve file metadata efficiently.

Direct (Random) Files:

Operating System File Systems: Employed in operating systems

to manage files and directories where rapid access to files is

necessary.

Database Index Files: Used for managing database index files

where direct access to index entries is critical for performance.

16.8 CONCLUSION

In this unit, we delved into the essential concepts of file structures

and their organization within the context of data management

systems. We explored the various types of file organizations,

including sequential, direct (random), and indexed sequential file

organizations, highlighting their unique characteristics and use

cases. Understanding these structures is crucial for optimizing data

access and storage efficiency, which are foundational elements in

the design and implementation of robust data systems.

We also covered the fundamental file operations that underpin

these file structures, such as creation, opening, closing, reading,

writing, and deletion. Mastery of these operations is essential for

effective data management, ensuring that data is accurately and

efficiently manipulated within different organizational contexts. By

examining the implementation details, particularly in the C++

Data Structure using C++ & Lab -422

programming language, we bridged the gap between theoretical

knowledge and practical application, providing a comprehensive

view of how these concepts are realized in real-world systems.

Finally, we discussed the applications of various file structures in

different domains, including database management systems,

information retrieval systems, and file management systems. These

applications underscore the importance of choosing the right file

organization method to meet specific needs and performance

requirements. The insights gained from this unit equip us with the

knowledge to design and implement efficient file management

strategies, ensuring optimal data handling and retrieval in diverse

computational environments.

16.9 QUESTIONS AND ANSWERS

1. What are the main types of file organizations covered in this

unit?

Answer: The main types of file organizations covered in this unit

are:

Sequential File Organization: Data is stored in a linear sequence,

making it simple and efficient for reading large blocks of

sequential data.

Direct (Random) File Organization: Data is accessed directly

using a key or address, providing quick retrieval but requiring

more complex management.

Indexed Sequential File Organization: Combines the advantages

of both sequential and direct access by maintaining an index to

allow for fast searches and sequential data processing.

2. What are the key advantages of sequential file organization?

Answer: Sequential file organization offers several advantages:

Data Structure using C++ & Lab -423

Simplicity in implementation and management.

Efficient for operations that process large volumes of data

sequentially.

Minimal overhead for file management, as no indexing or hashing

is required.

3. How does direct file organization improve data retrieval

times?

Answer: Direct file organization improves data retrieval times by

using a key or address to directly access the desired data record.

This eliminates the need to search through data sequentially,

significantly reducing the time required to locate and retrieve

specific records.

4. What is an indexed sequential file organization, and how

does it work?

Answer: Indexed sequential file organization is a hybrid approach

that combines sequential and direct access methods. It maintains an

index that allows for quick searches and random access to data

records while still enabling efficient sequential data processing.

The index maps keys to their corresponding storage locations,

providing the benefits of both quick searches and organized

sequential data management.

5. What are some common file operations discussed in this

unit?

Answer: Common file operations discussed include:

File Creation: Establishing a new file in the storage system.

Opening and Closing Files: Preparing a file for reading or writing

and properly closing it after operations are complete.

Data Structure using C++ & Lab -424

Reading and Writing: Accessing data from a file and modifying

or adding data to a file.

Deletion: Removing a file or specific data records from the storage

system.

6. Why is it important to understand different file structures

and their applications?

Answer: Understanding different file structures and their

applications is crucial because it allows for the selection of the

most appropriate file organization method based on the specific

needs and performance requirements of an application. This

ensures optimal data handling, efficient storage, and quick

retrieval, which are vital for the overall performance and reliability

of data management systems.

16.10 REFERENCES

 Bjarne Stroustrup, "The C++ Programming Language"

 Herb Sutter, "Exceptional C++: 47 Engineering Puzzles,

Programming Problems, and Solutions"

 Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo,

"C++ Primer"

 Scott Meyers, "Effective C++: 55 Specific Ways to

Improve Your Programs and Designs"

 Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and

Reference"

