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BLOCK I: INTRODUCTION TO 
ALGORITHMS AND DATA 
STRUCTURES  

UNIT – 1: ANALYSIS OF 
ALGORITHMS 
Structure 

 

1.0 Introduction 

1.1 Objectives 

1.2 Mathematical Background 

1.3 Process of Analysis 

1.4 Calculation of Storage Complexity 

1.5 Calculation of Run Time Complexity 

1.6 Conclusion 

1.7 Questions and Answers 

1.8 References 

 

1.0 INTRODUCTION 
 

In the realm of computer science, the efficiency and effectiveness 

of algorithms are paramount to solving complex problems and 

handling large datasets. Understanding and analyzing algorithms is 

essential for developing optimal solutions that perform well under 

various conditions. This unit delves into the fundamental aspects of 

algorithm analysis, providing a comprehensive overview of the 

mathematical tools and techniques necessary for evaluating the 

performance and resource requirements of algorithms. 

 

We will begin by exploring the mathematical background needed 

for algorithm analysis, including key concepts such as Big O, Big 

Theta, and Big Omega notations, logarithms, exponential 
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functions, and summation formulas. These foundational elements 

are crucial for accurately describing and comparing the efficiency 

of different algorithms. 

 

Next, we will examine the process of analyzing algorithms, which 

involves understanding the problem statement, writing 

pseudocode, identifying basic operations, and establishing input 

sizes. This systematic approach ensures that algorithms are 

evaluated consistently and accurately. Additionally, we will cover 

the calculation of storage complexity and run time complexity, 

providing detailed methods for assessing an algorithm's space and 

time requirements. By the end of this unit, you will have a solid 

understanding of how to analyze and optimize algorithms for 

practical applications. 

 

1.1 OBJECTIVES 
 

After completing this unit, you will be able to understand,  

 Comprehend the significance and application of Big O, Big 

Theta, and Big Omega notations. 

 Identify the basic operations that dictate the performance of 

an algorithm. 

 Calculate the storage complexity for various types of data 

structures and algorithms, including simple and recursive 

algorithms, as well as dynamic data structures. 

 Analyze the run time complexity of algorithms, using 

mathematical tools to determine their efficiency. 

 Recognize the trade-offs between time and space 

complexity in algorithm design. 
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1.2 MATHEMATICAL BACKGROUND 
 

Understanding the mathematical foundations is essential for 

analyzing the efficiency of algorithms. This involves mastering 

concepts such as Big O, Big Theta, and Big Omega notations, 

which are used to describe the upper, exact, and lower bounds of 

an algorithm's complexity, respectively. These notations provide a 

standardized way to express the growth rates of functions, helping 

to compare the performance of different algorithms. Additionally, 

logarithms and exponential functions are crucial for understanding 

the behavior of algorithms that deal with exponentially growing 

data sets, such as those involving tree structures or divide-and-

conquer strategies. 

 

Summation formulas play a vital role in evaluating the total cost of 

an algorithm, particularly when dealing with loops and iterative 

processes. For example, understanding arithmetic and geometric 

series can simplify the calculation of the total number of operations 

in nested loops or recursive calls. Recurrence relations, on the 

other hand, are mathematical equations that define sequences 

based on previous terms, and solving these relations is key to 

analyzing recursive algorithms. Methods like the Master Theorem 

provide powerful tools to directly solve these recurrences, offering 

insights into the time complexity of algorithms like Merge Sort and 

Quick Sort. 

 

Finally, proof techniques such as induction, contradiction, and 

direct proofs are indispensable for validating algorithm correctness 

and analyzing their behavior rigorously. Induction, for example, is 

often used to prove that an algorithm works for all possible input 

sizes, while contradiction helps in disproving incorrect 
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assumptions about an algorithm's performance. Direct proofs and 

counterexamples further aid in establishing or refuting claims 

about the properties and efficiencies of algorithms. Together, these 

mathematical tools form the backbone of algorithm analysis, 

enabling a deeper and more precise understanding of how 

algorithms perform and scale. 

 

Basic Mathematics for Algorithm Analysis 

Big O, Big Theta, and Big Omega Notations: Big O, Big Theta, 

and Big Omega notations are mathematical tools used to describe 

the time and space complexity of algorithms. Big O notation (O) 

provides an upper bound on the growth rate of an algorithm, 

signifying the worst-case scenario. It helps in understanding the 

maximum amount of time or space an algorithm may require as the 

input size grows. For example, an algorithm with a time 

complexity of O(n^2) will have its execution time increase 

quadratically with the input size. Big Theta (Θ) notation, on the 

other hand, gives a tight bound, describing the exact asymptotic 

behavior of an algorithm, representing both the upper and lower 

bounds. Big Omega (Ω) notation provides a lower bound, 

representing the best-case scenario or the minimum amount of time 

or space required. 

 

Example:  

Big O (O) Notation Example: Consider the function f(n) = 

3n^2 + 2n + 1. To find the Big O notation, we focus on the 

term with the highest growth rate as n increases. Here, it's 

n^2. Thus, f(n) is O(n^2). 

Big Theta (Θ) Notation Example: If an algorithm's 

running time is given by f(n) = 5n log n + 4n, the dominant 

term is 5n log n. Therefore, the algorithm's time complexity 

is Θ (n log n). 
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Big Omega (Ω) Notation Example: For the function g(n) 

= 2n + 1, in the best case, the term 2n dominates. Thus, 

g(n) is Ω(n). 

 

Logarithms and Exponential Functions 

Logarithms and exponential functions are fundamental in 

analyzing the efficiency of algorithms, especially those that divide 

problems into smaller subproblems. Logarithmic functions, such as 

log(n), are prevalent in algorithms that halve their input size at 

each step, such as binary search. These functions grow slowly 

compared to polynomial or exponential functions, indicating 

highly efficient algorithms. Exponential functions, like 2^n, are 

associated with algorithms that exhibit rapid growth rates, often 

found in brute-force approaches or recursive algorithms solving 

combinatorial problems. Understanding these functions is crucial 

for evaluating the scalability and performance of different 

algorithmic approaches. 

 

Example:  

Logarithmic Function Example: The binary search algorithm 

repeatedly divides the search interval in half. Its time complexity is 

O (log n), meaning the number of comparisons grows 

logarithmically with the input size. 

 

Exponential Function Example: The recursive algorithm for 

solving the Tower of Hanoi problem has a time complexity of 

O(2n). As the number of disks increases, the number of moves 

required grows exponentially. 

 

Summation Formulas 

Summation formulas are used to calculate the total cost of 

algorithms that involve iterative or repetitive operations. For 
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example, the sum of the first n natural numbers, given by (n(n + 

1))/2, helps in analyzing loops that run linearly. Geometric series 

and other summation formulas are also useful in evaluating the 

cost of algorithms with nested loops or recursive calls. These 

formulas simplify the process of determining the total number of 

operations, providing a clear picture of an algorithm's complexity. 

Example:  

 

Sum of First n Natural Numbers: The formula for the sum of the 

first n natural numbers is (n (n + 1))/2. For example, if n = 10, the 

sum is (10 * 11)/2 = 55. 

 

Geometric Series Example: Consider the geometric series 1 + r + 

r^2 + ... + r^(n-1). The sum of this series is (1 - r^n) / (1 - r) for r ≠ 

1. If r = 2 and n = 4, the sum is (1 - 2^4) / (1 - 2) = 15. 

 

Recurrence Relations and Their Solutions 

Recurrence relations are equations that define sequences based on 

previous terms, commonly used to describe the time complexity of 

recursive algorithms. Solving these relations is key to 

understanding the behavior of algorithms like Merge Sort and 

Quick Sort. Techniques such as the substitution method, iteration 

method, and the Master Theorem are employed to solve recurrence 

relations. The Master Theorem, in particular, provides a 

straightforward way to determine the time complexity of divide-

and-conquer algorithms, offering insights into their efficiency and 

scalability. Understanding recurrence relations and their solutions 

is essential for analyzing and optimizing recursive algorithms. 
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Example:   

 

 

Proof Techniques 

Induction 

Mathematical Induction is a method of mathematical proof 

typically used to establish a given statement for all natural 

numbers. It consists of two steps: the base case and the inductive 

step. 

 

Base Case: Prove that the statement holds for the initial value 

(usually n = 1). 

Inductive Step: Assume the statement holds for some arbitrary 

natural number k, and then prove it holds for k + 1. 

 

Example: Prove that the sum of the first n natural numbers is (n (n 

+ 1))/2. 

Base Case: For n = 1, the left side is 1 and the right side is (1(1 + 

1))/2 = 1. Thus, the statement holds for n = 1. 

 

Inductive Step: Assume the statement holds for n = k, i.e., 1 + 2 + 

... + k = k(k+1)/2. We need to prove it holds for n = k + 1. 
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Thus, the statement holds for k + 1, completing the induction 

proof. 

 

Contradiction 

Proof by Contradiction involves assuming the negation of the 

statement to be proved and showing that this assumption leads to a 

contradiction, thereby proving the original statement to be true. 

 

Example: Prove that √2 is irrational. 

Assume the Opposite: Suppose √2 is rational. Then it can be 

expressed as a/b where a and b are integers with no common 

factors and b ≠ 0. 

 

Square Both Sides: . 

Parity Argument: This implies a^2 is even, so a must be even. Let 

a = 2k for some integer k. Substituting in, we get (2k)2 = 2b2, thus 

4k2 = 2b2, and b2 = 2k2. Hence, b2 is even, and b must also be even. 

 

Contradiction: This implies that both a and b are even, 

contradicting the initial assumption that a and b have no common 

factors. Thus, √2 is irrational. 

 

Direct Proofs and Counterexamples 

Direct Proofs involve straightforwardly showing that a statement 

is true using definitions, theorems, and logical deductions. 
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Example: Prove that the sum of two even numbers is even. 

Let a and b be two even numbers. By definition of even numbers, 

there exist integers mmm and n such that a = 2m and b = 2. 

Sum: a + b = 2m + 2n =2 (m + n). 

 

Conclusion: Since m + n is an integer, a + b is even. 

Counterexamples are used to disprove a statement by providing a 

specific example that shows the statement is false. 

Example: Disprove the statement "All prime numbers are odd." 

Counterexample: The number 2 is prime and even. 

Conclusion: Therefore, the statement is false. 

These proof techniques form the backbone of mathematical 

reasoning, providing systematic approaches to validating theorems 

and propositions in algorithm analysis and other areas of 

mathematics. 

 

1.3 PROCESS OF ANALYSIS 
 

The process of analyzing algorithms is a critical aspect of 

computer science and involves a systematic approach to 

understanding the efficiency and effectiveness of algorithms. This 

process typically includes several key steps: defining the problem, 

determining the computational model, designing the algorithm, and 

analyzing its performance. 

 

Defining the Problem: The first step in algorithm analysis is to 

clearly define the problem that the algorithm aims to solve. This 

involves specifying the input, the desired output, and any 

constraints or requirements. Understanding the problem space 

helps in selecting or designing an appropriate algorithm and sets 

the stage for further analysis. 
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Determining the Computational Model: Next, it is essential to 

choose a computational model that best represents the environment 

in which the algorithm will run. Common models include the 

Random Access Machine (RAM) model, which assumes a 

sequential execution of instructions with uniform cost, and the 

Turing machine model, which is more theoretical and abstract. The 

choice of model affects how the algorithm's performance is 

measured and understood. 

 

Designing the Algorithm: Once the problem and model are 

defined, the next step is to design the algorithm. This involves 

creating a step-by-step procedure to solve the problem. The design 

process may include selecting appropriate data structures, breaking 

down the problem into smaller sub-problems, and determining the 

logical flow of operations. 

 

Analyzing Performance: The final and most crucial step is 

analyzing the performance of the algorithm. This typically 

involves two main aspects: time complexity and space complexity. 

Time complexity measures the amount of time an algorithm takes 

to complete as a function of the size of its input, often expressed 

using Big O notation. Space complexity, on the other hand, 

measures the amount of memory the algorithm uses. Both aspects 

are critical for understanding the feasibility and efficiency of the 

algorithm, especially for large input sizes. Additionally, average-

case, best-case, and worst-case scenarios are considered to provide 

a comprehensive performance profile. 

 

Steps in Analyzing an Algorithm with Examples 

Understanding the Problem Statement: Consider the problem of 

finding the maximum element in an array of integers. The problem 

statement can be defined as follows: Given an array of nnn 
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integers, find the largest integer in the array. The input is the array 

of integers, and the output is the maximum integer within that 

array. 

Writing Pseudocode: Pseudocode for finding the maximum 

element in an array might look like this: 

 

This pseudocode describes the algorithm in a clear, step-by-step 

manner, making it easier to understand and analyze. 

 

Identifying Basic Operations: In this example, the basic 

operations include: 

Initialization of maxElement with the first element of the array. 

Comparison of each element in the array with maxElement. 

Assignment of a new value to maxElement if a larger element is 

found. 

These operations are fundamental to the algorithm’s logic and are 

performed repeatedly as the algorithm processes the input array. 

Establishing Input Size: The input size, n, in this problem is the 

number of elements in the array. If the array has 10 elements, n is 

10. This input size will help us understand how the algorithm’s 

performance scales with larger inputs. 

 

Time Complexity Analysis: To analyze the time complexity, we 

count the number of basic operations performed. In the worst-case 

scenario, the algorithm will compare each element in the array to 

maxElement, resulting in n − 1 comparisons and n−1n-1n−1 

potential assignments. 
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For nnn elements: 

The initialization of maxElement takes O (1) time. 

The for-loop iterates n times, performing a comparison and 

possibly an assignment each iteration, which takes O (n) time. 

Thus, the total time complexity is O (n). 

 

Space Complexity Analysis: The space complexity of this 

algorithm is O (1) because it uses a constant amount of extra space, 

regardless of the input size n. 

 

Example 2: Binary Search Algorithm 

Understanding the Problem Statement: Consider the problem of 

searching for a specific integer in a sorted array of integers using 

binary search. The input is a sorted array of n integers and the 

integer to search for, and the output is the index of the integer in 

the array or -1 if it is not found. 

 

Writing Pseudocode: Pseudocode for binary search: 

 

Identifying Basic Operations: The basic operations include: 

Initialization of left and right pointers. 

Calculation of the middle index mid. 

Comparison of the target value with the middle element of the 

array. 

Adjusting the left or right pointers based on the comparison result. 
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Establishing Input Size: The input size, n, is the number of 

elements in the array. 

Time Complexity Analysis: Binary search reduces the search 

space by half each iteration. The number of iterations required to 

search an array of size n is log2 (n). Therefore, the time complexity 

is O (log n). 

 

Space Complexity Analysis: The space complexity of binary 

search is O(1) because it uses only a constant amount of extra 

space for the pointers and variables, regardless of the input size n. 

These examples illustrate the steps involved in analyzing 

algorithms, from understanding the problem statement to 

determining time and space complexity, using clear and structured 

pseudocode. 

 

Types of Analysis 

Worst-case Analysis: This type of analysis focuses on the 

maximum time or space that an algorithm can take for any input of 

size nnn. It provides an upper bound on the running time and is 

particularly useful for guaranteeing performance in real-time 

systems or critical applications. For instance, in the case of 

quicksort, the worst-case occurs when the pivot selection is poor, 

leading to O(n2) time complexity. Knowing the worst-case 

performance helps in understanding the algorithm's efficiency 

under the least favorable conditions. 

 

Average-case Analysis: Average-case analysis calculates the 

expected time or space an algorithm will take, considering all 

possible inputs. This type of analysis is more realistic than worst-

case analysis because it provides an average performance measure, 

which can be more representative of typical use cases. For 

example, in quicksort, the average-case time complexity is O (n 



Data Structure using C++ & Lab -18 
 

log  n), assuming that the pivots are chosen randomly. This 

analysis often involves probabilistic reasoning and is useful for 

understanding the algorithm's performance on average inputs. 

 

Best-case Analysis: Best-case analysis evaluates the minimum 

time or space an algorithm can take. It provides a lower bound on 

the running time and is useful for understanding the most efficient 

scenario. However, it is less practical for assessing an algorithm's 

performance in general. For instance, in insertion sort, the best-

case occurs when the array is already sorted, resulting in O(n) time 

complexity. This analysis shows how well the algorithm performs 

with the most favorable input but doesn't account for average or 

worst-case scenarios. 

 

Examples 

Worst-case Analysis Example: Consider the insertion sort 

algorithm. In the worst-case scenario, the input array is in reverse 

order. Here, each insertion operation will have to shift all the 

previously sorted elements, leading to a time complexity of O(n2). 

 

Average-case Analysis Example: For binary search, if the target 

element is equally likely to be at any position in a sorted array, the 

average-case time complexity remains O (log n). This is because 

each step reduces the problem size by half, and the expected 

number of comparisons averages out over all possible positions. 

 

Best-case Analysis Example: For linear search, if the target 

element is at the first position of the array, the algorithm will only 

require one comparison, resulting in a best-case time complexity of 

O (1). 
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Algorithm Design Techniques 

Divide and Conquer: The divide and conquer technique involves 

breaking a problem into smaller subproblems, solving each 

subproblem independently, and then combining their solutions to 

solve the original problem. This approach is highly effective for 

problems that can be divided into similar smaller problems. Classic 

examples include merge sort and quicksort. In merge sort, the array 

is recursively divided into halves until the base case of a single-

element array is reached. These small arrays are then merged in a 

sorted manner, resulting in a sorted array. The time complexity of 

merge sort is O (n log n), making it efficient for large datasets. 

 

Greedy Algorithms: Greedy algorithms build up a solution piece 

by piece, always choosing the next piece that offers the most 

immediate benefit or is locally optimal. This approach is used 

when a problem can be solved by making a series of choices, each 

of which looks the best at the moment. However, greedy 

algorithms do not always guarantee a globally optimal solution. A 

well-known example is the Kruskal's algorithm for finding the 

minimum spanning tree in a graph. At each step, it selects the 

smallest edge that does not form a cycle, ensuring that the 

spanning tree is built efficiently. The time complexity depends on 

the graph representation but is generally O (E log E), where E is 

the number of edges. 

 

Dynamic Programming: Dynamic programming (DP) is a 

method for solving complex problems by breaking them down into 

simpler subproblems. It is applicable when the problem can be 

divided into overlapping subproblems that can be solved 

independently. DP stores the results of subproblems to avoid 

redundant computations. This technique is used in problems like 

the Fibonacci sequence, where the value of each element is the 
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sum of the two preceding ones. Instead of recalculating Fibonacci 

numbers, DP stores intermediate results, reducing the time 

complexity from exponential to O (n). Another example is the 

Knapsack problem, where DP is used to find the maximum value 

that can be obtained without exceeding the weight limit. 

 

Backtracking: Backtracking is an algorithmic technique for 

solving problems incrementally, one piece at a time, and removing 

those solutions that fail to satisfy the problem's constraints at any 

point of time. It is often used for constraint satisfaction problems, 

such as puzzles, crosswords, and combinatorial problems. The 

classic example is the N-Queens problem, where the goal is to 

place N queens on an N × N chessboard such that no two queens 

threaten each other. The algorithm tries to place a queen in a row 

and then recursively attempts to place queens in subsequent rows, 

backtracking whenever it encounters a conflict. While the worst-

case time complexity is exponential, O (N!), backtracking can be 

very efficient with appropriate pruning. 

 

1.4 CALCULATION OF STORAGE 
COMPLEXITY 
 

Calculation of storage complexity, also known as space 

complexity, is a fundamental aspect of algorithm analysis that 

evaluates how much memory or storage space an algorithm 

requires to execute based on the input size. It is crucial for 

determining the efficiency and scalability of algorithms, 

particularly in scenarios where memory resources are limited or 

costly. 
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Understanding Storage Complexity 

Definition: Storage complexity measures the amount of memory 

space required by an algorithm to solve a problem as a function of 

the input size n. It includes all types of memory used during 

execution, such as variables, data structures (arrays, lists, trees), 

and auxiliary space required by recursion stacks or temporary 

variables. 

 

Types of Space Complexity: 

Constant Space (O (1)): Algorithms that use a constant amount of 

memory regardless of the input size. Examples include algorithms 

that operate on a fixed number of variables or use a fixed-size data 

structure. 

Linear Space (O(n)): Algorithms where the space requirement 

grows linearly with the size of the input. Typically, this occurs 

when the algorithm uses data structures whose size scales directly 

with n, such as arrays or linked lists. 

 

Logarithmic Space (O (log n): Algorithms that reduce the space 

usage logarithmically as the input size increases. This is common 

in divide and conquer algorithms or algorithms that use balanced 

data structures like binary search trees. 

 

Polynomial Space (O(nk)): Algorithms where space complexity 

grows polynomially with the input size. These algorithms are less 

efficient in terms of space and can become impractical for large 

inputs. 

 

Techniques for Calculating Storage Complexity 

Auxiliary Space: Identify all additional space requirements 

beyond the input size n. This includes variables, data structures, 

and recursive function call stacks. 
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Input Size Impact: Determine how storage requirements change 

relative to different input sizes. Analyze worst-case, average-case, 

and best-case scenarios to understand the full spectrum of memory 

usage. 

 

Analytical Tools: Use mathematical analysis, such as asymptotic 

notation (Big O notation), to express and compare the growth rate 

of space complexity concerning input size. 

 

Implementation-Specific Considerations: Consider 

implementation details like system-specific memory allocation and 

overheads, especially in lower-level programming languages. 

 

Practical Example 

Consider the space complexity of a merge sort algorithm. Merge 

sort typically operates with a space complexity of O (n) due to its 

requirement to temporarily store input elements in auxiliary arrays 

during the merging phase. This linear space usage makes merge 

sort efficient in terms of memory compared to other sorting 

algorithms like quicksort, which may require O (log n) additional 

space due to recursive call stacks. 

 

Memory Usage in Algorithms 

Memory usage in algorithms revolves around managing various 

data types effectively to optimize space utilization. This involves 

understanding both primitive and composite data types, which are 

crucial for storing and manipulating data efficiently during 

algorithm execution. 
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Primitive Data Types 

Primitive data types are fundamental building blocks in 

programming languages that represent basic values. These include: 

Integer: Represents whole numbers (e.g., int in C++, Java). 

Floating Point: Represents decimal numbers with fractional parts 

(e.g., float, double). 

Boolean: Represents true/false values (e.g., bool). 

Character: Represents single characters (e.g., char). 

These data types typically have fixed sizes depending on the 

programming language and system architecture. For instance, an 

int might be 4 bytes in size in many programming languages. 

 

Composite Data Types 

Composite data types combine primitive data types to create more 

complex structures for storing and organizing data. Key examples 

include: 

 

Arrays: A collection of elements stored in contiguous memory 

locations, accessed by indexing. 

Lists: Linear data structures where elements are linked by pointers 

or references. 

Trees: Hierarchical structures composed of nodes, with each node 

having references to child nodes. 

Graphs: Non-linear data structures with nodes (vertices) and edges 

connecting these nodes. 

 

Memory Usage Considerations 

Arrays: Use contiguous memory, making them efficient for direct 

access via indexing but limiting in dynamic resizing. 

Lists: Linked lists dynamically allocate memory per element, 

allowing flexibility in size but incurring overhead due to pointers. 



Data Structure using C++ & Lab -24 
 

Trees: Memory usage varies based on the type (e.g., binary trees, 

AVL trees). Trees balance between efficient storage and retrieval 

operations. 

Graphs: Storage varies based on the representation (e.g., 

adjacency list, adjacency matrix). Each representation offers trade-

offs between space and operations efficiency. 

 

Efficient Memory Management 

Efficient memory management in algorithms involves: 

Optimal Data Structures: Choosing the right data structure based 

on the operations required and memory constraints. 

Memory Allocation: Using appropriate allocation techniques (e.g., 

static vs. dynamic allocation) to minimize wastage and 

fragmentation. 

Garbage Collection: In languages with automatic memory 

management, ensuring timely release of unused memory. 

Example Scenario 

Consider an algorithm that computes the sum of elements in an 

array: 

 

 

In this example: 

Primitive: int total is used to accumulate the sum. 

Composite: int arr[] represents an array storing multiple integers. 

Examples of Storage Complexity Calculation 

Calculating storage complexity involves understanding how much 

memory an algorithm or data structure requires based on its 
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operations and data handling. Here are examples of how storage 

complexity is calculated for different scenarios: 

Calculating Storage for Simple Algorithms 

Consider a simple algorithm that computes the factorial of a 

number n: 

 

 

Storage Calculation: 

Primitive Data Types: The function uses int for the parameter and 

the return value. 

Space for int n: Typically 4 bytes (assuming a 32-bit integer). 

Space for the return value (int): 4 bytes. 

Recursive Call Stack: Each recursive call adds to the stack 

memory. 

For factorial(n), there will be n recursive calls. 

Assuming each call uses 8 bytes for function call overhead and 

local variables (on a typical 64-bit system). 

Total Storage: 

Fixed Memory: Around 8 bytes for n and the return value. 

Stack Memory: Approximately 8 * n bytes for the recursive calls. 

Calculating Storage for Recursive Algorithms 

Consider the Fibonacci sequence computed recursively: 
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Storage Calculation: 

Primitive Data Types: Uses int for the parameter and the return 

value. 

Space for int n: 4 bytes. 

Space for the return value (int): 4 bytes. 

Recursive Call Stack: Similar to factorial, Fibonacci also has n 

recursive calls. 

Each call uses 8 bytes for function call overhead and local 

variables. 

Total Storage: 

Fixed Memory: Around 8 bytes for n and the return value. 

Stack Memory: Approximately 8 * n bytes for the recursive calls. 

Storage Complexity in Dynamic Data Structures 

Consider a dynamic data structure like a linked list with n nodes: 

 

 

Storage Calculation: 

Node Structure: Each Node structure contains an int and a pointer 

(Node*). 

Size of int data: 4 bytes. 

Size of Node* next: 8 bytes (assuming a 64-bit system). 

 

Heap Memory: Each new Node allocates memory dynamically. 

Total memory depends on the number of nodes (n). 
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Total Storage: 

Fixed Memory: Minimal fixed memory for variables like head 

and function parameters. 

Heap Memory: Approximately (4 + 8) * n bytes for data and next 

pointers across n nodes. 

 

1.5 CALCULATION OF RUN TIME 
COMPLEXITY 
 

Calculating the runtime complexity of an algorithm involves 

analyzing how its execution time increases with respect to the 

input size. This analysis is crucial for understanding the efficiency 

of algorithms and making informed decisions about their 

applicability in different scenarios. Here’s how the calculation of 

runtime complexity is typically approached: 

 

 

Steps in Calculating Runtime Complexity 

Identify Basic Operations: 

 

Determine the fundamental operations that contribute most 

significantly to the execution time. For example, in sorting 

algorithms, comparisons and swaps are often primary operations. 

 

Establish Input Size: 

Define the parameter that represents the size of the input data. For 

sorting algorithms, this could be the number of elements n. 

 

Count Operations: 

Analyze how many times the identified basic operations are 

executed as a function of the input size n. This step often involves 
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considering different cases: best-case, average-case, and worst-

case scenarios. 

 

Express Complexity: 

Use Big O notation to express the asymptotic upper bound of the 

algorithm's runtime complexity in terms of n. This notation 

provides a concise way to describe how the algorithm's 

performance scales with input size. 

 

Examples of Calculating Runtime Complexity 

Example 1: Linear Search 

 

 

Basic Operation: Comparison (arr[i] == key). 

Input Size: n, where arr is an array of size n. 

Operations Count: In the worst case, the loop executes n times. 

Runtime Complexity: O(n), as the algorithm checks each element 

in the array once in the worst case. 

Example 2: Bubble Sort 
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Basic Operations: Comparisons (arr[j] > arr[j+1]) and Swaps. 

Input Size: n, where arr is an array of size n. 

 

Operations Count: In the worst case, bubble sort performs n-1 

passes over the array, with n-i-1 comparisons in the i-th pass. 

 

Runtime Complexity: O(n^2), as the algorithm performs 

quadratic time operations in the worst case due to nested loops. 

 

Importance of Runtime Complexity Calculation 

Understanding runtime complexity helps in: 

 

Algorithm Selection: Choosing the most efficient algorithm for a 

given problem size. 

 

Performance Prediction: Estimating how an algorithm will 

perform as the input size grows. 

 

Optimization: Identifying opportunities for improving algorithm 

efficiency through algorithmic design or data structure selection. 

 

1.6 CONCLUSION 
 

In this unit, we delved into the foundational aspects of algorithm 

analysis, emphasizing the importance of understanding 

mathematical concepts such as Big O, Big Theta, and Big Omega 

notations. These notations are critical tools for describing the 

efficiency of algorithms and predicting their behavior as input 

sizes grow. We also explored logarithms, exponential functions, 

summation formulas, and recurrence relations, which are essential 

for analyzing and solving problems related to algorithm 

performance. 



Data Structure using C++ & Lab -30 
 

 

We examined the process of analyzing algorithms, starting with a 

clear understanding of the problem statement and progressing 

through writing pseudocode, identifying basic operations, and 

establishing input sizes. This systematic approach helps in 

accurately assessing an algorithm's efficiency and potential 

bottlenecks. Furthermore, we discussed the different types of 

analysis—worst-case, average-case, and best-case scenarios—

highlighting their significance in practical applications. 

 

Lastly, we covered the calculation of storage and run time 

complexity, which are crucial for evaluating an algorithm's 

resource requirements. By understanding these concepts, we can 

make informed decisions about algorithm design, balancing the 

trade-offs between time and space efficiency. This unit has 

equipped you with the essential tools and knowledge to analyze 

algorithms methodically, optimize their performance, and apply 

these principles to solve real-world problems effectively. 

 

1.7 QUESTIONS AND ANSWERS 
 

1. What is the significance of Big O notation in algorithm 

analysis? 

Answer: Big O notation is crucial in algorithm analysis because it 

provides a high-level understanding of an algorithm's efficiency in 

terms of time and space complexity. It describes the upper bound 

of an algorithm's running time, helping to predict its performance 

and scalability as the input size increases. This notation allows for 

the comparison of different algorithms' efficiencies, facilitating the 

selection of the most suitable algorithm for a given problem. 
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2. Explain the difference between worst-case, average-case, and 

best-case analyses. 

Answer: Worst-case analysis evaluates an algorithm's performance 

under the most unfavorable conditions, providing an upper bound 

on its running time. Average-case analysis considers the 

algorithm's performance across all possible inputs, giving a more 

realistic expectation of its efficiency. Best-case analysis examines 

the algorithm's performance under the most favorable conditions, 

offering a lower bound on its running time. Each type of analysis 

provides different insights into the algorithm's behavior and helps 

in understanding its efficiency comprehensively. 

 

3.  What are recurrence relations and why are they important 

in algorithm analysis? 

Answer: Recurrence relations are equations that define a sequence 

of values based on previous terms. They are essential in algorithm 

analysis for expressing the running time of recursive algorithms. 

By solving these relations, we can determine the time complexity 

of the algorithm. This is particularly useful for divide-and-conquer 

algorithms, where the problem is broken down into smaller 

subproblems, and the running time depends on the solutions of 

these subproblems. 

 

4. How do you calculate the storage complexity of an 

algorithm? 

Answer: The storage complexity of an algorithm is calculated by 

analyzing the amount of memory it requires during execution. This 

involves considering the memory used by variables, data 

structures, and any additional space needed for recursion or 

dynamic allocation. For simple algorithms, this can be 

straightforward, but for more complex algorithms involving 

dynamic data structures or recursion, a detailed breakdown of 
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memory usage is necessary to determine the total storage 

complexity. 

 

5. Why is it important to establish the input size when 

analyzing an algorithm? 

Answer: Establishing the input size is crucial because it directly 

influences the algorithm's running time and space requirements. 

The efficiency of an algorithm is often expressed as a function of 

the input size, allowing us to understand how the algorithm scales 

with larger inputs. Accurate input size estimation ensures that the 

analysis reflects real-world performance and helps in identifying 

potential inefficiencies and bottlenecks. 

 

6. What are the basic steps in the process of analyzing an 

algorithm? 

Answer: The basic steps in analyzing an algorithm include: 

Understanding the Problem Statement: Clearly define the 

problem and its requirements. 

 

Writing Pseudocode: Develop a high-level representation of the 

algorithm to understand its flow and logic. 

 

Identifying Basic Operations: Determine the fundamental 

operations that significantly impact the running time. 

 

Establishing Input Size: Define the variable representing the size 

of the input, which will be used in the complexity analysis. 

 

Analyzing Complexity: Calculate the time and space complexity 

based on the identified operations and input size. 
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2.0 INTRODUCTION 
 

In the realm of computer science and programming, understanding 

fundamental data structures like arrays and pointers forms the 

bedrock of efficient algorithm design and application development. 

These concepts not only facilitate storage and manipulation of data 

but also play crucial roles in optimizing memory usage and 

enhancing computational efficiency. This unit delves into these 

foundational concepts, exploring their definitions, operations, 

representations, and practical applications in various domains. 

 

Arrays, as a cornerstone of data structures, provide a systematic 

way to store homogeneous elements in contiguous memory 

locations. They offer quick access to elements using indices and 
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support a wide range of operations, making them versatile for 

applications ranging from simple list storage to complex numerical 

computations. Pointers, on the other hand, enhance the flexibility 

of memory management by allowing dynamic memory allocation 

and manipulation of addresses, enabling efficient data structures 

like linked lists and trees. 

Sparse matrices and polynomials extend the concept of arrays into 

specialized domains. Sparse matrices, characterized by a majority 

of zero elements, employ efficient representation techniques such 

as triplet and compressed formats to conserve memory and 

accelerate operations like addition and multiplication. Polynomials, 

represented using arrays or linked lists, demonstrate how basic data 

structures can be adapted for mathematical computations, 

showcasing operations like addition and multiplication that are 

pivotal in scientific computing and engineering applications. 

 

Throughout this unit, we explore not only the theoretical 

underpinnings of these data structures but also their real-world 

applications. Understanding their representations in memory and 

their computational advantages and disadvantages equips us with 

the knowledge to leverage arrays, pointers, sparse matrices, and 

polynomials effectively in solving practical problems across 

diverse fields. 

 

2.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Learn how to declare, initialize, and access elements in arrays. 

Understand the concept of multidimensional arrays and their 

practical uses. 

Grasp the basics of pointers, including declaration, initialization, 

and dereferencing. 
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Discover how arrays and pointers are used in fundamental data 

structures like linked lists, stacks, and queues. 

Develop problem-solving abilities by applying arrays and pointers 

to solve programming challenges. 

 

2.2 ARRAYS 
 

An array in C++ is a structured data type that stores a fixed-size 

sequential collection of elements of the same type. It provides a 

contiguous memory location to store multiple values under a single 

name, allowing efficient access to each element using an index. 

Arrays are declared by specifying the data type of the elements 

they will hold and the number of elements, which must be known 

at compile time. Elements in an array are accessed using zero-

based indexing, where the first element is at index 0 and the last 

element is at index size - 1. Arrays facilitate efficient storage and 

retrieval of data, making them essential for tasks that involve 

managing and manipulating collections of homogeneous data 

elements in C++ programs. 

 

Declaration of Arrays: 

In C++, an array is declared by specifying the data type of its 

elements followed by the array name and the size of the array 

enclosed in square brackets ([]). The syntax for declaring an array 

is: 

 

datatype arrayName[arraySize]; 

Here, datatype specifies the type of elements the array will hold 

(e.g., int, double, char), arrayName is the identifier used to refer to 

the array, and arraySize is the number of elements in the array. The 

size of the array must be a constant expression or a literal value 

known at compile time. 
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For example, to declare an array of integers named myArray with 5 

elements: 

  int myArray[5]; 

This declaration reserves space in memory to store 5 integers 

contiguously. 

 

Initialization of Arrays: 

Arrays in C++ can be initialized at the time of declaration or later 

during the program execution. Initialization assigns initial values 

to the elements of the array. There are several ways to initialize 

arrays: 

 

Initialization at Declaration: 

int myArray[5] = {1, 2, 3, 4, 5}; 

This initializes an array myArray with 5 elements {1, 2, 3, 4, 5}. 

 

Partial Initialization: 

int myArray[5] = {1, 2, 3}; 

This initializes the first three elements of myArray as {1, 2, 3} and 

sets the remaining elements to zero (0 for numeric types). 

Empty Initialization: 

int myArray[5] = {}; 

This initializes all elements of myArray to zero (0). 

 

Initialization using Iteration: 

int myArray[5]; 

for (int i = 0; i < 5; ++i)  

{myArray[i] = i + 1; } 

This initializes myArray with values {1, 2, 3, 4, 5} using a loop. 
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Accessing Elements of Arrays: 

In C++, elements of an array are accessed using zero-based 

indexing. Once an array is declared and initialized, you can access 

individual elements by specifying the index within square brackets 

([]). The syntax is: 

 

arrayName[index] 

Here, arrayName is the name of the array, and index is the position 

of the element you want to access. Indexing starts from 0 for the 

first element and goes up to arraySize - 1 for the last element. 

 

For example, consider an array of integers myArray: 

 

int myArray[5] = {10, 20, 30, 40, 50}; 

To access elements of myArray: 

int firstElement = myArray[0];  // Accessing the first element 

(10) 

int thirdElement = myArray[2];  // Accessing the third element 

(30) 

You can also modify array elements using the same indexing 

syntax: 

myArray[1] = 25;  // Changing the value of the second element 

to 25 

 

Multidimensional Arrays: 

A multidimensional array in C++ is an array that contains more 

than one dimension, allowing data to be stored in a tabular form. 

The most common multidimensional array is the 2D array, but C++ 

supports arrays with more dimensions as well. 
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Declaration of Multidimensional Arrays: 

To declare a multidimensional array, you specify the data type of 

its elements followed by the array name and the sizes of each 

dimension enclosed in square brackets ([]). The syntax for a 2D 

array is: 

 

datatype arrayName[rowSize][colSize]; 

Here, rowSize specifies the number of rows, and colSize specifies 

the number of columns. 

For example, a 2D array matrix with 3 rows and 4 columns of 

integers can be declared as: 

cpp 

Copy code 

int matrix[3][4]; 

 

Initialization of Multidimensional Arrays: 

Multidimensional arrays can be initialized similarly to 1D arrays, 

using nested braces {} to enclose the elements: 

 

 

 

Accessing Elements of Multidimensional Arrays: 

Elements in a 2D array are accessed using two indices: one for the 

row and one for the column: 

   

int element = matrix[rowIndex][colIndex]; 

Here, rowIndex specifies the row number (starting from 0), and 

colIndex specifies the column number (also starting from 0). 
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For example, to access the element at the second row and third 

column of matrix: 

int value = matrix [1][2]; // Accessing element at second row, 

third column (value 7) 

 

Example 1: Simple Array Operations 

 

 

 Output:  
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Example 2: Multidimensional Array Operations 

 

Output:  

 

 

2.3 POINTERS 
 

Pointers in C++ are variables that store memory addresses rather 

than values directly. They provide a way to directly access and 
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manipulate memory locations, enabling efficient dynamic memory 

allocation and management. 

 

In C++, every variable is stored in a specific memory location with 

a unique address. Pointers allow us to store and manipulate these 

addresses as values. They are declared using the asterisk (*) 

symbol before the variable name, indicating that the variable is a 

pointer. For example, int* ptr; declares a pointer ptr that can hold 

the address of an integer variable. 

 

One of the fundamental operations with pointers is dereferencing, 

which is done using the asterisk (*) operator. Dereferencing a 

pointer retrieves the value stored at the memory address it points 

to. For instance, if ptr points to an integer variable num, *ptr 

accesses the value of num. This capability makes pointers powerful 

for indirect access to data, especially useful in data structures and 

dynamic memory allocation scenarios where memory addresses 

are manipulated directly. 

 

Pointers are extensively used in C++ for tasks like passing 

parameters to functions by reference, dynamic memory allocation 

with new and delete operators, and implementing complex data 

structures such as linked lists and trees. While powerful, pointers 

require careful handling to avoid common pitfalls like 

dereferencing null pointers or accessing memory out of bounds, 

which can lead to runtime errors like segmentation faults. Mastery 

of pointers is essential for C++ programmers to fully utilize the 

language's capabilities for memory management and efficient data 

manipulation. 
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Declaration of Pointers: 

In C++, pointers are declared using the asterisk (*) symbol before 

the pointer variable name. The syntax for declaring a pointer to a 

specific data type is: 

 

datatype *pointerName; 

Here, datatype specifies the type of data that the pointer will point 

to (e.g., int, double, char), and pointerName is the name of the 

pointer variable. 

For example, to declare a pointer to an integer (int): 

 

int *ptr;  // Declares a pointer to an integer 

The pointer ptr can now hold the memory address of an integer 

variable. 

 

Pointer Arithmetic Operations: 

Pointer arithmetic allows you to perform arithmetic operations on 

pointers to manipulate memory addresses. This is particularly 

useful when iterating through arrays or dynamically allocated 

memory blocks. 

 

Incrementing Pointers: 

Incrementing a pointer moves it to point to the next memory 

location of its data type. The increment operation depends on the 

size of the data type the pointer is pointing to. 
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In this example, ptr++ increments the pointer ptr to point to the 

next integer in the array arr. 

 

Decrementing Pointers: 

Decrementing a pointer moves it to point to the previous memory 

location of its data type. 

 

Here, ptr-- decrements the pointer ptr to point to the previous 

integer in the array arr. 

Pointer arithmetic also allows addition and subtraction of integers 

to/from pointers, which moves the pointer by a certain number of 

elements, scaled by the size of the data type it points to. Care must 

be taken with pointer arithmetic to ensure that pointers remain 

within valid memory bounds to avoid undefined behavior. 

 

Pointer Indirection (Dereferencing): 

Pointer indirection, also known as dereferencing, refers to the 

process of accessing the value stored at the memory address held 

by a pointer. It is denoted by the asterisk (*) operator placed before 

the pointer variable name. Dereferencing a pointer allows you to 

manipulate the data stored in the memory location pointed to by 

the pointer. 
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In this example, *ptr = 20; assigns the value 20 to the memory 

location pointed to by ptr, effectively updating the value of num. 

 

Null Pointers and Void Pointers: 

Null Pointers: A null pointer is a pointer that does not point to any 

memory location. It is initialized explicitly to a null value (nullptr) 

or implicitly when not initialized at all. Null pointers are often used 

to indicate that a pointer does not currently point to a valid object 

or memory location. 

 

int *ptr = nullptr; // Initializing ptr as a null pointer 

Void Pointers: A void pointer (or void*) is a special type of 

pointer that can point to objects of any data type. It is used when 

the specific type of data pointed to is not known at compile time or 

when dealing with functions that accept pointers to any type. 

However, you cannot directly dereference a void pointer without 

first casting it to a specific pointer type. 
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Pointers and Arrays (Relationship between Pointers and 

Arrays): 

In C++, arrays and pointers are closely related concepts due to the 

way arrays are implemented. An array name can be used as a 

pointer to its first element. When an array name is used in an 

expression, it is automatically converted to a pointer to the first 

element of the array. 

 

 

 

In this example, ptr is initialized to point to arr[0], the first element 

of the array arr. Using pointer arithmetic (ptr + i), you can access 

successive elements of the array. Thus, arrays and pointers are 

interchangeable in many contexts, making pointers an essential 

tool for efficiently manipulating arrays in C++. 

2.4 SPARSE MATRICES 
 

Sparse matrices are matrices where the majority of elements are 

zero. In contrast, dense matrices have mostly non-zero elements. 

The sparsity of a matrix refers to the proportion of zero elements to 

the total number of elements. Sparse matrices are commonly 

encountered in various fields, including scientific computing, data 

mining, and machine learning, where they help optimize storage 

and computation. 
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Representation Techniques: 

Triplet Representation (COO - Coordinate Format): 

In this representation, each non-zero element is stored with its row 

and column indices and its value. 

Example: If a matrix M has non-zero elements at (0, 1), (1, 2), and 

(2, 0), it would be represented as: 

 

Pros: Simple and easy to understand. Suitable for matrices with 

irregular non-zero patterns. 

 

Cons: Requires additional space for storing row and column 

indices. 

 

Compressed Sparse Row (CSR) Format: 

In CSR format, the matrix is represented using three arrays: 

 

Values array: Contains non-zero elements of the matrix in row-

major order. 

 

Column indices array: Stores the column indices corresponding 

to each non-zero element in the values array. 

 

Row pointers array: Indicates the start index in the values array 

for each row. 

Example: For a matrix with rows [0, 0, 2, 3] and column indices 

[1, 3, 1, 2], CSR format would be: 
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Pros: Efficient for row-wise operations like addition and 

multiplication. 

Cons: More complex to construct and maintain compared to COO 

format. 

 

Operations on Sparse Matrices: 

Addition: 

Add two sparse matrices by adding corresponding non-zero 

elements. 

Example: Adding two sparse matrices A and B involves adding 

elements at corresponding positions where both matrices have non-

zero elements. 

 

Multiplication: 

Multiply two sparse matrices using appropriate algorithms such as 

the traditional algorithm or the Strassen algorithm. 

Example: Multiplying two sparse matrices A and B involves 

multiplying rows of A with columns of B, taking into account zero 

elements to optimize computation. 

 

2.5 POLYNOMIALS   
 

Polynomials are mathematical expressions consisting of variables 

and coefficients raised to non-negative integer powers. They can 

be represented using arrays or linked lists, with each element 

storing a coefficient and an exponent. 
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Array Representation: 

In this representation, an array stores coefficient where each index 

corresponds to the exponent of the variable. 

Example: The polynomial 3x3 + 2x2 + x + 5 can be represented as 

an array [5, 1, 2, 3], where index 0 corresponds to the constant 

term, index 1 to the linear term, and so on. 

 

Linked List Representation: 

Using a linked list, each node contains a coefficient and an 

exponent. 

Example: The polynomial 3x3 + 2x2 + x + 5 can be represented as a 

linked list: 

 

Operations on Polynomials: 

Addition: 

Add two polynomials by combining like terms (terms with the 

same exponent). 

Example: Adding (3x2+2x+1)(3x^2 + 2x + 1)(3x2+2x+1) and 

(4x2+3x−2)(4x^2 + 3x - 2)(4x2+3x−2) results in 7x2+5x−17x^2 + 

5x - 17x2+5x−1. 

 

Multiplication: 

Multiply two polynomials using distributive property and 

combining like terms. 

Example: Multiplying (3x+2)(3x + 2)(3x+2) and (4x−1)(4x - 

1)(4x−1) results in 12x2+5x−212x^2 + 5x - 212x2+5x−2. 

 

Applications of Polynomials: 

Polynomials find applications in various computational problems, 

including: 
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Curve Fitting and Interpolation: Polynomials are used to 

approximate and fit curves to data points, facilitating trend analysis 

and predictive modeling in fields like statistics and engineering. 

 

Signal Processing: In digital signal processing, polynomials are 

used to model and manipulate signals for filtering, noise reduction, 

and compression. 

 

Numerical Methods: Polynomial interpolation and approximation 

are fundamental in numerical analysis for solving differential 

equations, optimization problems, and root finding algorithms. 

Computer Graphics: Polynomials are used extensively in 

computer graphics to represent curves and surfaces, enabling 

realistic rendering and animation in applications such as gaming 

and simulation. 

 

Error Detection and Correction: Error-correcting codes and 

algorithms in communication systems rely on polynomials for 

encoding and decoding information, ensuring reliable data 

transmission. 

 

2.6 REPRESENTATION OF ARRAYS 
 

Arrays are fundamental data structures that store elements of the 

same data type in contiguous memory locations. How elements are 

stored in memory can significantly impact access patterns and 

performance, especially in large datasets. 

 

Row-Major Representation: 

Definition: In row-major representation, elements of a 

multidimensional array are stored row by row in memory. 
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Memory Layout: If you have a 2D array A[m][n], the elements 

are stored sequentially such that all elements of row 0 are followed 

by all elements of row 1, and so forth. 

 

Access Pattern: Accessing elements is optimized for row-wise 

traversal. For example, accessing A[i][j] is efficient because the 

next element A[i][j+1] is adjacent in memory. 

 

Column-Major Representation: 

Definition: In column-major representation, elements of a 

multidimensional array are stored column by column in memory. 

 

Memory Layout: Similar to row-major but stored column-wise. 

Elements of column 0 are followed by elements of column 1, and 

so on. 

Access Pattern: Accessing elements is optimized for column-wise 

traversal. For example, accessing A[i][j] is efficient because the 

next element A[i+1][j] is adjacent in memory. 

 

Differences between Row-Major and Column-Major Order: 

Memory Storage Order: 

 

Row-Major: Elements of each row are stored contiguously in 

memory. 

Column-Major: Elements of each column are stored contiguously 

in memory. 

 

Traversal Efficiency: 

Row-Major: Optimized for row-wise traversal due to contiguous 

memory access. 

Column-Major: Optimized for column-wise traversal for the 

same reason. 
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Access Patterns: 

Row-Major: Accessing adjacent elements within the same row is 

efficient. 

Column-Major: Accessing adjacent elements within the same 

column is efficient. 

Advantages and Disadvantages: 

Row-Major: 

 

Advantages: 

Efficient for row-wise operations such as matrix addition, 

subtraction, and multiplication. 

Suitable for applications where row-oriented access patterns 

dominate, such as image processing and linear algebra operations. 

 

Disadvantages: 

Less efficient for column-wise operations, which may result in 

cache misses and reduced performance. 

Not optimal for applications requiring frequent column-oriented 

data access. 

 

 

Column-Major: 

Advantages: 

Efficient for column-oriented operations like transposition and 

certain types of matrix manipulations. 

Suitable for applications where column-wise access patterns are 

prevalent, such as database queries and statistical analysis. 

 

Disadvantages: 

May lead to inefficiencies in row-wise access, especially in 

algorithms that heavily depend on sequential row access. 
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Limited utility in applications that primarily utilize row-wise data 

manipulation. 

2.7 APPLICATIONS OF ARRAYS AND 
POINTERS 
 

Arrays and pointers are fundamental concepts in C++ 

programming with diverse applications across various domains. 

Here are some common applications where arrays and pointers 

play a crucial role: 

 

Data Structures: Arrays are the building blocks for implementing 

fundamental data structures such as lists, stacks, queues, and hash 

tables. For instance, dynamic arrays (using pointers) allow resizing 

based on runtime needs, making them versatile for data storage and 

manipulation. 

 

Dynamic Memory Allocation: Pointers are essential for dynamic 

memory allocation using operators like new and delete. This 

capability is crucial when the size of data is not known at compile 

time or when memory needs to be managed dynamically during 

program execution. 

 

String Manipulation: In C++, strings are often represented as 

arrays of characters (char[]). Pointers to characters (char*) are 

extensively used to manipulate and access individual characters 

within strings, allowing for efficient string operations like 

concatenation, comparison, and parsing. 

Function Parameters: Pointers are commonly used to pass 

parameters by reference to functions. This allows functions to 

modify variables outside their scope directly, facilitating efficient 

parameter passing and avoiding unnecessary copying of large data 

structures. 
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Multidimensional Arrays: Arrays of pointers or pointers to arrays 

enable the creation and manipulation of multidimensional data 

structures. This flexibility is crucial for representing matrices, 

images, and other complex data sets where data is organized in 

multiple dimensions. 

 

Iterating and Accessing Data: Pointers provide a mechanism for 

efficient iteration over arrays and other sequential data structures. 

Using pointer arithmetic, programmers can traverse arrays, access 

elements, and perform operations without explicitly calculating 

indices, thereby improving performance in data-intensive 

applications. 

 

Passing Arrays to Functions (Arrays as Function Arguments): 

Arrays can be passed to functions in C++ either directly or using 

pointers. When passed directly, the size of the array must be 

specified. However, using pointers allows passing arrays of 

varying sizes and enables the function to modify the original array. 

 

In this example, printArray accepts an array arr and its size as 

arguments. The main function passes myArray and its size to 

printArray, which then prints each element of the array. 
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Returning Arrays from Functions: 

C++ does not allow directly returning an entire array from a 

function. Instead, you can return a pointer to the first element of 

the array or use dynamic memory allocation to return arrays of 

variable size. 

 

Here, createArray dynamically allocates an array of integers of size 

size, initializes it, and returns a pointer to the first element. In 

main, newArray receives the returned pointer, allowing access to 

the elements of the dynamically allocated array. 

 

Dynamic Memory Allocation (Using new and delete): 

Dynamic memory allocation in C++ is achieved using new and 

delete operators. new allocates memory dynamically, while delete 

deallocates the memory allocated by new. 

 

 

 

Arrays can also be allocated dynamically: 
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Dynamic Arrays (Arrays Allocated on the Heap): 

Dynamic arrays in C++ are arrays whose size is determined at 

runtime using dynamic memory allocation. They are allocated on 

the heap, allowing flexibility in size and lifetime compared to 

static arrays allocated on the stack. 

 

 

Here, dynamicArray is allocated dynamically based on user input 

for size. It allows for efficient memory usage and flexibility 

compared to fixed-size arrays. 

 

2.8 CONCLUSION 
 

In conclusion, arrays and pointers form integral components of 

C++ programming, offering powerful capabilities in data 

management and memory manipulation. Arrays provide a 

structured way to store and access data elements sequentially, 

while pointers enable dynamic memory allocation and efficient 

memory management. Understanding these concepts is essential 

for developing efficient algorithms, implementing data structures, 

and optimizing program performance. 
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Throughout this exploration, we've highlighted how arrays allow 

for organized data storage and manipulation, supporting various 

operations such as iteration and sorting. Pointers, on the other 

hand, offer flexibility by facilitating direct memory access and 

dynamic memory allocation, crucial for handling large datasets and 

implementing complex data structures. 

 

Moreover, the synergy between arrays and pointers extends to 

enhancing string manipulation, supporting function parameter 

passing, and enabling advanced programming techniques. Mastery 

of these concepts equips programmers with the tools needed to 

build scalable and robust software solutions in C++, ensuring 

efficient memory usage and effective data handling. In summary, 

arrays and pointers are foundational elements in C++ 

programming, empowering developers to tackle diverse 

programming challenges with precision and efficiency. Continued 

practice and exploration of these concepts will further strengthen 

programming skills and expand capabilities in software 

development contexts. 

 

2.9 QUESTIONS AND ANSWERS 
 

1. What is an array? How does it differ from a linked list? 

Answer: An array is a contiguous block of memory elements 

where each element is of the same data type and accessed using an 

index. It offers constant-time access to elements but has a fixed 

size. In contrast, a linked list is a data structure where each element 

(node) contains a data field and a reference (pointer) to the next 

node. It allows dynamic size and efficient insertion/deletion at any 

position but requires linear-time access. 

 



Data Structure using C++ & Lab -58 
 

2. Explain the concept of pointers in C/C++ and their 

significance in memory management. 

Answer: Pointers in C/C++ are variables that store memory 

addresses of other variables. They enable direct access to memory 

locations, facilitating dynamic memory allocation and 

manipulation of data structures like arrays and linked lists. They 

are crucial for efficient memory management and are used 

extensively for tasks like passing arguments to functions by 

reference and implementing data structures. 

 

3. What are sparse matrices, and why are they used? Provide 

an example of their application. 

Answer: Sparse matrices are matrices with a large number of 

elements that are zero. They are represented efficiently using 

techniques like triplet representation (COO format) or compressed 

sparse row/column (CSR/CSC formats). They are used to save 

memory and optimize operations in applications where most 

matrix elements are zero, such as in finite element analysis, graph 

algorithms, and image processing. 

4. Compare the representation of arrays in row-major and 

column-major order. What are their advantages and 

disadvantages? 

Answer: In row-major order, elements of a 2D array are stored 

row-wise in memory, while in column-major order, they are stored 

column-wise. Row-major order provides faster traversal of rows 

but slower traversal of columns, whereas column-major order is 

efficient for column-wise operations but slower for rows. The 

choice depends on the access pattern of the application and the 

underlying hardware architecture. 
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5. How are polynomials represented using arrays or linked 

lists? Describe an efficient way to perform polynomial 

addition. 

Answer: Polynomials can be represented using arrays (coefficient 

array where index represents the exponent) or linked lists (nodes 

containing coefficient and exponent fields). Polynomial addition 

involves iterating through both polynomials and adding 

corresponding coefficients for each exponent. Efficient addition 

can be achieved by iterating through the arrays/lists 

simultaneously, combining terms with the same exponent, and 

appending remaining terms. 
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3.0 INTRODUCTION 
 

In the realm of computer science and software engineering, 

understanding and effectively utilizing data structures are 

fundamental to building efficient and scalable applications. Among 

these structures, lists play a pivotal role by offering a flexible 

means to store and manipulate collections of data elements in a 

linear sequence. This chapter explores various facets of lists, 

ranging from their theoretical underpinnings to practical 

implementations using different data structures. 

 

Lists are versatile and can be implemented in multiple ways, each 

method offering unique advantages and addressing specific 

operational needs. This chapter delves into the Abstract Data Type 

(ADT) of lists, which provides a conceptual framework defining 

operations like insertion, deletion, and traversal. We explore how 
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lists can be implemented using arrays, linked lists—including 

singly linked, doubly linked, and circularly linked variations—and 

delve into more advanced structures like skip lists. 

Understanding these implementations is crucial for developers 

seeking to optimize data management strategies, balance 

performance with memory efficiency, and adapt to diverse 

application requirements. By the end of this chapter, readers will 

gain a comprehensive understanding of lists as a foundational data 

structure and how different implementations cater to various 

computational challenges. 

 

3.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understand the Concept of Lists: Define what lists are in the 

context of data structures, emphasizing their linear sequence and 

operations. 

 

Explore Abstract Data Type (ADT) of Lists: Introduce the ADT 

of lists, specifying its operations and abstracting away 

implementation details. 

 

Compare and Contrast Implementations: Compare different 

implementations of lists, including array-based lists and various 

forms of linked lists (singly linked, doubly linked, circularly 

linked), highlighting their advantages and disadvantages. 

 

Discuss Efficiency Considerations: Analyze the efficiency of list 

operations such as insertion, deletion, and search in different 

implementations, considering time complexity and memory usage. 
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Introduce Skip Lists: Introduce skip lists as a probabilistic data 

structure alternative to balanced trees, explaining their structure, 

operations, and advantages. 

 

3.2 LISTS 
 

A list is a linear data structure in C++ that illustrates an ordered 

group of elements. Every element in the list has a unique location 

that determines whether it may be viewed, added, or deleted. There 

are several ways to implement lists, but the most popular ones are 

linked lists and array-based lists. Contiguous memory regions are 

used by array-based lists, which enables quick indexed access but 

necessitates resizing when the capacity is reached. In contrast, 

linked lists are efficient for insertion and deletion operations at any 

location since they are made up of nodes that each contain data and 

a pointer to the next node. However, accessing items of linked lists 

is slower than with array-based lists. C++ lists are flexible and 

capable of managing homogeneous data types. They can also 

dynamically modify their size to fit different data sizes. They are 

essential in many applications, such as algorithm implementation 

and data management. 

 

Characteristics of Lists 

Ordered Collection: The elements in a list are ordered, meaning 

each element has a specific position (index) within the list. 

 

Indexed Access: Elements can be accessed, inserted, or deleted 

based on their index. 

Dynamic Size: Lists can grow and shrink in size dynamically, 

allowing elements to be added or removed. 
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Homogeneous or Heterogeneous: Depending on the 

implementation and language, lists can contain elements of the 

same type (homogeneous) or elements of different types 

(heterogeneous). 

Operations on Lists (insertion, deletion, traversal) 

Insertion: Adding an element to the list at a specific position. 

Deletion: Removing an element from the list based on its position 

or value. 

Traversal: Accessing each element of the list, typically using 

loops or recursion. 

Searching: Finding an element in the list based on its value. 

Updating: Changing the value of an element at a specific position. 

 

Insertion:  

Algorithm for Insertion: 

At the end: 

Check if the array is full. If yes, resize the array. 

Add the new element to the end of the array. 

Increment the size of the array. 

 

At a specific position: 

Check if the array is full. If yes, resize the array. 

Shift elements from the specified position to the right. 

Insert the new element at the specified position. 

Increment the size of the array. 
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Code Example: 

 

 

Deletion 

Algorithm for Deletion: 

At the end: 

Simply decrement the size of the array. 

At a specific position: 

Shift elements from the specified position to the left. 

Decrement the size of the array. 

 

Code Example: 

 

Traversal 

Algorithm for Traversal: 

Iterate over each element in the array and perform the desired 

operation. 

Code Example: 
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Types of Lists (array-based, linked lists, skip lists) 

 

Array-based Lists 

Array-based lists, often implemented using arrays or vectors, store 

elements in contiguous memory locations. This structure allows for 

O(1) time complexity for accessing elements by their index, 

making it ideal for applications requiring frequent random access. 

However, insertions and deletions, especially in the middle or 

beginning of the list, are less efficient, typically O(n) due to the 

need to shift elements. Array-based lists are suitable for use cases 

where the list size does not change frequently or can be resized 

dynamically, such as managing a list of fixed-size records or a 

collection of items that is primarily read-only. 

 

Singly Linked Lists 

A singly linked list consists of nodes, each containing data and a 

pointer to the next node. This structure provides dynamic sizing 

and allows for efficient O(1) insertions and deletions at the 

beginning of the list. However, accessing elements requires O(n) 

time as it involves traversing the list sequentially from the head 

node. Singly linked lists are advantageous in scenarios where 

frequent insertions and deletions are required, such as 

implementing stacks, queues, or managing a dynamic collection of 

elements where the order of elements needs to be maintained 

without frequent random access. 

 

Doubly Linked Lists 

Doubly linked lists enhance singly linked lists by having nodes that 

contain pointers to both the next and previous nodes, enabling 

bidirectional traversal. This feature allows for efficient insertions 

and deletions at both ends and anywhere within the list with O(1) 

complexity, provided the node to be inserted or deleted is known. 
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However, they require additional memory for the extra pointer in 

each node. Doubly linked lists are useful in applications such as 

navigation systems where backward and forward traversal is 

needed, or in implementing complex data structures like deques 

and certain types of caches. 

 

Circular Linked Lists 

Circular linked lists are a variation of linked lists where the last 

node points back to the first node, forming a circle. This allows for 

continuous traversal of the list and can be implemented as either 

singly or doubly linked. Circular linked lists are particularly useful 

in scenarios requiring cyclic iteration, such as in round-robin 

scheduling or implementing a circular buffer. They provide the 

same benefits as their singly or doubly linked counterparts, with 

the added advantage of naturally supporting circular traversal 

without additional checks. 

 

Skip Lists 

Skip lists are an advanced data structure that enhances linked lists 

with multiple levels of links, allowing for efficient O(log n) search, 

insertion, and deletion operations. By using randomization, skip 

lists maintain a balanced structure probabilistically, providing 

performance similar to balanced trees but with simpler algorithms. 

Each element in the skip list is part of multiple linked lists at 

different levels, with higher levels skipping over multiple 

elements, thus speeding up the search process. Skip lists are ideal 

for applications requiring fast search times, such as databases, in-

memory data structures, and distributed systems. 
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3.3 ABSTRACT DATA TYPE - LIST 
 

An Abstract Data Type (ADT) for a list is a conceptual model that 

defines a collection of elements organized in a linear sequence. It 

provides a clear interface specifying operations that can be 

performed on the list, without specifying how these operations are 

implemented. Here’s an overview of the Abstract Data Type - List: 

 

A list is an ordered collection of elements where each element has 

a specific position or index. Elements can be of any data type, and 

the list can dynamically grow or shrink in size. Elements in a list 

are arranged in a linear sequence, where each element (except 

possibly the first and last) has a unique predecessor and successor. 

 

Operations Defined for List ADT 

Insertion: Adds an element at a specified position in the list. 

Deletion: Removes an element from a specified position in the list. 

Access: Retrieves the element at a specified position in the list. 

Traversal: Iterates through all elements in the list, typically from 

the beginning to the end. 

Search: Finds the position of a specified element in the list, if it 

exists. 

Size Management: Provides operations to determine the number 

of elements currently in the list. 

Concatenation: Combines two lists into a single list. 

Sorting: Arranges elements in a specified order, such as ascending 

or descending. 

 

Implementation Considerations 

Array-based Implementation: Uses a contiguous block of 

memory to store elements, allowing direct access by index but 

requiring resizing operations for dynamic lists. 
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Linked List Implementation: Utilizes nodes with 

pointers/references to connect elements, providing flexibility in 

size and efficient insertion/deletion operations. 

Usage and Applications 

Data Structures: Lists are fundamental in various data structures 

like stacks, queues, and priority queues. 

Applications: Used in applications requiring dynamic data 

management, such as databases, text processing, and simulations. 

Example of List ADT Interface (Pseudocode) 

 

ADT operations and their specifications 

list of operations commonly associated with Abstract Data Types 

(ADTs) and their typical specifications. These operations provide a 

standardized interface for interacting with data structures, ensuring 

consistency in behavior while abstracting away implementation 

details: 

 

1. Insertion (Insert): Adds an element to the data structure at a 

specified position or according to specific rules. 

Parameters: 

position: Position where the element should be inserted. 

element: The element to be inserted. 

Returns: true if insertion is successful, false otherwise (e.g., if 

position is out of bounds). 
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2. Deletion (Delete) 

Description: Removes an element from the data structure at a 

specified position. 

Parameters: position: Position of the element to be deleted. 

Returns: true if deletion is successful, false otherwise (e.g., if 

position is out of bounds). 

 

3. Access (Get): Retrieves the element from the data structure at a 

specified position without modifying the data structure. 

Parameters: position: Position of the element to retrieve. 

Returns: The element at the specified position, or a specified 

default value or error indicator if position is out of bounds. 

 

4. Search (Find) 

Description: Searches for a specified element within the data 

structure. 

Parameters: element: Element to search for. 

Returns: Position/index of the element if found, or a specified 

indicator (e.g., -1 or nullptr) if not found. 

 

Advantages and disadvantages of using ADT List 

Using an Abstract Data Type (ADT) List offers several advantages 

and disadvantages, depending on the specific requirements and 

context of the application. Here’s a breakdown of the key 

advantages and disadvantages: 

 

Advantages: 

Flexibility: ADT List provides a flexible structure for storing and 

manipulating elements in a linear sequence. It supports various 

operations such as insertion, deletion, access, and traversal, making 

it versatile for different application needs. 
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Modularity: ADT List abstracts away the implementation details, 

allowing programmers to focus on the interface and functionality 

of the data structure rather than low-level operations. This 

promotes modular programming and enhances code reusability. 

Ease of Use: The defined operations (insertion, deletion, etc.) 

provide a clear and standardized way to interact with the data 

structure. This makes it easier for developers to understand and 

maintain the code. 

 

Performance: Depending on the implementation (e.g., array-based 

or linked list-based), ADT List can offer efficient performance 

characteristics for specific operations. For example, arrays provide 

O(1) access time, while linked lists offer O(1) insertion/deletion 

time at the head/tail. 

 

Scalability: ADT List implementations can scale well with the size 

of the data. Dynamic resizing (in array-based lists) or node 

allocation (in linked lists) allows the list to grow or shrink as 

needed, accommodating varying data sizes efficiently. 

 

Disadvantages: 

 

Memory Overhead: Some implementations of ADT List, 

especially linked lists, can incur memory overhead due to storing 

additional pointers or references for linking elements. This 

overhead may affect memory usage efficiency, particularly for 

large datasets. 

 

Access Time Complexity: Depending on the implementation, 

certain operations such as random access (e.g., accessing elements 

by index in linked lists) may have higher time complexity (e.g., 
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O(n) for linked lists vs. O(1) for arrays). This can impact 

performance in applications requiring frequent random access. 

 

Complexity of Operations: While ADT List abstracts 

implementation details, certain operations like insertion or deletion 

in specific positions (e.g., middle of the list) can be complex and 

may require careful handling of pointers/references (in linked lists) 

or resizing operations (in arrays). 

 

Lack of Specificity: ADT List provides a general-purpose 

interface for lists but may not optimize performance for specific 

use cases. Specialized data structures (e.g., queues, stacks, priority 

queues) may offer more tailored solutions for particular application 

requirements. 

 

Dependency on Implementation: The efficiency and 

characteristics of ADT List heavily depend on the chosen 

implementation (e.g., array-based vs. linked list-based). Selecting 

the appropriate implementation is crucial for achieving desired 

performance and memory usage goals. 

 

3.4 ARRAY IMPLEMENTATION OF 
LISTS 
 

Array implementation of lists involves using a contiguous block of 

memory to store the elements of the list. In this structure, each 

element is stored in an indexed position, allowing for O (1) time 

complexity for access by index, which makes it efficient for 

random access operations. However, array-based lists require 

resizing when the capacity is exceeded, which involves creating a 

new larger array and copying the elements from the old array to the 

new one, an operation with O(n) time complexity. Additionally, 
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insertions and deletions, especially at the beginning or in the 

middle of the list, are less efficient because they require shifting 

elements to maintain order, also with O(n) time complexity. 

Despite these limitations, array-based lists are widely used due to 

their straightforward implementation and efficient access times, 

making them suitable for applications where frequent random 

access is needed and the list size doesn't change dramatically. 

Common examples include dynamic arrays such as C++'s 

std::vector and Java's ArrayList. 

 

Basics of array data structure 

An array is a linear data structure consisting of a collection of 

elements (values or variables), each identified by at least one index 

or key. Elements are typically stored in contiguous memory 

locations, allowing for efficient access to individual elements using 

their index. 

 

Syntax 

Declaration and Initialization 

Arrays in C++ are declared using a fixed size and can be initialized 

with specific values at the time of declaration or later. 

 

 

Accessing Elements 

Elements in an array are accessed using zero-based indexing. 
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Updating Elements 

Individual elements of an array can be updated by assigning a new 

value to the corresponding index. 

 

 

Iterating Through an Array 

Arrays are typically iterated using loops like for or while. 

 

 

Characteristics 

Fixed Size: Arrays have a fixed size defined at the time of 

declaration, which determines the maximum number of elements 

they can store. 

Homogeneous Elements: Arrays usually store elements of the 

same data type (e.g., integers, characters). 

Index-based Access: Elements in an array are accessed using 

numeric indices starting from 0 up to size-1, providing O(1) time 

complexity for accessing an element by its index. 

Contiguous Memory Allocation: Elements in an array are stored 

next to each other in memory, which facilitates efficient traversal 

and sequential access. 

 

Operations 

Access: Retrieve the value of an element at a specific index. 

Insertion: Add an element at a specified position within the array. 

Deletion: Remove an element from a specified position, often 

requiring elements to be shifted. 

Update: Modify the value of an existing element at a specific 

index. 
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Traversal: Iterate through all elements of the array sequentially. 

 

 

Usage 

Arrays are widely used in programming for various purposes: 

Data Storage: Storing collections of data elements that need to be 

accessed efficiently. 

Implementing Other Data Structures: Serving as the underlying 

structure for more complex data structures like stacks, queues, and 

hash tables. 

Matrix Operations: Representing and manipulating matrices in 

mathematical computations and algorithms. 

Sorting and Searching: Arrays are essential for implementing 

sorting algorithms (e.g., bubble sort, quicksort) and searching 

algorithms (e.g., binary search). 

Buffering: Handling input/output operations and buffering data in 

applications. 

 

Implementing a list using arrays 

Implementing a list (or a dynamic array-based list) using arrays 

involves creating a data structure that can dynamically resize itself 

as elements are added or removed. Here’s a basic implementation 

of a list using arrays in C++: 

#include <iostream> 

class ArrayList { 

private: 

    int capacity;   // Maximum capacity of the list 

    int size;       // Current number of elements in the list 

    int* arr;       // Pointer to the array storing elements 

public: 

    // Constructor to initialize an empty list 

    ArrayList(int capacity) { 
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        this->capacity = capacity; 

        this->size = 0; 

        this->arr = new int[capacity]; 

    } 

    // Destructor to free memory allocated to the array 

    ~ArrayList() { 

        delete[] arr; 

    } 

    // Function to insert an element at the end of the list 

    void insert(int value) { 

        if (size < capacity) { 

            arr[size++] = value; 

        } else { 

            std::cout << "List is full. Cannot insert." << std::endl; 

        } 

    } 

    // Function to remove an element from the list at a specific index 

    void remove(int index) { 

        if (index < 0 || index >= size) { 

            std::cout << "Invalid index. Cannot remove." << std::endl; 

        } else { 

            for (int i = index; i < size - 1; ++i) { 

                arr[i] = arr[i + 1]; 

            } 

            size--; 

        } 

    } 

    // Function to get the size of the list (number of elements) 

    int getSize() { 

        return size; 

    } 

    // Function to print all elements in the list 
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    void print() { 

        std::cout << "List elements:"; 

        for (int i = 0; i < size; ++i) { 

            std::cout << " " << arr[i]; 

        } 

        std::cout << std::endl; 

    } 

}; 

// Example usage of the ArrayList class 

int main() { 

    // Create an ArrayList with initial capacity of 5 

    ArrayList list(5); 

    // Insert elements into the list 

    list.insert(10); 

    list.insert(20); 

    list.insert(30); 

    // Print current elements in the list 

    list.print();  // Output: List elements: 10 20 30 

    // Remove an element from the list 

    list.remove(1);  // Removes element at index 1 (20) 

    // Print updated list 

    list.print();  // Output: List elements: 10 30 

    return 0; 

} 

 

Efficiency considerations (time and space complexity) 

When implementing a list using arrays, efficiency considerations 

revolve around several key aspects that impact the performance 

and usability of the data structure: 
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1. Dynamic Resizing 

Arrays have a fixed size once allocated, which necessitates careful 

handling when the number of elements exceeds the initial capacity. 

Dynamic resizing strategies involve: 

Doubling the Array Size: When the array reaches capacity, 

allocate a new array of double the current size, copy existing 

elements, and deallocate the old array. This strategy amortizes the 

cost of resizing, typically resulting in O(1) average time 

complexity for insertions. 

Shrinking the Array: When the number of elements decreases 

significantly, consider resizing the array to save memory, though 

this operation may be less frequent. 

 

 

2. Insertion and Deletion 

Efficient insertion and deletion operations are critical for list 

implementations using arrays: 

Insertion: 

End of List: O(1) average time complexity if space is available. 

Middle of List: O(n) time complexity due to shifting elements 

after the insertion point. 

Deletion: 

End of List: O(1) time complexity for removing the last element. 

Middle of List: O(n) time complexity due to shifting elements 

after the deletion point. 

 

3. Access and Search 

Arrays offer O(1) time complexity for accessing elements by 

index, which is advantageous for random access: 

Ensure indices are within bounds to prevent out-of-bound errors, 

which can lead to runtime issues. 
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4. Memory Management 

Efficient memory management practices include: 

Allocating Memory: Allocate sufficient memory initially based on 

expected usage to minimize frequent resizing. 

Deallocating Memory: Properly deallocate memory when 

elements are removed or when the list is destroyed to prevent 

memory leaks. 

 

5. Trade-offs with Other Data Structures 

Consider trade-offs between array-based lists and other data 

structures like linked lists: 

Arrays vs. Linked Lists: Arrays offer efficient random access but 

can be inefficient for frequent insertions/deletions in the middle. 

Linked lists excel in dynamic resizing and efficient 

insertions/deletions but may consume more memory due to node 

overhead. 

 

6. Amortized Analysis 

Use amortized analysis to evaluate the average time complexity of 

operations over a series of operations rather than individual ones, 

especially for resizing operations in dynamic arrays. 

 

Example Considerations 

In the context of the previously discussed ArrayList 

implementation: 

Insertions: Efficient at the end (O(1)), less efficient in the middle 

(O(n)). 

Deletions: Efficient at the end (O(1)), less efficient in the middle 

(O(n)). 

Resizing: Occurs infrequently due to doubling strategy, amortizing 

the cost of resizing over multiple operations. 
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3.5 LINKED LISTS - 
IMPLEMENTATION 
 

Implementing linked lists involves defining the structure of nodes 

and operations to manipulate these nodes. Linked lists are 

composed of nodes where each node contains data and a 

pointer/reference to the next node in the sequence. Here's a basic 

outline of how linked lists can be implemented in C++: 

 

Node Structure 

First, define a structure for the nodes of the linked list: 

 

Types of linked lists (singly linked, doubly linked, circularly 

linked) 

Linked lists are versatile data structures that come in several types, 

each offering unique advantages for different applications. Here’s 

an overview of the types of linked lists—singly linked, doubly 

linked, and circularly linked—and their operations with 

algorithms: 

 

1. Singly Linked List 

In a singly linked list, each node contains data and a 

pointer/reference to the next node in the sequence. It only allows 

traversal in one direction—from the head to the last node. 
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Operations: 

Insertion at the Beginning (insertFront): 

Create a new node with the given data. 

Point the new node's next to the current head. 

Update head to point to the new node. 

 

 

Insertion at the End (insertBack): 

Traverse the list to find the last node. 

Create a new node with the given data and set its next to 

nullptr. 

Point the last node's next to the new node. 

 

 

Deletion by Value (deleteNode): 

Traverse the list to find the node with the given value and its 

predecessor. 

Update the predecessor node's next to skip the node to be deleted. 

Delete the node and free memory. 
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Comparisons with array-based lists 

 

 Array-based Lists Linked Lists 

Memory 

Allocation  

Allocate contiguous 

memory block, 

typically resizing 

when capacity is 

exceeded. 

Memory Allocation: 

Nodes dynamically 

allocated as needed, 

supporting efficient 

memory usage. 

Memory Usage May allocate more 

memory than needed 

due to pre-allocation 

or resizing strategies. 

Overhead due to storing 

pointers/references for 

linking nodes. 

Insertions and 

Deletions 

Insertions: Efficient 

at the end with 

amortized constant 

time complexity 

(O(1)), but inefficient 

in the middle due to 

shifting elements 

(O(n)). 

Insertions: Efficient at 

both ends (O(1) for 

head/tail), and efficient 

in the middle with direct 

node manipulation (O(1) 

given node reference). 

Deletions: Efficient with 

direct node access (O(1) 
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Deletions: Similar to 

insertions, O(n) in 

worst-case for 

deletions in the 

middle. 

given node reference), 

but O(n) for searching 

node to delete. 

Random 

Access 

O(1) time complexity 

for accessing 

elements by index, 

due to contiguous 

memory allocation. 

O(n) time complexity for 

accessing elements by 

index, requiring traversal 

from the head to the 

desired index. 

Space 

Efficiency 

Efficient in terms of 

space utilization 

when the list is 

nearly full due to 

contiguous 

allocation. 

May consume more 

memory due to node 

overhead (next/prev 

pointers), especially for 

small data sizes. 

Implementation 

Complexity 

Simple to implement 

and understand, with 

direct indexing and 

straightforward 

operations. 

More complex due to 

pointer manipulation, 

requiring careful 

management of node 

connections and 

potential for memory 

leaks. 

 

3.6 DOUBLY LINKED LISTS - 
IMPLEMENTATION 
 

A doubly linked list extends the singly linked list by each node 

containing an additional pointer/reference to the previous node, 

allowing bidirectional traversal. 
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Operations: 

Insertion at the Beginning (insertFront): 

Create a new node with the given data. 

Set its next to the current head and its prev to nullptr. 

Update the prev of the current head to point to the new node. 

Update head to point to the new node. 

 

 

Insertion at the End (insertBack): 

Similar to singly linked list, but also update the prev of the new 

node to point to the current last node. 

 

Deletion by Value (deleteNode): 

Traverse the list to find the node with the given value. 

Update the next of the predecessor node and the prev of the 

successor node to skip the node to be deleted. 

Delete the node and free memory. 
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Advantages over singly linked lists 

Doubly linked lists offer several advantages over singly linked 

lists, primarily due to their ability to support bidirectional traversal 

and more flexible node manipulation. Here are the key advantages 

of doubly linked lists over singly linked lists: 

 

1. Bidirectional Traversal 

In a doubly linked list, each node maintains pointers to both its 

previous and next nodes. This bidirectional linkage allows 

traversal in both directions—from head to tail and from tail to 

head. This feature enables efficient operations that require 

accessing nodes in reverse order, which is not possible or efficient 

with singly linked lists. 

 

2. Easy Deletion of Nodes 

Deleting a node in a doubly linked list is more straightforward 

compared to a singly linked list: 

Singly Linked List: To delete a node, you typically need to 

traverse the list to find the node and modify its previous node's 

next pointer to skip over the node to be deleted. This requires 

knowing the previous node, which may involve an additional 

traversal. 
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Doubly Linked List: In contrast, a doubly linked list allows direct 

access to both the previous and next nodes of any given node. 

Thus, deleting a node involves simply adjusting the next and prev 

pointers of its adjacent nodes, without needing to traverse the list 

again to find the previous node. 

 

3. Insertions and Deletions at Both Ends 

Doubly linked lists support efficient insertions and deletions at 

both the head and tail of the list: 

Insertion at the Head: In a doubly linked list, inserting a node at 

the head involves updating the next pointer of the new node to 

point to the current head, updating the prev pointer of the current 

head (if it exists), and updating the head pointer to the new node. 

This operation is O(1) constant time complexity. 

Insertion at the Tail: Similarly, inserting a node at the tail of a 

doubly linked list is efficient. It involves updating the next pointer 

of the current last node to point to the new node, updating the prev 

pointer of the new node to point to the current last node, and 

updating the tail pointer (if maintained) to the new node. This 

operation is also O(1) constant time complexity. 

 

3.7 CIRCULARLY LINKED LIST 
SIMPLEMENTATION 
 

In a circularly linked list, the last node points back to the first 

node, forming a circular loop. This structure allows for continuous 

traversal. 

 

Operations: 

Insertion at the Beginning (insertFront): 

Similar to singly linked list insertion at the beginning, but handle 

the circular link by pointing the last node's next to the new node. 
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Insertion at the End (insertBack): 

Traverse to find the last node and update its next to point to the 

new node. 

 

Deletion by Value (deleteNode): 

Traverse the list to find the node with the given value and its 

predecessor. 

Update the predecessor node's next to skip the node to be deleted. 

Handle circular links to maintain integrity. 
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Applications where circular lists are useful 

ircular lists, also known as circularly linked lists, find applications 

in various scenarios where cyclic or continuous access patterns are 

advantageous. Here are some notable applications where circular 

lists are useful: 

 

1. Circular Buffers or Ring Buffers 

Circular lists are commonly used to implement circular buffers, 

also known as ring buffers or cyclic buffers. These buffers are 

fixed-size arrays managed as circular lists, where elements wrap 

around upon reaching the end of the buffer. Key applications 

include: 

Data Streaming: In real-time data processing or streaming 

applications, circular buffers efficiently manage continuous data 

flow, such as audio or video streams, without needing to resize or 

shift data. 

Embedded Systems: Circular buffers are extensively used in 

embedded systems for managing data between different parts of a 
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system, where efficient memory management and predictable 

behavior are crucial. 

2. Round-Robin Scheduling 

In operating systems and task scheduling algorithms, circular lists 

facilitate round-robin scheduling, where tasks are scheduled in a 

circular sequence. Each task gets a predefined time slice before the 

scheduler moves to the next task in the sequence. This approach 

ensures fair allocation of CPU time among multiple tasks. 

CPU Scheduling: In multitasking environments, round-robin 

scheduling using circular lists ensures that all processes receive an 

equal share of CPU time, promoting fairness and preventing 

starvation. 

 

3. Managing Circular Lists of Objects 

Circular lists are also useful in managing cyclic relationships or 

sequences of objects that naturally form a loop: 

Game Development: In game development, circular lists can 

manage objects or entities that move in a continuous loop, such as 

a game world where characters or objects wrap around the screen. 

Data Structures: Circular lists are employed in implementing data 

structures like circular queues, which efficiently manage data in 

applications such as event handling or task processing where data 

needs to be processed in a continuous loop. 

 

4. Navigation and Routing Algorithms 

In geographical applications and routing algorithms, circular lists 

can represent circular paths or continuous routes: 

Navigation Systems: Circular lists are used to represent circular 

routes or paths in navigation systems, where routes wrap around to 

the starting point. 

Network Routing: In network protocols and algorithms, circular 

lists can represent circular paths in data packet routing, ensuring 
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packets are forwarded in a loop until reaching their destination or 

timing out. 

 

5. Resource Management and Allocation 

Circular lists are also utilized in resource management and 

allocation scenarios: 

Memory Management: Circular lists can manage memory 

allocation in memory pools or memory caches, where memory 

blocks are reused in a continuous loop to optimize memory usage 

and access. 

Resource Allocation: In resource allocation algorithms, circular 

lists can manage the allocation and deallocation of resources, 

ensuring efficient utilization and recycling of resources in a cyclic 

manner. 

 

3.8 SKIP LIST 
 

Skip lists are a data structure that combines the advantages of 

linked lists with probabilistic balancing, allowing for fast search, 

insertion, and deletion operations. They are particularly useful in 

scenarios where balanced trees (like AVL trees or red-black trees) 

might be too complex or where dynamic data structures with 

efficient average-case performance are required. Here’s an 

overview of skip lists, their structure, operations, and applications: 

 

Structure of Skip Lists 

Layers: Skip lists are composed of multiple layers (or levels), 

where each level is essentially a linked list. The bottom level (level 

0) contains all elements in sorted order. 

 

Skip Pointers: Nodes at each level have pointers that may skip 

over several elements in the list. Higher levels have fewer nodes, 
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with each node skipping more elements, effectively speeding up 

search operations. 

 

Header and Sentinel Nodes: Skip lists typically include header 

nodes at each level to simplify boundary conditions and sentinel 

nodes (often nullptr or an infinite node) at the end of each list. 

 

Operations on Skip Lists 

Search: Skip lists support efficient search operations, similar to 

binary search trees but without requiring strict balance conditions. 

Starting from the top level, skip pointers are used to quickly 

narrow down the search range. 

Insertion: To insert an element, determine the insertion point using 

search. Randomly decide the level of the new node (higher levels 

are less probable), and update skip pointers at each level 

accordingly to maintain the list’s structure. 

 

Deletion: Deleting an element involves updating skip pointers to 

bypass the node to be deleted at each level. This operation requires 

careful adjustment to maintain the skip list’s properties. 

 

Advantages of Skip Lists 

Average-Case Performance: Skip lists offer average-case O(log 

n) time complexity for search, insertion, and deletion operations, 

similar to balanced binary search trees but with simpler 

maintenance requirements. 

 

Simplicity: Compared to balanced trees, skip lists are easier to 

implement and manage. They do not require rebalancing 

operations, making them more suitable for dynamic datasets with 

frequent updates. 
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Versatility: Skip lists can be adapted for various applications 

where efficient search and insertion operations are critical, such as 

database indexing, priority queues, and probabilistic data 

structures. 

 

Applications of Skip Lists 

Database Indexing: Skip lists are used in databases to speed up 

search operations, providing efficient indexing structures for large 

datasets. 

 

Concurrency Control: In concurrent programming, skip lists can 

be adapted for lock-free data structures, enabling efficient and 

scalable access to shared resources. 

 

Priority Queues: Skip lists can serve as the basis for priority 

queues, where elements are dynamically prioritized based on their 

keys or values. 

 

 

3.9 CONCLUSION 
 

In conclusion, the study of lists as fundamental data structures 

reveals their indispensable role in computer science and software 

engineering. Lists, characterized by their linear arrangement of 

elements, provide a versatile framework for organizing and 

manipulating data in a sequential manner. Throughout this chapter, 

we have explored various implementations and aspects of lists, 

starting with their conceptual underpinnings as the Abstract Data 

Type (ADT) of lists. This foundational understanding paved the 

way for delving into practical implementations such as array-based 

lists, which offer direct access but require careful management of 

memory and resizing, and linked lists, including singly linked, 



Data Structure using C++ & Lab -92 
 

doubly linked, and circularly linked variations, each suited to 

different operational needs and efficiency considerations. 

 

Additionally, skip lists emerged as a notable alternative, leveraging 

probabilistic techniques to provide efficient search, insertion, and 

deletion operations. By comparing these implementations, we have 

underscored how different design choices impact performance 

metrics like time complexity and memory usage, crucial for 

optimizing data-intensive applications. Practical examples across 

databases, scheduling algorithms, and more illustrate the versatility 

and real-world applicability of lists. Mastery of these structures 

equips developers with the tools to design efficient, scalable 

solutions tailored to diverse computational challenges, ensuring 

robust performance and adaptability in software systems. 

 

In essence, lists remain pivotal in both theoretical foundations and 

practical applications within the realm of data structures. Their 

continual evolution and adaptation underscore their enduring 

relevance in modern computing, promising continued exploration 

and innovation in leveraging lists for optimal data management 

and computational efficiency. 

 

3.10 QUESTIONS AND ANSWERS 
 

Q1: What is the main difference between an array-based list 

and a linked list? 

Answer: The main difference lies in how they store and access 

elements. 

Array-based lists store elements in contiguous memory locations, 

allowing for fast random access using indices. However, resizing 

an array can be costly, especially if it exceeds its allocated 

capacity. 
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Linked lists, on the other hand, use nodes with pointers to link 

elements, which allows for efficient insertion and deletion 

operations but does not support direct indexing. Each type has its 

advantages based on the specific application needs for access and 

modification operations. 

 

Q2: Why would you choose a doubly linked list over a singly 

linked list? 

Answer: Doubly linked lists offer bidirectional traversal 

capabilities compared to singly linked lists, which only support 

forward traversal. This bidirectional feature allows for efficient 

backward traversal and easier node deletion operations as each 

node maintains references to both its previous and next nodes. 

However, doubly linked lists require more memory due to storing 

an additional pointer for each node, and they are more complex to 

implement and maintain than singly linked lists. 

 

Q3: What are skip lists, and what advantages do they offer 

over traditional balanced trees? 

Answer: Skip lists are probabilistic data structures that provide 

efficient search, insertion, and deletion operations similar to 

balanced trees (e.g., AVL trees, red-black trees) but with simpler 

implementation and maintenance requirements. They achieve this 

by linking elements across multiple levels, where each level 

represents a progressively sparser subset of the elements. Skip lists 

offer average-case O(log n) time complexity for search, insertion, 

and deletion operations, making them suitable for applications 

where maintaining balanced trees would be overly complex or 

unnecessary. 
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Q4: In what scenarios would you prefer using a circularly 

linked list? 

Answer: Circularly linked lists are particularly useful in scenarios 

where data elements need to be processed in a continuous loop or 

cycle. Examples include: 

Round-robin scheduling: Managing tasks or processes in a cyclic 

manner, ensuring fair allocation of resources over time. 

Buffer management: Implementing circular buffers or queues 

where elements wrap around once the end of the buffer is reached, 

useful in data streaming and real-time processing applications. 

 

Q5: How can lists be used in database management systems? 

Answer: Lists play a crucial role in database management systems 

for storing and managing collections of records or entries: 

Indexing: Lists can serve as index structures, facilitating fast 

access to records based on indexed keys. 

Sorting and querying: Lists enable efficient sorting and querying 

operations, essential for optimizing database queries and data 

retrieval processes. 

Transaction management: Lists can be used to manage 
transaction logs or sequences of operations, ensuring data 
consistency and reliability in transactional processing. 
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BLOCK II: STACKS, QUEUES AND 
TREES  
UNIT – 4: STACKS 
Structure 

 

4.0 Introduction 

4.1 Objectives 

4.2 Introduction to Stacks 

4.3 Operations on Stacks (Push, Pop, Peek) 

4.4 Implementation of Stack using Arrays 

4.5 Implementation of Stack using Linked Lists 

4.6 Algorithmic Implementation of Multiple Stacks 

4.7 Conclusion 

4.8 Questions and Answers 

4.9 References 

 

4.0 INTRODUCTION 
 

In the realm of computer science and software engineering, stacks 

represent a pivotal concept deeply ingrained in the fabric of 

efficient data management and algorithm design. A stack operates 

on the principle of Last In, First Out (LIFO), where elements are 

added and removed from one end, known as the top. This 

characteristic makes stacks particularly suited for scenarios where 

strict ordering of operations is essential, such as function call 

management, expression evaluation, and backtracking algorithms. 

By adhering to the LIFO principle, stacks ensure that the most 

recent operation or data element processed is the first one to be 

reversed or retrieved, facilitating streamlined and predictable 

control flow in software systems. 
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The core operations on a stack—push, pop, and peek—form the 

cornerstone of its functionality. Pushing adds an element to the top 

of the stack, pop removes and returns the top element, and peek 

retrieves the top element without removing it. These operations are 

typically executed in constant time, O(1), regardless of the size of 

the stack, ensuring efficiency in both time and space. This 

efficiency is crucial in applications where rapid access to and 

manipulation of data is paramount, such as in real-time systems, 

interactive applications, and embedded computing environments. 

 

Implementing stacks can be achieved using various underlying 

data structures, most commonly arrays and linked lists. Each 

approach offers distinct advantages: array-based stacks provide 

direct access to elements but are limited by fixed sizes, while 

linked list-based stacks offer dynamic memory management but 

may incur overhead due to pointer operations. Understanding these 

implementations and their trade-offs is essential for choosing the 

most suitable approach based on specific application requirements 

and constraints. Overall, stacks embody a foundational concept in 

computer science, driving innovation and efficiency across diverse 

fields by enabling structured and efficient data handling in 

software systems. 

 

4.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understand Stack Fundamentals: Gain a comprehensive 

understanding of the stack data structure, including its 

characteristics, operations, and the Last In, First Out (LIFO) 

principle. 

 



Data Structure using C++ & Lab -98 
 

Explore Stack Operations: Learn how to perform fundamental 

stack operations such as push, pop, and peek. Understand their 

functionalities, complexities, and applications in real-world 

scenarios. 

 

Compare Implementation Methods: Compare and contrast 

different implementations of stacks using arrays and linked lists. 

Evaluate the advantages, disadvantages, and optimal use cases for 

each implementation approach. 

 

Implement Multiple Stacks: Explore advanced stack concepts by 

learning how to implement and manage multiple stacks within a 

single array or memory block. Understand the benefits and 

challenges of dynamic stack management. 

Analyze Efficiency Considerations: Evaluate the efficiency of 

stack operations and implementations, considering factors such as 

time complexity, space complexity, and practical considerations in 

software development. 

 

4.2 INTRODUCTION TO STACKS 
 

A stack is a fundamental data structure in computer science, known 

for its simplicity and versatility in managing data. It operates on 

the principle of Last In, First Out (LIFO), meaning that the last 

element added to the stack is the first one to be removed. This 

characteristic makes stacks ideal for scenarios where the order of 

operations must be strictly controlled. 

 

Last In, First Out (LIFO) principle: 

The Last In, First Out (LIFO) principle is a core concept in the 

stack data structure, which dictates the order in which elements are 

accessed and removed. According to this principle, the most 
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recently added element is the first one to be removed. This 

behavior is analogous to a stack of plates where you can only add 

or remove the top plate. 

 

How LIFO Works 

Push Operation: When an element is added to the stack, it is 

"pushed" onto the top of the stack. This element becomes the most 

recent addition and the first candidate for removal. 

 

Pop Operation: When an element needs to be removed from the 

stack, it is "popped" from the top of the stack. Since only the top 

element can be removed, this ensures that the most recent addition 

is the first to be removed. 

 

Illustrative Example 

Consider a stack of books: 

Initially, the stack is empty. 

You place Book A on the stack (push operation). Now, Book A is at 

the top. 

You then place Book B on the stack (push operation). Book B is 

now at the top, with Book A underneath it. 

Next, you place Book C on the stack (push operation). Book C is at 

the top, with Book B and Book A below it in that order. 

If you now remove a book from the stack (pop operation), Book C, 

the last one added, will be removed first. The stack now has Book 

B at the top. If you perform another pop operation, Book B will be 

removed next, leaving Book A as the topmost element. 

 

Characteristics of Stacks 

LIFO Principle: The most recent addition is the first to be 

removed, akin to a stack of plates where you can only take the top 

plate off. 
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Dynamic Size: Depending on the implementation, the size of the 

stack can grow or shrink dynamically as elements are added or 

removed. 

 

Restricted Access: Elements can only be added (pushed) or 

removed (popped) from one end of the structure, referred to as the 

top of the stack. 

 

Basic Operations 

Push: Adds an element to the top of the stack. 

Pop: Removes the element from the top of the stack. 

Peek/Top: Returns the element at the top of the stack without 

removing it. 

IsEmpty: Checks if the stack is empty. 

IsFull: Checks if the stack has reached its capacity (relevant for 

array-based implementations). 

 

Real-world Analogies 

The stack data structure mirrors many real-world scenarios: 

 

Plate Dispenser: Imagine a spring-loaded plate dispenser in a 

cafeteria. Plates are added on top, and the last plate added is the 

first to be taken off. 

Browser History: When navigating web pages, the browser stores 

the visited pages in a stack. The back button removes (pops) the 

last visited page from the stack and displays it. 

 

Applications of Stacks 

Stacks are widely used in various applications across computer 

science and programming: 
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Expression Evaluation and Syntax Parsing: Stacks are used to 

evaluate arithmetic expressions, convert infix expressions to 

postfix, and check for balanced parentheses in expressions. 

 

Function Call Management: In programming languages, the call 

stack keeps track of function calls, enabling proper return from 

functions and managing recursive calls. 

 

Undo Mechanism: Applications like text editors use stacks to 

keep track of changes, allowing users to undo recent actions. 

 

 

4.3 OPERATIONS ON STACKS (PUSH, 
POP, PEEK) 
 

Push Operation 

The push operation adds an element to the top of the stack. 

 

Algorithm: 

Check if the stack is full. If full, print an overflow message and 

exit. 

If not full, increment the top index. 

Add the element at the new top index. 
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Pop Operation 

The pop operation removes the element from the top of the stack. 

Algorithm: 

Check if the stack is empty. If empty, print an underflow message 

and exit. 

If not empty, return the element at the top index and decrement the 

top index. 
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C++ Implementation: 

 

 

Peek Operation 

The peek operation returns the top element of the stack without 

removing it. 

Algorithm: 

Check if the stack is empty. If empty, print an empty stack message 

and exit. 

If not empty, return the element at the top index. 

C++ Implementation: 

 

 

Utility Functions 

isEmpty Function 
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Is Full Function 

 

Complete Implementation 

Here's the complete implementation combining all the above 

methods: 

#include <iostream> 

using namespace std; 

#define MAX 1000 

class Stack { 

    int top; 

public: 

    int arr[MAX]; // Maximum size of Stack 

    Stack() { top = -1; } 

    bool push(int x); 

    int pop(); 

    int peek(); 

    bool isEmpty(); 

    bool isFull(); 

}; 

bool Stack::push(int x) { 

    if (top >= (MAX - 1)) { 

        cout << "Stack Overflow\n"; 

        return false; 

    } else { 

        arr[++top] = x; 

        cout << x << " pushed into stack\n"; 

        return true; 

    } 

} 

int Stack::pop() { 
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    if (top < 0) { 

        cout << "Stack Underflow\n"; 

        return 0; 

    } else { 

        int x = arr[top--]; 

        return x; 

    } 

} 

int Stack::peek() { 

    if (top < 0) { 

        cout << "Stack is Empty\n"; 

        return 0; 

    } else { 

        int x = arr[top]; 

        return x; 

    } 

} 

bool Stack::isEmpty() { 

    return (top < 0); 

} 

bool Stack::isFull() { 

    return (top >= MAX - 1); 

} 

// Driver program to test above functions 

int main() { 

    Stack s; 

    s.push(10); 

    s.push(20); 

    s.push(30); 

    cout << s.pop() << " Popped from stack\n"; 

    cout << "Top element is " << s.peek() << endl; 
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    cout << "Stack is empty: " << (s.isEmpty() ? "True" : "False") 

<< endl; 

    return 0;} 

 

4.4 IMPLEMENTATION OF STACK 
USING ARRAYS 
 

An array-based stack structure uses a fixed-size array to store stack 

elements. This implementation is straightforward and efficient for 

managing stack operations, which include pushing elements onto 

the stack, popping elements from the stack, and peeking at the top 

element. 

 

Key Components of Array-based Stack 

Array: A fixed-size array to store stack elements. 

Top: An integer to keep track of the index of the top element in the 

stack. It is initialized to -1 to indicate that the stack is initially 

empty. 

 

Capacity: A constant defining the maximum size of the stack. 

Basic Operations 

Push: Adds an element to the top of the stack. 

Pop: Removes and returns the element from the top of the stack. 

Peek: Returns the top element without removing it. 

isEmpty: Checks if the stack is empty. 

isFull: Checks if the stack is full. 

C++ Implementation 

Here is the complete implementation of an array-based stack 

structure in C++: 

#include <iostream> 

using namespace std; 

#define MAX 1000 // Define the maximum size of the stack 
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class Stack { 

    int top; 

public: 

    int arr[MAX]; // Array to store stack elements 

    Stack() { top = -1; } // Constructor to initialize the stack 

    bool push(int x); 

    int pop(); 

    int peek(); 

    bool isEmpty(); 

    bool isFull(); 

}; 

// Function to add an element to the stack 

bool Stack::push(int x) { 

    if (top >= (MAX - 1)) { 

        cout << "Stack Overflow\n"; 

        return false; 

    } else { 

        arr[++top] = x; 

        cout << x << " pushed into stack\n"; 

        return true; 

    } 

} 

// Function to remove an element from the stack 

int Stack::pop() { 

    if (top < 0) { 

        cout << "Stack Underflow\n"; 

        return 0; 

    } else { 

        int x = arr[top--]; 

        return x; 

    } 

} 
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// Function to get the top element of the stack without removing it 

int Stack::peek() { 

    if (top < 0) { 

        cout << "Stack is Empty\n"; 

        return 0; // or return an error code or throw an exception 

    } else { 

        int x = arr[top]; 

        return x; 

    } 

} 

// Function to check if the stack is empty 

bool Stack::isEmpty() { 

    return (top < 0); 

} 

// Function to check if the stack is full 

bool Stack::isFull() { 

    return (top >= MAX - 1); 

} 

// Driver program to test above functions 

int main() { 

    Stack s; 

    s.push(10); 

    s.push(20); 

    s.push(30); 

    cout << s.pop() << " Popped from stack\n"; 

    cout << "Top element is " << s.peek() << endl; 

    cout << "Stack is empty: " << (s.isEmpty() ? "True" : "False") 

<< endl; 

    cout << "Stack is full: " << (s.isFull() ? "True" : "False") << 

endl; 

    return 0; 

} 
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Advantages and Disadvantages of Array-based Stack 

Advantages: 

Simplicity: Easy to implement and understand. 

Constant Time Operations: Push, pop, and peek operations have 

O(1) time complexity. 

Memory Contiguity: Array-based stacks are stored in contiguous 

memory locations, which can lead to better cache performance. 

 

 

Disadvantages: 

Fixed Size: The size of the stack is fixed at compile time, limiting 

flexibility. If the stack is full, no more elements can be added 

without resizing. 

Wasted Space: If the maximum size is much larger than the actual 

number of elements, memory may be wasted. 

Stack Overflow: If too many elements are pushed onto the stack, 

it can cause stack overflow, which can crash the program. 

 

Handling dynamic resizing  

Handling dynamic resizing of a stack implemented using arrays 

allows the stack to grow or shrink as needed, avoiding the 

limitations of fixed-size arrays. Below is an enhanced 

implementation of a stack in C++ that supports dynamic resizing. 

 

Dynamic Resizing Stack Implementation 

Key Enhancements 

Dynamic Array: Instead of a fixed-size array, use a dynamic array 

(pointer) that can be resized. 

Resize Function: A function to resize the array when the stack is 

full or when it is sparsely populated to optimize memory usage. 
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Capacity Management: Maintain the current capacity of the array 

and resize it as necessary. 

 

4.5 IMPLEMENTATION OF STACK 
USING LINKED LISTS 
 

A stack can be implemented using a linked list to provide a 

dynamic, flexible stack structure that can grow and shrink as 

needed without the limitations of a fixed-size array. 

 

Key Components of Linked List-based Stack 

Node: A structure representing each element in the stack, 

containing the data and a pointer to the next node. 

Top: A pointer to the top node of the stack. 

Basic Operations 

Push: Adds an element to the top of the stack. 

Pop: Removes and returns the element from the top of the stack. 

Peek: Returns the top element without removing it. 

isEmpty: Checks if the stack is empty. 

 

C++ Implementation 

Here is the complete implementation of a stack using linked lists in 

C++: 

#include <iostream> 

using namespace std; 

// Define the structure of a node 

struct Node { 

    int data; 

    Node* next; 

}; 

class Stack { 

    Node* top; // Pointer to the top node 
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public: 

    Stack() { top = nullptr; } // Constructor to initialize the stack 

   void push(int x); 

    int pop(); 

    int peek(); 

    bool isEmpty(); 

    void display(); // Utility function to display the stack elements 

}; 

// Function to add an element to the stack 

void Stack::push(int x) { 

    Node* newNode = new Node(); // Create a new node 

    if (!newNode) { 

        cout << "Heap Overflow\n"; 

        return; 

    } 

    newNode->data = x; 

    newNode->next = top; 

    top = newNode; 

    cout << x << " pushed into stack\n"; 

} 

// Function to remove an element from the stack 

int Stack::pop() { 

    if (isEmpty()) { 

        cout << "Stack Underflow\n"; 

        return 0; // or return an error code or throw an exception 

    } else { 

        Node* temp = top; 

        top = top->next; 

        int popped = temp->data; 

        delete temp; 

        return popped; 

    } 
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} 

// Function to get the top element of the stack without removing it 

int Stack::peek() { 

    if (!isEmpty()) { 

        return top->data; 

    } else { 

        cout << "Stack is Empty\n"; 

        return 0; // or return an error code or throw an exception 

    } 

} 

// Function to check if the stack is empty 

bool Stack::isEmpty() { 

    return top == nullptr; 

} 

// Utility function to display the stack elements 

void Stack::display() { 

    if (isEmpty()) { 

        cout << "Stack is Empty\n"; 

    } else { 

        Node* temp = top; 

        while (temp != nullptr) { 

            cout << temp->data << " "; 

            temp = temp->next; 

        } 

        cout << endl; 

    } 

} 

// Driver program to test above functions 

int main() { 

    Stack s; 

    s.push(10); 

    s.push(20); 
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    s.push(30); 

    s.display(); 

    cout << s.pop() << " Popped from stack\n"; 

    s.display(); 

    cout << "Top element is " << s.peek() << endl; 

    cout << "Stack is empty: " << (s.isEmpty() ? "True" : "False") 

<< endl; 

    return 0; 

} 

 

Advantages of Linked List-based Stack 

Dynamic Size: The stack can grow and shrink as needed, limited 

only by available memory. 

 

No Wasted Space: Memory is allocated only when needed, 

avoiding the wasted space issue of fixed-size arrays. 

No Overflow: Unlike array-based stacks, a linked list-based stack 

does not overflow unless the system runs out of memory. 

 

Disadvantages 

Memory Overhead: Each element requires additional memory for 

the pointer, which can be significant if the stack contains many 

elements. 

Non-contiguous Memory: Elements are not stored in contiguous 

memory locations, which can lead to cache inefficiencies 

compared to array-based stacks. 
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4.6 ALGORITHMIC 
IMPLEMENTATION OF MULTIPLE 
STACKS 
 

In computer science and software engineering, the stack is a 

fundamental data structure that follows the Last In, First Out 

(LIFO) principle. This means that the most recently added element 

is the first one to be removed. Stacks are widely used in various 

applications, including function call management, expression 

evaluation, and backtracking algorithms. However, in certain 

scenarios, a single stack is not sufficient to handle multiple sets of 

data independently. This is where the concept of multiple stacks 

comes into play. 

 

Multiple stacks involve managing several stack data structures 

within a single array or memory block. This approach can optimize 

memory usage and improve the efficiency of algorithms that 

require simultaneous and independent stack operations. By 

leveraging multiple stacks, one can avoid the overhead of 

maintaining separate arrays for each stack, leading to more 

compact and manageable code. 

 

There are two primary strategies for implementing multiple stacks: 

Fixed Division: The array is divided into fixed-size sections, each 

allocated to a specific stack. This method is straightforward but 

lacks flexibility, as it cannot adjust the size of individual stacks 

dynamically. 

Dynamic Division: The boundaries between stacks are adjusted 

dynamically based on the current usage of each stack. This method 

is more complex but offers greater flexibility and efficient 

utilization of memory. 
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In practical applications, multiple stacks are particularly useful in 

scenarios such as: 

 

Memory Management: Managing multiple stack frames for 

different threads or processes in a concurrent computing 

environment. 

 

Resource Allocation: Keeping track of resource usage and 

availability in systems that need to handle multiple independent 

tasks. 

 

Algorithm Optimization: Implementing complex algorithms that 

require simultaneous traversal or manipulation of multiple data 

sets. 

 

Applications and scenarios where multiple stacks are useful 

Multiple stacks are highly beneficial in various applications and 

scenarios where independent management of multiple sets of data 

or operations is required. Here are some key areas where multiple 

stacks find significant utility: 

 

Applications and Scenarios 

Expression Evaluation and Parsing: In compilers and 

interpreters, multiple stacks are used to handle nested expressions, 

function calls, and operator precedence. Each stack can manage 

operands, operators, and function call contexts independently, 

ensuring correct evaluation and parsing of complex expressions. 

 

Function Call Management: In programming languages and 

runtime environments, multiple stacks are employed to manage 

function calls and local variables. Each stack corresponds to a 
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different function or subroutine, ensuring proper execution flow 

and efficient memory allocation for local variables. 

 

Backtracking Algorithms: Algorithms like depth-first search 

(DFS) and recursive backtracking often require multiple stacks to 

manage state transitions and backtracking paths independently. 

Each stack maintains a different path or state sequence, facilitating 

efficient exploration of solution spaces. 

 

Memory Management in Operating Systems: Operating systems 

use multiple stacks to manage execution contexts, interrupts, and 

system calls for different processes or threads. Each stack provides 

isolated memory space and execution flow, ensuring security and 

efficient resource utilization. 

 

Undo/Redo Mechanisms in Applications: Applications with 

undo/redo functionalities often employ multiple stacks to store 

previous states or actions. Each stack represents a history of user 

actions or modifications, enabling seamless navigation and 

recovery of application states. 

 

Simulation and Modelling: Simulation software and modelling 

tools utilize multiple stacks to manage different simulation 

scenarios or model configurations. Each stack stores parameters, 

states, or simulation steps independently, facilitating parallel or 

sequential simulation runs. 

 

Resource Allocation and Management: Systems managing 

resources such as memory, network connections, or database 

transactions benefit from multiple stacks to allocate and track 

resource usage efficiently. Each stack handles resource requests or 
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transactions independently, ensuring optimal resource utilization 

and performance. 

 

Algorithmic Optimization: Complex algorithms, including graph 

traversal, dynamic programming, and state machines, often utilize 

multiple stacks to manage different states, paths, or data structures. 

Each stack supports efficient traversal or manipulation of 

algorithmic data structures, enhancing algorithm performance and 

scalability. 

 

Advantages of Multiple Stacks 

Independence: Each stack operates independently, allowing 

separate handling of data sets or operations without interference. 

 

Efficiency: Multiple stacks optimize memory usage and improve 

algorithm performance by isolating and managing distinct data sets 

or operations efficiently. 

 

Flexibility: Dynamic adjustment of stack boundaries (in dynamic 

division) provides flexibility in managing varying sizes and 

requirements of individual stacks. 

 

Simplicity: While providing more robust and efficient data 

management than a single stack, multiple stacks can be managed 

with the same ease of a single stack 

 

4.7 CONCLUSION 
 

In conclusion, the study of stacks reveals their foundational role in 

computer science and software engineering. Through the 

exploration of their Last In, First Out (LIFO) principle and 

essential operations like push, pop, and peek, we have seen how 
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stacks efficiently manage data with predictable ordering. The 

implementations using arrays and linked lists underscore their 

versatility in accommodating different needs—from fixed-size 

memory management to dynamic and flexible data structures. 

 

Moreover, the concept of multiple stacks within a single array 

expands the utility of stacks, demonstrating their adaptability in 

handling complex scenarios where independent management of 

multiple data sets is required. Efficiency considerations, such as 

time complexity for operations and space management, highlight 

the trade-offs between array-based and linked list-based 

implementations, crucial for optimizing performance in diverse 

applications. 

 

Looking ahead, the practical applications of stacks—from parsing 

expressions in compilers to managing function calls in 

programming languages—underscore their indispensable role in 

modern computing. By mastering stack operations and 

understanding their implementations, developers can leverage 

stacks effectively in algorithm design, system programming, and 

various software applications, ensuring robust and efficient data 

management. 

 

In conclusion, stacks remain a cornerstone of computational 

efficiency and structured data handling, continuing to inspire 

innovation and optimal solutions across a wide range of 

technological domains. 
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4.8 QUESTIONS AND ANSWERS 
 

Q1: What is the LIFO principle, and why is it important in 

stacks? 

Answer: The LIFO (Last In, First Out) principle states that the last 

element inserted into a stack is the first one to be removed. It 

ensures that operations are processed in reverse order of their 

insertion, making stacks ideal for scenarios requiring strict 

ordering and efficient data management. 

 

Q2: What are the main operations performed on a stack, and 

how do they work? 

Answer: The main operations on a stack are: 

Push: Adds an element to the top of the stack. 

Pop: Removes and returns the top element from the stack. 

Peek (or Top): Returns the top element without removing it. These 

operations are typically executed in constant time, O(1), making 

stacks efficient for managing data with predictable access patterns. 

 

Q3: What are the advantages of using an array-based 

implementation of stacks over a linked list-based 

implementation? 

Answer: Array-based stacks offer direct access to elements using 

indices, which can be faster in scenarios where random access is 

important. They also use contiguous memory, which may result in 

better cache performance. However, they are limited by a fixed 

size and require resizing if the stack grows beyond its initial 

capacity. 
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Q4: How can multiple stacks be implemented using a single 

array, and what are the benefits of this approach? 

Answer: Multiple stacks can be managed within a single array by 

partitioning the array into sections allocated to each stack. This 

approach optimizes memory usage by allowing stacks to 

dynamically expand and contract within the same memory block, 

enhancing flexibility and reducing memory fragmentation. 

 

Q5: What are some practical applications of stacks in software 

development and computer science? 

Answer: Stacks are widely used in expression evaluation, function 

call management, backtracking algorithms, memory management 

in operating systems, and parsing techniques in compilers. They 

play a critical role in managing program execution flow and 

optimizing memory utilization in various computational tasks. 
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UNIT – 5: QUEUES 
Structure 

 

5.0 Introduction 

5.1 Objectives 

5.2 Queue 

5.3 Operations on Queues 

5.4 Implementation of Queue using Arrays 

5.5 Conclusion 

5.6 Questions and Answers 

5.7 References 

 

5.0 INTRODUCTION 
 

In computer science and software engineering, queues are 

fundamental data structures that facilitate the orderly processing of 

data based on the First-In-First-Out (FIFO) principle. They play a 

crucial role in various applications where data needs to be 

managed and processed sequentially. Queues ensure that the first 

element added to the queue is the first one to be removed, making 

them essential in scenarios ranging from operating system task 

scheduling to network packet management and beyond. 

 

This section explores the foundational concepts, operations, and 

implementations of queues, covering their diverse forms such as 

linear queues using arrays, linked lists, and circular structures. 

Additionally, it delves into specialized variants like priority 

queues, which prioritize elements based on specific criteria, and 

double-ended queues (deques), offering flexibility with operations 

at both ends. Understanding these structures equips developers 



Data Structure using C++ & Lab -123 
 

with powerful tools to optimize data handling and application 

performance. 

 

The subsequent sections will delve into each aspect of queues, 

detailing their operations, implementations in both arrays and 

linked lists, specialized forms like circular queues, priority queues 

for managing prioritized tasks, and versatile double-ended queues. 

By examining these topics comprehensively, this exploration aims 

to provide a thorough understanding of how queues function, their 

practical applications, and their role in efficient data management 

strategies. 

 

5.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understand Queue Basics: Define queues and grasp the FIFO 

principle essential for orderly data processing. 

 

Master Queue Operations: Explore insertion, deletion, and 

traversal operations crucial for queue management. 

 

Implement Using Arrays and Linked Lists: Implement queues 

using both arrays and linked lists, understanding their advantages 

and limitations. 

 

Explore Circular Queue Mechanics: Study circular queues, 

including their implementation and advantages in managing 

continuous data streams. 

 

Examine Specialized Queue Types: Investigate priority queues 

and double-ended queues (deques), exploring their unique 

applications and operational efficiency. 
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5.2 QUEUE 
 

Queues are fundamental data structures in computer science that 

adhere to the First In, First Out (FIFO) principle. Similar to real-

life queues, such as waiting in line at a ticket counter, queues 

manage elements in the order they are added. The structure ensures 

that the oldest element, added first, is the first to be removed or 

processed. This characteristic makes queues ideal for scenarios 

where tasks must be handled in the order they arrive. 

 

In programming, queues are crucial for managing tasks that require 

sequential processing, such as job scheduling, printer spooling, and 

asynchronous data transfer. Operations on queues typically include 

adding an element to the rear (enqueue), removing an element 

from the front (dequeue), and peeking at the front element without 

removing it. These operations enable efficient data handling and 

ensure that processes are executed in a fair and orderly manner. 

 

Queues can be implemented using various underlying data 

structures, including arrays and linked lists, each offering distinct 

advantages based on specific application requirements. 

Understanding queues and their implementations is foundational 

for designing efficient algorithms and systems that rely on orderly 

task execution and data management. 

 

FIFO (First In, First Out) principle 

The FIFO principle dictates that the oldest elements in a queue are 

processed or removed first, maintaining the sequential order of 

arrival. This principle is fundamental to how queues operate and 

distinguishes them from other data structures like stacks, which 

follow the Last In, First Out (LIFO) principle. FIFO ensures 
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fairness in task scheduling and data processing by handling tasks in 

the order they are queued. 

 

Queue Syntax in C++ 

Include Header: 

#include <queue> 

Declare Queue: To declare a queue of integers: 

std::queue<int> myQueue; 

Operations: 

Push (Enqueue): Adds an element to the back of the queue. 

myQueue.push(value); 

Pop (Dequeue): Removes the element at the front of the queue. 

myQueue.pop(); 

Front: Accesses the element at the front of the queue. 

int frontElement = myQueue.front(); 

Back: Accesses the element at the back of the queue. 

int backElement = myQueue.back(); 

Size: Returns the number of elements in the queue. 

int size = myQueue.size(); 

Empty: Checks if the queue is empty. 

bool isEmpty = myQueue.empty(); 

Example: 
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Explanation: 

std::queue<int>: Declares a queue of integers. 

myQueue.push(value);: Adds value to the back of the queue. 

myQueue.pop();: Removes the front element from the queue. 

myQueue.front(); and myQueue.back();: Accesses the front and 

back elements of the queue, respectively. 

myQueue.size();: Returns the number of elements in the queue. 

myQueue.empty();: Checks if the queue is empty. 

 

Real-World Analogies and Examples 

Queues have numerous real-world analogies and applications, 

reflecting their ubiquitous nature in everyday scenarios: 

 

Waiting Lines: Queues resemble physical lines at ticket counters, 

checkout lanes in supermarkets, or queues at amusement parks, 

where individuals wait in order to be served or processed. 

 

Print Spooling: Printers use queues to manage print jobs, ensuring 

that documents are printed in the order they were sent to the 

printer. 

 

Job Scheduling: Operating systems manage processes using 

queues to prioritize tasks and allocate resources based on their 

arrival and priority. 

 

Network Data Packet Processing: Network routers and switches 

use queues to buffer and forward data packets based on their 

arrival time and network conditions. 

 

Real-world analogies and examples (e.g., waiting lines) 

Ticket Counter at a Movie Theater: At a movie theater, patrons 

line up to purchase tickets. The ticket counter operates as a queue 
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where customers are served in the order they arrived. This ensures 

efficient ticket sales and customer satisfaction. 

 

Call Center Customer Service: Call centers manage customer 

queries and support requests using queues. Calls are queued based 

on their arrival, and customer service representatives handle them 

sequentially. This approach ensures that all customer inquiries are 

addressed promptly and fairly. 

 

Print Spooling: Printers use queues to manage print jobs 

submitted by multiple users. Each print job is queued based on its 

submission time, and the printer processes them in the order they 

were received. This ensures orderly printing and prevents job 

conflicts. 

 

Traffic at Intersection Signals: Traffic signals manage vehicle 

movement at intersections using queues. Vehicles waiting at a red-

light form queues in each lane, and when the light turns green, 

vehicles are allowed to proceed based on their position in the 

queue. This systematic approach helps in managing traffic flow 

efficiently. 

 

Job Scheduling in Operating Systems: Operating systems use 

queues to manage processes and tasks. Jobs are queued based on 

their priority and resource requirements, and the operating system 

schedules them for execution accordingly. This ensures efficient 

utilization of system resources and optimal performance. 

 

Buffering in Data Communication: Network devices use queues 

to buffer data packets during transmission. Data packets are 

queued based on network conditions and bandwidth availability, 

ensuring smooth and efficient data transfer without packet loss. 
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5.3 OPERATIONS ON QUEUES 
 

Operations on queues are fundamental to their functionality and 

efficient management of data. The main operations typically 

supported by a queue data structure include: 

 

Operations on Queues 

Enqueue (Insertion): Adds an element to the rear (end) of the 

queue. It Increases the queue's size and stores new data for 

processing. 

Algorithm: 

 

Dequeue (Deletion): Removes an element from the front 

(beginning) of the queue. It Retrieves and processes the oldest data 

entered into the queue. 

Algorithm: 

 

Peek (Front): Retrieves the element at the front of the queue 

without removing it. It Allows inspection of the next element to be 

dequeued. 
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Algorithm: 

 

isEmpty: It Checks if the queue is empty. It Determines whether 

there are elements present in the queue for processing. 

Algorithm: 

 

isFull: Checks if the queue is full (not always applicable for 

dynamic-sized implementations). Determines if additional 

elements can be added to the queue without causing overflow. 

Algorithm: 
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5.4 IMPLEMENTATION OF QUEUE 
USING ARRAYS 
 

An array-based representation of a queue involves using a fixed-

size array to store elements and maintaining pointers (or indices) to 

track the front and rear of the queue. Here's a detailed explanation 

and implementation of an array-based queue in C++: 

 

Array-Based Representation of a Queue 

In this implementation, we'll define a queue class that uses an array 

to store elements. We'll include operations for enqueue (adding 

elements), dequeue (removing elements), peek (viewing the front 

element), and utility functions to check if the queue is empty or 

full. 

 

Array-based representation of a queue 

1. Enqueue (Insertion): Adds an element to the rear (end) of the 

queue.  

Algorithm: 

 

 

2. Dequeue (Deletion): Removes an element from the front 

(beginning) of the queue.  

Algorithm: 
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3. Peek (Front): Retrieves the element at the front of the queue 

without removing it.  

Algorithm: 

 

 

4. IsEmpty: Checks if the queue is empty.  

Algorithm: 

 

 

5. IsFull: Checks if the queue is full (only applicable for array 

implementation).  

Algorithm: 
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Full Implementation Example in C++ 

Combining the above operations, here’s a complete example for 

both array and linked list implementations of a queue: 

 

Array-Based Queue Implementation: 

#include <iostream> 

using namespace std; 

#define MAX_SIZE 100 

class Queue { 

private: 

    int queue[MAX_SIZE]; 

    int front, rear; 

public: 

    Queue() { 

        front = -1; 

        rear = -1; 

    } 

    bool isEmpty() { 

        return (front == -1 && rear == -1); 

    } 

 

    bool isFull() { 

        return (rear == MAX_SIZE - 1); 

    } 

    void enqueue(int element) { 

        if (isFull()) { 

            cout << "Queue Overflow! Cannot enqueue element " << 

element << endl; 

            return; 

        } else if (isEmpty()) { 

            front = rear = 0; 

        } else { 
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            rear++; 

        } 

        queue[rear] = element; 

        cout << "Enqueued element: " << element << endl; 

    } 

    int dequeue() { 

        if (isEmpty()) { 

            cout << "Queue Underflow! Cannot dequeue from an 

empty queue." << endl; 

            return -1; 

        } else if (front == rear) { 

            int element = queue[front]; 

            front = rear = -1; 

            return element; 

        } else { 

            return queue[front++]; 

        } 

    } 

    int peek() { 

        if (isEmpty()) { 

            cout << "Queue is empty. No element to peek." << endl; 

            return -1; 

        } 

        return queue[front]; 

    } 

}; 

int main() { 

    Queue q; 

    q.enqueue(10); 

    q.enqueue(20); 

    q.enqueue(30); 

    cout << "Front element: " << q.peek() << endl; 
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    cout << "Dequeued element: " << q.dequeue() << endl; 

    cout << "Front element after dequeue: " << q.peek() << endl; 

    return 0; 

} 

 

Pros and cons of array-based implementation 

Pros: 

 

Simple and Easy to Implement: Array-based queues are 

straightforward and easy to understand, making them suitable for 

beginners and educational purposes. 

 

Constant Time Complexity: Enqueue and dequeue operations 

have O(1) time complexity, ensuring fast execution for queue 

operations. 

 

Cache-Friendly: Arrays provide contiguous memory allocation, 

which is more cache-friendly and can lead to better performance in 

terms of memory access speed. 

 

Predictable Memory Usage: The memory usage is fixed and 

known in advance, which can be an advantage in systems with 

limited or predictable memory resources. 

Direct Access: Elements in an array can be accessed directly via 

indices, which can be beneficial for certain operations or 

optimizations. 

 

Cons: 

Fixed Size: The size of the array must be defined at the time of 

queue creation. This fixed size can lead to inefficiency if the queue 

size is either too small (leading to overflow) or too large (leading 

to wasted memory). 
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No Dynamic Resizing: Without additional logic for dynamic 

resizing, the array cannot grow or shrink based on the actual 

number of elements, which can be limiting in scenarios with 

varying data sizes. 

 

Overflow and Underflow: Array-based queues are prone to 

overflow if the queue is full and an additional element is enqueued. 

Similarly, if all elements are dequeued, the queue becomes empty 

and underflow conditions must be handled. 

Circular Queue Complexity: To efficiently use space in an array-

based queue, a circular queue implementation is often used. This 

adds complexity to the implementation, especially in managing the 

wrap-around of front and rear indices. 

 

Wasted Space: If the queue is not used to its full capacity, there 

can be wasted space in the array, leading to inefficient memory 

usage. 

 

Reallocation Overhead: In implementations that handle dynamic 

resizing, the reallocation process (copying elements to a new, 

larger array) can be time-consuming and add overhead. 

 

5.5 CONCLUSION 
 

In summary, queues represent a fundamental data structure in 

computer science, crucial for managing data in a First-In-First-Out 

(FIFO) manner. Throughout this section, we have explored the 

foundational principles of queues, emphasizing their role in 

maintaining order and facilitating efficient data processing. 

Operations such as insertion, deletion, and traversal have been 
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examined, illustrating how queues enable systematic handling of 

data items based on their arrival sequence. 

 

Implementation-wise, we have investigated queue implementations 

using arrays and linked lists. Arrays offer direct access and 

simplicity but require careful management of dynamic resizing. 

Linked lists provide flexibility in memory management and 

support dynamic operations, making them suitable for scenarios 

requiring frequent insertions and deletions. 

 

Additionally, specialized forms like circular queues, priority 

queues, and double-ended queues (deques) have been explored. 

Circular queues optimize memory usage and support continuous 

data processing, while priority queues prioritize elements based on 

predefined criteria. Deques provide flexibility with operations at 

both ends, catering to applications that demand versatile data 

handling capabilities. 

 

In conclusion, mastering the concepts and implementations of 

queues equips developers with essential tools for designing 

efficient algorithms and robust software systems. By understanding 

the principles behind queues and their practical applications, 

developers can leverage these structures effectively to enhance 

system performance, manage data workflows, and ensure reliable 

data processing in various computational environments. 

 

5.6 QUESTIONS AND ANSWERS 
 

1. What is the primary principle that queues follow? 

Answer: Queues follow the First-In-First-Out (FIFO) principle, 

where the first element inserted into the queue is the first one to be 

removed. 
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2. How is a queue implemented using arrays different from 

using linked lists? 

Answer: 

Arrays: Queues implemented using arrays offer direct access to 

elements and require resizing when the array becomes full, which 

can be inefficient for large queues. 

Linked Lists: Queues implemented using linked lists offer 

flexibility in dynamic memory allocation and efficient insertion 

and deletion operations but may have higher memory overhead due 

to storing pointers. 

 

3. What is the purpose of implementing a circular queue? 

Answer: Circular queues are implemented to efficiently manage 

continuous data streams or buffer scenarios. They utilize a circular 

array structure where elements wrap around when the end of the 

array is reached, optimizing memory usage and enabling constant-

time operations for both insertion and deletion. 

 

4. How does a priority queue differ from a regular queue? 

Answer: 

Regular Queue: A regular queue follows the FIFO principle, 

where elements are processed in the order they are added. 

Priority Queue: A priority queue allows elements to be inserted 

with a priority and processed in order of priority rather than the 

order of insertion. Higher priority elements are processed before 

lower priority ones, ensuring that the most urgent tasks or elements 

are handled first. 

 

5. What are the advantages of using a deque (double-ended 

queue) over a regular queue? 

Answer: 
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Flexibility: Deques allow elements to be added or removed from 

both the front and the back, offering greater flexibility in data 

management compared to queues, which only support operations at 

one end. 

Efficiency: Operations such as insertion and deletion at both ends 

of a deque are typically efficient, often with constant time 

complexity, making deques suitable for scenarios requiring 

dynamic data processing from both directions. 
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UNIT – 6: LINKED LIST 
IMPLEMENTATION 
Structure 

 

6.0 Introduction 

6.1 Objectives 

6.2 Implementation of Queue using Linked Lists 

6.3 Circular Queue Implementation 

6.4 Priority Queues 

6.5 Double-ended Queues (Deque) 

6.6 Conclusion 

6.7 Questions and Answers 

6.8 References 

 

6.0 INTRODUCTION 
 

Queues are pivotal data structures in computer science, designed to 

manage elements in a First-In-First-Out (FIFO) manner. This 

section delves into various aspects of queues, exploring their 

implementations and specialized variants to cater to diverse 

application needs. From basic linear structures to advanced forms 

like circular queues and priority queues, understanding these 

concepts equips developers with powerful tools for efficient data 

management and algorithm design. 

 

We begin by examining the implementation of queues using linked 

lists, highlighting the flexibility they offer in dynamic memory 

allocation and operations. Moving forward, we explore circular 

queues, which optimize space utilization and streamline continuous 

data processing scenarios. Priority queues come next, providing 



Data Structure using C++ & Lab -140 
 

mechanisms to prioritize elements based on predefined criteria, 

essential for real-time systems and task scheduling. Lastly, double-

ended queues (deques) are investigated, showcasing their 

versatility in supporting operations from both ends, enabling 

sophisticated data handling capabilities. 

 

This exploration aims to provide a comprehensive understanding 

of queue data structures, their implementations, and practical 

applications. By delving into each variant's operational nuances 

and performance considerations, this section aims to empower 

developers with the knowledge needed to leverage queues 

effectively in software development and system optimization. 

 

6.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understand Queue Fundamentals: Define queues and their 

fundamental characteristics, focusing on the FIFO (First-In-First-

Out) principle. 

 

Explore Linked List Implementation: Implement queues using 

linked lists, emphasizing dynamic memory allocation and efficient 

insertion/deletion operations. 

 

Study Circular Queue Mechanics: Investigate circular queues, 

including their implementation details and advantages in managing 

continuous data streams. 

 

Examine Priority Queue Operations: Understand priority queues 

and their operations, prioritizing elements based on specified 

criteria for optimal task management. 
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Master Double-ended Queue Functionality: Explore double-

ended queues (deques), their implementations, and operations 

allowing insertion and deletion from both ends for flexible data 

handling. 

 

6.2 IMPLEMENTATION OF QUEUE 
USING LINKED LISTS 
 

Implementing a queue using linked lists involves dynamically 

creating nodes to store data and linking them together in a 

sequence. Each node contains a data part and a pointer (or 

reference) to the next node in the sequence. The queue maintains 

two pointers: front and rear. The front pointer points to the first 

node in the queue, and the rear pointer points to the last node. 

When an element is enqueued (added) to the queue, a new node is 

created and linked to the end of the list, and the rear pointer is 

updated to point to this new node. When an element is dequeued 

(removed) from the queue, the node at the front is removed, and 

the front pointer is updated to the next node in the list. If the queue 

becomes empty, both front and rear pointers are set to null. This 

implementation allows the queue to dynamically adjust its size, 

avoiding the fixed size limitations of array-based implementations 

and efficiently handling memory usage. 

 

1. Enqueue (Insertion) 

Description: Adds an element to the rear (end) of the queue.  

Algorithm: 
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2. Dequeue (Deletion) 

Description: Removes an element from the front (beginning) of 

the queue.  

Algorithm: 

 

 

3. Peek (Front) 

Description: Retrieves the element at the front of the queue 

without removing it.  

Algorithm: 
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4. IsEmpty 

Description: Checks if the queue is empty.  

Algorithm: 

 

 

Linked List Based Queue Implementation 

#include <iostream> 

using namespace std; 

struct Node { 

    int data; 

    Node* next; 

}; 

class Queue { 

private: 

    Node* front; 

    Node* rear; 

public: 

    Queue() { 

        front = NULL; 

        rear = NULL; 

    } 

    bool isEmpty() { 

        return (front == NULL); 

    } 
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    void enqueue(int element) { 

        Node* temp = new Node(); 

        temp->data = element; 

        temp->next = NULL; 

        if (front == NULL && rear == NULL) { 

            front = rear = temp; 

        } else { 

            rear->next = temp; 

            rear = temp; 

        } 

        cout << "Enqueued element: " << element << endl; 

    } 

    int dequeue() { 

        if (front == NULL) { 

            cout << "Queue Underflow! Cannot dequeue from an 

empty queue." << endl; 

            return -1; 

        } 

        Node* temp = front; 

        int element = front->data; 

        if (front == rear) { 

            front = rear = NULL; 

        } else { 

            front = front->next; 

        } 

        delete temp; 

        return element; 

    } 

    int peek() { 

        if (front == NULL) { 

            cout << "Queue is empty. No element to peek." << endl; 

            return -1; 
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        } 

        return front->data; 

    } 

}; 

int main() { 

    Queue q; 

    q.enqueue(10); 

    q.enqueue(20); 

    q.enqueue(30); 

    cout << "Front element: " << q.peek() << endl; 

    cout << "Dequeued element: " << q.dequeue() << endl; 

    cout << "Front element after dequeue: " << q.peek() << endl; 

    return 0; 

} 

 

Advantages of linked list implementation 

Dynamic Size: Linked lists provide a dynamic size, meaning the 

queue can grow or shrink as needed without predefining a 

maximum size. This is particularly useful when the maximum 

number of elements is unknown or varies significantly. 

 

Efficient Memory Utilization: Memory is allocated only as 

needed. Unlike array-based implementations that may have unused 

space, linked lists do not waste memory. 

 

No Need for Resizing: Since linked lists grow dynamically, there 

is no need for complex resizing operations or handling the 

overhead associated with array reallocation. 

 

No Overflow: As long as there is available memory, a linked list-

based queue will not overflow. This is a significant advantage over 
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fixed-size array queues where overflow can occur when the 

capacity is exceeded. 

Ease of Insertions and Deletions: Inserting (enqueue) and 

deleting (dequeue) elements are straightforward operations in a 

linked list, with both operations being O(1). There is no need to 

shift elements as in array-based implementations. 

 

6.3 CIRCULAR QUEUE 
IMPLEMENTATION 
 

A circular queue is a linear data structure that overcomes the 

limitations of a standard linear queue by treating the queue as a 

circular buffer. Unlike a linear queue where the end of the queue is 

fixed and adding more elements requires shifting or resizing, a 

circular queue allows for efficient reuse of space by connecting the 

end of the queue back to the front, forming a circular structure. 

This means that once the end of the queue is reached, the next 

element is inserted at the beginning of the array, provided there is 

free space (i.e., positions that have been dequeued). 

 

Key Features 

Circular Nature: The queue's end connects back to the beginning, 

enabling efficient use of space. 

 

Fixed Size: Like an array-based queue, the size of the circular 

queue is fixed, but it utilizes the available space more efficiently. 

 

Two Pointers: Maintains two pointers: 

 

Front: Points to the first element in the queue. 

 

Rear: Points to the last element in the queue. 
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Full and Empty Conditions: Specific conditions determine 

whether the queue is full or empty: 

 

Empty Queue: When front and rear are both -1 or when front is 

equal to rear + 1. 

 

Full Queue: When the position next to rear is the front (i.e., (rear + 

1) % size == front). 

 

Benefits 

 

Efficient Space Utilization: Eliminates the problem of unused 

space in a standard array-based queue. 

 

Fixed Size Management: Useful in scenarios where a fixed buffer 

size is required, such as in circular buffers for streaming data. 

 

Implementation using arrays (circular array) 

implementation of a circular queue using arrays in C++. This 

implementation covers different operations (enqueue, dequeue, 

peek, and display) with various algorithms to ensure the circular 

nature of the queue is properly handled. 

 

Circular Queue Implementation Using Arrays 

#include <iostream> 

using namespace std; 

class CircularQueue { 

private: 

    int *queue; 

    int front, rear, size; 

public: 
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    CircularQueue(int s) { 

        size = s; 

        queue = new int[size]; 

        front = rear = -1; 

    } 

    // Function to check if the queue is full 

    bool isFull() { 

        return (front == 0 && rear == size - 1) || (rear == front - 1); 

    } 

    // Function to check if the queue is empty 

    bool isEmpty() { 

        return front == -1; 

    } 

    // Function to add an element to the queue (enqueue operation) 

    void enqueue(int element) { 

        if (isFull()) { 

            cout << "Queue Overflow! Cannot enqueue element " << 

element << endl; 

            return; 

        } 

        if (front == -1) { 

            front = rear = 0; 

        } else if (rear == size - 1 && front != 0) { 

            rear = 0; 

        } else { 

            rear = (rear + 1) % size; 

        } 

        queue[rear] = element; 

        cout << "Enqueued element: " << element << endl; 

    } 

    // Function to remove and return an element from the queue 

(dequeue operation) 
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    int dequeue() { 

        if (isEmpty()) { 

            cout << "Queue Underflow! Cannot dequeue from an 

empty queue." << endl; 

            return -1; 

        } 

        int element = queue[front]; 

        if (front == rear) { 

            front = rear = -1; 

        } else if (front == size - 1) { 

            front = 0; 

        } else { 

            front = (front + 1) % size; 

        } 

        return element; 

    } 

    // Function to return the front element of the queue without 

removing it (peek operation) 

    int peek() { 

        if (isEmpty()) { 

            cout << "Queue is empty. No element to peek." << endl; 

            return -1; 

        } 

        return queue[front]; 

    } 

    // Function to display all elements of the queue 

    void display() { 

        if (isEmpty()) { 

            cout << "Queue is empty." << endl; 

            return; 

        } 

        cout << "Queue elements: "; 
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        if (rear >= front) { 

            for (int i = front; i <= rear; i++) { 

                cout << queue[i] << " "; 

            } 

        } else { 

            for (int i = front; i < size; i++) { 

                cout << queue[i] << " "; 

            } 

            for (int i = 0; i <= rear; i++) { 

                cout << queue[i] << " "; 

            } 

        } 

        cout << endl; 

    } 

}; 

int main() { 

    CircularQueue q(5); 

    q.enqueue(10); 

    q.enqueue(20); 

    q.enqueue(30); 

    q.enqueue(40); 

    q.enqueue(50); 

    q.display(); 

    cout << "Dequeued element: " << q.dequeue() << endl; 

    q.enqueue(60); 

    cout << "Peeked element: " << q.peek() << endl; 

    q.display(); 

    return 0; 

} 
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Applications and advantages of circular queues 

 

Applications of Circular Queues: 

Buffering Data in I/O Systems: Circular queues are commonly 

used in I/O operations where data is continuously received or 

transmitted. They provide a fixed-size buffer that can wrap around, 

allowing seamless data processing without the need for resizing or 

complex memory management. 

 

Resource Management: They are useful in managing resources 

with a fixed capacity that need to be accessed in a circular manner. 

For example, in operating systems, circular queues can manage 

resources like CPU scheduling queues or device driver queues. 

 

Implementation of Task Schedulers: Circular queues are 

employed in task scheduling algorithms where tasks are scheduled 

in a round-robin manner. Each task gets a turn to execute for a 

specified time quantum before being preempted, which is 

facilitated efficiently using a circular queue. 

 

Network Traffic Management: In networking applications, 

circular queues can be used to manage network packets. They 

allow packets to be stored temporarily before processing or 

transmission, ensuring efficient handling of network traffic. 

 

Memory Management: Circular queues can be utilized in 

memory management algorithms to implement caching 

mechanisms or in systems where memory allocation and 

deallocation need to be handled efficiently. 
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Advantages of Circular Queues: 

Efficient Use of Memory: Circular queues use a fixed-size buffer, 

which makes efficient use of memory compared to dynamic data 

structures that may require resizing operations. 

 

Constant Time Complexity: Operations such as enqueue and 

dequeue in circular queues typically have a constant time 

complexity O (1), assuming the circular nature is properly 

managed. This makes them highly efficient for real-time and 

embedded systems. 

 

Simplified Implementation: Implementing circular queues is 

straightforward compared to other data structures like linked lists. 

They involve simple arithmetic operations (modular arithmetic) to 

manage the circular behavior. 

 

Optimal for Streaming Applications: Due to their circular nature, 

these queues are ideal for streaming applications where data is 

continuously flowing. They ensure that the oldest data is 

overwritten when new data is added, maintaining a consistent flow. 

 

Avoids Fragmentation: Unlike dynamic data structures, circular 

queues do not suffer from memory fragmentation issues because 

they use a contiguous block of memory. This makes them reliable 

for long-running applications. 

 

 

6.4 PRIORITY QUEUES 
 

A priority queue is an abstract data type (ADT) similar to a regular 

queue or stack but with added functionality that allows elements to 

be stored with a priority. Unlike a regular queue where the first 
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element added is the first to be removed (FIFO - First In, First 

Out), a priority queue retrieves elements based on their priority. 

Here's an overview of priority queues: 

 

A priority queue is a collection of elements where each element 

has a priority assigned to it. Elements with higher priorities are 

dequeued before elements with lower priorities. Priority queues do 

not follow the FIFO principle of regular queues; instead, they 

provide operations that allow elements to be added and removed 

based on their priority level. 

 

Operations on Priority Queues: 

Insertion (Enqueue): Adds an element to the priority queue based 

on its priority. Higher priority elements are placed at the front of 

the queue. 

 

Algorithm: 

Add the new element at the end of the heap (array 

representation). 

Adjust the heap upwards (up-heap or bubble-up) to 

maintain the heap property (min-heap or max-heap). 

 

Deletion (Dequeue): Removes and returns the highest priority 

element from the priority queue. If multiple elements have the 

same highest priority, they are typically removed in a FIFO order. 

 

Algorithm: 

Remove the root element (highest priority element in a 

max-heap or lowest priority in a min-heap). 

Move the last element of the heap to the root position. 

Adjust the heap downwards (down-heap or bubble-down) 

to restore the heap property. 
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Peek: Retrieves the highest priority element without removing it 

from the queue. 

 

Algorithm: 

Return the root element of the heap without removing it. 

This operation retrieves the highest priority element. 

 

Implementation: 

Priority queues can be implemented using various data structures, 

such as: 

 

Binary Heap: A binary heap is a complete binary tree where each 

node satisfies the heap property (either min-heap or max-heap). 

This structure allows efficient insertion and deletion operations. 

 

Binary Search Tree (BST): A BST can be used to implement a 

priority queue where elements are ordered based on their priority, 

allowing logarithmic time complexity for insertion and deletion 

operations. 

 

Applications: 

Priority queues are useful in scenarios where: 

 

Task Scheduling: Operating systems use priority queues to 

manage tasks with different levels of priority. Higher priority tasks 

are executed sooner. 

 

Dijkstra’s Algorithm: In graph theory, priority queues are 

essential for implementing algorithms like Dijkstra's shortest path 

algorithm, where nodes are processed based on their shortest 

known path distance. 
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Event-driven Simulations: Systems that simulate real-world 

events (e.g., discrete event simulations) often use priority queues to 

manage events scheduled for future processing. 

 

 

 

Advantages: 

Efficient Operations: Priority queues allow O (log n) time 

complexity for insertion and deletion operations (depending on the 

implementation), making them suitable for real-time applications. 

 

Flexible Data Structure: They provide flexibility in managing 

data with varying priorities, allowing dynamic adjustments based 

on application needs. 

 

Optimized for Specific Applications: Priority queues are tailored 

to handle specific scenarios where prioritization of elements is 

critical, such as in scheduling and optimization problems. 

 

6.5 Double-ended Queues (Deque) 
 

A double-ended queue, often abbreviated as deque (pronounced 

"deck"), is a versatile data structure that allows insertion and 

deletion of elements from both ends. Unlike queues and stacks, 

which support insertion and deletion from only one end, deques 

support operations from both the front and the back. Here's an 

overview of double-ended queues: 

 

A deque is a linear collection of elements that supports efficient 

insertion and deletion operations at both ends. It allows elements to 

be added or removed from the front or the back, making it suitable 

for scenarios requiring flexibility in data access patterns. 
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Operations on Deques: 

Insertion at Front and Back: 

push_front(value): Adds an element to the front of the deque. 

push_back(value): Adds an element to the back of the deque. 

Deletion from Front and Back: 

pop_front(): Removes and returns the element at the front of the 

deque. 

pop_back(): Removes and returns the element at the back of the 

deque. 

 

Accessing Elements: 

front(): Returns (but does not remove) the element at the front of 

the deque. 

back(): Returns (but does not remove) the element at the back of 

the deque. 

 

Size and Empty Check: 

size(): Returns the number of elements currently stored in the 

deque. 

empty(): Checks if the deque is empty and returns true if no 

elements are present. 

 

Implementation Considerations: 

Array-based Implementation: Deques can be implemented using 

dynamic arrays or circular arrays to allow efficient insertion and 

deletion operations at both ends. 

Linked List Implementation: Using a doubly linked list allows 

constant time complexity for insertion and deletion operations at 

both ends, but it requires more memory overhead due to storing 

pointers for each element. 
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Applications: 

Double-ended Queues: Used in applications where elements need 

to be accessed and modified efficiently from both ends, such as 

implementing deque-based data structures like deque-based 

algorithms. 

Simulation Systems: Deques are suitable for implementing 

simulation systems where events can be added or removed from 

the front or back based on their priority or timestamp. 

Memory Management: Used in memory management systems 

where elements need to be dynamically allocated or deallocated 

from both ends. 

 

Advantages: 

Flexibility: Provides flexibility in accessing and manipulating 

elements from both ends, allowing various data processing and 

algorithmic operations. 

Efficiency: Supports efficient insertion and deletion operations 

with constant time complexity when implemented using arrays or 

linked lists. 

Versatility: Offers a versatile approach to handling data structures 

that require dynamic management of elements based on their 

position and priority. 

Operations: insert front, insert rear, delete front, delete rear 

 

1. Insert Front (push_front) 

Description: Adds an element to the front of the deque. 

Algorithm: 

If using a dynamic array or a vector, shift all existing elements to 

the right to make space for the new element at the front. 

If using a doubly linked list, create a new node and adjust pointers 

to insert it at the beginning of the list. 

C++ Implementation (using std::deque): 
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2. Insert Rear (push_back) 

Description: Adds an element to the back of the deque. 

Algorithm: 

Append the new element at the end of the deque. 

For a dynamic array, this typically involves appending the element 

to the vector. 

For a doubly linked list, simply adjust pointers to insert the new 

node at the end. 

C++ Implementation (using std::deque): 
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3. Delete Front (pop_front) 

Description: Removes and returns the element at the front of the 

deque. 

Algorithm: 

For a dynamic array, remove the first element and shift all other 

elements to the left. 

For a doubly linked list, adjust pointers to remove the first node. 

C++ Implementation (using std::deque): 

 

 

4. Delete Rear (pop_back) 

Description: Removes and returns the element at the back of the 

deque. 

 

Algorithm: 

For a dynamic array, remove the last element. 

For a doubly linked list, adjust pointers to remove the last node. 

C++ Implementation (using std::deque): 
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6.6 CONCLUSION 
 

Throughout this section, we have delved into the fundamental role 

of queues as crucial data structures for managing data in a First-In-

First-Out (FIFO) manner, pivotal across a wide array of 

computational applications. Our exploration began with an in-

depth look at linked list implementations of queues, emphasizing 

their dynamic memory allocation and efficient handling of 

insertion and deletion operations. Linked lists provide adaptability 

to varying queue sizes, making them particularly suited for 

scenarios where data changes frequently and unpredictably. 

 

Circular queues were also examined for their specialized ability to 

manage continuous data streams efficiently. By leveraging circular 

arrays or linked structures, circular queues minimize memory 

overhead and ensure seamless data circulation, ideal for 

applications requiring uninterrupted processing loops. This variant 

underscores the importance of efficient data management in 

optimizing computational workflows and system performance. 
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Additionally, our discussion encompassed priority queues and 

double-ended queues (deques), each tailored to specific operational 

needs. Priority queues prioritize elements based on predefined 

criteria, essential for time-sensitive tasks where urgency dictates 

processing order. Deques, offering operations from both ends of 

the queue, provide flexibility in data manipulation, catering to 

diverse data handling requirements. 

 

In mastering the concepts and implementations covered here, 

developers gain essential tools for designing robust algorithms and 

efficient software systems. Understanding the operational 

mechanics and strategic applications of different queue structures 

empowers developers to make informed decisions, enhancing their 

ability to optimize data workflows, manage real-time tasks 

effectively, and ultimately improve overall system performance. 

 

6.7 QUESTIONS AND ANSWERS 
 

1. What is the primary principle that queues follow, and why is it 

important in data management? 

Answer: Queues follow the First-In-First-Out (FIFO) principle, 

where the first element inserted into the queue is the first one to be 

removed. This principle ensures that data is processed in the order 

of arrival, essential for managing tasks or data items that need to 

be handled sequentially. 

 

2. How does a linked list implementation of a queue differ from an 

array-based implementation? 

Answer: Linked List: Implementing a queue using linked lists 

offers flexibility in dynamic memory allocation and efficient 

insertion and deletion operations. It allows for easy expansion and 

contraction of the queue size as elements are added or removed. 
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Array-based: Arrays provide direct access to elements but require 

resizing when the array becomes full, which can be less efficient 

for large queues or dynamic data sizes. 

 

 

 

3. What are the advantages of using a circular queue over a linear 

queue? 

Circular queues optimize memory usage by reusing space in a 

circular manner, preventing the need for shifting elements when 

the front of the queue becomes empty. This efficiency is crucial for 

continuous data processing scenarios where data elements need to 

be processed in a loop without interruption. 

4. How are priority queues different from regular queues, and what 

are their typical applications? 

Answer: Difference: Priority queues prioritize elements based on 

predefined criteria (such as numerical value or urgency) rather than 

the order of insertion. Higher priority elements are processed 

before lower priority ones, making them suitable for applications 

like task scheduling, job prioritization, and event handling in real-

time systems. 

 

5. What advantages do double-ended queues (deques) offer over 

standard queues, and in what scenarios are they beneficial? 

Answer: Deques support operations at both ends (front and back), 

allowing for flexible data manipulation. This capability is 

advantageous in scenarios where elements need to be added or 

removed from either end dynamically, such as managing sliding 

windows in data processing or implementing advanced data 

structures like stacks and queues simultaneously. 
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UNIT – 7: TREES  
Structure 

 

7.0 Introduction 

7.1 Objectives 

7.2 Abstract Data Type 

7.3 Tree Data Structure 

7.4 Implementation of Tree 

7.5 Tree Traversals 

7.6 Binary Trees 

7.7 Implementation of Binary Tree 

7.8 Operations on Binary Trees 

7.9 Conclusion 

7.10 Questions and Answers 

7.11 References 

 

7.0 INTRODUCTION 
 

Binary trees are a fundamental data structure in computer science, 

serving as the foundation for various complex data structures and 

algorithms. Understanding binary trees is crucial for effectively 

managing and organizing hierarchical data. This chapter delves 

into the intricacies of binary trees, covering their abstract data 

types, implementation, and traversal techniques. We will explore 

the properties and types of binary trees, emphasizing their practical 

applications and operational methodologies. 

 

Binary trees not only provide efficient means for data storage and 

retrieval but also enhance the performance of search and sort 

operations. They are employed in a myriad of applications, from 
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database indexing and syntax parsing in compilers to network 

routing algorithms and artificial intelligence. 

 

This chapter aims to equip you with a comprehensive 

understanding of binary trees, including their conceptual 

framework, implementation strategies, and common operations. By 

the end of this chapter, you will have a solid grasp of how to 

construct, manipulate, and traverse binary trees, preparing you for 

more advanced topics in data structures and algorithms. 

 

7.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understand Binary Trees: Define the structure and characteristics 

of binary trees. 

Implement Binary Trees: Implement binary trees using linked 

representation (nodes and pointers). 

Perform Tree Traversals: Implement and apply inorder, preorder, 

and postorder traversal methods. 

Conduct Operations on Binary Trees: Perform insertion, 

deletion, and search operations on binary trees. 

Apply Binary Trees in Problem Solving: Recognize and apply 

binary trees in solving real-world problems. 

 

7.2 ABSTRACT DATA TYPE 
 

An Abstract Data Type (ADT) refers to a theoretical model that 

defines a set of operations and the semantics of those operations on 

a data structure, without specifying how the data structure should 

be implemented. It provides a high-level description of data and 

operations, allowing for flexibility in implementation while 

ensuring consistency in behavior. 
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Characteristics of ADTs: 

Encapsulation: ADTs encapsulate data and operations within a 

cohesive unit, shielding internal details from external access. This 

promotes information hiding and ensures that operations are 

performed through well-defined interfaces. 

 

Operations: ADTs define a set of operations that can be performed 

on the data structure. These operations include creating the 

structure, inserting or deleting elements, accessing elements, and 

other manipulations specific to the type of data structure. 

 

Data Abstraction: ADTs abstract away the underlying details of 

data representation and storage. Users interact with the ADT 

through a predefined set of operations, focusing on what operations 

can be performed rather than how they are implemented. 

 

Implementation Flexibility: ADTs can be implemented using 

various programming paradigms and data structures. For example, 

a queue ADT can be implemented using arrays, linked lists, or 

other structures, as long as it adheres to the specified operations 

and behavior. 

 

Example ADTs: 

Stack: Supports operations like push (add element), pop (remove 

element), and peek (view top element), following Last-In-First-Out 

(LIFO) order. 

Queue: Allows operations such as enqueue (add element), dequeue 

(remove element), and peek (view front element), adhering to 

First-In-First-Out (FIFO) order. 

Tree: Defines operations for creating nodes, inserting or deleting 

nodes, and traversing the tree (e.g., inorder, preorder, postorder). 
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Graph: Defines vertices and edges, supporting operations like 

adding vertices, adding edges between vertices, and traversing 

through vertices and edges. 

 

Benefits of ADTs: 

Modularity: ADTs promote modular programming by separating 

data structure definitions from their implementations, facilitating 

code reuse and maintenance. 

Abstraction: ADTs hide complex implementation details, 

allowing programmers to focus on solving problems at a higher 

level of abstraction. 

Flexibility: ADTs provide flexibility in choosing implementation 

strategies based on performance requirements or specific 

application needs, without affecting the overall functionality. 

 

7.3 TREE DATA STRUCTURE 
 

A tree in computer science is a hierarchical data structure 

composed of nodes. Each node typically contains a value and a list 

of references to its child nodes. The structure starts from a root 

node and branches out into subtrees, where each subtree is also a 

tree in itself. Trees are used to represent hierarchical relationships, 

such as file systems, organizational charts, or abstract syntax trees 

in programming languages. Key concepts in trees include the root 

(topmost node), parent and child relationships, siblings (nodes 

sharing the same parent), and leaves (nodes without children). 

Common operations on trees include traversal (visiting each node 

in a specific order), insertion of nodes, deletion of nodes, and 

searching for nodes based on their values or properties. Trees can 

vary in complexity and types, such as binary trees (where each 

node has at most two children), balanced trees (maintaining a 

balanced structure for efficient operations), and more specialized 
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structures like binary search trees (BSTs) for efficient searching 

and sorting operations. Understanding trees is fundamental for 

designing efficient algorithms and data structures in computer 

science.  

 

The TreeNode struct defines each node in the tree, storing an 

integer value and pointers to its left and right child nodes. The 

BinaryTree class manages the tree operations, including insertion 

(insert method) and inorder traversal (inorderTraversal method). 

Insertion is handled recursively (insertRecursive), ensuring each 

value is placed correctly according to its relation with existing 

nodes. The inorderTraversal method recursively visits nodes in left 

subtree, root, and right subtree order, printing node values to 

display them in sorted order. The main function exemplifies the 

usage by creating a BinaryTree instance, inserting values (50, 30, 

20, 40, 70, 60, 80) into the tree, and then performing an inorder 

traversal to output the values in ascending order. This example 

serves as a foundational implementation of a binary tree in C++, 

suitable for basic tree operations and traversal techniques. 

 

Operations supported by the tree ADT, such as insertion, 

deletion, traversal, and searching. 

The operations supported by the tree Abstract Data Type (ADT) 

include: 

Insertion: Adding a new node to the tree. The node is typically 

inserted based on specific rules, such as maintaining a sorted order 

in a binary search tree. 

 

Deletion: Removing a node from the tree while maintaining the 

tree's structural integrity. This operation may involve reorganizing 

the tree to ensure it remains a valid tree structure. 

 



Data Structure using C++ & Lab -169 
 

Traversal: Visiting all nodes in the tree in a specific order. 

Common traversal methods include: 

 

Inorder: Visit left subtree, current node, right subtree. 

Preorder: Visit current node, left subtree, right subtree. 

Postorder: Visit left subtree, right subtree, current node. These 

traversals are useful for various applications, such as evaluating 

mathematical expressions (inorder) or copying a tree (preorder). 

 

Searching: Finding a node with a specific value or property within 

the tree. Searching in a binary search tree, for example, can be 

efficient due to its ordered nature, allowing for logarithmic time 

complexity in balanced trees. 

 

7.4 IMPLEMENTATION OF TREE 
 

An algorithmic approach for inserting nodes into a binary search 

tree (BST) and performing an inorder traversal: 

 

Algorithm: Insertion in Binary Search Tree (BST) 

 

Example: 

Let's apply this algorithm to insert a value key into a BST: 
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Considerations for dynamic memory management and efficient 

node operations. 

When implementing tree data structures, especially in languages 

like C++ where manual memory management is common, 

considerations for dynamic memory management and efficient 

node operations are crucial for performance and memory usage 

optimization. Here are some key considerations: 

 

Dynamic Memory Management: 

Node Allocation: Each node in the tree should be dynamically 

allocated using new in C++ to manage memory efficiently. This 

ensures nodes are allocated on the heap and can be accessed 

globally throughout the tree. 

 

Node Deallocation: When nodes are no longer needed (e.g., 

during deletion operations), they should be explicitly deallocated 

using delete to avoid memory leaks. This is particularly important 

for recursive operations like tree traversal and deletion. 

 

Memory Efficiency: Consider using memory pooling or custom 

memory allocation strategies if managing a large number of nodes 

to reduce overhead from frequent allocations and deallocations. 
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Efficient Node Operations: 

Insertion: Implement insertion operations (e.g., for BST) using 

recursive or iterative methods that maintain the BST properties 

efficiently. Ensure nodes are inserted in the correct position to 

maintain the ordering properties of the tree. 

 

Deletion: Implement deletion operations carefully to preserve the 

structure and properties of the tree (e.g., BST deletion). Handle 

cases for nodes with zero, one, or two children, ensuring the tree 

remains balanced and valid after deletion. 

 

Traversal: Use efficient traversal algorithms (e.g., inorder, 

preorder, postorder) to visit nodes in a specific order. Recursive 

implementations are straightforward but may consume stack space 

for deep trees; iterative implementations using stacks or queues 

can be more memory efficient. 

 

Balancing (for balanced trees): Consider implementing self-

balancing tree structures (e.g., AVL tree, Red-Black tree) for 

operations like insertion and deletion that maintain balance 

automatically, ensuring logarithmic time complexity for search 

operations. 

 

Node Access and Modification: Design node structures with 

efficient access and modification methods (e.g., getters, setters) to 

manipulate node data and relationships without compromising tree 

integrity or performance. 
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7.5 TREE TRAVERSALS 
 

Tree traversals are essential techniques for accessing and 

processing nodes in a tree data structure. Here's an overview of the 

different traversal methods: 

 

 

Depth-First Traversals 

1. Preorder Traversal 

Definition: Visit the root node first, then recursively do a preorder 

traversal of the left subtree, followed by a preorder traversal of the 

right subtree. 

Algorithm: 

 

Implementation: 

 

Usage: Useful for creating a copy of the tree or evaluating 

expressions. 

 

2. Inorder Traversal 

Definition: In an inorder traversal, nodes are visited in ascending 

order (for BSTs) by recursively visiting the left subtree, then the 

node itself, and finally the right subtree. 

Algorithm: 
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Implementation: 

 

Usage: Useful for retrieving elements in sorted order from BSTs. 

 

3. Postorder Traversal 

Definition: Recursively do a postorder traversal of the left subtree, 

then recursively do a postorder traversal of the right subtree, and 

finally visit the root node. 

Algorithm: 

 

Implementation: 
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Usage: Useful for deleting nodes or evaluating expressions. 

Breadth-First Traversal 

 

4. Level Order Traversal (Breadth-First) 

Definition: In a level order traversal, nodes are visited level by 

level from left to right. 

Algorithm: 

 

 

 

 

Implementation: 

 

 

7.6 BINARY TREES 
 

According to the binary tree, a node can only have a maximum of 

two children. Since the binary name in this case implies "two," 

each node may have zero, one, or two children. 
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Properties: 

Height of Binary Tree: The length of the path from the root to the 

deepest node. 

Number of Nodes: In a binary tree of height h, the maximum 

number of nodes is 2h+1 –  

 

1. Depth of a Node: The length of the path from the root to that 

node. 

Leaf Node: A node with no children. 

Internal Node: A node with at least one child. 

Binary Search Tree (BST): A binary tree in which for every node, 

the value of all the nodes in the left subtree is less, and the value of 

all the nodes in the right subtree is greater. 

Types of Binary Tree 

There are four types of Binary tree 

Full/ proper/ strict Binary tree 

Complete Binary tree 

Perfect Binary tree 

Balanced Binary tree 
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Full Binary Tree: 

Strict binary trees are another name for full binary trees. Only 

when every node has either 0 or 2 offspring can the tree be said to 

be the full binary tree. Another way to describe the full binary tree 

is as a tree where every node—aside from leaf nodes—must have 

two children. 

 

The aforementioned tree is a Full Binary tree since every node can 

be shown to have either zero or two offspring. 

 

Properties of Full Binary Tree 

One more internal node is added to the total number of leaf 

nodes. Since there are five internal nodes in the example 

above, there are six leaf nodes overall. 

The maximum number of nodes, or 2h+1 -1, is equal to the 

number of nodes in the binary tree. 

In the whole binary tree, there must be at least 2 * h - 1 

nodes. 

The whole binary tree has a minimum height of log2 (n+1) - 

1. 

The formula for calculating the maximum height of the 

entire binary tree is n= 2*h - 1. 
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Complete Binary Tree 

With the exception of the final level, every node in the complete 

binary tree is fully filled. Every node needs to be as far to the left 

as feasible in the final level. The nodes in a full binary tree have to 

be inserted from the left. 

 

Because every node in the last level is inserted at the left first and 

every node is fully filled, the aforementioned tree is a complete 

binary tree. 

 

Properties of Complete Binary Tree 

A binary tree with all nodes can have a maximum of 2h+1 - 

1. 

The minimum number of nodes in complete binary tree is 

2h. 

A full binary tree has a minimum height of log2(n+1) - 1. 

The highest point on an entire binary tree is 

 

Perfect Binary Tree 

If every internal node in a tree has two offspring and every leaf 

node is at the same level, the tree is a perfect binary tree. 
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The below tree is not a perfect binary tree because all the leaf 

nodes are not at the same level. 

 

Balanced Binary Tree 

A balanced binary tree is one in which the difference between the 

left and right trees is no more than 1. Red-Black and AVL trees are 

two examples of balanced binary trees. 
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7.7 IMPLEMENTATION OF BINARY 
TREE 
 

Here is a basic implementation of a binary tree in C++. The 

implementation includes a node class, the binary tree class with 

insertion and traversal methods. 

 

Binary Tree Node Class 

First, we define a class for the nodes of the binary tree: 

 

 

Array representation of binary trees: 

Array representation of binary trees is a way to store a binary tree 

using an array (or vector). This method is particularly useful for 

complete binary trees. Here's how it works: 

Root: The root of the binary tree is stored at the first index of the 

array (index 0). 

 

Parent-Child Relationship: 

For a node at index i: 

The left child is at index 2i + 1. 

The right child is at index 2i + 2. 

Conversely: 
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The parent of a node at index i is at index (i - 1) / 2. 

Example 

Consider the following binary tree: 

e  

This tree can be represented in an array as: 

 [1, 2, 3, 4, 5, 6, 7] 

 

Implementation in C++ 

Here's a basic implementation of a binary tree using array 

representation in C++: 

#include <iostream> 

#include <vector> 

class BinaryTree { 

public: 

    BinaryTree() {} 

    void insert(int key) { 

        arr.push_back(key); 

    } 

    void inorderTraversal(int index, std::vector<int>& result) { 

        if (index < arr.size()) { 

            inorderTraversal(2 * index + 1, result); // Visit left subtree 

            result.push_back(arr[index]);            // Visit node 

            inorderTraversal(2 * index + 2, result); // Visit right subtree 

        } 

    } 

    void preorderTraversal(int index, std::vector<int>& result) { 

        if (index < arr.size()) { 
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            result.push_back(arr[index]);            // Visit node 

            preorderTraversal(2 * index + 1, result); // Visit left subtree 

            preorderTraversal(2 * index + 2, result); // Visit right 

subtree 

        } 

    } 

    void postorderTraversal(int index, std::vector<int>& result) { 

        if (index < arr.size()) { 

            postorderTraversal(2 * index + 1, result); // Visit left 

subtree 

            postorderTraversal(2 * index + 2, result); // Visit right 

subtree 

            result.push_back(arr[index]);              // Visit node 

        } 

    } 

    std::vector<int> inorder() { 

        std::vector<int> result; 

        inorderTraversal(0, result); 

        return result; 

    } 

    std::vector<int> preorder() { 

        std::vector<int> result; 

        preorderTraversal(0, result); 

        return result; 

    } 

    std::vector<int> postorder() { 

        std::vector<int> result; 

        postorderTraversal(0, result); 

        return result; 

    } 

private: 

    std::vector<int> arr; 



Data Structure using C++ & Lab -182 
 

}; 

int main() { 

    BinaryTree tree; 

    tree.insert(1); 

    tree.insert(2); 

    tree.insert(3); 

    tree.insert(4); 

    tree.insert(5); 

    tree.insert(6); 

    tree.insert(7); 

    std::vector<int> inorderResult = tree.inorder(); 

    std::vector<int> preorderResult = tree.preorder(); 

    std::vector<int> postorderResult = tree.postorder(); 

    std::cout << "Inorder traversal: "; 

    for (int val : inorderResult) { 

        std::cout << val << " "; 

    } 

    std::cout << std::endl; 

    std::cout << "Preorder traversal: "; 

    for (int val : preorderResult) { 

        std::cout << val << " "; 

    } 

    std::cout << std::endl; 

    std::cout << "Postorder traversal: "; 

    for (int val : postorderResult) { 

        std::cout << val << " "; 

    } 

    std::cout << std::endl; 

    return 0; 

} 
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Explanation 

Insert: Adds a new element to the end of the array. 

Traversal Methods: 

Inorder Traversal: Recursively visits the left subtree, the node, 

and then the right subtree. 

Preorder Traversal: Recursively visits the node, the left subtree, 

and then the right subtree. 

Postorder Traversal: Recursively visits the left subtree, the right 

subtree, and then the node. 

Main Function: Demonstrates the usage of the BinaryTree class 

by inserting elements and performing different traversals. 

Linked representation (using nodes and pointers) of binary trees. 

 

In the linked representation of binary trees, each node is 

represented by a structure (or class) that contains data and pointers 

to its left and right children. This is a more flexible way to 

represent binary trees compared to array representation, especially 

for trees that are not complete. 

 

Node Structure 

First, define a structure (or class) for the nodes of the binary tree: 
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Binary Tree Class 

Next, define a class for the binary tree that includes methods to 

insert nodes and perform traversals: 

class BinaryTree { 

public: 

    BinaryTree() : root(nullptr) {} 

    void insert(int key) { 

        if (root == nullptr) { 

            root = new TreeNode(key); 

        } else { 

            insert(root, key); 

        } 

    } 

    void inorderTraversal(TreeNode* node, std::vector<int>& 

result) { 

        if (node != nullptr) { 

            inorderTraversal(node->left, result); 

            result.push_back(node->val); 

            inorderTraversal(node->right, result); 

        } 

    } 

    void preorderTraversal(TreeNode* node, std::vector<int>& 

result) { 

        if (node != nullptr) { 

            result.push_back(node->val); 

            preorderTraversal(node->left, result); 

            preorderTraversal(node->right, result); 

        } 

    } 

    void postorderTraversal(TreeNode* node, std::vector<int>& 

result) { 

        if (node != nullptr) { 
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            postorderTraversal(node->left, result); 

            postorderTraversal(node->right, result); 

            result.push_back(node->val); 

        } 

    } 

    std::vector<int> inorder() { 

        std::vector<int> result; 

        inorderTraversal(root, result); 

        return result; 

    } 

    std::vector<int> preorder() { 

        std::vector<int> result; 

        preorderTraversal(root, result); 

        return result; 

    } 

    std::vector<int> postorder() { 

        std::vector<int> result; 

        postorderTraversal(root, result); 

        return result; 

    } 

private: 

    TreeNode* root; 

    void insert(TreeNode* node, int key) { 

        if (key < node->val) { 

            if (node->left == nullptr) { 

                node->left = new TreeNode(key); 

            } else { 

                insert(node->left, key); 

            } 

        } else { 

            if (node->right == nullptr) { 

                node->right = new TreeNode(key); 
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            } else { 

                insert(node->right, key); 

            } 

        } 

    } 

}; 

 

7.8 OPERATIONS ON BINARY TREES 
 

Here’s a comprehensive guide to various operations on binary trees 

using different algorithms in C++: 

 

 

Operations on Binary Trees: Insertion with Algorithms 

In a binary tree, insertion can be performed in different ways based 

on the type of binary tree (e.g., Binary Search Tree, Complete 

Binary Tree). Here, we'll explore insertion in both a Binary Search 

Tree (BST) and a Complete Binary Tree. 

 

Node Structure 

Define a structure for the nodes of the binary tree: 
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Insertion in a Binary Search Tree (BST) 

In a BST, nodes are inserted such that the left subtree of a node 

contains only nodes with keys less than the node’s key, and the 

right subtree only nodes with keys greater than the node’s key. 

 

Insertion Algorithm 

Start at the root node. 

Compare the key to be inserted with the current node's key: 

If the key is less, move to the left child. 

If the key is greater, move to the right child. 

Repeat step 2 until finding an appropriate null position. 

Insert the new node at the found null position. 

 

 

 

C++ Implementation 

class BinarySearchTree { 

public: 

    BinarySearchTree() : root(nullptr) {} 

    void insert(int key) { 

        root = insert(root, key); 

    } 

    void inorder() { 

        inorderTraversal(root); 

    } 

private: 

    TreeNode* root; 

    TreeNode* insert(TreeNode* node, int key) { 

        if (node == nullptr) { 

            return new TreeNode(key); 

        } 

        if (key < node->val) { 



Data Structure using C++ & Lab -188 
 

            node->left = insert(node->left, key); 

        } else if (key > node->val) { 

            node->right = insert(node->right, key); 

        } 

        return node; 

    } 

    void inorderTraversal(TreeNode* node) { 

        if (node != nullptr) { 

            inorderTraversal(node->left); 

            std::cout << node->val << " "; 

            inorderTraversal(node->right); 

        } 

    } 

}; 

 

Deletion in Binary Trees 

Deletion in binary trees can vary based on the type of binary tree 

(e.g., Binary Search Tree, Complete Binary Tree). Here, we'll 

explore deletion in both a Binary Search Tree (BST) and a 

Complete Binary Tree. 

 

Node Structure 

Define a structure for the nodes of the binary tree: 

 

 

Deletion in a Binary Search Tree (BST) 

In a BST, deletion involves three main cases: 
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The node to be deleted is a leaf node (no children). 

The node to be deleted has one child. 

The node to be deleted has two children. 

 

Deletion Algorithm 

Find the node to be deleted. 

Handle the three cases for deletion: 

No children: Simply remove the node. 

One child: Replace the node with its child. 

Two children: Find the in-order successor (smallest node in the 

right subtree), replace the node’s value with the successor’s value, 

and then delete the successor. 

 

7.9 CONCLUSION 
 

In conclusion, binary trees stand as foundational structures in 

computer science, pivotal for organizing hierarchical data 

efficiently and enabling optimized algorithms. Throughout this 

chapter, we have explored the fundamental concepts of binary 

trees, from their basic definition and implementation to the 

intricacies of traversal methods and essential operations. 

 

Binary trees' versatility is evident in their application across 

various domains, including database management, expression 

parsing in compilers, and efficient routing in networks. Their 

ability to store and retrieve data in a hierarchical manner makes 

them indispensable in scenarios requiring structured data 

organization and rapid access. 

 

Implementing and manipulating binary trees involves mastering 

operations such as insertion, deletion, and traversal. Each operation 

impacts the tree's structure and performance, necessitating careful 
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consideration of algorithms to maintain balance and optimize 

efficiency. The choice of traversal method—whether inorder, 

preorder, or postorder—affects how nodes are accessed and 

processed, influencing the outcome of algorithms built upon binary 

tree structures. 

 

Looking ahead, further exploration into balanced binary trees like 

AVL trees and Red-Black trees offers insights into maintaining 

optimal performance across operations, especially in scenarios 

involving large datasets and critical applications. Mastery of binary 

trees provides a solid foundation for tackling advanced data 

structures and algorithmic challenges, essential for aspiring 

computer scientists and engineers alike. 

 

7.10 QUESTIONS AND ANSWERS 
 

1. What is a binary tree? 

Answer: A binary tree is a hierarchical data structure composed of 

nodes, where each node has at most two children, referred to as the 

left child and the right child. 

 

2. What are the main operations on binary trees? 

Answer: The main operations on binary trees include insertion, 

deletion, and searching for nodes based on their key values. 

Additionally, traversal methods such as inorder, preorder, and 

postorder allow for accessing and processing nodes in different 

sequences. 

 

3. What are the advantages of binary trees over other data 

structures? 

Answer: Binary trees excel in scenarios where data needs to be 

organized hierarchically with efficient search, insertion, and 
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deletion operations. They are particularly useful in applications 

requiring sorted data and balanced access patterns. 

 

4. How do you implement a binary tree in practice? 

Answer: Binary trees can be implemented using linked structures 

(nodes with pointers to left and right children) or array-based 

representations (for complete binary trees). The implementation 

typically involves defining a node structure and methods to 

perform operations like insertion, deletion, and traversal. 

 

5. What are some real-world applications of binary trees? 

Answer: Binary trees find applications in various fields, including 

database indexing, hierarchical data storage, expression parsing in 

compilers, file system organization, and network routing 

algorithms. 
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UNIT – 8: BINARY  
Structure 

 

8.0 Introduction 

8.1 Objectives 

8.2 Binary Tree Traversals 

8.3 Recursive Implementation of Binary Tree Traversals 

8.4 Non-Recursive Implementations of Binary Tree Traversals 

8.5 Applications of Binary Tree Traversals 

8.6 Conclusion 

8.7 Questions and Answers 

8.8 References 

 

8.0 INTRODUCTION 
 

Binary trees are fundamental data structures in computer science, 

characterized by nodes that have at most two children, commonly 

referred to as the left child and the right child. Traversing these 

structures involves systematically visiting each node, facilitating 

various operations and analyses crucial across numerous 

computational tasks. Binary tree traversals provide methods to 

explore and process nodes in specific sequences, each offering 

unique advantages in data manipulation and algorithmic 

applications. 

 

Binary tree traversal algorithms, both recursive and iterative, are 

pivotal in understanding and manipulating hierarchical data 

efficiently. Recursive implementations, characterized by their 

straightforward approach using function calls, offer simplicity and 

clarity in algorithm design. Conversely, non-recursive approaches, 

employing explicit data structures like stacks or queues, provide 
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control over memory usage and are often favored in environments 

sensitive to stack depth or performance. 

 

This discussion explores the intricacies of binary tree traversals, 

delving into both their theoretical underpinnings and practical 

applications. We will examine recursive and non-recursive 

implementations of traversal algorithms, highlighting their 

respective strengths and use cases. Furthermore, we will explore 

diverse applications where binary tree traversals play a crucial role, 

from expression evaluation to graph algorithms and tree 

optimizations. 

 

Understanding these traversal techniques equips us with essential 

tools for efficiently navigating and manipulating binary tree 

structures, underpinning foundational concepts in computer 

science and enabling sophisticated solutions across various 

domains. 

 

8.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

 

Understand Binary Tree Traversals: Explore the concepts of 

inorder, preorder, and postorder traversals, comprehending their 

definitions and traversal sequences within binary tree structures. 

 

Compare Recursive and Iterative Implementations: Analyze the 

differences between recursive and iterative approaches to binary 

tree traversals, evaluating their performance characteristics and 

memory usage. 
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Implement Binary Tree Traversals: Develop proficiency in 

implementing recursive and non-recursive algorithms for inorder, 

preorder, and postorder traversals in practical scenarios. 

Explore Applications: Investigate real-world applications of 

binary tree traversals across various domains, including data 

processing, algorithmic problem-solving, and data structure 

optimizations. 

 

Gain Practical Skills: Acquire hands-on experience in utilizing 

binary tree traversals for tasks such as expression evaluation, tree 

manipulation, pathfinding, and graph algorithms. 

 

8.2 BINARY TREE TRAVERSALS 
 

Binary tree traversals involve systematically visiting each node in 

a binary tree according to a specified order. The three primary 

traversal methods are inorder, preorder, and postorder. In inorder 

traversal, nodes are visited in a left-root-right sequence, making it 

useful for accessing nodes in sorted order in a BST. Preorder 

traversal visits the root before its left and right children, making it 

suitable for creating a copy of a tree or prefix expression 

evaluation. Postorder traversal visits the left and right children 

before the root, often used for deleting a tree or evaluating postfix 

expressions. These traversal techniques are fundamental for 

accessing, modifying, or analyzing binary tree structures in various 

computational tasks and algorithms. 

 

Inorder Traversal: Visit left subtree, then root, then right subtree. 

Inorder traversal is a method used to visit nodes in a binary tree 

where each node is recursively visited in the order: left subtree, 

root, right subtree. This traversal method is particularly useful for 
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binary search trees (BSTs) as it visits nodes in ascending order of 

their keys. 

 

Algorithm 

The recursive algorithm for inorder traversal can be defined as 

follows: 

Base Case: If the current node is null (empty tree), return. 

Recursive Step: 

Recursively traverse the left subtree. 

Visit (print, process, or store) the current node's value. 

Recursively traverse the right subtree. 

This approach ensures that nodes are visited in the correct order 

according to the properties of inorder traversal. 

 

Example 

Let's illustrate the inorder traversal algorithm with a simple C++ 

implementation using a class TreeNode for the tree nodes: 

#include <iostream> 

class TreeNode { 

public: 

    int val; 

    TreeNode* left; 
    TreeNode* right; 

    TreeNode(int value) : val(value), left(nullptr), right(nullptr) {} 

}; 

void inorderTraversal(TreeNode* root) { 

    if (root == nullptr) { 

        return; 

    } 

    // Traverse the left subtree 

    inorderTraversal(root->left); 

    // Visit the current node (print its value) 
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    std::cout << root->val << " "; 

    // Traverse the right subtree 

    inorderTraversal(root->right); 

} 

// Example usage 

int main() { 

    // Constructing a sample binary tree 

    TreeNode* root = new TreeNode(1); 

    root->left = new TreeNode(2); 

    root->right = new TreeNode(3); 

    root->left->left = new TreeNode(4); 

    root->left->right = new TreeNode(5); 

    std::cout << "Inorder traversal: "; 

    inorderTraversal(root); 

    std::cout << std::endl; 

    return 0; 

} 

 

Explanation 

In the above example: 

We define the TreeNode class to represent nodes of the binary tree. 

The inorderTraversal function is a recursive function that performs 

inorder traversal. 

Starting from the root node (root), it recursively traverses the left 

subtree (root->left), then visits the current node (root->val), and 

finally recursively traverses the right subtree (root->right). 

The traversal prints node values in ascending order due to the 

nature of inorder traversal, resulting in output: 4 2 5 1 3. 

 

Preorder Traversal: Visit root, then left subtree, then right 

subtree. 
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Preorder traversal is a method used to visit nodes in a binary tree 

where each node is recursively visited in the order: root, left 

subtree, right subtree. This traversal method is useful for creating a 

copy of the tree, prefix expression evaluation, or constructing 

prefix notation from infix notation. 

 

Algorithm 

The recursive algorithm for preorder traversal can be defined as 

follows: 

Base Case: If the current node is null (empty tree), return. 

 

Recursive Step: 

Visit (print, process, or store) the current node's value. 

Recursively traverse the left subtree. 

Recursively traverse the right subtree. 

This approach ensures that the root node is visited before its left 

and right subtrees. 

 

Example in Python 

Let's illustrate the preorder traversal algorithm with an example 

implementation in C++: 

#include <iostream> 

// Definition of TreeNode 

class TreeNode { 

public: 

    int val; 

    TreeNode* left; 

    TreeNode* right; 

    TreeNode(int value) : val(value), left(nullptr), right(nullptr) {} 

}; 

// Function to perform preorder traversal 

void preorderTraversal(TreeNode* root) { 
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    if (root == nullptr) { 

        return; 

    } 

    // Visit the current node 

    std::cout << root->val << " "; 

    // Traverse the left subtree 

    preorderTraversal(root->left); 

    // Traverse the right subtree 

    preorderTraversal(root->right); 

} 

// Main function for example usage 

int main() { 

    // Constructing a sample binary tree 

    TreeNode* root = new TreeNode(1); 

    root->left = new TreeNode(2); 

    root->right = new TreeNode(3); 

    root->left->left = new TreeNode(4); 

    root->left->right = new TreeNode(5); 

    // Perform preorder traversal 

    std::cout << "Preorder traversal: "; 

    preorderTraversal(root); 

    std::cout << std::endl; 

    return 0; 

} 

Explanation: 

TreeNode Class: Defines a simple binary tree node with an integer 

value (val) and pointers to left (left) and right (right) children. 

 

preorderTraversal Function: 

Recursively traverses the binary tree in preorder. 
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Prints the value of the current node (root->val) before recursively 

calling preorderTraversal on its left and right children (root->left 

and root->right). 

 

Main Function: 

Constructs a sample binary tree with values 1, 2, 3, 4, and 5. 

Calls preorderTraversal starting from the root node (TreeNode (1)). 

Outputs the result of the preorder traversal, which in this case 

would be: 1 2 4 5 3. 

 

Postorder Traversal: Visit left subtree, then right subtree, then 

root. 

Postorder traversal is a method used to visit nodes in a binary tree 

where each node is recursively visited in the order: left subtree, 

right subtree, root. This traversal method is useful for deleting a 

tree, evaluating postfix expressions, or performing certain types of 

bottom-up processing. 

 

Algorithm 

The recursive algorithm for postorder traversal can be defined as 

follows: 

Base Case: If the current node is null (empty tree), return. 

 

Recursive Step: 

Recursively traverse the left subtree. 

Recursively traverse the right subtree. 

Visit (print, process, or store) the current node's value. 

This approach ensures that the root node is visited after its left and 

right subtrees have been fully explored. 
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Example in C++ 

Here's how you can implement postorder traversal of a binary tree 

in C++ using a class TreeNode for the nodes: 

#include <iostream> 

// Definition of TreeNode 

class TreeNode { 

public: 

    int val; 

    TreeNode* left; 

    TreeNode* right; 

    TreeNode(int value) : val(value), left(nullptr), right(nullptr) {} 

}; 

// Function to perform postorder traversal 

void postorderTraversal(TreeNode* root) { 

    if (root == nullptr) { 

        return; 

    } 

    // Traverse the left subtree 

    postorderTraversal(root->left); 

    // Traverse the right subtree 

    postorderTraversal(root->right); 

    // Visit the current node 

    std::cout << root->val << " "; 

} 

// Main function for example usage 

int main() { 

    // Constructing a sample binary tree 

    TreeNode* root = new TreeNode(1); 

    root->left = new TreeNode(2); 

    root->right = new TreeNode(3); 

    root->left->left = new TreeNode(4); 

    root->left->right = new TreeNode(5); 
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    // Perform postorder traversal 

    std::cout << "Postorder traversal: "; 

    postorderTraversal(root); 

    std::cout << std::endl; 

    return 0; 

} 

 

Level-order Traversal: Visit nodes level by level, left to right. 

Level-order traversal, also known as breadth-first traversal, is a 

method used to visit nodes in a binary tree where each level of the 

tree is visited before moving on to the next level. This traversal 

method explores nodes level by level, from left to right, making it 

suitable for tasks such as level-wise printing or searching in a tree 

structure. 

 

Algorithm 

Level-order traversal can be implemented using a queue data 

structure to keep track of nodes at each level: 

 

Initialize: Start with a queue initialized with the root node. 

Process Nodes: Dequeue a node from the front of the queue, visit 

(print, process, or store) its value. 

 

Enqueue Children: Enqueue its left and right children (if they 

exist) into the queue. 

Repeat: Continue this process until the queue is empty. 

Example in C++ 

Here's how you can implement level-order traversal of a binary 

tree in C++ using a class TreeNode for the nodes and std::queue 

for managing the traversal: 

#include <iostream> 

#include <queue> 
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// Definition of TreeNode 

class TreeNode { 

public: 

    int val; 

    TreeNode* left; 

    TreeNode* right; 

    TreeNode(int value) : val(value), left(nullptr), right(nullptr) {} 

}; 

// Function to perform level-order traversal 

void levelOrderTraversal(TreeNode* root) { 

    if (root == nullptr) { 

        return; 

    } 

    // Create a queue for level-order traversal 

    std::queue<TreeNode*> q; 

    q.push(root); 

    while (!q.empty()) { 

        TreeNode* current = q.front(); 

        q.pop(); 

        // Visit the current node 

        std::cout << current->val << " "; 

        // Enqueue left child 

        if (current->left) { 

            q.push(current->left); 

        } 

        // Enqueue right child 

        if (current->right) { 

            q.push(current->right); 

        } 

    } 

} 

// Main function for example usage 
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int main() { 

    // Constructing a sample binary tree 

    TreeNode* root = new TreeNode(1); 

    root->left = new TreeNode(2); 

    root->right = new TreeNode(3); 

    root->left->left = new TreeNode(4); 

    root->left->right = new TreeNode(5); 

    // Perform level-order traversal 

    std::cout << "Level-order traversal: "; 

    levelOrderTraversal(root); 

    std::cout << std::endl; 

    return 0; 

} 

 

Explanation: 

TreeNode Class: Defines a simple binary tree node with an integer 

value (val) and pointers to left (left) and right (right) children. 

 

levelOrderTraversal Function: 

Implements level-order traversal using a std::queue. 

Starts with the root node (root) enqueued. 

Dequeues each node (current) from the front of the queue, visits its 

value (std::cout << current->val << " "), and enqueues its children 

(if they exist) into the queue. 

Continues this process until all nodes at every level have been 

visited. 

 

Main Function: 

Constructs a sample binary tree with values 1, 2, 3, 4, and 5. 

Calls levelOrderTraversal starting from the root node 

(TreeNode(1)). 
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Outputs the result of the level-order traversal, which in this case 

would be: 1 2 3 4 5. 

 

8.3 RECURSIVE IMPLEMENTATION 
OF BINARY TREE TRAVERSALS 
 

Recursive implementation of binary tree traversal refers to the 

method of visiting each node in a binary tree using recursive 

function calls. There are three primary types of binary tree 

traversals: inorder, preorder, and postorder. 

 

In each traversal method, the recursive function ensures that all 

nodes are visited in the prescribed order, leveraging the function 

call stack to manage the sequence of node visits. Recursive 

implementations are typically concise and intuitive for tree 

traversal, suitable for operations such as printing tree nodes in a 

specific order, evaluating expressions, or performing depth-first 

searches in binary tree structures. 

 

The algorithms for recursive binary tree traversals in C++ format: 

In inorder traversal, the nodes are visited in the sequence: left 

subtree, root, right subtree. The recursive algorithm starts by 

checking if the current node is null; if so, it returns. Otherwise, it 

recursively traverses the left subtree, then visits the current node 

(e.g., prints its value), and finally recursively traverses the right 

subtree. 

 

Time Complexity of Recursive Traversals 

Each node is visited exactly once. 

Time complexity: O(n), where n is the number of nodes in 

the binary tree. 
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This is because every node is processed once, and 

processing each node takes constant time. 

Inorder Traversal Algorithm (C++ Format) 

 

Preorder traversal visits nodes in the sequence: root, left subtree, 

right subtree. Similarly, the recursive function checks if the current 

node is null; if not, it visits the current node first, then recursively 

traverses the left subtree, followed by the right subtree. 

 

Time Complexity of Recursive Traversals 

Each node is visited exactly once. 

Time complexity: O(n), where n is the number of nodes in 

the binary tree. 

Similar to inorder traversal, all nodes are processed once. 

 

Preorder Traversal Algorithm (C++ Format) 
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Postorder traversal visits nodes in the sequence: left subtree, 

right subtree, root. The recursive approach begins by recursively 

traversing the left subtree, then the right subtree, and finally 

visiting the current node. 

Time Complexity of Recursive Traversals 

 

Each node is visited exactly once. 

Time complexity: O (n), where nnn is the number of nodes 

in the binary tree. 

Like the other traversals, all nodes are processed once. 

 

 

Postorder Traversal Algorithm (C++ Format) 

 

 

Explanation 

Each function (inorderTraversal, preorderTraversal, 

postorderTraversal) takes a TreeNode* parameter root, 

representing the root of the subtree to traverse. 

Base Case: if (root == nullptr) checks if the current node (root) is 

null (empty tree). If true, the function returns immediately, halting 

further recursion. 
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Recursive Step: For each traversal: 

Inorder: Recursively call inorderTraversal on the left subtree, visit 

the current node, then recursively call it on the right subtree. 

Preorder: Visit the current node, recursively call 

preorderTraversal on the left subtree, then on the right subtree. 

Postorder: Recursively call postorderTraversal on the left subtree, 

then on the right subtree, and finally visit the current node. 

Visit Node: This part of the algorithm is where you would 

typically perform an action on the current node, such as printing its 

value (std::cout << root->val << " ";). This action can be adjusted 

based on the specific requirements of your application. 

 

8.4 NON-RECURSIVE 
IMPLEMENTATIONS OF BINARY 
TREE TRAVERSALS 
 

The algorithmic outlines for non-recursive implementations of 

binary tree traversals: 

Non-Recursive Algorithms for Binary Tree Traversals 

Inorder Traversal Algorithm (Non-Recursive) 
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Preorder Traversal Algorithm (Non-Recursive) 

 

 

Postorder Traversal Algorithm (Non-Recursive) 

 

Explanation 

Inorder Traversal: Uses a stack to simulate the call stack of 

recursive approach. It traverses left subtree first, processes the 

current node, and then moves to the right subtree. 
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Preorder Traversal: Starts from the root node, processes it, and 

pushes its right and left children onto the stack. This ensures nodes 

are processed in the correct preorder sequence. 

Postorder Traversal: Uses two stacks: the main stack pushes 

nodes in root-right-left order, and the output stack reverses this 

order to achieve the postorder sequence. 

Compare the recursive and iterative approaches in terms of 

performance and memory usage. 

 

Recursive Approach 

Performance: 

Time Complexity: Recursive traversals (inorder, preorder, 

postorder) typically have a time complexity of O (n), where n is 

the number of nodes in the binary tree. Each node is visited exactly 

once. 

Space Complexity: The space complexity depends on the 

maximum depth of the recursion stack, which is O (h) where h is 

the height of the binary tree. In the best-case scenario (balanced 

tree), this is O (log n); in the worst case (unbalanced tree), it can be 

O (n). 

 

Memory Usage: 

Recursive calls use memory on the call stack for function calls and 

local variables. Each recursive call adds a stack frame, which can 

potentially lead to stack overflow errors if the tree is deeply nested 

or unbalanced. 

Despite potential drawbacks, recursive approaches are often 

simpler to implement and understand due to their natural recursive 

nature. 
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Iterative Approach 

 

Performance: 

Time Complexity: Iterative traversals also have a time complexity 

of O (n), similar to recursive traversals. Each node is processed 

exactly once. 

Space Complexity: Iterative traversals typically use an explicit 

data structure such as a stack (or queue for level-order traversal). 

The space complexity is also O (h), where h is the height of the 

binary tree. This is because the stack or queue stores nodes as they 

are processed, similar to the depth of recursion in the recursive 

approach. 

 

Memory Usage: 

Iterative approaches often use additional memory for data 

structures like stacks or queues to manage the order of node 

processing. 

They may be more memory-efficient in some cases compared to 

recursive approaches, especially in situations where tail-call 

optimization is not available (as in many programming languages). 

 

8.5 APPLICATIONS OF BINARY TREE 
TRAVERSALS 
 

Binary tree traversals, both recursive and iterative, are fundamental 

operations with numerous practical applications across various 

domains. Here are some key applications of binary tree traversals: 

 

Binary Search Trees (BSTs): Inorder traversal of a BST results in 

a sorted sequence of elements. This property is utilized for tasks 

such as generating sorted outputs from data stored in a BST or 

validating the ordering of elements. 
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Expression Evaluation: Preorder or postorder traversals are used 

to evaluate arithmetic expressions stored in binary expression trees 

(expression trees). Each traversal method corresponds to a different 

evaluation strategy (prefix, postfix), making it efficient for 

computational tasks. 

 

Path Finding and Reconstruction: Traversals are employed to 

reconstruct or find paths within binary trees. For example, 

determining the path from the root to a specific node or finding all 

root-to-leaf paths in the tree. 

 

Binary Tree Operations: Traversals facilitate various operations 

such as cloning a tree (preorder), transforming a tree structure 

(inorder), or deleting nodes (postorder). These operations leverage 

the sequential access provided by traversals to manipulate tree data 

effectively. 

 

Binary Tree Serialization and Deserialization: Preorder or 

postorder traversals are used to serialize binary trees into a linear 

data format (e.g., arrays or strings). This serialized format can be 

stored or transmitted across networks and later deserialized back 

into a binary tree. 

 

Graph Algorithms: Binary tree traversals serve as a basis for 

several graph algorithms, such as depth-first search (DFS), which 

explores vertices in a similar manner to preorder traversal. 

Applications include finding connected components, cycle 

detection, and topological sorting in directed acyclic graphs 

(DAGs). 

 



Data Structure using C++ & Lab -212 
 

 

8.6 CONCLUSION 
 

Binary tree traversals represent a cornerstone in the study of data 

structures and algorithms, offering essential tools for navigating 

and manipulating hierarchical data efficiently. Throughout this 

exploration, we have delved into the intricacies of inorder, 

preorder, and postorder traversals, each methodically visiting 

nodes in distinct sequences that serve various computational 

purposes. 

 

Recursive implementations of these traversals provide a clear and 

intuitive approach, leveraging function calls to explore tree 

structures depth-first. They offer simplicity in algorithmic design 

but necessitate careful consideration of stack space in deeply 

nested trees. In contrast, non-recursive approaches utilize explicit 

data structures like stacks or queues to achieve iterative traversal, 

offering finer control over memory usage and stack depth. 

 

From practical applications in expression evaluation and tree 

manipulation to supporting complex graph algorithms and 

optimizing data structures like binary search trees, binary tree 

traversals find wide-ranging utility. They empower efficient 

solutions across domains, enhancing computational efficiency and 

enabling sophisticated data processing tasks. 

 

As we conclude, understanding the nuances of binary tree 

traversals equips us with essential skills for tackling algorithmic 

challenges, optimizing code performance, and developing robust 

software solutions. Mastery of these traversal techniques not only 

enriches our understanding of data structures but also fosters 
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creativity in algorithm design, ensuring proficiency in navigating 

the complexities of binary tree structures. 

 

 

8.7 QUESTIONS AND ANSWERS 
 

1. What are the three main types of binary tree traversals? 

Answer: The three main types of binary tree traversals are: 

Inorder traversal: Visit left subtree, then current node, then right 

subtree. 

Preorder traversal: Visit current node, then left subtree, then right 

subtree. 

Postorder traversal: Visit left subtree, then right subtree, then 

current node. 

 

2. How does inorder traversal of a binary search tree differ 

from preorder and postorder traversals? 

Answer: In an inorder traversal of a binary search tree (BST), the 

nodes are visited in ascending order of their keys. This property 

makes inorder traversal useful for generating sorted lists from 

BSTs. In contrast, preorder and postorder traversals follow 

different sequences: preorder visits the root before its subtrees, 

while postorder visits the root after its subtrees. 

 

3. What is the advantage of using iterative approaches for 

binary tree traversals over recursive methods? 

Answer: Iterative approaches using stacks or queues offer more 

control over memory usage, especially in environments where 

stack depth is a concern (such as in deeply nested trees). They can 

also be more efficient in terms of space utilization and are suitable 

for iterative modifications or optimizations of tree structures. 

 



Data Structure using C++ & Lab -214 
 

4. Give an example where postorder traversal of a binary tree 

is particularly useful. 

Answer: Postorder traversal is useful in scenarios where operations 

need to be performed on subtrees before processing the root node. 

For example, in deleting a binary tree, postorder traversal ensures 

that child nodes are deleted before their parent nodes, preventing 

memory leaks and ensuring proper cleanup. 

 

5. How does the time complexity of binary tree traversals 

compare to each other? 

Answer: All three types of binary tree traversals (inorder, preorder, 

postorder) have a time complexity of O (n), where nnn is the 

number of nodes in the binary tree. This is because each node is 

visited exactly once during traversal, making them equally efficient 

in terms of time complexity. 
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BLOCK III: GRAPH ALGORITHMS 
AND SEARCHING TECHNIQUES  
UNIT – 9: ADVANCED TREES 
Structure 

 

9.0 Introduction 

9.1 Objectives 

9.2 AVL Trees 

 9.2.1 RR Rotation 

 9.2.2 LL Rotation 

 9.2.3 LR Rotation 

 9.2.4 RL Rotation 

9.3 Implementation of AVL Trees Operations 

9.4 Applications of AVL Trees 

9.5 Conclusion 

9.6 Questions and Answers 

9.7 References 

 

9.0 INTRODUCTION 
 

AVL trees are a type of self-balancing binary search tree named 

after their inventors, Georgy Adelson-Velsky and Evgenii Landis. 

They maintain a balanced structure to ensure that the height of the 

tree remains logarithmic with respect to the number of nodes, 

which allows for efficient operations such as insertion, deletion, 

and searching. The balance of an AVL tree is managed through 

rotations, which ensure that the tree remains balanced after 

modifications. This balancing mechanism makes AVL trees 

particularly suitable for applications requiring frequent updates and 

efficient data retrieval. 
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In this chapter, we will explore the fundamentals of AVL trees, 

including the different types of rotations used to maintain balance. 

We will delve into the implementation of various AVL tree 

operations, such as insertion and deletion, and discuss their 

algorithms in detail. Additionally, we will examine practical 

applications of AVL trees, highlighting their significance in various 

computational and real-world scenarios. Finally, we will provide a 

set of questions and answers to reinforce the concepts covered, 

along with references for further reading. 

 

This comprehensive overview aims to equip you with a thorough 

understanding of AVL trees, their operations, and their 

applications, providing a solid foundation for further exploration 

and implementation of this essential data structure. 

 

9.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understand the basic concepts and properties of AVL trees and 

why they are called self-balancing binary search trees. 

 

Learn and implement the different types of rotations (RR, LL, LR, 

RL) used to maintain the balance in AVL trees. 

 

Implement insertion and deletion operations in AVL trees, ensuring 

the tree remains balanced through appropriate rotations. 

 

Explore various real-world applications of AVL trees to understand 

their practical significance and efficiency. 
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Reinforce your understanding of AVL trees through questions and 

answers, and refer to additional resources for deeper insights into 

the topic. 

 

9.2 AVL TREES 
 

In 1962, GM Adelson-Velsky and EM Landis created the AVL 

Tree. To honor its creators, the tree is called AVL.  

 

The height of each node in an AVL Tree is determined by 

subtracting the height of its left sub-tree from the height of its right 

sub-tree, creating a height balanced binary search tree. 

 

If every node's balance factor falls between -1 and 1, the tree is 

said to be balanced; if not, it needs to be balanced.  

Balance Factor (k) = height (left(k)) - height (right(k)) 

 

The left sub-tree is one level higher than the right sub-tree if the 

balancing factor of any node is 1.  

 

Any node whose balancing factor is zero indicates that the heights 

of the left and right subtrees are equal.  

The left sub-tree is one level lower than the right sub-tree if the 

balancing factor of any node is -1.  

 

The AVL tree is shown in the image below. It is evident that every 

node has a balance factor that ranges from -1 to +1. It is an AVL 

tree example as a result.  
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Image Source: Javat Point 

 

 

Operation on AVL Tree 

All operations are carried out in the same manner as they are 

carried out in a binary search tree as the AVL tree is likewise a 

binary search tree. There is no property violation of the AVL tree 

as a result of searching or traversing. Nevertheless, insertion and 

deletion are the operations that need to be reviewed because they 

have the potential to break this characteristic. 
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Insertion: The process of inserting data into an AVL tree is 

identical to that of inserting data into a binary search tree. It 

might, however, result in an AVL tree property violation, 

necessitating the balancing of the tree. Rotations can be 

used to balance the tree. 

Deletion: The process of deletion can be carried out 

similarly to how it is in a binary search tree. Various 

rotations are performed to rebalance the tree because 

deletions can also throw it out of balance. 

 

The AVL Tree: Why? 

By preventing skewing, the AVL tree regulates the height of the 

binary search tree. In a binary search tree of height h, the total 

processing time is O(h). On the other hand, in the worst-case 

scenario, if the BST skews, it can be stretched to O(n). The AVL 

tree sets an upper limitation on each operation to be O(log n), 

where n is the number of nodes, by restricting this height to log n. 

Rotations of AVL 

Rotation in the AVL tree is only carried out when the Balance 

Factor is not equal to -1, 0 or 1. Rotations can be broadly classified 

into four categories, which are as follows: 

L L rotation: Inserted node is in the left subtree of left 

subtree of A 

R R rotation: Inserted node is in the right subtree of right 

subtree of A 

L R rotation: Inserted node is in the right subtree of left 

subtree of A 

R L rotation: Inserted node is in the left subtree of right 

subtree of A 
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Assuming that node A is the node with a balancing factor that is 

not -1, 0, 1. 

The initial two iterations: The next two rotations, LR and RL, are 

double rotations, whereas LL and RR are single rotations. A tree 

must have a minimum height of two in order to be considered 

imbalanced. Let's examine each revolution. 

 

9.2.1 RR Rotation 

We apply RR rotation, an anticlockwise rotation, on the edge 

beneath a node with a balance factor of -2 when BST becomes 

unbalanced as a result of a node being placed into the right subtree 

of the right subtree of A. 

Because node C is added into the right subtree of node A, node A 

in the example above has a -2 balancing factor. We rotate the RR 

on the edge beneath A. 

 

 

9.2.2 LL Rotation 

We apply LL rotation, or clockwise rotation, on the edge beneath a 

node with balance factor 2 when BST becomes unbalanced as a 

result of a node being added into the left subtree of the left subtree 

of C.  

Because node A is inserted into the left subtree of the C left 

subtree, node C in the example above has a balance factor of 2. 

The LL rotation is applied to the edge beneath A.  
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9.2.3 LR Rotation 

As was already mentioned, single rotations are a little easier than 

double rotations. RR rotation is initially applied to the subtree, then 

LL rotation is applied to the complete tree (which is defined as the 

first node from the route of the inserted node whose balance factor 

is not -1, 0, or 1). This means that LR rotation is equal to RR 

rotation plus LL rotation. 

 

Step – I: Node B was inserted into both the left and right subtrees 

of C and A, resulting in C being an unbalanced node with a balance 

factor of 2. In this case of rotation from L to R, where: The inserted 

node can be found in the right subtree of C's left subtree.  

 

Step – II: Given that LR rotation is equal to RR plus LL rotation, 

RR (anticlockwise) on the subtree rooted at A is done first. Node A 

has become the left subtree of B through RR rotation.  
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Step – III: Because inserted node A is to the left of C, node C is 

still unbalanced, or has a balance factor of 2, even after RR 

rotation.  

 

 

Step – IV: We now rotate the entire tree, or node C, in a clockwise 

direction using LL. Node C is now node B's right subtree, and 

node A is node B's left subtree.  

 

 

9.2.4 RL Rotation 

Double rotations are a little more difficult than single rotations, as 

was previously mentioned and previously explained. The formula 

for R L rotation is equal to LL rotation plus RR rotation. This 

means that LL rotation is applied to the subtree first, then RR 

rotation is applied to the complete tree (which is defined as the first 
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node from the route of the inserted node whose balancing factor is 

not equal to -1, 0, or 1). 

Step – I: Due to the insertion of node B into the right subtree of A 

and left subtree of C, A is now an unbalanced node with a balance 

factor of 2. In this RL rotation scenario, where: The node that was 

inserted is in the left subtree of A's right subtree.  

 

 

Step – II: Since LL rotation plus RR rotation equals RL rotation, 

LL (clockwise) rotation on the subtree rooted at C is done first. 

After performing RR rotation, node C is now B's correct subtree.  

 

 

Step – III: Node A remains unbalanced, with a balance factor of -

2, even after LL rotation has been performed. This is due to the 

fact that node A's right-subtree is also its right-subtree. 
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Step – IV: We now rotate the entire tree, or node A, in an 

anticlockwise direction, or RR rotation. Now, node A is the left 

subtree of node B, and node C is the right subtree of node B. 

 

Step – V: Balance factor of each node is now either -1, 0, or 1, i.e., 

BST is balanced now. 

 

 

 

9.3 IMPLEMENTATION OF AVL 
TREES OPERATIONS 
 

Operations on AVL Trees 

Insertion of a Node 

 

Algorithm: 

Perform a standard BST insertion. 

Update the height of each node from the inserted node to the root. 

Check the balance factor of each node. 

If the balance factor of any node becomes greater than 1 or less 

than -1, perform rotations (LL, RR, LR, RL) to balance the tree. 

Deletion of a Node 
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Algorithm: 

Perform a standard BST deletion. 

Update the height of each node from the deleted node to the root. 

Check the balance factor of each node. 

If the balance factor of any node becomes greater than 1 or less 

than -1, perform rotations to balance the tree. 

Left Rotation 

 

Algorithm: 

 

Right Rotation 

 

Algorithm: 

 

Double Rotation (Left-Right Rotation) 
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Algorithm: 

 

Double Rotation (Right-Left Rotation) 

 

Algorithm: 

 

Balancing and Maintenance 

 

Check Balance Factor: Calculate the balance factor (height 

difference between left and right subtrees) of each node. 

 

Rebalance Tree: After insertions or deletions, check and rebalance 

the tree using rotations if necessary to maintain AVL properties. 

 

9.4 APPLICATIONS OF AVL TREES 
 

Data Storage and Retrieval 

Efficient Searching: AVL trees maintain a balanced structure, 

ensuring that the height of the tree is logarithmic in the number of 

nodes. This guarantees that search operations can be performed in 
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O(log n)O(\log n)O(logn) time, making them highly efficient for 

data retrieval tasks. 

 

Dynamic Sets: AVL trees are useful in applications where dynamic 

data sets are frequently updated with insertions and deletions. The 

self-balancing property ensures that the tree remains balanced after 

each update, maintaining efficient access times. 

Database Indexing 

Balanced Index Structures: AVL trees are often used in database 

indexing to maintain sorted data. The balanced nature of AVL trees 

ensures that the depth of the index remains low, allowing for quick 

searches, insertions, and deletions. 

Multilevel Indexes: In databases, AVL trees can be used to 

implement multilevel indexes, where each level of the index is a 

balanced tree, providing efficient access paths to the data. 

 

Memory Management 

Garbage Collection: AVL trees are employed in memory 

management systems, such as garbage collectors, to keep track of 

free memory blocks. The balanced structure allows for efficient 

allocation and deallocation of memory. 

Buddy System: In the buddy memory allocation system, AVL trees 

can be used to manage the free memory blocks, ensuring that the 

system can quickly find the best-fit block for memory allocation 

requests. 

 

File Systems 

File Indexing: File systems use AVL trees to index files and 

directories. The balanced nature of AVL trees ensures that file 

operations such as searching, insertion, and deletion are performed 

efficiently. 
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Metadata Management: AVL trees are used to manage file 

metadata, enabling quick access and updates to file attributes such 

as permissions, timestamps, and sizes. 

Network Routing 

Routing Tables: AVL trees can be used in the implementation of 

routing tables in network routers. The balanced structure allows for 

efficient lookup, insertion, and deletion of routing entries, ensuring 

quick and accurate routing decisions. 

IP Address Management: AVL trees are useful in managing IP 

address ranges and routing prefixes, enabling efficient searching 

and allocation of IP addresses in large networks. 

 

Event Scheduling 

Priority Queues: AVL trees can be used to implement priority 

queues for event scheduling. The balanced structure ensures that 

events are processed in the correct order of priority, with efficient 

insertion and extraction operations. 

Task Scheduling: In operating systems, AVL trees are used to 

manage the scheduling of tasks and processes. The balanced nature 

of the tree ensures that tasks are scheduled and executed efficiently 

based on their priority and deadlines. 

 

Computational Geometry 

Range Searching: AVL trees are employed in computational 

geometry for range searching problems, where the goal is to 

efficiently find all points within a given range. The balanced 

structure allows for quick and efficient searches. 

Intersection Detection: AVL trees are used to detect intersections 

of geometric objects such as lines and polygons. The efficient 

insertion and deletion operations facilitate the dynamic updating of 

the geometric structure. 
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9.5 CONCLUSION 
 

AVL trees play a crucial role in ensuring efficient data 

management through their self-balancing properties. By 

maintaining a balanced structure, AVL trees guarantee logarithmic 

time complexity for insertion, deletion, and search operations, 

which is essential for applications requiring frequent updates and 

rapid data retrieval. The use of rotations, such as RR, LL, LR, and 

RL, is fundamental in preserving this balance after modifications, 

demonstrating the sophisticated nature of AVL trees compared to 

simple binary search trees. 

 

Throughout this chapter, we have explored the intricacies of AVL 

trees, starting with the basic concepts and advancing to the 

implementation of various operations. We have examined how 

rotations help in maintaining the balance and efficiency of AVL 

trees. Furthermore, we have discussed the practical applications of 

AVL trees in fields like database indexing, memory management, 

and network routing, showcasing their versatility and importance 

in real-world scenarios. 

 

By understanding and implementing AVL trees, you gain a 

valuable tool for optimizing data structures in your applications. 

This chapter has equipped you with the necessary knowledge and 

skills to apply AVL trees effectively, ensuring that your data 

operations are performed efficiently and reliably. 
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9.6 QUESTIONS AND ANSWERS 
 

1. What is an AVL tree? 

Answer: An AVL tree is a self-balancing binary search tree named 

after its inventors, Georgy Adelson-Velsky and Evgenii Landis. It 

maintains its balance by ensuring the height difference between the 

left and right subtrees of any node is no more than one. 

 

2. Why are AVL trees considered self-balancing? 

Answer: AVL trees are considered self-balancing because they 

automatically perform rotations to maintain a balanced structure 

after insertion and deletion operations, ensuring the height 

difference (balance factor) between the left and right subtrees of 

any node is -1, 0, or +1. 

 

3. What is the balance factor in an AVL tree? 

Answer: The balance factor of a node in an AVL tree is the 

difference between the height of its left subtree and the height of 

its right subtree. It helps in determining whether the tree needs 

rebalancing through rotations. 

 

4. Explain the RR rotation in AVL trees. 

Answer: RR (Right-Right) rotation is a single left rotation used to 

rebalance an AVL tree when a node's right subtree is heavier (i.e., 

its balance factor is -2) and the right child has a balance factor of -

1 or 0. This rotation shifts the unbalanced subtree to the left. 

 

5. Describe the LL rotation in AVL trees. 

Answer: LL (Left-Left) rotation is a single right rotation used to 

rebalance an AVL tree when a node's left subtree is heavier (i.e., its 
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balance factor is +2) and the left child has a balance factor of +1 or 

0. This rotation shifts the unbalanced subtree to the right. 

 

6. What is the difference between LR and RL rotations in AVL 

trees? 

Answer: LR (Left-Right) rotation is a double rotation, first a left 

rotation on the left child and then a right rotation on the node, used 

when the balance factor of the node is +2 and the left child has a 

balance factor of -1. RL (Right-Left) rotation is also a double 

rotation, first a right rotation on the right child and then a left 

rotation on the node, used when the balance factor of the node is -2 

and the right child has a balance factor of +1. 
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UNIT – 10: B-TREES  
Sturcture 

 

10.0 Introduction 

10.1 Objectives 

10.2 B-Tree 

 10.2.1 Properties of B-Trees 

 10.2.2 Operations on B-Trees 

 10.2.3 Applications of B-Trees 

10.3 Splay Trees 

 10.3.1 Splaying Algorithm 

 10.3.2 Operations on Splay Trees 

10.4 Red-Black Trees 

10.5 AA-Trees 

10.6 Applications of Balanced Trees 

10.7 Conclusion 

10.8 Questions and Answers 

10.9 References 

 

10.0 INTRODUCTION 
 

In the realm of data structures, trees play a pivotal role in 

organizing and managing hierarchical data efficiently. Among the 

diverse types of trees, balanced trees stand out for their ability to 

maintain balanced structures that ensure optimal performance for 

various operations. This chapter explores several important 

balanced trees, including B-Trees, Splay Trees, Red-Black Trees, 

and AA-Trees, along with their properties, operations, applications, 

and the broader significance of balanced trees in computer science. 
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Balanced Trees are designed to keep the tree height proportional 

to the logarithm of the number of nodes, ensuring that operations 

such as search, insertions, and deletions remain efficient even as 

the dataset grows. These trees are essential in scenarios where 

maintaining balance is critical to performance, such as in 

databases, file systems, and compilers. Understanding the 

principles and applications of balanced trees equips us with 

powerful tools for optimizing data structures in real-world 

applications. 

 

This chapter will delve into the intricacies of various balanced 

trees, exploring their structural properties, algorithms for balancing 

and rebalancing, and practical applications. By the end, you will 

gain a comprehensive understanding of how these trees contribute 

to efficient data management and algorithmic design, laying a 

foundation for advanced studies and applications in computer 

science. 

 

10.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Explore B-Trees: Understand the structure and properties of B-

Trees, including rules for balancing. 

Study Splay Trees: Learn operations such as splaying, insertion, 

deletion, and search in Splay Trees. 

Examine Red-Black Trees: Understand the properties and rules 

that define Red-Black Trees as balanced binary search trees. 

Understand AA-Trees: Learn about AA-Trees, a variant of Red-

Black Trees with simplified balancing rules. 

Analyze Applications of Balanced Trees: Investigate practical 

uses of balanced trees in databases, file systems, and compilers. 
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10.2 B-TREE 
 

A B-Tree is a self-balancing tree data structure that maintains 

sorted data and allows for efficient insertion, deletion, and search 

operations. It is designed to work well on systems that read and 

write large blocks of data, such as databases and filesystems. B-

Trees are characterized by their ability to manage large amounts of 

data by keeping all leaf nodes at the same depth, ensuring that the 

tree remains balanced. This balance ensures that the time 

complexity for insertion, deletion, and search operations remains 

logarithmic. In a B-Tree of order m, each node can have at most m 

children and must have at least ⌈m/2⌉ children, except for the root 

node which can have fewer children. The keys within each node 

are maintained in sorted order, and internal nodes act as guides to 

direct searches to the correct subtree. This structure allows B-Trees 

to efficiently handle large datasets and makes them particularly 

suitable for use in database indexing and filesystems, where quick 

access to large volumes of data is crucial. 

 

10.2.1 Properties of B-Trees 

Order of B-Tree (m): The order m of a B-Tree defines the 

maximum number of children a node can have. An internal node in 

a B-Tree of order m can have at most m children. 

 

Key Range in Nodes:  

Each node (except for the root and leaves) must have at 

least ⌈m/2⌉ children and ⌈m/2⌉ - 1 keys. 

The root node must have at least 2 children if it is not a leaf 

node. 

A non-leaf node with k children must contain k-1 keys. 
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Balance: B-Trees are balanced, meaning all leaf nodes are at the 

same depth, ensuring that the tree remains balanced and the 

operations (insertion, deletion, search) have logarithmic time 

complexity. 

 

Height of the Tree: The height of a B-Tree with n keys and 

minimum degree t is at most log_t(n+1)/2. 

 

Nodes and Keys:  

Nodes in a B-Tree contain multiple keys and children pointers. 

Keys within each node are sorted in non-decreasing order. 

Internal nodes store keys to guide the search operations by 

directing them to the appropriate child subtree. 

 

Root Node: The root node of a B-Tree has at least one key and can 

have as few as two children or more, depending on the order of the 

tree. 

Leaf Nodes: All leaf nodes appear at the same level and do not 

contain children. They only store keys. 

 

Node Splitting: When a node becomes full (i.e., contains m-1 

keys), it splits into two nodes. The median key is moved up to the 

parent node, ensuring that the properties of the B-Tree are 

maintained. 

 

Node Merging: During deletion, if a node has fewer than ⌈m/2⌉ - 1 

keys, it may borrow a key from its sibling or merge with a sibling 

to maintain the minimum number of keys required. 

 

Efficiency: B-Trees are optimized for systems that read and write 

large blocks of data. They are widely used in database systems and 

filesystems to ensure efficient data access and management. 
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B-Trees are balanced search trees designed to work well on disks 

or other direct-access secondary storage devices. 

Every node in a B-Tree contains several keys and children, and all 

leaves are at the same depth. 

 

A B-Tree of order m is defined as: 

Each node has at most m children. 

Each internal node (except the root) has at least ⌈m/2⌉ 

children. 

Each non-leaf node has at least ⌈m/2⌉ - 1 keys. 

The root has at least two children if it is not a leaf node. 

All leaves appear on the same level. 

A non-leaf node with k children contains k-1 keys. 

 

10.2.2 Operations on B-Trees 

1. Insertion 

Algorithm: 

Start at the root node. 

If the root is full, split it and make the new root its parent, then 

proceed with insertion. 

Traverse down the tree to find the appropriate leaf node. 

If the leaf node is full, split it into two nodes and move the middle 

key up to the parent. 

Insert the new key into the appropriate position in the non-full 

node. 

 

Insertion Algorithm in Detail: 

 

Insert (k): 

If the root is full, create a new root and split the old root, and set 

the new root as the parent of the old root. 

Traverse the tree from the root to the appropriate leaf node. 
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Insert the key k into the non-full node. 

 

Split (x, i): 

Split the child x.child[i] of node x into two nodes. 

Create a new node z that contains the second half of the keys and 

children from x.child[i]. 

Move the median key of x.child[i] up to x, making space in x for 

the new child pointer. 

 

Example: 

void BTreeInsert(BTreeNode *root, int k) { 

    if (root->n == 2*t - 1) { 

        BTreeNode *s = new BTreeNode(false); 

        s->C[0] = root; 

        BTreeSplitChild(s, 0, root); 

        BTreeInsertNonFull(s, k); 

        root = s; 

    } else { 

        BTreeInsertNonFull(root, k); 

    } 

} 

void BTreeInsertNonFull(BTreeNode *x, int k) { 

    int i = x->n - 1; 

    if (x->leaf) { 

        while (i >= 0 && x->keys[i] > k) { 

            x->keys[i+1] = x->keys[i]; 

            i--; 

        } 

        x->keys[i+1] = k; 

        x->n++; 

    } else { 

        while (i >= 0 && x->keys[i] > k) { 
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            i--; 

        } 

        i++; 

        if (x->C[i]->n == 2*t - 1) { 

            BTreeSplitChild(x, i, x->C[i]); 

            if (x->keys[i] < k) { 

                i++; 

            } 

        } 

        BTreeInsertNonFull(x->C[i], k); 

    } 

} 

void BTreeSplitChild(BTreeNode *x, int i, BTreeNode *y) { 

    BTreeNode *z = new BTreeNode(y->leaf); 

    z->n = t - 1; 

    for (int j = 0; j < t - 1; j++) { 

        z->keys[j] = y->keys[j+t]; 

    } 

    if (!y->leaf) { 

        for (int j = 0; j < t; j++) { 

            z->C[j] = y->C[j+t]; 

        } 

    } 

    y->n = t - 1; 

    for (int j = x->n; j >= i+1; j--) { 

        x->C[j+1] = x->C[j]; 

    } 

    x->C[i+1] = z; 

    for (int j = x->n-1; j >= i; j--) { 

        x->keys[j+1] = x->keys[j]; 

    } 

    x->keys[i] = y->keys[t-1]; 
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    x->n++; 

} 

Example: 

Insert keys 10, 20, 5, 6, 12, 30, 7, 17 into a B-Tree of order 3. 

 

2. Deletion 

Algorithm: 

Start at the root node and locate the key to be deleted. 

If the key is in a leaf node, delete it directly. 

If the key is in an internal node, replace it with its predecessor or 

successor and delete the key. 

If the node has fewer than ⌈m/2⌉ - 1 keys after deletion, perform 

redistribution or merging: 

If a sibling has more than ⌈m/2⌉ - 1 keys, redistribute keys. 

If no sibling has extra keys, merge the node with a sibling. 

 

Deletion Algorithm in Detail: 

Delete (k): 

If k is in the leaf node, remove k from the node. 

If k is in the internal node: 

If the predecessor child node has at least t keys, replace k with the 

predecessor key. 

Otherwise, if the successor child node has at least t keys, replace k 

with the successor key. 

Otherwise, merge k and its two children into a single node. 

If the child has fewer than t keys, ensure that the child has at least t 

keys by borrowing from the sibling or merging. 

Example: 

Delete keys 6, 13 from the B-Tree obtained in the insertion 

example. 

 

3. Search 
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Algorithm: 

Start at the root node. 

Compare the key with the keys in the current node. 

If the key is found, return the key and the node. 

If the key is not found and the node is a leaf, the key does not exist 

in the tree. 

If the key is not found and the node is not a leaf, recursively search 

the appropriate child node. 

Example: 

Search for keys 6, 15, 30 in the B-Tree obtained after insertions. 

 

10.2.3 Applications of B-Trees 

B-Trees are widely used in scenarios that require efficient 

insertion, deletion, and searching operations on large amounts of 

data. Some of the key applications of B-Trees include: 

 

File Systems: B-Trees are extensively used in file systems to 

manage large amounts of disk blocks efficiently. File systems like 

NTFS (New Technology File System) and HFS+ (Hierarchical File 

System Plus) use B-Trees to store file metadata such as file names, 

sizes, permissions, and pointers to data blocks. The balanced 

nature of B-Trees ensures that file system operations such as file 

creation, deletion, and searching are performed efficiently even as 

the file system grows. 

 

Database Systems: B-Trees are a fundamental data structure in 

database indexing. They are used to index large datasets based on 

key values, allowing quick retrieval, insertion, and deletion of 

records. Database management systems (DBMS) like Oracle, 

PostgreSQL, and MySQL employ B-Trees to index primary keys, 

secondary keys, and other indexed columns. This indexing 
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structure enables efficient querying and sorting operations, which 

are crucial for optimizing database performance. 

 

Persistent Data Structures: B-Trees are suitable for persistent 

storage environments, such as databases and file systems, where 

data needs to be stored permanently even after power loss or 

system restarts. The structure of B-Trees ensures that data can be 

efficiently written to and read from disk storage, minimizing disk 

I/O operations and ensuring faster access times compared to other 

data structures like binary search trees. 

 

Multilevel Indexing: B-Trees are used in multilevel indexing 

scenarios where the index itself is too large to fit entirely in 

memory. By organizing index entries into a hierarchical structure 

of nodes, B-Trees allow efficient traversal through multiple levels 

of index nodes to quickly locate data blocks or records. This 

hierarchical indexing scheme reduces the time complexity of 

search operations compared to linear search methods. 

 

Concurrency Control in Databases: In database systems that 

support concurrent transactions, B-Trees are used to manage locks 

and ensure data integrity. B-Trees provide efficient mechanisms for 

locking individual nodes during concurrent data access and 

updates, allowing multiple transactions to read and write data 

simultaneously without causing data inconsistency or conflicts. 

 

Routing Tables in Networks: B-Trees are utilized in computer 

networking for storing and managing routing tables. In network 

routers and switches, B-Trees are employed to maintain 

information about network addresses, routing paths, and next-hop 

destinations. The balanced structure of B-Trees ensures efficient 
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routing table lookups and updates, enabling fast packet forwarding 

and routing decision making in large-scale networks. 

 

Compiler Symbol Tables: B-Trees are used in compilers and 

interpreters to manage symbol tables that store information about 

variables, functions, and other program entities. Symbol tables 

implemented with B-Trees allow efficient lookup and manipulation 

of symbols during compilation and runtime, supporting tasks such 

as scope resolution, type checking, and code optimization. 

 

10.3 SPLAY TREES 
 

Splay Trees are a self-adjusting binary search tree data structure 

where every operation, whether it's search, insertion, or deletion, 

adjusts the tree to bring the accessed node to the root. This 

characteristic of splaying differentiates it from traditional balanced 

trees like AVL trees or Red-Black trees, which maintain balance 

through explicit rotations or color adjustments. 

 

Amortized analysis of operations 

Amortized analysis is a method used to determine the average time 

complexity of a sequence of operations on a data structure, even if 

some operations may be costlier than others in isolation. It 

provides a more accurate representation of the overall performance 

of data structures over time, considering both efficient and 

potentially costly operations that may occur intermittently. 

 

Key Concepts in Amortized Analysis: 

Aggregate Method: 

In amortized analysis, the aggregate method considers the total 

cost of a sequence of operations and divides it by the number of 

operations to determine the average cost per operation. 
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This method assumes that some operations may be cheaper than 

their actual worst-case scenario due to previous operations 

potentially offsetting higher costs. 

 

Potential Method: 

The potential method compares each operation's actual cost to an 

average cost or potential function. 

It calculates how much "potential" or credit is accumulated or 

spent by each operation, ensuring that the total potential across all 

operations remains non-negative. 

This method is particularly useful for dynamic data structures 

where the cost of one operation affects future operations. 

 

Amortized Analysis Examples: 

Dynamic Arrays (Resizable Arrays): 

Operation: Inserting an element into a dynamic array that needs 

resizing. 

Cost: Normally, resizing involves copying elements to a larger 

array, which is O(n). However, this cost is amortized over multiple 

insertions. 

Amortized Cost: Each insertion operation has an average cost of 

O(1), considering the occasional resizing operation. 

 

Binary Counters: 

Operation: Incrementing a binary counter represented as an array 

of bits. 

Cost: Incrementing may cause a series of cascading flips from 0 to 

1, potentially affecting multiple bits. 

Amortized Cost: Despite occasional longer sequences of bit flips, 

the average cost of each increment operation remains O(1) due to 

the infrequency of longer sequences. 
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Splay Trees: 

Operation: Splaying a node to the root during search, insertion, or 

deletion. 

Cost: The cost of splaying involves rotations and restructuring, 

which can vary depending on the depth of the node. 

Amortized Cost: Over a series of operations, the average cost of 

splaying is reduced by subsequent operations that benefit from the 

structure adjustments made during previous splay operations. 

 

Benefits of Amortized Analysis: 

Accurate Performance Prediction: It provides a more realistic 

assessment of the average time complexity of operations, 

accounting for worst-case scenarios that occur sporadically. 

Useful for Dynamic Data Structures: Amortized analysis is 

particularly valuable for dynamic data structures where operations 

can vary in complexity depending on the structure's state. 

 

 

Splaying Steps: 

Access Operation: 

When searching for a node in a splay tree, the tree undergoes a 

splaying process where the accessed node moves to the root. 

This splaying operation involves a sequence of rotations and 

restructuring of nodes to promote the accessed node closer to the 

root. 

 

Splaying Algorithm: 

Upon accessing a node during search, the splaying algorithm 

performs rotations to move the accessed node upwards. 

Depending on whether the node to be splayed is a left or right 

child, single or double rotations (zig-zig or zig-zag rotations) are 

applied to bring the node to the root. 
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Balancing: 

Unlike balanced trees that maintain a specific height or balance 

factor, splay trees balance themselves dynamically during 

operations. 

The splaying process ensures that frequently accessed nodes 

remain closer to the root, optimizing future access times for those 

nodes. 

 

Insertion and Deletion: 

Insertion and deletion in splay trees also involve a splaying process 

where the inserted or deleted node is splayed to the root. 

This self-adjustment ensures that subsequent operations benefit 

from the recent structural changes, potentially improving overall 

performance. 

 

Example of Splaying Steps: 

Consider a splay tree where we perform a search operation to 

access a node with key value k. Here are simplified steps for 

splaying: 

Start from the root of the tree. 

Traverse down the tree to find the node with key k. 

As you traverse, perform rotations and restructuring to move the 

accessed node towards the root. 

After accessing the node with key k, ensure it becomes the root or 

is placed close to the root through appropriate rotations (zig-zig or 

zig-zag). 

 

Applications of Splay Trees: 

Caching Mechanisms: Splay trees are used in caching scenarios 

where frequently accessed items are kept in memory for quick 

retrieval. The self-adjusting nature of splay trees ensures that the 
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most recently accessed cache items remain quickly accessible, 

optimizing cache hit rates. 

 

Data Compression Algorithms: Splay trees have been used in 

data compression algorithms where frequent patterns or symbols 

are dynamically adjusted to the root, enhancing compression 

efficiency by reducing access times for common patterns. 

 

Adaptive Data Structures: In scenarios where data access 

patterns are unpredictable or dynamic, splay trees adapt efficiently 

by adjusting their structure based on recent access history. This 

adaptability makes them suitable for real-time applications where 

data access patterns evolve over time. 

 

Implementations in Libraries: Although less common in 

standard libraries compared to AVL trees or Red-Black trees, splay 

trees find specialized applications in certain libraries and systems 

requiring dynamic and adaptive data structures. 

 

10.3.1 Splaying Algorithm 

The splaying algorithm is the core procedure used in splay trees to 

bring a specified node closer to the root, thereby optimizing future 

access times for that node. Here is a structured outline of the 

splaying algorithm: 

 

Splaying Algorithm Outline: 

Search for the Node: 

Start the splaying algorithm by searching for the node with the 

specified key or value in the splay tree. 

Traverse the tree starting from the root and move towards the node 

that needs to be splayed. 
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Splay Operation: 

Once the node is found or accessed (either through search, 

insertion, or deletion), begin the splay operation to bring this node 

closer to the root. 

 

Rotation and Restructuring: 

During the splay operation, perform rotations and restructuring of 

the tree to move the accessed node (X) towards the root. 

Rotations are based on the relationship between X, its parent (P), 

and potentially its grandparent (G) in the tree structure. 

 

Zig-Zig Rotation: 

If X and P are both left children or both right children, perform a 

double rotation (zig-zig rotation) to bring X directly under the root. 

Rotate P around G and then X around P. 

 

Zig-Zag Rotation: 

If X and P are opposite children (one is a left child and the other is 

a right child), perform a double rotation (zig-zag rotation) to bring 

X closer to the root. 

Rotate X around P and then rotate X's new parent around G. 

 

Continue Splaying Upwards: 

Repeat the rotation and restructuring steps until the accessed node 

X becomes the root of the splay tree or is positioned close to the 

root. 

Each rotation aims to move X towards the root, adjusting the tree 

structure dynamically based on recent access patterns. 
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Return the Splayed Tree: 

After completing the splaying operation, the splay tree structure is 

updated with the accessed node (X) at or near the root, optimizing 

future accesses to this node. 

Example Splaying Algorithm: 

Here’s a simplified pseudocode outline of the splaying algorithm: 

 

In this pseudocode: 

The rotate(node) function performs the necessary rotations to move 

node closer to the root based on its relationship with its parent and 

grandparent. 

The splaying algorithm ensures that after accessing or 

manipulating a node in the tree, it is splayed towards the root, 

optimizing future access operations. 

 

10.3.2 Operations on Splay Trees 

Operations on splay trees include fundamental operations like 

search, insert, and delete, each of which involves the splaying 

process to optimize the tree structure based on recent access 

patterns. Here’s a breakdown of these operations in splay trees: 

 

1. Search Operation: 

Algorithm: 

Start from the root and traverse the tree to find the node with the 

specified key. 
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During traversal, perform splaying to bring the accessed node 

closer to the root. 

If the node is found, splay it to the root. 

If the node is not found, splay the last accessed node to the root. 

 

 

2. Insertion Operation: 

Algorithm: 

Perform a standard binary search tree insertion to place the new 

node in its appropriate position. 

After insertion, splay the newly inserted node to bring it to the 

root. 

This step ensures that the most recently inserted node becomes the 

root, optimizing future accesses. 

Example: 

 

 

3. Deletion Operation: 

Algorithm: 

Perform a standard binary search tree deletion to remove the node 

with the specified key. 

After deletion, splay the parent of the deleted node (or the 

successor/predecessor node) to bring it to the root. 

This step maintains the splay tree properties and optimizes the 

structure after deletion. 
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Example: 

 

 

Key Points: 

Splaying Mechanism: 

Each operation (search, insert, delete) in a splay tree involves 

splaying the accessed or manipulated node towards the root. 

Splaying optimizes the tree structure dynamically based on recent 

access patterns, ensuring that frequently accessed nodes are closer 

to the root. 

 

Efficiency: While individual splaying operations can have a worst-

case time complexity of O (n) in skewed trees, the amortized time 

complexity of operations tends to be efficient due to the self-

adjusting nature of splay trees. 

 

Adaptability: Splay trees adapt their structure to optimize access 

times for recently accessed nodes, making them suitable for 

applications where access patterns are dynamic and unpredictable. 

 

10.4 RED-BLACK TREES 
 

Red-Black trees are self-balancing binary search trees that ensure 

balanced operations like search, insert, and delete, with a worst-

case time complexity of O(log n). They maintain balance using 

color properties and rotation operations, making them efficient for 

dynamic data storage and retrieval. Here are the key properties and 

operations of Red-Black trees: 
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Properties of Red-Black Trees: 

Node Coloring: 

Each node in a Red-Black tree is colored either red or black. 

The root is always black. 

Every red node must have two black children (no consecutive red 

nodes). 

Every path from a node to its descendant null nodes must have the 

same number of black nodes (black height). 

 

Balanced Height: 

Red-Black trees maintain balanced height by ensuring that the 

longest path from the root to any leaf is no more than twice the 

shortest path. 

This property guarantees O(log n) time complexity for search, 

insert, and delete operations. 

Operations on Red-Black Trees: 

Search Operation: 

Similar to standard binary search trees, search operations in Red-

Black trees follow the properties of binary search, utilizing node 

colors to maintain balance. 

 

Insertion Operation: 

Insertions in Red-Black trees start with a standard BST insertion. 

After insertion, the tree may violate Red-Black properties, 

necessitating restructuring (rotations) and recoloring to restore 

balance. 

The tree is adjusted to maintain Red-Black properties while 

ensuring the balanced height. 

 

Deletion Operation: 

Deletions in Red-Black trees begin with a standard BST deletion. 
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After deletion, the tree may temporarily violate Red-Black 

properties. 

To restore balance, perform rotations and recoloring operations as 

necessary to maintain Red-Black properties and balanced height. 

 

Example of Red-Black Tree Operations: 

Search Operation: 

 

Insertion Operation: 

 

Deletion Operation: 

 

Advantages of Red-Black Trees: 

 

Balanced Operations: Ensure O(log n) time complexity for 

search, insert, and delete operations. 
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Predictable Performance: Provide predictable and efficient 

performance in dynamic environments. 

 

Widely Used: Commonly used in libraries and applications where 

efficient data insertion, deletion, and retrieval are crucial. 

 

10.5 AA-TREES 
 

An AA-Tree is a type of self-balancing binary search tree that 

maintains balance using only a single type of rotation, known as 

skew and split operations. It ensures that the tree remains balanced 

by enforcing specific level and structural properties rather than 

complex color rules or multiple rotation types like Red-Black trees. 

Here’s an overview of AA-Trees, including their properties and 

operations: 

 

Properties of AA-Trees: 

Level Properties: 

Every leaf node (null node) is at level 1. 

For any node with a left child, the left child must have a level 

equal to or one less than the node's level. 

Nodes without a left child have the same level as their right child. 

 

Skew Operation: 

A skew operation is applied to correct consecutive right links 

(right-right situation). 

It rotates the node to the left to balance the tree structure. 

After skew operation, the level properties are adjusted to maintain 

balance. 
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Split Operation: 

A split operation is applied to correct double left links (left-left 

situation). 

It rotates the node to the right and increases its level to balance the 

tree structure. 

After split operation, the level properties are adjusted to maintain 

balance. 

 

Operations on AA-Trees: 

Search Operation: 

Similar to standard binary search trees, search operations in AA-

Trees follow the properties of binary search, utilizing level 

properties to maintain balance. 

 

Insertion Operation: 

Insertions in AA-Trees start with a standard BST insertion. 

After insertion, the tree may violate AA-Tree properties, 

necessitating skew and split operations to restore balance. 

Adjustments are made to ensure that level properties are 

maintained after each operation. 

 

Deletion Operation: 

Deletions in AA-Trees begin with a standard BST deletion. 

After deletion, the tree may temporarily violate AA-Tree 

properties. 

Skew and split operations are applied as necessary to restore 

balance and maintain level properties. 
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Example of AA-Tree Operations: 

Search Operation: 

 

Insertion Operation: 

 

Deletion Operation: 

 

Advantages of AA-Trees: 

Simplified Balancing: Use only skew and split operations for 

balancing, which simplifies implementation compared to Red-

Black trees. 

 

Efficient Operations: Maintain O(log n) time complexity for 

search, insert, and delete operations. 

 

Less Overhead: Avoids complex color rules and multiple rotation 

types, reducing implementation complexity and potential overhead. 
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10.6 APPLICATIONS OF BALANCED 
TREES 
 

Balanced trees, including Red-Black trees, AVL trees, B-trees, and 

AA-trees, find applications in various domains where efficient data 

storage and retrieval are critical. Here are some common 

applications of balanced trees: 

 

Databases: B-trees and AVL trees are widely used in database 

systems for indexing. They provide efficient retrieval of data 

records based on keys, ensuring that operations like search, insert, 

and delete are performed in O (log n) time complexity. 

 

File Systems: B-trees are commonly used in file systems to 

manage large amounts of data efficiently. They ensure that data 

blocks are organized and accessible in a balanced manner, 

optimizing disk access and storage. 

 

Compiler Design: Symbol tables in compilers often use balanced 

trees to store identifiers and their associated attributes. This allows 

for quick lookup and modification of symbols during compilation. 

 

Networking: Routing tables in computer networks employ 

balanced trees to store and manage routing information efficiently. 

This facilitates fast routing decisions and network packet 

forwarding. 

 

Concurrency Control: In concurrent programming and 

transaction processing systems, B-trees and Red-Black trees are 

used to implement data structures like transactional maps. These 

ensure that data operations are thread-safe and efficient. 
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Caches and Memory Management: AA-trees and AVL trees are 

used in memory management systems and caches to maintain 

efficient data retrieval and replacement strategies. They help in 

managing limited memory resources effectively. 

 

Geospatial and GIS Systems: R-trees, a variant of balanced 

trees, are used in geospatial databases and Geographic Information 

Systems (GIS) for indexing and querying spatial data efficiently. 

 

Data Compression: Balanced trees are used in Huffman coding, 

a popular data compression technique. They help in constructing 

optimal prefix codes for encoding data, where frequently used 

symbols have shorter codes. 

 

Database Query Optimization: Query planners and optimizers in 

relational databases use balanced trees to represent query execution 

plans and optimize data retrieval strategies, ensuring efficient 

execution of complex queries. 

 

10.7 CONCLUSION 
 

In this chapter, we explored a variety of balanced tree structures 

that are essential in computer science for maintaining efficient data 

organization and retrieval. Balanced trees such as B-Trees, Splay 

Trees, Red-Black Trees, and AA-Trees each offer unique 

advantages and applications. 

 

B-Trees are widely used in databases and file systems due to their 

ability to efficiently manage large datasets with a balanced 

structure that supports fast operations like insertion, deletion, and 

search. 
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Splay Trees dynamically adjust their structure through the 

splaying algorithm, optimizing access times for frequently 

accessed elements. This property makes them valuable in 

applications requiring dynamic data management and caching. 

 

Red-Black Trees ensure balanced operations with logarithmic 

time complexity for insertion, deletion, and search. They find 

extensive use in memory management, language implementations, 

and persistent data structures where efficient data retrieval is 

crucial. 

 

Each of these tree structures plays a critical role in optimizing 

performance across various computational domains, from database 

systems to memory management and beyond. By mastering the 

principles and applications of balanced trees, one gains essential 

tools for designing efficient algorithms and systems in modern 

computing environments. 

 

10.8 QUESTIONS AND ANSWERS 
 

1. What are B-Trees and why are they used in databases? 

Answer: B-Trees are balanced tree structures designed to handle 

large amounts of data and frequent operations like insertion, 

deletion, and search efficiently. They are used in databases because 

they can maintain balance and optimal access times even with 

large datasets, ensuring fast retrieval and modification operations. 

 

2. How does the splaying algorithm work in Splay Trees? 

Answer: The splaying algorithm in Splay Trees reorganizes the tree 

by bringing the most recently accessed node to the root position 

through a series of rotations. This optimization ensures that 
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frequently accessed elements are closer to the root, improving 

future access times. 

3. What properties define Red-Black Trees as balanced binary 

search trees? 

Answer: Red-Black Trees maintain balance by adhering to specific 

rules: each node is either red or black, the root is black, and no two 

red nodes can be adjacent. These properties ensure that the tree 

remains balanced, with operations like insertion and deletion 

maintaining logarithmic time complexity. 

 

4. How do AA-Trees differ from Red-Black Trees? 

Answer: AA-Trees are a variation of Red-Black Trees that simplify 

the balancing rules. They use only two types of nodes (horizontal 

and vertical) and employ skew and split operations instead of color 

changes and rotations. AA-Trees provide efficient performance for 

dynamic sets and are used in applications requiring balanced tree 

structures. 

 

5. What are some practical applications of balanced trees? 

Answer: Balanced trees are used extensively in databases for 

indexing and efficient data retrieval, in file systems for managing 

file directories, in compilers for symbol table management, and in 

memory management systems for efficient allocation and 

deallocation of memory blocks. 
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11.0 INTRODUCTION 
 

A basic data structure in computer science, graphs are used to 

represent the connections and interactions between items. They are 

made up of edges that join pairs of vertices and vertices, also 

known as nodes. Based on their characteristics, graphs can be 

classified as directed or undirected, weighted or unweighted, 

among other varieties. Because of these qualities, graphs are quite 

flexible and can be used to illustrate a variety of real-world 

situations, such as social networks and transportation networks. 

 

Graph representation is essential for effective manipulation and 

storage. The adjacency matrix and the adjacency list are two 

popular techniques, both with pros and cons related to time and 

space complexity. The efficiency of graph algorithms can be 

greatly impacted by selecting the right representation, particularly 

for big and complicated datasets. Implementing and optimizing 
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graph-related operations requires an understanding of various 

representations. 

 

For examining and assessing graph structures, graph traversal 

algorithms like Depth-First Search (DFS) and Breadth-First Search 

(BFS) are crucial resources. These algorithms serve as the 

foundation for more complex graph algorithms, such as those that 

build minimal spanning trees, identify cycles, and locate the 

shortest pathways. This course explores both simple and complex 

graph algorithms, emphasizing how they can be used to solve 

issues in real life and how important they are in a variety of 

domains, including artificial intelligence, network analysis, and 

computer graphics. 

 

11.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understand Graph Basics: Define what constitutes a graph, 

including vertices (nodes) and edges, and distinguish between 

directed and undirected graphs. 

 

Graph Representation Techniques: Explore various methods for 

representing graphs, such as adjacency matrices and adjacency 

lists, and understand the trade-offs between these representations 

in terms of space and time complexity. 

 

Graph Traversal Algorithms: Learn about fundamental graph 

traversal algorithms like Breadth-First Search (BFS) and Depth-

First Search (DFS), including their applications in solving 

problems such as finding connected components and detecting 

cycles. 
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Advanced Graph Algorithms: Delve into more complex 

algorithms like Dijkstra's algorithm for finding shortest paths, 

Prim's and Kruskal's algorithms for Minimum Spanning Trees 

(MSTs), and algorithms for topological sorting and cycle detection. 

 

Real-World Applications: Explore practical applications of 

graphs in various domains, such as social networks, transportation 

networks, and recommendation systems, to understand how graph 

algorithms solve real-world problems effectively. 

 

11.2 GRAPH 
 

A graph is a type of data structure made up of edges connecting a 

finite number of vertices, also known as nodes. Graphs are 

employed to represent pairwise relationships among entities. G = 

(V, E), where V is a collection of vertices and E is a set of edges 

linking the vertices, is the definition of a graph. 

 

Several real-world structures, including networks, interactions, and 

paths, can be represented by graphs. People can be shown as 

vertices in a social network, for example, and friendships as edges. 

 

Graphs: Directed versus Undirected 

Graphs fall into two categories according on the orientation of their 

edges: 

 

Directed Graphs (Digraphs): Every edge in a directed graph 

indicates a one-way relationship between two vertices. As an 

ordered pair of vertices, this is represented. An edge that is 

oriented from vertex u to vertex v, for instance, is represented as 

(u, v). 
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Undirected Graphs: An undirected graph has no direction 

assigned to any of its edges. Because of the bidirectional nature of 

the link between vertices, an edge between u and v can be traveled 

in both directions. A pair {u, v} that is unordered is used to express 

this. 

 

Source: Simple Snippets 

 

Weighted vs. Unweighted Graphs 

Another way to categorize graphs is by the weights assigned to 

their edges: 

 

Weighted Graphs: The weight of a weighted graph is a numerical 

number that is assigned to each edge. Weights can be used to 

represent expenses, distances, or any other quantitative metric. The 

weights can be used, for instance, to represent the distance between 

two points in a road network. 

 

Unweighted Graphs: An unweighted graph has no weights 

assigned to its edges. Every edge is regarded as equal. For 

instance, in a social network, the edges might, in the lack of further 

information, indicate whether a friendship exists. 
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Key Terms: 

Vertices, or Nodes: They are the basic building blocks of a 

graph; they stand for entities. 

Edges: The links that connect vertices are called edges. 

Degree: A vertex's degree is the total number of edges that 

connect to it. The number of incoming edges in a directed 

graph is called the in-degree, while the number of exiting 

edges is called the out-degree. 

Path: A series of vertices connected by a series of edges. 

Cycle: A path that, aside from the start/end vertex, repeats 

neither edges nor vertices but instead begins and terminates 

at the same vertex. 

Connected Components: In an undirected graph, a 

connected component is a subgraph that has no further 

connections to any other vertices in the supergraph and any 

two vertices connected to each other by pathways. 

 

11.3 REPRESENTATION OF GRAPHS 
 

Adjacency Matrix Representation 

A 2D array of size V × V, where V is the number of vertices in the 

graph, is called an adjacency matrix. The matrix's cells, each 
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represented by the notation adj [i] [j], each indicate whether or not 

vertex i and vertex j have an edge. 

 

In case of an unweighted graph: 

Vertex i and vertex j have an edge, adj [i] [j] = 1. 

If there isn't an edge connecting vertex i and vertex j, adj [i] 

[j] = 0. 

 

For a graph with weights: 

The weight of the edge between vertex i and vertex j is 

contained in adj [i] [j]. 

If there is no edge, adj [i] [j] = 0. 

 

For instance: if a graph has the vertices A, B, C, and D: 

 

An undirected graph is represented by this matrix, in which A is 

connected to B and D, B to A and C, and so on. 

 

Adjacency List Representation 

An array of lists is called an adjacency list. The number of vertices 

in the array determines its size. Every entry in the array is a list 

that has every vertex connected to the vertex the array index 

represents in it. 
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For instance, if a graph has the vertices A, B, C, and D: 

 

Vertex A is related to vertices B and D, vertex B is connected to 

vertices A and C, and so on, as this list demonstrates. 

 

Adjacency Matrix and Adjacency List Comparison 

Complexity of Space: 

Adjacency Matrix: V is the number of vertices, and O(V2) 

space is used. When there are fewer edges in a sparse 

graph, this is less effective. 

(V + E) space is used by the adjacency list, where E is the 

number of edges. For sparse graphs, this is a more space-

efficient method. 

 

Time Complexity: 

The Adjacency Matrix 

Verifying the existence of an edge: O (1). 

Going through every edge once: O (V2). 

Adjacencies List: 

Verifying if an edge exists: in the worst situation, O(V). 

Going around all edges in turn: O (V + E). 
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Use Cases for Each Representation 

The Adjacency Matrix 

Ideal for thick graphs with an edge count that approaches 

V2. 

helpful when it's necessary to quickly check whether edges 

exist. 

 

Adjacencies List: 

Ideal for graphs that are sparse, meaning they have a lot less edges 

than V2. 

Faster and more space-efficient for iterating across all edges. 

 

favored in situations when the graph is not tightly connected, such 

as social networks, road networks, or other applications. 

 

11.4 GRAPH TRAVERSAL 
ALGORITHMS 
 

Graph traversal refers to the process of visiting all nodes (vertices) 

in a graph in a systematic way. It involves systematically exploring 

each vertex and its connected edges to ensure that all nodes are 

visited exactly once. Two common algorithms for graph traversal 

are breadth-first search (BFS) and depth-first search (DFS). 

 

Breadth-First Search (BFS): Explores all nodes at the present 

"depth" prior to moving on to nodes at the next level of depth. 

 

Depth-First Search (DFS): Traverses by exploring as far as 

possible down a branch before backtracking. 

These algorithms are essential for tasks like finding the shortest 

path, connectivity analysis, and spanning tree construction 
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First-Breadth Search (BFS) 

The graph traversal technique known as Breadth-First Search 

(BFS) investigates a graph's vertices level by level. BFS begins 

with a source vertex, visits each of its neighbors, and then 

advances to the next level of neighbors. It is especially helpful for 

level-order traversal of trees and for determining the shortest path 

in unweighted graphs. 

Steps of Algorithm: 

Initialize a queue and enqueue the starting vertex. 

Mark the starting vertex as visited. 

While the queue is not empty: 

Dequeue a vertex from the queue. 

Process the dequeued vertex. 

Enqueue all unvisited neighboring vertices and mark them as 

visited. 

 

Example: Consider the following graph: 

 

BFS would visit the vertices in the following order, beginning at 

vertex A: A, B, D, C, E, and F. 

Implementation in C++: 
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DFS, or Depth-First Search 

Concept and Use Cases: The graph traversal technique known as 

Depth-First Search (DFS) searches as far as feasible down each 

branch before turning around. Either directly or implicitly through 

recursion, it makes use of a stack data structure. DFS is used to 

solve puzzles like mazes and find cycles in topological sorting. 

 

Steps of Algorithm: 

Initialize a stack and push the starting vertex. 

Mark the starting vertex as visited. 

While the stack is not empty: 

Pop a vertex from the stack. 

Process the popped vertex. 

Push all unvisited neighboring vertices onto the stack and mark 

them as visited. 

 

Example: Consider the following graph: 



Data Structure using C++ & Lab -271 
 

 

DFS could visit the vertices in the following order, starting with 

vertex A: A, B, E, F, D, and C (this is only one possible order 

among many). 

 

Implementation in C++: 

#include <iostream> 

#include <vector> 

void DFSUtil(const std::vector<std::vector<int>>& graph, int 

vertex, std::vector<bool>& visited) { 

    visited[vertex] = true; 

    std::cout << vertex << " "; 

    for (int neighbor : graph[vertex]) { 

        if (!visited[neighbor]) { 

            DFSUtil(graph, neighbor, visited); 

        } 

    } 

} 

void DFS(const std::vector<std::vector<int>>& graph, int start) { 

    std::vector<bool> visited(graph.size(), false); 

    DFSUtil(graph, start, visited); 

} 

int main() { 

    std::vector<std::vector<int>> graph = { 

        {1, 3}, // neighbors of vertex 0 (A) 

        {0, 2, 4}, // neighbors of vertex 1 (B) 

        {1, 5}, // neighbors of vertex 2 (C) 

        {0, 4}, // neighbors of vertex 3 (D) 
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        {1, 3, 5}, // neighbors of vertex 4 (E) 

        {2, 4} // neighbors of vertex 5 (F) 

    }; 

    DFS(graph, 0); // Start DFS from vertex 0 (A) 

    return 0; 

} 

 

A comparison between DFS and BFS 

BFS: 

Improved for determining the shortest path in graphs 

without weights. 

extra memory is used (queue). 

traversal at level-order. 

DFS: 

Ideal for activities that necessitate delving into the most 

profound area of the graph, including resolving puzzles. 

reduces memory usage (recursion/stack). 

Process before children in a preorder traversal; however, 

this can be modified for other traversals as well. 

11.5 ADVANCED GRAPH 
ALGORITHMS 
 

Minimum Spanning Trees (MST) Algorithm 

The subset of edges in a connected, undirected graph that joins all 

of the vertices together without creating any cycles and with the 

least amount of edge weight overall is found using Minimum 

Spanning Tree (MST) techniques. The following are the main ideas 

and methods pertaining to minimum spanning trees: 

 

MST Algorithm Concepts: 

Minimum Spanning Tree (MST): An edge subset that 

joins all of the vertices in a graph without creating any 
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cycles is known as a spanning tree. A spanning tree with a 

minimum sum of edge weights is known as a minimum 

spanning tree. 

 

Properties: 

An MST consisting of N vertices has precisely N-1 edges. 

It is acyclic—it lacks cycles. 

It joins every vertex with the least amount of edge weight 

overall. 

 

Applications: 

Network design: It is the process of connecting all nodes, 

or cities, with the fewest possible total edge weights, or 

roads, cables, etc. 

Cluster Analysis: It Put related items in groups with the 

least amount of overall dissimilarity is known as cluster 

analysis. 

Algorithms for Approximation: Used in a variety of 

approximation techniques to address optimization issues. 

 

Prim's Algorithm: A weighted undirected graph's Minimum 

Spanning Tree (MST) can be found using Prim's algorithm. 

Beginning with an arbitrary vertex, it adds the shortest edge 

possible between each vertex in the expanding tree and any vertex 

that is not yet in the tree, growing the MST one edge at a time. 

 

 

Steps of an Algorithm: 

Set the MST's representation to an empty set at startup. 

Add an arbitrary vertex to the MST to begin with. 

Even so, not every vertex is included in the MST: 



Data Structure using C++ & Lab -274 
 

To connect a vertex inside the MST to a vertex outside the 

MST, choose the edge with the least weight. 

To the MST, add the chosen edge and vertex. 

 

As an illustration, look at the weighted graph below: 

 

Prim's algorithm would add edges (A-B, B-E, E-D, B-C, and E-F) 

starting at vertex A to create the MST, which would have a total 

weight of 2 + 1 + 4 + 3 + 5 = 15. 

 

Kruskal's Algorithm: 

Another technique for determining the MST of a weighted 

undirected graph is the Kruskal's algorithm. It adds edges to the 

MST while making sure no cycle forms by sorting all of the edges 

in non-decreasing order of their weights. 

 

Steps of Algorithm: 

Arrange each edge according to its weight in a non-decreasing 

sequence. 

Set the MST's representation to an empty set at startup. 

Apply edges to the MST using a Union-Find data structure in 

ascending weight order, making sure that no cycles arise. 

 

Example: Using the previously given example graph, Kruskal's 

algorithm would create an MST with a total weight of 15 by 

adding edges (A-B, B-E, E-D, B-C, and E-F). 
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Shortest Path Algorithms 

The shortest path between a source vertex and every other vertex 

in a weighted graph with non-negative weights is found using 

Dijkstra's algorithm. The shortest known path is always expanded 

through the usage of a priority queue. 

 

Steps of Algorithm: 

Set the distances between the source vertex and itself to 0 and to 

all other vertices to infinity. 

Store the vertices to be processed in a priority queue, beginning 

with the source vertex. 

Although there are items in the priority queue: 

Take out of the priority queue the vertex that is the closest to the 

center. 

If a shorter path is discovered, update the distances to the vertices 

that are nearby. 

As an illustration, look at the weighted graph below: 

 

Dijkstra's method would calculate the shortest paths to each of the 

vertices (A, B, C, D, and E) with their corresponding distances (1, 

4, 2). 

 

Bellman-Ford Algorithm: In a weighted graph with negative 

weight edges, the Bellman-Ford algorithm finds the shortest 

pathways between a single source vertex and every other vertex. 
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All edges are relaxed repeatedly by a number equal to the vertices 

minus one. 

 

Steps of Algorithm: 

Set the distances between the source vertex and itself to 0 and to 

all other vertices to infinity. 

Let |V| be the number of vertices, and relax all edges |V| - 1 times. 

By repeatedly iterating over all edges and updating distances, look 

for cycles with negative weights. 

Example: The Bellman-Ford algorithm can accurately compute 

shortest paths for a graph with edges that have negative weights, 

even when the graph has cycles and negative weights. 

 

Maximum Flow Algorithms 

The Ford-Fulkerson Algorithm is a directed graph with a 

capacity for each edge. It calculates the maximum flow in a flow 

network. It finds augmenting paths by applying the notion of 

residual capacity, and it then raises flow along these paths until no 

more augmenting paths are found. 

 

Steps of Algorithm: 

Set the flow's initial value to 0. 

As the path from source to sink is augmentable: 

Use DFS or BFS to determine the augmenting path. 

Determine the path's residual capacity. 

Enhance the flow as it travels. 

 

Example: The Ford-Fulkerson algorithm determines the maximum 

flow from source to sink in a flow network. 

 

Edmonds-Karp Algorithm: This algorithm use BFS to determine 

the augmenting pathways and is an application of the Ford-
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Fulkerson technique. It guarantees that the algorithm's temporal 

complexity is O(VE^2), where V and E are the numbers of vertices 

and edges, respectively. 

 

Uses: 

MST Algorithms: In networks where linking all vertices at the 

lowest possible cost is critical, the Prim and Kruskal algorithms are 

indispensable for determining the minimal spanning tree. 

Shortest way Algorithms: Based on flight paths or road networks, 

navigation systems employ Dijkstra's and Bellman-Ford 

algorithms to determine the shortest way between two points. 

Maximum Flow Algorithms: In network flow problems, such 

transportation and communication networks, the Ford-Fulkerson 

and Edmonds-Karp algorithms are used to maximize the flow from 

source to sink while taking into account each edge's capacity 

restrictions. 

 

11.6 APPLICATIONS OF GRAPHS 
 

Uses for Graphs 

Graphs are widely used in practical applications. 

Applications in the real world include recommendation systems 

(user-item relationships), maps (routing and navigation), and social 

networks (modeling user connections). 

Algorithmic problems include network flow optimization 

(maximizing flow in a network) and the traveling salesman 

problem (finding the shortest path to visit each vertex). 

Three types of graph-based data structures are available: spanning 

trees, which are a subset of a graph that connects all of its vertices, 

trees, and connectedness, which examines connected components. 
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11.7 CONCLUSION 
 

Graphs and the algorithms that go along with them are an essential 

component of computer science because they offer strong tools for 

problem modeling and addressing intricate issues. We have studied 

the definitions, important characteristics, and different kinds of 

graph data structures throughout this unit. Gaining an 

understanding of these fundamentals is necessary in order to apply 

graphs to real-world situations and to efficiently solve problems 

involving connections and relationships. 

 

Additionally, we looked at other graph representation techniques, 

including adjacency lists and adjacency matrices, and talked about 

the benefits and drawbacks of each. This information is essential 

for choosing the best representation depending on an application's 

unique requirements, including the graph's size and the kinds of 

operations that must be carried out. Furthermore, graph traversal 

algorithms such as BFS and DFS offer fundamental methods for 

graph exploration and serve as building blocks for more complex 

algorithms. 

 

Complex graph algorithms show the breadth of applications and 

depth of issues that graph theory can solve. Examples include 

finding minimal spanning trees, shortest pathways, and maximum 

flows. These algorithms are essential in many fields, including data 

analysis, resource management, network design, and optimization. 

Gaining proficiency in these ideas and methods will enable one to 

effectively use graphs to solve challenging, real-world problems. 
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11.8 QUESTIONS AND ANSWERS 
 

1. What is a Minimum Spanning Tree (MST) 

Answer: In a connected, undirected graph, an MST is a subset of 

edges that joins all vertices with the fewest feasible total edge 

weights and without any cycles. 

 

2. Describe the algorithm used by Dijkstra.  

Answer: In a weighted graph with non-negative weights, Dijkstra's 

algorithm uses a priority queue to explore vertices and determines 

the shortest path between each source vertex and all other vertices. 

 

3. What are some practical uses for graphs?  

Answer: In social networks, maps are utilized for routing and 

navigation; in recommendation systems, graphs are employed to 

depict user-item relationships. 

 

4. The Traveling Salesman Problem (TSP): What is it?  

Answer: In order to discover the shortest path that visits each 

vertex once and returns to the origin vertex, a salesman must solve 

the algorithmic problem known as TSP. 

 

 

5. What are the differences between the MST algorithms found by 

Prim and Kruskal?  

Answer: In response, Kruskal's algorithm adds the shortest edge to 

the MST until all vertices are connected, guaranteeing no cycles 

emerge. Prim's approach grows the MST from an arbitrary 

beginning vertex by adding the cheapest edge to the tree. 

 

6. What role do graph traversal algorithms play?  
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Answer: In order to perform activities like pathfinding, 

connectivity checking, and cycle detection, graph traversal 

algorithms like BFS and DFS are essential for network exploration 

and analysis. 

 

7. What are the adjacency matrix and adjacency list space and 

temporal complexities?  

Answer: The adjacency matrix allows for O(1) time complexity for 

edge look-up and O(V2) space complexity. The traversal difficulty 

of an adjacency list is O (V + E) in both space and time. 
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UNIT – 12: MINIMUM COST 
SPANNING TREES 
Structure 
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12.0 INTRODUCTION 
 

Graphs are fundamental data structures in computer science, 

representing a network of interconnected nodes or vertices and the 

edges connecting them. They are versatile tools used in a wide 

range of applications, from social networks and web page ranking 

to network routing and scheduling problems. Understanding how 

to efficiently traverse and manipulate graphs is crucial for solving 

many complex computational problems. This unit delves into 

several key graph algorithms, each with unique properties and 

applications. 
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We'll begin by exploring Minimum Cost Spanning Trees, which 

are essential for optimizing the connections within a network. Two 

prominent algorithms for constructing these trees, Kruskal's and 

Prim's algorithms, will be examined in detail. Following this, we'll 

look at Breadth-First Search (BFS) and Depth-First Search (DFS), 

foundational algorithms for traversing graphs that form the basis 

for more advanced graph operations. These traversal techniques are 

vital for exploring and understanding the structure of a graph. 

 

Finally, we will cover the concept of Strongly Connected 

Components (SCCs) in directed graphs. Identifying SCCs helps in 

understanding the underlying structure and connectivity of 

complex networks, leading to more efficient designs and analyses. 

Through this unit, you'll gain a comprehensive understanding of 

key graph algorithms and their applications, equipping you with 

the knowledge to tackle a wide array of problems in computer 

science and beyond. 

 

12.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understand Graph Fundamentals: Gain a solid understanding of 

graph theory, including the basic definitions, properties, and 

representations of graphs. 

 

Explore Minimum Cost Spanning Trees: Learn about Minimum 

Cost Spanning Trees and their importance in optimizing network 

connections. Study Kruskal’s and Prim’s algorithms for 

constructing these trees. 

 

Master Graph Traversal Algorithms: Develop proficiency in 

Breadth-First Search (BFS) and Depth-First Search (DFS) 
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algorithms, and understand their applications in graph traversal and 

problem-solving. 

 

Analyze Strongly Connected Components (SCCs): Understand 

the concept of SCCs in directed graphs and learn methods to 

identify them, which is crucial for analyzing and designing 

complex networks. 

 

Apply Graph Algorithms: Explore practical applications of graph 

algorithms in various domains such as network design, data 

analysis, machine learning, and logistics. 

 

Evaluate Algorithm Efficiency: Analyze the time and space 

complexities of different graph algorithms to understand their 

performance and scalability. 

 

12.2 MINIMUM COST SPANNING 
TREES 
 

Minimum Cost Spanning Trees (MSTs) are crucial concepts in 

graph theory, representing the subset of edges that connect all 

vertices of a graph with the lowest possible total edge weight. An 

MST of a graph ensures that all vertices are connected while 

minimizing the sum of the edge weights, without forming any 

cycles. This structure finds wide application in various fields such 

as network design, telecommunications, and computer science 

algorithms. 

 

The primary goal of finding an MST is to establish a spanning tree 

that spans all vertices with the least total weight, making it an 

optimal solution for connecting nodes in networks or organizing 

data points in clustering algorithms. Two well-known algorithms 
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for finding MSTs include Kruskal’s and Prim’s algorithms. 

Kruskal’s algorithm sorts all edges by weight and adds them to the 

MST if they do not form cycles, using a union-find data structure 

for efficiency. On the other hand, Prim’s algorithm starts from an 

arbitrary vertex and grows the MST by always adding the shortest 

edge connecting the current MST to an adjacent vertex until all 

vertices are included. 

 

Applications of MSTs extend to optimizing routes in transportation 

networks, minimizing costs in manufacturing processes, and 

organizing hierarchical data structures efficiently. The ability to 

compute MSTs efficiently ensures optimal solutions to a variety of 

real-world problems where minimizing connectivity costs is 

essential. 

 

Algorithms: 

Kruskal’s Algorithm: Kruskal’s algorithm constructs an MST by 

iteratively adding the smallest edge that doesn’t form a cycle until 

all vertices are connected. It uses a union-find data structure to 

efficiently manage and merge subsets of vertices. 

Prim’s Algorithm: Prim’s algorithm starts from an arbitrary 

vertex and grows the MST one vertex at a time, always choosing 

the shortest edge that connects a vertex in the MST to a vertex 

outside of it. It typically uses a priority queue to manage candidate 

edges efficiently. 

 

Applications: 

Network Design: MSTs are used to minimize the cost of 

connecting cities in a telecommunications network or computers in 

a LAN. 
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Clustering: In data science, MSTs can be used to identify clusters 

by treating each vertex as a data point and edges as distances 

between points. 

Optimization Problems: MSTs are essential in optimization 

problems like finding the minimum cost of connecting components 

in a manufacturing process or the shortest route in transportation 

networks. 

 

12.3 KRUSKAL’S ALGORITHM 
 

Kruskal’s algorithm is a popular method used to find the Minimum 

Spanning Tree (MST) of a connected, weighted graph. The 

algorithm operates by sorting all the edges in the graph by their 

weights and then iteratively adding the smallest edge to the 

growing MST, provided that adding the edge does not form a 

cycle. This process continues until all vertices are included in the 

MST. 

 

Here’s a step-by-step outline of Kruskal’s algorithm: 

Initialization: Start with a graph containing V vertices and E 

edges. 

Sort Edges: Sort all edges in the graph in non-decreasing order of 

their weights. 

Union-Find Data Structure: Initialize a union-find data structure 

(or disjoint-set data structure) to keep track of which vertices are in 

which components and to efficiently check whether adding an edge 

would form a cycle. 

Iterate Through Edges: Iterate through the sorted edges and for 

each edge: 

Check if adding the edge to the MST would not create a cycle 

using the union-find structure. 

If it does not create a cycle, add the edge to the MST. 
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Update the union-find structure to merge the components of the 

vertices connected by the edge. 

Termination: Stop when V − 1 edges have been added to the MST, 

where V is the number of vertices in the graph. 

 

Kruskal’s algorithm is efficient with a time complexity of O (E log 

E) due to the sorting step, where E is the number of edges in the 

graph. This makes it suitable for graphs with a large number of 

edges, especially sparse graphs where E is much smaller than V2. 

Applications of Kruskal’s algorithm include network design, 

circuit design, and clustering algorithms where finding the MST 

helps minimize costs or optimize connections between nodes. Its 

simplicity and efficiency make it a valuable tool in various 

computational and practical settings. 

 

Example: 

Let's consider the following graph with 4 vertices (A, B, C, D) and 

the following weighted edges: 

AB: 1 

AC: 4 

AD: 3 

BC: 2 

BD: 5 

CD: 6 

 

Step-by-Step Execution: 

Sort Edges: Sort edges by weight: 

AB: 1 

BC: 2 

AD: 3 

AC: 4 

BD: 5 
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CD: 6 

Initialize Union-Find: Initialize each vertex as its own 

component. 

 

Process Edges: 

Edge AB (Weight 1): Include AB in MST (A-B). 

Edge BC (Weight 2): Include BC in MST (B-C). 

Edge AD (Weight 3): Include AD in MST (A-D). 

Edge AC (Weight 4): Include AC in MST (A-C). 

Edge BD (Weight 5): Include BD in MST (B-D). 

 

Union Operations: 

Union(A, B) 

Union(B, C) 

Union(A, D) 

Union(A, C) 

Union(B, D) 

Resulting MST: The MST includes edges AB, BC, AD, AC. The 

total weight of the MST is 1+2+3+4=101 + 2 + 3 + 4 = 

101+2+3+4=10. 

 

Explanation: 

Kruskal's algorithm selects edges based on their weights in 

ascending order and ensures that no cycles are formed by checking 

if the endpoints of each edge belong to the same connected 

component using the union-find data structure. 

 

It's efficient for sparse graphs and can handle graphs with different 

edge weights, making it versatile for various applications such as 

network design, circuit layout, and clustering algorithms. 
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Implementation in C++: 

#include <iostream> 

#include <vector> 

#include <algorithm> 

using namespace std; 

// Structure to represent an edge in the graph 

struct Edge { 

    int u, v, weight; 

    Edge(int u, int v, int weight) : u(u), v(v), weight(weight) {} 

}; 

 

// Union-Find data structure with path compression and union by 

rank 

class UnionFind { 

private: 

    vector<int> parent, rank; 

public: 

    UnionFind(int n) { 

        parent.resize(n); 

        rank.resize(n, 0); 

        for (int i = 0; i < n; ++i) 

            parent[i] = i; 

    } 

    int find(int u) { 

        if (parent[u] != u) 

            parent[u] = find(parent[u]); // Path compression 

        return parent[u]; 

    } 

    void union_set(int u, int v) { 

        int root_u = find(u); 

        int root_v = find(v); 

        if (root_u != root_v) { 
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            // Union by rank 

            if (rank[root_u] > rank[root_v]) 

                parent[root_v] = root_u; 

            else if (rank[root_u] < rank[root_v]) 

                parent[root_u] = root_v; 

            else { 

                parent[root_v] = root_u; 

                rank[root_u]++; 

            } 

        } 

    } 

}; 

// Comparator function to sort edges by weight 

bool compareEdges(const Edge& a, const Edge& b) { 

    return a.weight < b.weight; 

} 

// Function to find Minimum Spanning Tree using Kruskal's 

algorithm 

vector<Edge> kruskalMST(vector<Edge>& edges, int V) { 

    // Sort edges by weight 

    sort(edges.begin(), edges.end(), compareEdges); 

    UnionFind uf(V); 

    vector<Edge> result; 

    for (Edge& edge : edges) { 

        int u = edge.u; 

        int v = edge.v; 

        if (uf.find(u) != uf.find(v)) { 

            uf.union_set(u, v); 

            result.push_back(edge); 

        } 

        // Stop when MST is found (V-1 edges) 

        if (result.size() == V - 1) 
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            break; 

    } 

    return result; 

} 

 

12.4 PRIM'S ALGORITHM 
 

Prim's algorithm is another popular greedy algorithm used to find 

the Minimum Spanning Tree (MST) of a connected, weighted 

graph. Similar to Kruskal's algorithm, Prim's algorithm builds the 

MST incrementally, starting from an arbitrary vertex and adding 

the shortest edge that connects a vertex in the MST to a vertex 

outside the MST. Here’s how Prim's algorithm works, explained 

with an example: 

 

Prim's Algorithm Steps: 

Initialization: Start with an arbitrary vertex as the initial MST, or 

a single vertex as the starting point. 

Priority Queue: Use a priority queue (min-heap) to keep track of 

the minimum-weight edge that connects the MST to vertices 

outside the MST. 

Process Edges: Repeat the following steps until all vertices are 

included in the MST: 

Add the vertex with the smallest edge weight that connects the 

current MST to a vertex not yet in the MST. 

Update the priority queue with new edges that connect the current 

MST to vertices outside the MST. 

Termination: Stop when all vertices are included in the MST, 

forming V−1V-1V−1 edges, where VVV is the number of vertices 

in the graph. 
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Example: 

Consider the following graph with 4 vertices (A, B, C, D) and the 

following weighted edges: 

AB: 1 

AC: 4 

AD: 3 

BC: 2 

BD: 5 

CD: 6 

 

Step-by-Step Execution: 

Start with Vertex A: Assume we start with vertex A. 

Priority Queue Contents: 

Initially, vertex A is in the MST. 

Edges: AB (1), AC (4), AD (3). 

Process: 

Step 1: Add edge AB to the MST (A-B). Priority queue now has 

AC (4), AD (3). 

Step 2: Add edge AD to the MST (A-D). Priority queue now has 

AC (4), BD (5). 

Step 3: Add edge AC to the MST (A-C). Priority queue now has 

BC (2), BD (5). 

Step 4: Add edge BC to the MST (B-C). Priority queue now has 

BD (5), CD (6). 

Resulting MST: The MST includes edges AB, AD, AC, BC. The 

total weight of the MST is 1+3+4+2=101 + 3 + 4 + 2 = 

101+3+4+2=10. 

 

Explanation: 

Prim's algorithm starts from an initial vertex and grows the MST 

one vertex at a time by adding the shortest edge that connects the 

current MST to a vertex outside the MST. 
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It uses a priority queue to efficiently retrieve the next minimum-

weight edge to process, ensuring that the algorithm runs efficiently 

even for large graphs. 

Prim's algorithm is particularly useful for dense graphs or when a 

specific starting vertex is known, as it guarantees that the MST 

grows incrementally with minimal edge weights. 

 

Implementation in C++: 

#include <iostream> 

#include <vector> 

#include <queue> 

#include <climits> 

using namespace std; 

#define V 5 // Number of vertices in the graph 

// Function to find the vertex with the minimum key value, 

// from the set of vertices not yet included in MST 

int minKey(int key[], bool mstSet[]) { 

    int min = INT_MAX, min_index; 

    for (int v = 0; v < V; v++) { 

        if (mstSet[v] == false && key[v] < min) { 

            min = key[v]; 

            min_index = v; 

        } 

    } 

    return min_index; 

} 

// Function to print the MST stored in parent array 

void printMST(int parent[], vector<vector<int>>& graph) { 

    cout << "Edge \tWeight\n"; 

    for (int i = 1; i < V; i++) { 

        cout << parent[i] << " - " << i << "\t" << graph[i][parent[i]] 

<< "\n"; 
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    } 

} 

// Function to construct and print MST using Prim's algorithm 

void primMST(vector<vector<int>>& graph) { 

    int parent[V]; // Array to store constructed MST 

    int key[V];    // Key values used to pick minimum weight edge 

in cut 

    bool mstSet[V]; // To represent set of vertices included in MST 

    // Initialize all keys as INFINITE 

    for (int i = 0; i < V; i++) { 

        key[i] = INT_MAX; 

        mstSet[i] = false; 

    } 

    // Always include first vertex in MST 

    key[0] = 0;     // Make key 0 so that this vertex is picked as first 

vertex 

    parent[0] = -1; // First node is always root of MST 

    // The MST will have V vertices 

    for (int count = 0; count < V - 1; count++) { 

        // Pick the minimum key vertex from the set of vertices not 

yet included in MST 

        int u = minKey(key, mstSet); 

        // Add the picked vertex to the MST set 

        mstSet[u] = true; 

        // Update key value and parent index of the adjacent vertices 

of the picked vertex 

        // Consider only those vertices which are not yet included in 

MST 

        for (int v = 0; v < V; v++) { 

            // graph[u][v] is non-zero only for adjacent vertices of u 

            // mstSet[v] is false for vertices not yet included in MST 

            // Update the key only if graph[u][v] is smaller than key[v] 
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            if (graph[u][v] && mstSet[v] == false && graph[u][v] < 

key[v]) { 

                parent[v] = u; 

                key[v] = graph[u][v]; 

            } 

        } 

    } 

    // Print the constructed MST 

    printMST(parent, graph); 

} 

// Driver program to test above functions 

int main() { 

    vector<vector<int>> graph = { 

        {0, 2, 0, 6, 0}, 

        {2, 0, 3, 8, 5}, 

        {0, 3, 0, 0, 7}, 

        {6, 8, 0, 0, 9}, 

        {0, 5, 7, 9, 0} 

    }; 

    // Print the MST using Prim's algorithm 

    primMST(graph); 

    return 0; 

} 

 

12.5 APPLICATIONS OF MINIMUM 
COST SPANNING TREES 
 

Use cases in network design (telecommunications, computer 

networks). 

In network design, Minimum Cost Spanning Trees (MCST) find 

numerous applications across various domains. Here are some 

specific use cases: 
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Telecommunications Networks: MCST algorithms are 

extensively used in telecommunications to design efficient 

networks of communication channels, such as fiber optic cables or 

wireless links between cities, towns, or network nodes. The goal is 

to minimize the total cost of establishing and maintaining these 

connections while ensuring reliable and high-speed 

communication. 

 

Computer Networks: In computer networks, MCST algorithms 

help in designing network topologies that connect all devices 

(computers, routers, switches) with minimal total cable length or 

transmission cost. This ensures efficient data transmission, reduces 

latency, and enhances network reliability. 

 

Wireless Sensor Networks: MCST algorithms are applied in 

designing wireless sensor networks (WSNs) where sensors need to 

communicate with each other and with a central node (sink) using 

minimal energy consumption. The algorithm helps in forming a 

tree structure that optimizes energy usage and ensures data from 

sensors is efficiently routed to the sink. 

 

Satellite Communication Networks: For satellite communication 

systems, MCST algorithms are used to establish communication 

links between satellites and ground stations or between different 

satellites in a constellation. The objective is to minimize signal 

propagation delay and maximize bandwidth utilization while 

keeping operational costs low. 

 

Internet of Things (IoT) Networks: In IoT applications, where 

numerous devices (sensors, actuators, smart appliances) are 

interconnected, MCST algorithms play a role in optimizing the 
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network topology for efficient data exchange and resource 

management. This ensures that IoT devices can communicate 

seamlessly while conserving energy and reducing communication 

overhead. 

 

 

 

Clustering applications in data analysis and machine learning 

In data analysis and machine learning, clustering refers to the 

process of grouping data points into clusters based on their 

similarity or distance metrics. Minimum Cost Spanning Trees 

(MCST) and related algorithms have applications in clustering 

contexts, particularly in graph-based clustering methods. Here’s 

how MCST and clustering intersect: 

 

Graph-based Clustering: 

Minimum Spanning Tree Clustering: In this approach, MCST 

algorithms like Kruskal's or Prim's are used to construct a 

minimum spanning tree of a graph where nodes represent data 

points and edges represent distances or similarities between them. 

Once the tree is constructed, clusters can be derived by cutting 

edges based on a threshold distance or similarity measure. The 

resulting clusters are connected subgraphs with minimal total edge 

weights, ensuring compact and cohesive clusters. 

 

Hierarchical Clustering: 

Agglomerative Clustering: MCST algorithms can be adapted for 

hierarchical clustering methods. Starting with each data point as a 

separate cluster, the algorithm progressively merges clusters based 

on proximity until all points belong to a single cluster. The 

merging process can be guided by the edges of the MCST, 
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ensuring that clusters are merged in a way that minimizes the total 

inter-cluster similarity or distance. 

 

Community Detection: 

Graph Partitioning: MCST algorithms are also used in 

community detection tasks where the goal is to identify densely 

connected subgroups of nodes in a network (graph). By 

constructing an MCST or other graph-based structures, community 

detection algorithms can efficiently identify these subgroups, 

which often correspond to clusters of similar data points in 

applications like social network analysis or recommendation 

systems. 

 

Optimization and Representation Learning: 

MCST-based clustering methods can help in optimizing 

representation learning tasks by constructing a graph 

representation of data points and then applying MCST algorithms 

to discover meaningful structures or patterns. This approach can 

enhance the efficiency of clustering tasks in large datasets or high-

dimensional spaces where traditional clustering algorithms may 

struggle. 

 

Optimization problems in logistics and transportation. 

In logistics and transportation, optimization problems are 

pervasive, involving efficient resource allocation, route planning, 

and network management. Minimum Cost Spanning Trees (MCST) 

and related algorithms play crucial roles in solving these 

optimization challenges: 

 

Network Design and Maintenance: 

Infrastructure Planning: MCST algorithms like Prim's and 

Kruskal's are used to design efficient transportation networks such 
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as roadways, railways, and telecommunications grids. By 

constructing minimum spanning trees, these algorithms help 

minimize construction costs while ensuring connectivity and 

accessibility across the network. 

 

Vehicle Routing and Scheduling: 

Optimal Route Planning: In transportation logistics, MCST 

algorithms aid in determining the most cost-effective routes for 

vehicles, considering factors like distance, traffic conditions, and 

fuel costs. By constructing minimal spanning trees or related 

structures, these algorithms optimize delivery routes, reduce 

transportation times, and lower operational costs. 

 

Supply Chain Management: 

Inventory and Distribution Networks: MCST algorithms 

optimize supply chain networks by identifying the most efficient 

distribution routes between warehouses, suppliers, and retail 

locations. This ensures timely delivery of goods while minimizing 

transportation costs and maintaining inventory levels. 

 

Facility Location and Service Coverage: 

Service Area Design: MCST algorithms assist in locating facilities 

(such as warehouses or distribution centers) strategically to 

maximize service coverage while minimizing transportation 

distances and costs. These algorithms ensure that service areas are 

efficiently defined and maintained. 

 

Resource Allocation and Management: 

Energy and Resource Networks: In energy distribution and 

resource management, MCST algorithms optimize the layout of 

power grids or resource networks. By minimizing the total network 
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cost (including construction and maintenance), these algorithms 

improve resource allocation efficiency and reliability. 

 

12.6 BREADTH-FIRST SEARCH (BFS) 
 

Breadth-First Search (BFS) is a fundamental graph traversal 

algorithm used to explore nodes level by level. It starts at a 

specified node (often called the "source" node) and explores all its 

neighbors at the present depth level before moving on to nodes at 

the next depth level. 

 

Key Characteristics and Steps: 

Initialization: 

BFS begins by selecting a starting node and marking it as visited. 

It uses a queue data structure to manage the order of exploration. 

The starting node is enqueued. 

 

Exploration Process: 

Dequeue a node from the front of the queue. 

Visit all adjacent nodes (neighbors) of the dequeued node that have 

not been visited yet. 

Mark each visited node to prevent re-processing and enqueue it 

into the queue. 

 

 

 

Level-wise Exploration: 

BFS ensures that all nodes at a certain depth (distance from the 

source) are visited before moving on to nodes at the next depth 

level. 

This ensures that BFS explores the shortest path first in an 

unweighted graph. 
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Termination: 

The process continues until the queue is empty, meaning all 

reachable nodes have been visited. 

 

Applications: 

Shortest Path and Minimum Spanning Tree: BFS can be used to 

find the shortest path in an unweighted graph and to construct the 

minimum spanning tree in conjunction with other algorithms. 

Web Crawling and Social Networking: BFS is used by search 

engines to crawl the web and by social networking sites to find 

friends or connections within a limited number of hops. 

 

Puzzle Solving: BFS is employed in solving puzzles like the 8-

puzzle or maze traversal, where finding the shortest path or 

reaching a target configuration is essential. 

 

Example: 

Consider a simple graph with nodes connected in a way that 

resembles a tree structure. Starting from node A, BFS would 

explore each level of nodes before moving to the next level. For 

instance, from A, it would explore B and C, then from B, it would 

explore D and E, and so on. 

Consider a graph represented as follows: 

 

Starting BFS from node A: 

 

Initialization: 

Begin at node A and mark it as visited. 
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Enqueue A into the queue. 

 

Exploration Process: 

Dequeue A, visit its neighbors B and D, and enqueue them (B 

before D). 

Dequeue B, visit its neighbors A, C, and E. Enqueue C and E (E 

before D). 

Dequeue C, visit its neighbors B and F. Enqueue F. 

Dequeue D, visit its neighbors A and E (skip A as it's already 

visited). 

Dequeue E, visit its neighbors B, D, and F (skip B and D as they're 

visited). 

Dequeue F, visit its neighbor E (skip as it's visited). 

 

Result: 

The BFS traversal order from node A would be: A, B, D, C, E, F. 

In this example: 

BFS explores all nodes at the current depth level before moving on 

to nodes at the next depth level. 

It ensures that the shortest path (in terms of number of edges) from 

the starting node A to any other reachable node is found first. 

 

Complexity: 

Time Complexity: O(V + E), where V is the number of vertices 

(nodes) and E is the number of edges in the graph. 

Space Complexity: O(V), due to the storage required for the 

queue and the visited list. 

 

12.7 DEPTH-FIRST SEARCH (DFS) 
 

Depth-First Search (DFS) is a graph traversal algorithm that 

explores as far as possible along each branch before backtracking. 
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It traverses a graph depthwise, exploring vertices and edges to 

reach the deepest nodes before backtracking to explore other paths. 

The main properties of DFS include its recursive nature, which 

utilizes a stack to keep track of vertices, and its ability to uncover 

all vertices in a connected component. 

 

Definition and Properties of DFS: 

DFS starts from an initial vertex, visits all its neighbors 

recursively, and marks visited vertices to avoid revisiting. It 

follows these properties: 

 

Recursive Nature: DFS uses recursion or an explicit stack to 

manage traversal. 

Backtracking: It explores all paths from the current vertex before 

moving to the next vertex. 

 

Visited Marking: Ensures each vertex is visited once to avoid 

infinite loops in cyclic graphs. 

 

Implementation Details: 

Recursive Implementation: 

In a recursive approach, DFS uses function calls to traverse the 

graph: 
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Example:  

Depth-First Search (DFS) is another fundamental graph traversal 

algorithm that explores as far as possible along each branch before 

backtracking. Here's an example of how DFS works on a simple 

graph: 

Consider a graph represented as follows: 

 

Starting DFS from node A: 

 

Initialization: 

Begin at node A and mark it as visited. 

 

Exploration Process: 

Visit A's neighbors recursively: B, D, E, F. 

From B, visit its unvisited neighbor E (since B to A is visited). 

From E, visit its unvisited neighbors F (since E to A is visited). 

 

Result: 

The DFS traversal order from node A would be: A, B, E, F, C, D. 

In this example: 

DFS explores as far as possible along each branch before 

backtracking. 

It uses a stack (implicitly through recursion or explicitly) to keep 

track of the path and visited nodes. 
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DFS is used for tasks like finding connected components, detecting 

cycles, and topological sorting in directed graphs. 

 

Applications of DFS: 

DFS finds applications in various graph-related problems: 

 

Cycle Detection: Detects cycles in directed and undirected graphs 

by checking for back edges during traversal. 

 

Topological Sorting: Orders vertices such that for every directed 

edge u -> v, u comes before v in the ordering. 

Maze Solving: Used to find paths through mazes or grids by 

exploring all possible paths until the exit is found. 

 

12.8 FINDING STRONGLY 
CONNECTED COMPONENTS (SCCS) 
 

Finding Strongly Connected Components (SCCs) in a directed 

graph is a fundamental graph algorithm that identifies subsets of 

vertices where each vertex is reachable from any other vertex 

within the same subset. Formally, an SCC in a directed graph is a 

maximal subgraph such that for every pair of vertices uuu and vvv 

in the SCC, there exists a path from u to v and a path from v to u. 

 

Steps to Find Strongly Connected Components (Kosaraju's 

Algorithm): 

First Pass (DFS on Original Graph): 

Perform a Depth-First Search (DFS) on the original graph, tracking 

the finishing times of vertices. This step helps identify the order in 

which vertices finish processing. 

Store vertices based on their finishing times in a stack. 
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Transpose Graph: 

Create a transpose or reverse graph where all the edges of the 

original graph are reversed. Essentially, if there is an edge from u 

to v in the original graph, there is an edge from vvv to uuu in the 

transpose graph. 

 

Second Pass (DFS on Transposed Graph): 

Pop vertices from the stack (ordered by finishing times from the 

first pass). 

Perform DFS on the transpose graph starting from each popped 

vertex to explore all vertices in the same SCC. 

Each DFS call from an unvisited vertex in the stack identifies a 

new SCC. 

 

Example: 

Consider a directed graph with vertices V = {1, 2, 3, 4, 5, 6} and 

edges {(1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (5, 6), (6, 4)}. 

First Pass (Original Graph): 

Perform DFS on the original graph. 

Track finishing times: finishing time (1) > finishing time (2) > 

finishing time (3) > finishing time (4) > finishing time (5) 

>finishing time (6). 

Vertices in order of decreasing finishing times: [6, 5, 4, 3, 2, 1]. 

 

Transpose Graph: 

Reverse all edges: {(2, 1), (3, 2), (1, 3), (4, 3), (5, 4), (6, 5), (4, 6)}. 

 

Second Pass (DFS on Transposed Graph): 

Start DFS from vertex 6 (top of the stack). 

Explore all vertices reachable from 666: {6, 5, 4} forms an SCC. 

Continue with other unvisited vertices in the stack until all SCCs 

are identified. 



Data Structure using C++ & Lab -306 
 

 

Applications: 

Compiler Design: Used in optimizing code by identifying code 

blocks that can be executed independently. 

Network Analysis: Identifying clusters of nodes that can 

communicate effectively. 

Component-based Systems: Finding modules or components with 

interdependencies that must be analyzed together. 

Kosaraju's algorithm efficiently finds all SCCs in O (V + E) time, 

making it suitable for large graphs encountered in real-world 

applications like social networks, transportation networks, and data 

flow analysis. 

 

12.9 CONCLUSION 
 

In this unit, we have explored a comprehensive range of topics 

centered around graph theory and its applications. We began with 

the fundamental concepts of graphs, delving into various ways they 

can be represented and manipulated. This foundational knowledge 

set the stage for understanding more complex algorithms and their 

practical uses. 

 

We examined Minimum Cost Spanning Trees and studied 

Kruskal’s and Prim’s algorithms in detail. These algorithms are 

crucial for solving optimization problems in network design and 

other fields. We then moved on to essential graph traversal 

techniques, such as Breadth-First Search (BFS) and Depth-First 

Search (DFS), highlighting their implementation and diverse 

applications, from pathfinding to topological sorting. 

 

Finally, we explored the identification of Strongly Connected 

Components (SCCs) in directed graphs, an important concept for 
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analyzing the structure of complex networks. Throughout this unit, 

the emphasis has been on both theoretical understanding and 

practical implementation, equipping you with the skills to apply 

these powerful graph algorithms to real-world problems. 

 

12.10 QUESTIONS AND ANSWERS 
 

Q1: What is a graph in the context of data structures?  

Answer: A graph is a data structure that consists of a set of nodes 

(vertices) connected by edges. Graphs can be directed or 

undirected, and they are used to represent relationships between 

entities in various applications such as social networks, 

transportation systems, and network topology. 

 

Q2: What is the primary difference between Kruskal’s 

Algorithm and Prim’s Algorithm for finding Minimum Cost 

Spanning Trees?  

Answer: Kruskal’s Algorithm builds the Minimum Cost Spanning 

Tree (MST) by adding edges in order of increasing weight, 

ensuring no cycles are formed. Prim’s Algorithm, on the other 

hand, starts from an arbitrary node and grows the MST by adding 

the smallest edge that connects a vertex in the tree to a vertex 

outside the tree. 

 

 

Q3: How does the Breadth-First Search (BFS) algorithm 

work?  

Answer: BFS is a graph traversal algorithm that starts from a given 

node and explores all its neighbors at the present depth before 

moving on to nodes at the next depth level. It uses a queue to keep 

track of nodes to be explored, ensuring a level-order traversal. 
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Q4: What are the typical applications of Depth-First Search 

(DFS)?  

Answer: DFS is used in various applications, including cycle 

detection in graphs, topological sorting, solving maze puzzles, and 

finding connected components in a graph. It is characterized by its 

use of a stack or recursion to explore as far as possible along each 

branch before backtracking. 

 

Q5: Explain the concept of Strongly Connected Components 

(SCCs) in a graph.  

Answer: Strongly Connected Components (SCCs) are subgraphs in 

a directed graph where every node is reachable from every other 

node within the same subgraph. Identifying SCCs is crucial for 

understanding the structure of complex networks, such as 

identifying clusters or modules within a larger system. 

 

Q6: What are the key properties of a Minimum Cost Spanning 

Tree (MCST)?  

Answer: A Minimum Cost Spanning Tree (MCST) connects all 

vertices in a graph with the minimum possible total edge weight, 

without forming any cycles. It ensures that the spanning tree is as 

light as possible, which is essential for optimizing network design 

and other applications. 
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13.0 INTRODUCTION 
 

In computer science and software engineering, sorting and 

searching algorithms are essential for efficiently managing and 

manipulating data. These algorithms are essential resources that 

facilitate the effective arrangement and retrieval of data for a wide 

range of applications. We thoroughly examine sorting and 

searching algorithms in this topic, including their foundations, 

applications, effectiveness, and practical applications. 

 

Sorting algorithms are methods for putting data in a specific order, 

like lexicographical or numerical order. Because of their 

differences in efficiency and complexity, some are more suited for 
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particular jobs than others. Conversely, searching algorithms make 

it easier to retrieve data from structured data structures. They are 

essential for quickly and efficiently finding elements in sorted 

arrays or other data repositories. 

 

The first part of this subject looks at different sorting strategies, 

such as Quick Sort, Insertion Sort, Selection Sort, and Merge Sort. 

Every technique is examined in detail to comprehend its working 

principles, computational intricacies in the best, average, and 

worst-case situations, and useful applications. Additionally, we 

investigate and compare the optimal use cases and efficiency of 

several searching algorithms, including Binary Search and Linear 

Search. Our goal is to offer a thorough grasp of how these 

algorithms support effective data management and retrieval in 

theoretical and real-world settings by the conclusion. 

 

13.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understanding Sorting Algorithms: To comprehend the 

fundamental principles behind various sorting algorithms such as 

Selection Sort, Insertion Sort, Merge Sort, and Quick Sort. This 

includes exploring their respective implementation strategies, 

advantages, and disadvantages. 

 

Analyzing Time and Space Complexity: To conduct a detailed 

analysis of the time complexity (best, average, and worst-case 

scenarios) and space complexity of each sorting algorithm. This 

analysis helps in understanding their efficiency and suitability for 

different data sizes and structures. 
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Exploring Searching Algorithms: To investigate essential 

searching algorithms, particularly Linear Search and Binary 

Search. This involves understanding their operational mechanisms, 

efficiency in terms of time complexity, and practical applications 

in data retrieval scenarios. 

 

Comparing Efficiency: To compare the efficiency of sorting and 

searching algorithms based on their time and space complexities. 

This comparison aids in selecting the most appropriate algorithm 

for specific tasks, considering factors like data size, structure, and 

order. 

Real-world Applications: To examine practical applications of 

sorting and searching algorithms across various domains, including 

database management, information retrieval, and computational 

problem-solving. 

 

13.2 SORTING ALGORITHMS 
 

Sorting algorithms are methods for putting items in a list or array 

in a specific order, usually lexicographically or numerically, 

ascending or descending. A basic operation in computer science, 

sorting is frequently employed as an initial step in a variety of 

algorithms and applications. Sorting algorithms can be assessed for 

efficiency using two metrics: space complexity (the amount of 

additional memory needed) and time complexity (the rate at which 

the algorithm's execution time grows with the size of the input). 

 

Sorting Techniques: 

Bubble Sort: This straightforward sorting algorithm analyzes each 

pair of adjacent items and swaps them if they are out of order as it 

iteratively goes through the list to be sorted. Until the list is sorted, 

the trip through the list is repeated. Smaller elements "bubble" to 
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the top of the list (the beginning of the array) with each iteration of 

the algorithm, hence its name. 

 

Methodical Application in C++ 

 

Analysis of Time Complexity 

Best Case: O(n): When the array has previously been 

sorted, this happens. In this case, the algorithm merely 

performs one trip around the array to verify that it is sorted; 

swaps are not required. 

Average Case: O(n2): This happens when there is an 

average random element order. The method does n passes, 

comparing and sometimes swapping neighboring pairings 

on each iteration. 

Worst-Case Scenario: The worst-case scenario, which 

happens when the array is sorted in reverse order, is O(n2). 

The method must perform n passes, requiring n-1 swaps 

and comparisons for each pass. 

 

Analysis of Space Complexity 

Space Complexity: O (1): Bubble Sort requires a constant 

amount of additional memory space because it is an in-

place sorting method. The temporary variable that holds 
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elements during swaps is the only purpose for the 

additional space. 

 

Detailed Description with Illustration 

Considering an array arr[] = {64, 25, 12, 22, 11}, let us perform the 

Bubble Sort steps: 

 

First Pass, 

When comparing 64 and 25, swap them out because 64 > 

25 → {25, 64, 12, 22, 11} 

As 64 > 12 → {25, 12, 64, 22, 11}, compare 64 and 12: 

Swap 

Examine 64 and 22: Exchange, as 64 > 22 → {25, 12, 22, 

64, 11} 

Examine 64 and 11: Exchange, as 64 > 11 → {25, 12, 22, 

11, 64} 

 

Second Pass, 

In contrast, swap 25 and 12 because 25 > 12 => {12, 25, 

22, 11, 64} 

In order to swap 25 and 22, remember that 25 > 22 → {12, 

22, 25, 11, 64}. 

In order to swap 25 and 11, note that 25 > 11 → {12, 22, 

11, 25, 64}. 

64 is already positioned correctly. 

 

Third Pass 

Examine 12 and 22: There is no exchange because 12 < 22 

→ {12, 22, 11, 25, 64} 

In contrast, 22 > 11 → {12, 11, 22, 25, 64}. Compare 22 

with 11. 

The numbers 25 and 64 are already in the right places. 
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Fourth Pass: 

As 12 > 11 → {11, 12, 22, 25, 64}, compare 12 with 11. 

The numbers 22, 25, and 64 are already in the right place. 

The array is sorted in the following order: {11, 12, 22, 25, 

64}. 

 

13.3 SELECTION SORT 
 

Selection Sort is a basic sorting algorithm that relies on 

comparisons. The input list is split into two sections by the 

algorithm: a sublist of the remaining unsorted items and a sorted 

sublist of items that are accumulated from left to right at the front 

(left) of the list.  

 

The input list as a whole is the unsorted sublist at first, and the 

sorted sublist is empty. The method then finds the smallest (or 

largest, depending on the order of sorting) element in the unsorted 

sublist, moves the sublist borders one element to the right, and 

exchanges it with the leftmost unsorted element to put it in sorted 

order. 

Step-by-Step Implementation in C++ 
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Analysis of Time Complexity 

Best Case: O(n2): Because the technique does not check to 

see if the list is already sorted, the best-case scenario still 

requires n passes through the list and n comparisons each 

pass. 

Average Case: O(n2): In this scenario, the algorithm runs 

through n passes, averaging n/2 comparisons each pass. 

Worst Case: O(n2): In this scenario, there are n 

comparisons made for each run through the list and n 

passes overall. 

 

Analysis of Space Complexity 

Because Selection Sort is an in-place sorting algorithm, it has a 

constant memory space need (space complexity: O (1)). The 

temporary variable that holds elements during swaps is the only 

purpose for the additional space. 

 

Use Cases and Realistic Implementations 

Small Data Sets: Selection Sort is helpful when dealing 

with small data sets since its simplicity and convenience of 

usage outweigh its drawbacks. 

Partially Sorted Arrays: Selection Sort occasionally 

works better if you are aware that the array has previously 

been partially sorted. 

Educational Purposes: Because of its simplicity, it is 

frequently used in school contexts to teach the principles of 

sorting algorithms. 

Memory-Constrained Environments: Because it is an in-

place sort, it can be used in settings with constrained 

memory. 
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Detailed Description with Illustration 

Considering an array arr[] = {64, 25, 12, 22, 11}, let us perform the 

Selection Sort steps: 

 

First Pass: 

Determine the least element—11—among 64, 25, 12, 22, 

and 11. 

Replace element 64 with 11, resulting in {11, 25, 12, 22, 

64}. 

 

 

Second Pass: 

Determine the least element—12—among 25, 12, 22, and 

64. 

Replace element 12 with element 25 to get {11, 12, 25, 22, 

64}. 

 

Third Pass 

Determine the least element—22—among 25, 22, 64. 

Replace element 22 with the third one (25) to get {11, 12, 

22, 25, 64}. 

 

Fourth Pass: 

Determine the least element—25—among 25, 64. 

Since 25 is already in the right place, there is no need to 

swap. 

The array is sorted in the following order: {11, 12, 22, 25, 

64}. 
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13.4 INSERTION SORT 
 

Insertion Sort is a basic and intuitive comparison-based sorting 

algorithm. It builds the final sorted array (or list) one item at a 

time. It is substantially less efficient on huge lists than more 

complex algorithms such as quicksort, heapsort, or merge sort. 

However, it has the virtue of being simple to implement and 

efficient for small data sets. 

 

The list is split into sorted and unsorted regions in order for the 

algorithm to function. Initially, the sorted region comprises only 

the first element, and the rest of the list is unsorted. The method 

proceeds by taking the next element from the unsorted section and 

inserting it into the correct position in the sorted region. This 

process continues until the full list is sorted. 

 

Step-by-Step Implementation in C++ 
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Time Complexity Analysis 

Best Case: O(n): The best-case scenario happens when the 

array is already sorted. The algorithm just needs to pass 

through the list once, making n-1 comparisons. 

Average Case: O(n2): On average, each element in the 

array is compared half of the elements preceding it. This 

leads in a quadratic amount of comparisons and shifts. 

Worst Case: O(n2): The worst-case scenario happens 

when the array is sorted in reverse order. The method needs 

to bring each element to the front of the sorted zone, 

resulting in the maximum amount of comparisons and 

shifts. 

 

Analysis of Space Complexity 

 

Space Complexity: O(1): Insertion Sort is an in-place sorting 

algorithm, meaning it requires a constant amount of additional 

memory space. The only extra space used is for a temporary 

variable to hold components during shifts. 

 

Use Cases and Realistic Implementations 

 

Small Data Sets: Insertion Sort works well for small data sets 

since it is straightforward to use and has a low implementation 

overhead. 

 

Nearly Sorted Arrays: Insertion Sort works well when you know 

the array is already almost sorted because it requires less shifts. 

 

Online Sorting: Insertion Sort is appropriate for online sorting 

where data is received one piece at a time since it can sort a list as 

it gets items. 
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For educational purposes: Because of its simplicity, it is 

frequently used in school contexts to teach the principles of sorting 

algorithms. 

Detailed Description with Illustration 

Considering an array arr[] = {12, 11, 13, 5, 6}, let us proceed with 

the Insertion Sort steps: 

 

First Pass: 

Key = 11, contrast with 12. 

Move 12 to the right since 11 < 12. 

Put 11 where it belongs → {11, 12, 13, 5, 6}. 

 

Second Pass: 

Key = 13, contrast with 12. 

There is no need for shifts because 13 > 12. 

Place 13 where it belongs → {11, 12, 13, 5, 6}. 

 

Third Pass: 

Key: 5, with relation to 13, 12, and 11. 

Due to the fact that 5 < 13, 12, and 11, move them right. 

Put 5 in the proper place: {5, 11, 12, 13, 6}. 

 

 

 

Fourth Pass: 

Key: 6, in relation to 13, 12, and 11. 

As 6 is less than 13, 12, and 11, move them to the right. 

Put 6 in the proper place: {5, 6, 11, 12, 13}. 

The array is sorted in the following order: {5, 6, 11, 12, 

13}. 
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13.5 MERGE SORT 
 

A divide-and-conquer method called merge sort splits the input 

array in half, sorts each half recursively, and then combines the 

sorted halves to create a sorted array. O (n log n) time complexity 

is guaranteed in all scenarios (best, average, and worst-case), 

making it a stable sorting algorithm. 

 

Step-by-Step Implementation in C++ 

The basic instance of the C++ implementation of merge sort is 

splitting the array in half recursively until each sub-array has one 

entry. To create the final sorted array, it then combines the sorted 

sub-arrays once more. 

 

#include <iostream> 

using namespace std; 

// Function to merge two halves sorted arrays 

void merge(int arr[], int left, int mid, int right) { 

    int n1 = mid - left + 1; 

    int n2 = right - mid; 

        // Create temporary arrays 

    int L[n1], R[n2]; 

        // Copy data to temporary arrays L[] and R[] 

    for (int i = 0; i < n1; i++) 

        L[i] = arr[left + i]; 

    for (int j = 0; j < n2; j++) 

        R[j] = arr[mid + 1 + j]; 

        // Merge the temporary arrays back into arr[left..right] 

    int i = 0; // Initial index of first subarray 

    int j = 0; // Initial index of second subarray 

    int k = left; // Initial index of merged subarray 

        while (i < n1 && j < n2) { 



Data Structure using C++ & Lab -322 
 

        if (L[i] <= R[j]) { 

            arr[k] = L[i]; 

            i++; 

        } else { 

            arr[k] = R[j]; 

            j++; 

        } 

        k++; 

    } 

        // Copy the remaining elements of L[], if any 

    while (i < n1) { 

        arr[k] = L[i]; 

        i++; 

        k++; 

    }   

    // Copy the remaining elements of R[], if any 

    while (j < n2) { 

        arr[k] = R[j]; 

        j++; 

        k++; 

    } 

} 

// Function to perform merge sort on array arr[left..right] 

void mergeSort(int arr[], int left, int right) { 

    if (left < right) { 

        int mid = left + (right - left) / 2; 

                // Sort first and second halves 

        mergeSort(arr, left, mid); 

        mergeSort(arr, mid + 1, right);     

        // Merge the sorted halves 

        merge(arr, left, mid, right); 

    } 
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} 

// Main function to test merge sort 

int main() { 

    int arr[] = {12, 11, 13, 5, 6, 7}; 

    int n = sizeof(arr) / sizeof(arr[0]); 

        cout << "Given array is \n"; 

    for (int i = 0; i < n; i++) 

        cout << arr[i] << " "; 

    cout << endl; 

        mergeSort(arr, 0, n - 1); 

        cout << "Sorted array is \n"; 

    for (int i = 0; i < n; i++) 

        cout << arr[i] << " "; 

    cout << endl; 

        return 0; 

} 

 

Analysis of Time Complexity 

Best Case: O (n log n): When the array is sorted or almost 

sorted, this is the best-case situation. The array is split in 

half by Merge Sort until each sub-array contains one 

element, at which point it merges the two halves back 

together. 

Merge Sort: Merge Sort on average, splits the array in half 

and then combines them back together in an O (n log n) 

time. Its time complexity is expressed as T(n) = 2T(n/2) + 

O(n) in the recurrence relation. 

 

Worst Case: O (n log n): When the array is unsorted, this 

is also the worst-case situation. Recursively splitting the 

array in half and merging them together, Merge Sort 

preserves O (n log n) time complexity. 
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Analysis of Space Complexity 

Space Complexity: O(n): The temporary arrays utilized 

during the merge operation necessitate additional memory 

space for Merge Sort. O(n) is the space complexity because 

auxiliary arrays are used. 

 

Use Cases and Realistic Implementations 

Sorting Big Data Sets: Because of its O(n log n) time 

complexity, merge sort is effective for sorting huge data 

sets. 

External Sorting: Merge sort is used in external sorting 

when data needs to be stored on external storage devices 

because it cannot fit in the main memory. 

Parallel Processing: Merge Sort is easily adaptable to 

parallel processing, which allows various parts of the data 

to be sorted simultaneously by several processors or cores. 

 

13.6 QUICK SORT 
 

Quick Sort is a sorting algorithm that uses comparison and the 

divide-and-conquer tactic. To operate, one 'pivot' element is chosen 

from the array, and the remaining elements are divided into two 

sub-arrays according to whether they are bigger or less than the 

pivot. After that, the sub-arrays are sorted recursively. 

 

Step-by-Step Implementation in C++ 

In order to implement Quick Sort in C++, one must first choose a 

pivot element, divide the array around it, and then recursively sort 

the sub-arrays. The main steps involved are as follows: 
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Select Pivot: The pivot should be one of the array's 

elements. There are several ways to determine which 

element will serve as the pivot: you can choose to use the 

first, last, or random element. 

Partitioning: Slide the array back and forth until all 

elements larger than the pivot are on the right side and all 

elements less than the pivot are on the left. The pivot is in 

its final position following partitioning. 

Recursive Sort: Sort the sub-arrays created by partitioning 

by applying Quick Sort recursively until the full array is 

sorted. 

 

#include <iostream> 

#include <vector> 

using namespace std; 

// Function to partition the array and return the index of the pivot 

element 

int partition(vector<int>& arr, int low, int high) { 

    int pivot = arr[high]; // Choosing the last element as the pivot 

    int i = low - 1; // Index of smaller element 

    for (int j = low; j <= high - 1; j++) { 

        // If current element is smaller than or equal to pivot 

        if (arr[j] <= pivot) { 

            i++; // Increment index of smaller element 

            swap(arr[i], arr[j]); 

        } 

    } 

    swap(arr[i + 1], arr[high]); 

    return (i + 1); 

} 

// Function to implement Quick Sort 

void quickSort(vector<int>& arr, int low, int high) { 
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    if (low < high) { 

        // Partitioning index 

        int pi = partition(arr, low, high); 

        // Recursively sort elements before partition and after partition 

        quickSort(arr, low, pi - 1); 

        quickSort(arr, pi + 1, high); 

    } 

} 

// Utility function to print an array 

void printArray(const vector<int>& arr) { 

    for (int i = 0; i < arr.size(); i++) { 

        cout << arr[i] << " "; 

    } 

    cout << endl; 

} 

// Main function 

int main() { 

    vector<int> arr = {10, 7, 8, 9, 1, 5}; 

    int n = arr.size(); 

    cout << "Original array: "; 

    printArray(arr); 

    quickSort(arr, 0, n - 1); 

    cout << "Sorted array: "; 

   printArray(arr); 

    return 0; 

} 

 

Time Complexity Analysis 

Best Case: O(n log n): The array is divided into two 

roughly equal halves by the pivot in the best-case scenario. 

The array is divided into two pieces by each partitioning 
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step, resulting in O(log n) divisions and O(n) comparisons 

for each division. 

Average Case: O(n log n): Quick Sort's effective 

partitioning technique allows it to perform well on average. 

Because each partitioning step splits the array into two sub-

arrays proportionate to the pivot, the temporal complexity 

is O(n log n). 

Worst Case: O(n2): Unbalanced partitions result when the 

pivot is either the smallest or largest element in the array. 

This is the worst-case scenario. O(n2) time complexity 

results from this situation, which is uncommon but can be 

avoided by deliberately selecting the pivot. 

Analysis of Space Complexity 

Space Complexity: O (log n) to O(n): The recursive call 

stack for Quick Sort normally takes up O(log n) of space. If 

more arrays are used in the implementation, in the worst 

scenario, O(n) auxiliary space might be needed for 

partitioning. 

 

Use Cases and Realistic Implementations 

General-Purpose Sorting: Because of its effective 

average-case performance, Quick Sort is frequently used 

for general-purpose sorting. 

In-Place Sorting: Quick Sort can be done in-place for the 

recursive call stack using O(log n) auxiliary space. 

Optimized Libraries: Because Quick Sort and its variants 

are reliable and efficient sorting algorithms, many 

computer languages and libraries utilize them by default. 
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13.7 SEARCHING ALGORITHMS 
 

Algorithms for searching are techniques for locating particular 

elements in a set of data, like trees, arrays, or lists. Finding the 

location of a specific element within the data structure and, if it 

does, retrieving it are the objectives. The efficiency of various 

searching algorithms vary, and they are frequently assessed in 

terms of space complexity, time complexity, and overall 

performance depending on the quantity and quality of the data. 

 

The following are a few popular search algorithms: 

Linear Search: another name for linear search, is a simple 

searching technique that goes over each element in a data 

structure one after the other until the target element is 

located or all the items have been examined. When data is 

randomly arranged or unsorted and each element is 

compared one after the other consecutively, it performs 

admirably. 
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Step-by-step Implementation in C++: 

 

Analysis of Time Complexity: 

Best Case: O(1): This happens when the element of 

interest is located at the initial position. 

Average Case: O(n): - The average case requires the 

algorithm to scan through half of the array on average, 

since the target element can be anywhere in the array. 

Worst Case: O(n): - This situation necessitates a complete 

traversal of the array and happens when the target element 

is at the last position or absent. 

 

Analysis of Space Complexity: 

Because it only needs a fixed amount of additional memory to 

store variables like the loop counter and target element, Linear 

Search has a space complexity of O(1). 
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Uses and Real-World Implementations: 

Searching Unsorted Arrays: Because linear search 

examines each element one after the other, it is frequently 

employed when data is not sorted. 

Simple and Easy to Implement: It is helpful in 

circumstances where efficiency is not as crucial as 

simplicity and ease of implementation. 

Tiny Datasets: Appropriate for tiny datasets or situations 

in which sorting using more sophisticated algorithms, such 

as Binary Search, would not be cost-effective. 

 

Binary Search: Working with sorted arrays or lists, Binary 

Search is a very effective searching technique. Until the 

target element is located or the interval is empty, it operates 

by periodically halving the search interval in half. 

Depending on whether the target value is higher or less 

than the array's middle element, it compares it to that 

element before determining whether to carry on looking in 

the left or right subarray. 

 

Step-by-step Implementation in C++: 

#include <iostream> 

#include <vector> 

using namespace std; 

// Function to perform binary search 

int binarySearch(vector<int>& arr, int target) { 

    int left = 0; 

    int right = arr.size() - 1; 

    while (left <= right) { 

        int mid = left + (right - left) / 2; 

        // Check if target is present at mid 

        if (arr[mid] == target) { 
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            return mid; 

        } 

        // If target is greater, ignore left half 

        else if (arr[mid] < target) { 

            left = mid + 1; 

        } 

        // If target is smaller, ignore right half 

        else { 

            right = mid - 1; 

        } 

    } 

    // If target is not found in the array 

    return -1; 

} 

int main() { 

    vector<int> arr = {10, 20, 30, 40, 50, 60}; 

    int target = 40; 

    // Perform binary search 

    int index = binarySearch(arr, target); 

    if (index != -1) { 

        cout << "Element found at index: " << index << endl; 

    } else { 

        cout << "Element not found in the array." << endl; 

    } 

    return 0; 

} 

Analysis of Time Complexity: 

In the best scenario, the target element is located in the 

middle of the array (O(1)). 

Average Case: O(log n) - Binary search is very effective for 

huge datasets since it splits the search interval in half with 

each comparison. 
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The worst situation, which is similar to the average 

scenario, happens when the target element is at either 

extreme of the array. It is expressed as O(log n). 

 

Analysis of Space Complexity: 

Because it only needs a fixed amount of additional memory 

to store variables like the left, right, and mid indices, 

Binary Search has a space complexity of O(1). 

 

Uses and Real-World Implementations: 

Sorted Arrays and Lists: Binary search works well for 

searching in sorted arrays and lists that allow for random 

access. 

Effective Searching: Because of its logarithmic time 

complexity, it performs substantially quicker than linear 

search on huge datasets. 

Algorithmic Foundations: In computer science, binary 

search is a basic algorithm that forms the basis of more 

intricate algorithms and data structures. 

 

14.8 COMPARING THE EFFICIENCY 
OF SORTING AND SEARCHING 
ALGORITHMS 
 

Comparing Time Complexities of Sorting Algorithms: 

Bubble Sort: 

Best Case: O(n) - Occurs when the array is already sorted. 

Average Case: O(n2) 

Worst Case: O(n2) - Occurs when the array is sorted in reverse 

order. 
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Selection Sort: 

Best Case: O(n2) 

Average Case: O(n^2) 

Worst Case: O(n2) 

Insertion Sort: 

Best Case: O(n) - Occurs when the array is already sorted. 

Average Case: O(n2) 

Worst Case: O(n2) 

 

Merge Sort: 

Best Case: O(n log n) 

Average Case: O(n log n) 

Worst Case: O(n log n) 

 

 

Quick Sort: 

Best Case: O(n log n) 

Average Case: O(n log n) 

Worst Case: O(n^2) - Occurs when the pivot is consistently the 

smallest or largest element. 

 

Comparing Space Complexities of Sorting Algorithms: 

Bubble Sort: O(1) - In-place algorithm. 

Selection Sort: O(1) - In-place algorithm. 

Insertion Sort: O(1) - In-place algorithm. 

Merge Sort: O(n) - Requires additional space for merging. 

Quick Sort: O(log n) - Space complexity is dominated by the call 

stack due to recursion. 
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Best Scenarios to Use Each Sorting Algorithm: 

Bubble Sort, Selection Sort, Insertion Sort: These algorithms are 

simple and efficient for small datasets or nearly sorted arrays due 

to their O(n) best case scenarios. 

Merge Sort: Suitable for sorting large datasets or when stable 

sorting is required (maintaining the relative order of equal 

elements). 

Quick Sort: Preferred for average and best-case scenarios due to 

its average O(n log n) time complexity and in-place partitioning. 

 

13.9 CONCLUSION 
 

In conclusion, learning about sorting and searching algorithms is 

essential to comprehending the basic principles of computer 

science that underlie effective data organizing and retrieval. This 

lesson covered a variety of sorting algorithms, such as Quick Sort, 

Insertion Sort, Selection Sort, and Merge Sort. Based on their time 

and space complexity, each sorting algorithm offers a distinct 

method for sorting data with differing degrees of efficiency. 

Comparably, we examined fundamental searching algorithms 

including Binary Search and Linear Search, emphasizing their 

efficiency metrics and working principles in various contexts. 

 

Furthermore, contrasting these algorithms revealed information 

about their respective advantages and disadvantages, which 

increased our understanding of the significance of algorithmic 

efficiency in practical applications. In addition to being 

fundamental to software development, sorting and searching 

algorithms are also vital in domains where effective data handling 

is required, such as data analysis, database administration, and 

computational research. 
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Basically, knowing these algorithms gives practitioners useful 

abilities to improve system performance, optimize data processing 

jobs, and efficiently handle challenging computational problems. 

 

13.10 QUESTIONS AND ANSWERS 
 

1. Why does sorting and searching depend on an algorithm's time 

complexity? 

Answer: The answer is that temporal complexity quantifies how an 

algorithm's runtime grows as the amount of input data grows. 

Lower time complexity algorithms are chosen for sorting and 

searching because they operate more quickly, particularly for huge 

datasets. 

 

2. Contrast Binary and Linear Search. Which would you prefer to 

use, and when? 

Answer: The answer is that Linear Search works well with 

unsorted lists because it iteratively examines each element in the 

list until the target element is located. Contrarily, Binary Search is 

quicker for huge datasets since it only needs a sorted list and 

effectively reduces the search space at each step. 

 

3. Describe the idea of sorting algorithms' stability. Why does it 

matter? 

Answer: The answer is that elements with equal keys appear in the 

sorted output in the same order as they do in the original input 

because sorting algorithms are stable. When sorting data using 

multiple keys (e.g., sorting employees by department and then by 

name), this feature is essential. 
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4. How is the O(n log n) average-case time complexity of Quick 

Sort achieved? 

Answer: In response, Quick Sort divides the array recursively into 

smaller subarrays depending on a pivot element and sorts each 

subarray separately to reach O(n log n) average-case complexity. 

By using a divide and conquer approach, the workload is balanced 

and the number of comparisons required is decreased. 

 

5. Give an instance in which Merge Sort would not be preferred 

over Insertion Sort. 

Answer: Because of its ease of use and effective performance on 

tiny datasets, insertion sort is the method of choice for sorting 

small arrays or almost sorted arrays. Merge Sort, on the other hand, 

works well with large datasets because of its O(n log n) 

complexity. 

 

6. What is the temporal complexity of Selection Sort and how does 

it operate? 

Answer: To answer your question, selection sort operates by 

repeatedly identifying the minimum element in the array's unsorted 

section and replacing it with the element that was initially 

unsorted. For large datasets, it is less efficient than algorithms like 

Quick Sort or Merge Sort due to its O(n^2) time complexity. 

 

7. Talk about the trade-offs sorting algorithms have between time 

and space complexity. 

Answer: Because they may sort data in place, altering the input 

array, sorting algorithms with higher time complexity frequently 

require less additional memory (lower space complexity). Higher 

space complexity algorithms can offer faster runtime, but they may 

require more data structures to help in sorting. 
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BLOCK IV: FILE STRUCTURES AND 
ADVANCED DATA STRUCTURES  

UNIT – 14: HASHING 
Structure 

 

14.0 Introduction 

14.1 Objectives 

14.2 Introduction to Hashing 

14.3 Collision Resolution Techniques 

14.4 Importance of Collision Resolution 

14.5 Applications of Hashing in Data Storage and Retrieval 

14.6 Conclusion 

14.7 Questions and Answers 

14.8 References 

 

14.0 INTRODUCTION 
 

Effective system performance in the fields of computer science and 

data management frequently rests on efficient data retrieval. 

Hashing is a key idea in this field that provides a reliable way to 

quickly arrange and retrieve data. Fundamentally, hashing maps 

data pieces to distinct index values inside a data structure called a 

hash table using hash algorithms. This method directly accesses the 

stored value linked to a computed index, enabling quick data 

retrieval. Hashing is therefore essential for maximizing the 

effectiveness of a variety of processes, including algorithmic 

calculations and database administration. 

 

Gaining an understanding of hashing requires exploring its 

theoretical underpinnings as well as its real-world applications. 

The foundation of hashing approaches is the idea of hash 
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functions, which transform data of any size into a fixed-size result. 

The purpose of hash functions is to generate hash codes with 

characteristics such as collision resistance, predictable calculation, 

and uniform distribution. These characteristics guarantee that hash 

tables can effectively manage big datasets while preserving data 

integrity and cutting down on retrieval times. This unit delves 

further into these concepts, offering insights into the 

implementation and optimization of hash functions to meet a range 

of computing requirements. 

 

Furthermore, collision resolution methods are essential to hash 

tables' dependability and efficiency. When two distinct keys hash 

to the same index, a collision occurs, requiring a resolution 

strategy. Effective collision mitigation requires the use of strategies 

like open addressing, which includes searching for empty slots 

until one is discovered, and chaining, which stores several keys 

that hash to the same index in linked lists within the same table 

slot. Learners can comprehend the subtleties of hash table 

management and recognize the vital part these approaches play in 

contemporary computing infrastructures by grasping these 

strategies. 

 

14.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understanding of Hashing: Gain a clear understanding of hashing 

as a fundamental technique for efficient data retrieval. This 

includes grasping the concept of hash functions, their properties, 

and how they are applied to map data elements to unique indices. 

 

Collision Resolution Techniques: Explore various collision 

resolution techniques used in hash tables. Learn how methods like 
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chaining and open addressing handle collisions and maintain the 

integrity and efficiency of hash-based data structures. 

 

Importance of Collision Resolution: Recognize the significance 

of collision resolution in hash tables. Understand how effective 

collision resolution techniques contribute to improving the 

performance and reliability of data retrieval operations. 

 

Applications of Hashing: Explore real-world applications where 

hashing is instrumental in data storage and retrieval. This includes 

database indexing, caching mechanisms, symbol tables in 

compilers, and data deduplication strategies. 

 

Practical Knowledge: Acquire practical knowledge through 

examples and implementations that illustrate the concepts of 

hashing, collision resolution, and their applications. Develop skills 

in designing and optimizing hash-based data structures for various 

computational tasks. 

 

14.2 INTRODUCTION TO HASHING 
 

In computer science and data structures, hashing is a basic method 

for quickly and effectively storing and retrieving data. In order to 

map data of any size to fixed-size values, usually integers, known 

as hash codes or hash values, a hash function is applied. By 

reducing the temporal complexity of accessing items, hashing aims 

to achieve efficient data retrieval and storage processes. 

 

To be more specific, hashing is the process of taking an input (or 

key), applying a hash function to get an index (or hash code), and 

then storing or retrieving the appropriate data (or value) from a 

data structure (like a hash table). Usually, the hash function 
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processes the key via some sort of calculation and outputs an index 

that points directly to the position of the data in the underlying 

storage. This makes it useful for situations where fast access is 

essential, such database indexing, caching techniques, and various 

algorithmic applications. It also provides for speedy insertion, 

deletion, and retrieval of data pieces. 

 

Since hashing typically yields average-case constant-time 

operations for search, insert, and delete operations—assuming that 

a suitable collision resolution approach and a strong hash function 

are put into place—it is a widely utilized technique. It serves as the 

foundation for a number of data structures, including dictionaries, 

hash tables, and hash maps, all of which are crucial in 

contemporary computer science for handling massive datasets and 

maximizing efficiency. 

 

Qualities of an Effective Hash Function 

Even Distribution: The hash codes should be dispersed equally 

throughout the hash table or array by a strong hash algorithm. In 

other words, the function should reduce the amount of collisions—

that is, the instances in which two distinct keys map to the same 

index or bucket. By ensuring that every bucket in the hash table 

has an equal chance of being reached, uniform distribution 

maximizes operational efficiency. 

 

Deterministic: For a given input key, the hash function should 

always produce the same hash code. Because determinism 

guarantees predictability and dependability, it makes it possible to 

update and retrieve stored data consistently. Stated otherwise, you 

should consistently obtain the same hash code if you hash the same 

key many times. 
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Quick Computation: A strong hash function should be 

computationally efficient since hashing relies heavily on efficiency. 

All hash codes should be generated rapidly, irrespective of the 

input key's size. This guarantees that in applications requiring 

frequent data access or manipulation, the hashing process itself 

does not constitute a bottleneck. 

 

Common Hash Function Examples 

Division Method: This is one of the most basic hash functions; it 

calculates the hash code by dividing the hash table size by the 

remainder of the key (a modulo operation). As an example, 

consider hash(key) = key % table_size. Even though it is 

straightforward, if the table size is not prime, improper selection 

may result in clustering. 

 

Multiplication Method: In this method, the fractional part of the 

product is multiplied by the table size after the key is multiplied by 

a constant, usually a fraction of a power of two. As an illustration, 

consider the formula hash(key) = floor (table_size * (key * A % 

1)), where A is a constant selected for acceptable distribution 

through actual research. 

 

Universal Hashing: Using a random selection process, a family of 

hash functions is employed to choose which particular hash 

function is used. Because of its inherent randomness, it can be used 

in situations where security or resilience against enemies are 

crucial. Selecting the hash function according to the size of the 

hash table and the characteristics of the data being hashed is a 

widely used method in universal hashing. 
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Image Source: TutorialsPoints 

 

 

14.3 COLLISION RESOLUTION 
TECHNIQUES 
 

When two distinct keys hash to the same index or location in a 

hash table, this is known as a collision in hashing. This indicates 

that numerous keys are assigned to the same slot by the hash 

function, which maps keys to locations in the hash table. 

 

When Collisions Occurs? 

When two distinct keys hash to the same index in a hash table, this 

is known as a hash collision. There are a number of possible causes 

for this, and knowing them is crucial to putting successful collision 

resolution techniques into practice. The following list of frequent 

collision causes is illustrated with examples: 

 

Limitations of Hash Functions: Generally speaking, hash 

functions convert an infinite number of keys into a finite 

number of hash values, or indices. Collisions are 

unavoidable because of this mapping constraint, 

particularly when the number of unique keys (domain of 
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input) surpasses the total number of potential hash values 

(range of output). 

As an illustration, let's say we have a basic hash function 

that calculates the index by taking the table size and the 

modulo of the key. The hash function for keys 15 

(hashValue = 15% 10) and 25 (hashValue = 25% 10) yields 

5, for example, if the table size is 10 (TABLE_SIZE = 10). 

Cause: If keys are not evenly distributed, the hash 

function's simplicity and lack of complexity may lead to 

multiple keys mapping to the same index. 

Limited Hash Table Size: When hashing a large number 

of keys, collisions become more likely if the hash table has 

a restricted number of buckets (or slots). 

As an illustration, let's look at a hash table with the size 

TABLE_SIZE = 5. All of these keys will compute to index 

2 (hashValue = key % 5), if we hash them 12, 22, 32, 42, 

and 52. 

 

Cause: Collisions become more common when there are 

substantially less potential hash values (depending on table 

size) than there are keys being hashed. 

 

Example Scenario 

Examine a hash table that employs a basic modulo hashing 

method: 
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Handling Collisions: 

There are various approaches to successfully manage collisions: 

 

Chaining: When using chaining, every hash table slot 

keeps track of every key that hashes to the same index in a 

linked list or other data structure. The new key is added to 

the linked list at the appropriate slot in the event of a 

collision. Every bucket in the hash table is a linked list 

when using distinct chaining. The colliding elements (key-

value pairs) are added to the linked list that corresponds to 

their hash index in order to handle collisions. 

 

For illustration, let's say we have a hash table with ten 

buckets. The keys "apple" and "banana" hash to the same 

index, which is, for example, index 3. Rather than replacing 

"apple" with "banana," "banana" is added to index 3 of the 

linked list. This produces a structure similar to: 
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Benefits: Easy to implement, effectively manages several 

collisions. 

Drawbacks: If many keys hash to the same index, performance 

suffers and there is additional memory expense because of linked 

lists. 

 

Open Addressing: When a collision occurs, it can be avoided by 

probing or looking through the hash table's alternate slots until an 

empty one is located. Common methods of probing include double 

hashing (calculating the next slot using a secondary hash function), 

quadratic probing (using a quadratic function to identify the next 

slot), and linear probing (examining successive slots). 

 

Idea: In open addressing, a different place is found (by probing) 

inside the hash table to resolve clashes. 

 

Example: If a collision happens at a certain index using linear 

probing, the algorithm successively tries the next index until it 

locates an empty slot. In case "apple" hashes to index 3 and it's 

filled, the algorithm proceeds to check index 4, then 5 and so on 

until it finds an empty space. 

 

Benefits: Less need for extra data structures, faster cache operation 

than chaining. 

Drawbacks: It includes the possibility of performance loss with 

high load factors and increased clustering. 

 

Double Hashing: This technique determines the time between 

probes by using a second hash function to handle collisions. 
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As an illustration, a secondary hash function decides the step size 

for probing if a collision happens at index 3. For instance, the 

algorithm would investigate index 5 (3 + 2) if the secondary hash 

function yielded a result of 2 for "apple". 

 

Benefits: Effective for a variety of keys, helps prevent major 

clustering problems. 

Cons: To guarantee uniform distribution, the secondary hash 

function must be implemented carefully. 

 

Example Scenario 

Think about a hash table that uses distinct chaining: 

 

 

14.4 IMPORTANCE OF COLLISION 
RESOLUTION 
 

For hash tables to continue operating effectively and performing as 

intended, efficient collision resolution is essential. Negatively 

handled collisions can make a hash-based data structure less 



Data Structure using C++ & Lab -348 
 

effective overall by lengthening search times and decreasing 

operational efficiency. 

 

For instance: 

Consider a hash table with the numbers 0 through 9 as the slots. A 

collision happens when two keys—let's say "apple" and 

"banana"—hash to the same index—let's say index 3. The hash 

table would either store both keys in a linked list at index 3 

(chaining) or select an alternate slot (open addressing) for one of 

the keys to avoid overlap, depending on the collision resolution 

approach used. 

 

Different kinds of collision-resolution methods: 

In a hash table, collision resolution strategies are ways to deal with 

the case where several keys hash to the same index. The following 

are some typical methods for resolving collisions: 

 

Chaining: When using chaining, every hash table slot keeps track 

of all the keys that hash to the same index in a linked list or other 

data structure. The new key-value pair is added to the linked list at 

the appropriate place in the event of a collision. 

 

Benefits: Easy to set up and doesn't need any more room than 

what the hash table itself requires. 

 

Cons: If linked lists get too big, there may be an increase in 

memory overhead and a possible decline in speed. 

 

Open Addressing: In this method, collisions are avoided by 

locating a different slot inside the hash table. 
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Probing Techniques: 

Linear Probing: Slots are examined one after the other until an 

empty slot or a slot holding a deleted item is discovered. 

 

Quadratic Probing: A quadratic function is used to identify the 

next slot to probe, as opposed to inspecting each one one after the 

other. 

 

Double Hashing: To improve dispersion and lessen clustering, this 

technique uses a second hash function to determine the next slot to 

explore. 

 

Benefits: Due to proximity of reference, cache performance may 

be improved; also, memory overhead may be reduced in 

comparison to chaining. 

 

Drawbacks: Can be more difficult to execute than chaining and 

necessitates careful selection of probing techniques to prevent 

clustering. 

 

Robin Hood Hashing: This method seeks to lessen the possibility 

of chaining-related volatility in chain length (linked lists). If the 

new object is closer to the start of its chain than the old item when 

it collides with it, it may "steal" a position from the existing item. 

 

Benefits: May improve average search times and contribute to the 

maintenance of a more balanced hash table. 

 

Cons: It could take more calculation to decide whether or not the 

elements in the hash table need to be rearranged. 

 

Selecting a Method for Resolving Collisions: 



Data Structure using C++ & Lab -350 
 

Hash Table Size: When memory is an issue or the hash table is 

relatively tiny, open addressing approaches may be more effective. 

 

Expected Number of Collisions: Chaining is appropriate when 

collisions are anticipated to occur frequently since it can smoothly 

tolerate a higher number of collisions. 

 

Performance Requirements: The technique to use may depend 

on the application and the trade-offs between memory utilization, 

retrieval speed, and insertion speed. 

 

14.5 APPLICATIONS OF HASHING IN 
DATA STORAGE AND RETRIEVAL 
 

Because hashing allows for quick access and efficiently manages 

big datasets, it is essential for many applications that require 

efficient data storage and retrieval. The following are some 

important uses for hashing: 

 

Indexing in Databases: Hashing is a common technique used in 

databases to index records. Data may be quickly retrieved based on 

a key thanks to hash functions, which map keys to particular places 

in a hash table. This greatly enhances query performance when 

compared to linear search techniques. 

 

Use of Hash Functions: 

Mapping Keys to Addresses: In a hash table, keys—typically 

primary keys or unique identifiers—are mapped to particular 

addresses using hash functions. Direct access to the records 

connected to those keys is made possible by this mapping, 

eliminating the need to search through the whole dataset. 
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Effective Recovery: 

Quick Access: Hashing offers a constant-time complexity of O(1) 

for average-case lookups in place of a linear search through the 

database, which can be laborious, particularly for large datasets. 

This effectiveness is attained by calculating a key's hash value and 

using it as an index to get the associated record quickly. 

 

Database Systems Examples and Use Cases 

Primary Key Lookup: To enable quick access to certain rows in 

tables, primary keys in relational databases are frequently hashed. 

For example, if a database table contains a primary key on a 

unique identifier column called "user_id," the location of each 

user's data in the database can be found by applying a hash 

function to the "user_id" values. 

 

Hash-based Indexing Structures: Hash tables and hash indexes 

are examples of hash-based indexing structures that database 

management systems (DBMS) implement. Key-value pairs are 

stored in these structures; the keys are hashed, and the values are 

pointers to the real data records or locations. Use of hash indexes 

in NoSQL databases such as MongoDB for fast document retrieval 

based on unique identifiers is one example. 

 

Enhancement of Performance: The efficiency of database 

operations like searching, inserting, and removing records is 

greatly enhanced by hash-based indexing. Databases can handle 

massive volumes of data more effectively, guaranteeing quick 

query response times, by lowering the average time complexity of 

data access operations to O(1). 

 

Handling Collisions: Although hash algorithms make every effort 

to provide each key a unique address, collisions—two keys 
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hashing to the same index—can nevertheless happen. In hash-

based indexing, strategies like chaining or open addressing are 

used to control collisions and guarantee reliable data retrieval 

mechanisms. 

Caching Management: In order to improve access speeds, data is 

temporarily cached via caching methods, where hashing is 

essential. It makes retrieval processes more efficient by storing 

cached objects in hash tables, which enables speedy lookup of 

recently used items. 

 

Using Hash Tables to Put Caches in Place 

LRU Cache (Least Recently Used): 

Concept: When an LRU cache fills up, it starts with the least 

recently used items and removes them one at a time. 

 

 

Implementation with Hash Tables: 

Hash Map: The cache makes use of a hash map, in which values 

hold the content that has been cached (such as a web page or file 

contents) and keys represent the identifier of the cached item (such 

as a URL or file name). 

 

Doubly Linked List: In addition, a doubly linked list makes sure 

that the items that have been accessed the most recently are at the 

head of the list by maintaining the order of access. 

 

Instances and Advantages for Performance: 

Online Browser Caching: To save online pages, pictures, and 

scripts, contemporary web browsers employ caches. The browser 

uses a hash table lookup to swiftly obtain content from its cache 

when a user returns to a page. This lowers bandwidth use and 

loading times. 
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Operating System Caches: To speed up disk access times, 

operating systems use caches for frequently accessed file system 

data. Cache data blocks are indexed using hash tables, facilitating 

quick lookup and retrieval. 

 

Database Caching: Caches are used by database systems to hold 

the answers to frequently asked queries. Hash tables speed up 

query response times by effectively managing query IDs and 

stored results. 

 

Performance Advantages 

Quick Access: Hash tables offer insertion, deletion, and lookup 

operations with average-case constant-time O (1) complexity. This 

guarantees that, irrespective of the cache size, data access from the 

cache is efficient and consistent. 

 

Space Efficiency: By compactly storing key-value pairs, hash 

tables maximize memory use, enabling caches to hold vast 

amounts of data with fast access times. 

Scalability: Because hash tables can split data evenly among 

buckets and manage collisions well, they continue to operate at a 

steady pace even as the number of cached items increases. 

 

Compiler Design: Symbol tables are essential data structures in 

compiler design that are used to store and organize information 

about symbols (such as variables, functions, and identifiers) that 

are encountered during compilation. Because hash tables may 

quickly look up values based on mapped symbols to attributes or 

information, they are essential for effectively implementing and 

using symbol tables. An outline of how hash tables are used in 

compiler symbol tables is provided below: 
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Hash tables' function in symbol tables 

Effective Search and Insertion: 

Hashing Mechanism: To find their storage location in the hash 

table, symbols are hashed using a hash function. 

 

Quick Access: During compilation stages such as parsing, 

semantic analysis, and code generation, hash tables guarantee fast 

access to symbol information by offering average-case constant-

time O (1) complexity for lookups and insertions. 

 

Handling Declarations and Scope: 

Scope Management: By classifying symbols according to their 

lexical scope (local, global, function-level), hash tables make 

scope management easier. 

 

Collision Handling: Even with enormous symbol tables, 

collisions can be effectively handled using methods like chaining 

(using linked lists) or open addressing (probing), which ensure 

minimum influence on lookup performance. 

 

Illustrations and Significance 

Lexical Analysis: The compiler uses hash tables to identify tokens 

(such as keywords, identifiers, and literals) and stores them in the 

symbol table. This makes it possible for later compiler stages to 

quickly access and validate symbols. 

Semantic Analysis: Hash tables help to ensure proper usage 

throughout the program by confirming symbol definitions and 

types. For example, comparing function prototypes and variable 

declarations to definitions kept in the symbol table. 
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Improving Compiler Performance: Compiler efficiency is 

increased when symbol tables are managed effectively using hash 

tables. Compilers are able to efficiently handle big codebases by 

decreasing lookup times and memory cost, which enhances 

compilation responsiveness and speed. 

 

Relevance to the Design of Compilers 

Error Detection: By helping to identify mistakes like undeclared 

variables or conflicting declarations, hash tables improve the 

compiler's capacity to give developers precise diagnostics and 

error messages. 

 

Code Optimization: Symbol tables play a crucial role in code 

optimization stages, when compilers examine and modify code to 

increase efficiency. Hash tables guarantee that all symbol 

dependencies and references are appropriately taken into account 

during efficient code generation. 

In compiler symbol tables, hashing is essential because it allows 

variable names or identifiers to be promptly resolved in terms of 

their characteristics or memory locations throughout the 

compilation and execution stages. 

 

Data Deduplication: By taking advantage of hash functions' 

special characteristics, duplicate data saved across many systems 

can be found and removed. This is a summary of the use of hash 

functions in data deduplication, including practical applications 

and efficiency considerations: 
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Data Deduplication Using Hash Functions 

Hashing chunks of data:  

 

Hash Function Selection: The process of selecting an appropriate 

hash function involves taking into account several aspects, such as 

uniformity of distribution and collision resistance. Cryptographic 

hashes like MD5, SHA-1, and SHA-256 are popular options, as are 

non-cryptographic hashes like MurmurHash. 

 

Chunking Data: Chunking data is the process of dividing large 

files or information into smaller bits or chunks. 

 

Computing Hashes: A unique hash value, which is typically 

expressed as a fixed-length hexadecimal string, is produced by 

hashing each piece of data using the chosen hash algorithm. 

 

Recognizing Duplicates 

Comparing generated hash values allows for the identification of 

duplicate chunks. Hash values are identical when data chunks are 

identical. 

 

Effective Lookup: To store and retrieve hash values of previously 

processed data chunks fast, hash tables or hash-based data 

structures (such as hash maps) are used. 

Reducing Redundancy 

 

Keeping Unique Data: The storage system only keeps unique 

chunks (chunks with unique hash values) permanently. We locate 

and remove duplicate pieces. 

 



Data Structure using C++ & Lab -357 
 

Storage Optimization: Deduplication saves a lot of storage space 

by storing only one copy of each unique chunk. This is especially 

useful in contexts where there is a lot of data redundancy. 

 

Examples and Thoughts on Efficiency 

Cloud Storage: Data deduplication employing hash functions in 

cloud storage systems optimizes storage use amongst several users 

and organizations sharing storage resources. By identifying 

duplicate files or chunks at the data center level, redundant data 

storage is reduced. 

 

Backup Systems: To cut down on backup times and storage 

expenses, backup systems make use of hash-based deduplication 

techniques. Backup systems are able to handle massive amounts of 

data backups with efficiency by recognizing and preserving 

distinct data blocks. 

 

Efficiency: The effectiveness of the deduplication algorithm and 

the collision resistance of the selected hash function determine the 

efficiency of data deduplication. Accurate detection of duplicate 

data is ensured by hash algorithms with low collision probabilities, 

and quick lookup and comparison operations are provided by 

effective hash table implementations. 

 

Storage of Passwords: One essential cybersecurity practice is to 

store and secure passwords using hashing algorithms to prevent 

unauthorized access to user credentials. Here are some examples of 

secure hash algorithms and their uses, as well as a summary of 

how hashing is used to save passwords: 
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Techniques for Hashing Passwords 

Password hashing: 

Hash Function Selection: Secure hash functions are selected 

based on their cryptographic characteristics, such as resistance to 

collisions and preimages. A few examples include bcrypt, Argon2, 

SHA-3, SHA-256 (Secure Hash Algorithm 256-bit), and PBKDF2 

(Password-Based Key Derivation Function 2). 

Salting: Before hashing a password, a unique random value known 

as a salt is applied to protect against assaults such as rainbow table 

attacks. By using salting, two users with the same password will 

nonetheless have distinct hashed results. 

 

Keeping Passwords Hashed: 

Storage of Hashed Passwords: The database only contains the 

hashed password and, if applicable, the salt that goes with it, rather 

than the plaintext passwords. 

 

Verification: The user-entered password is hashed with the salt 

that has been stored during authentication, and the resulting hash is 

compared to the hash that has been stored. If they line up, the 

password is regarded as legitimate. 

 

Applications and Examples of Secure Hash Algorithms 

SHA-256: This popular cryptographic hash algorithm generates a 

hash value of 256 bits, or 32 bytes. It belongs to the SHA-2 family 

and is regarded as safe for use in hashing passwords, among other 

purposes. 

 

bcrypt: The Blowfish cipher is the foundation of the bcrypt 

password hashing algorithm. It is immune to brute-force attacks 

because it includes a cost element (work factor) that establishes the 

computational complexity of the hashing operation. 
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Argon2: The Password Hashing Competition (PHC) winner, 

Argon2 is built to fend off side-channel and GPU-accelerated 

attacks alike. By offering customizable options to modify memory 

consumption and processing duration, it makes brute-force attacks 

more challenging. 

 

Uses 

Web authentication: Hash functions are used by websites and 

web apps to safely store user passwords. Hashed passwords shield 

user accounts against intrusion even in the event that the database 

is compromised. 

 

Database security: By hashing passwords prior to database 

storage, confidential data is shielded against security lapses and 

unwanted access by bad actors. 

 

Compliance Requirements: In order to safeguard user data and 

guarantee privacy compliance, a number of cybersecurity standards 

and laws (such as GDPR and HIPAA) require the adoption of 

secure password storage methods like hashing. 

 

Security and cryptography: In many applications, hash functions 

are essential for preserving data integrity and guaranteeing the 

legitimacy of data. This study examines the role that hashing 

methods, such as the Secure Hash Algorithm (SHA), have in 

maintaining data integrity: 

 

Verification of Data Integrity 

Hash Functions as Digital Fingerprints: From any size of input 

data, hash functions like SHA-256 produce fixed-size hash values, 
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or digests. These hash values function as distinct checksums or 

digital fingerprints of the original material. 

 

Identifying Data Alterations: Hashing values can be calculated at 

the sender and recipient ends when data is sent over networks or 

kept in databases. It confirms that no changes have been made to 

the data during transmission if the hash value received and the 

hash value computed at the sender's end match. 

 

Use Cases: Applications where data integrity is crucial, including 

the following, heavily utilize hashing. 

 

File Integrity Checking: By comparing hash values, hashing 

verifies that files are received exactly as sent before sending them 

over the internet. 

 

Digital Signatures: Hashing functions produce a message digest, 

which is then signed using a private key in digital signature 

technology. By using the public key of the signer, the recipient can 

confirm the message's integrity. 

 

Password Storage: Hashing secures passwords before storing 

them in databases by transforming them into hash values. The 

password entered by the user is hashed and compared with the 

hash value that has been stored during authentication. 

 

Hash Function Examples 

The Secure Hash Algorithm (SHA) family of hash functions, 

which includes SHA-1, SHA-256, SHA-384, and SHA-512, is 

extensively utilized. They are intended to be collision-resistant, 

which means it is computationally impossible to find two separate 
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inputs that result in the same hash value. They produce hash values 

of specified lengths (256 bits for SHA-256, for example). 

Message Digest Algorithm 5, or MD5, was once extensively used 

for digital signatures and integrity verification even though it was 

less secure than SHA-256. A 128-bit hash value is generated. 

 

Maintaining Data Integrity 

Checksums and Validation: Hash values are used as checksums 

to verify the integrity of the data. It is simple to identify changes 

since even a small change in the input data produces a drastically 

different hash value. 

 

Cryptographic Strength: SHA-256 and other contemporary hash 

functions are resistant to a variety of assaults, including collision 

attacks, in which two different inputs result in the same hash value. 

 

14.6 CONCLUSION 
 

In summary, research on hashing and collision resolution methods 

shows how important a role they play in contemporary computing 

and data management. Rapid data retrieval and storage procedures 

are made possible by hashing, which offers an effective way to 

map data items to unique identifiers. Potential conflicts inside hash 

tables are efficiently controlled by means of collision resolution 

techniques like chaining and open addressing, guaranteeing the 

integrity and performance of data structures even in the face of 

heavy loads. 

 

Furthermore, hashing finds use in a wide range of fields, including 

security protocols, compiler design, database indexing, and 

caching techniques. Every application makes use of hashing 

algorithms' speed and dependability to improve system 
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performance and optimize data access. Recognizing these uses 

emphasizes how crucial it is to understand hashing and related 

methods in computer science and other fields. 

 

Robust data storage and retrieval solutions are still essential as 

long as technology keeps developing. Hashing is the foundation of 

many contemporary data structures and algorithms, especially 

when combined with efficient collision resolution techniques. 

Professionals and students alike can help solve increasingly 

difficult computational problems and create more effective systems 

by grasping these ideas. 

 

14.7 QUESTIONS AND ANSWERS 
 

1. How does hashing function in data storage and what does it 

entail? 

Answer: The process of mapping arbitrary-sized data to fixed-size 

values—usually integers—known as hash codes is called hashing. 

To create the hash code, which is used as an index to quickly store 

or retrieve data in a hash table, the data must first be subjected to a 

hash function. 

 

2. What are collision resolution methods, and what makes hashing 

require them? 

Answer: In response to a question like this, collision resolution 

techniques are ways to deal with scenarios in which two or more 

different data pieces produce the same hash code. Among the 

methods are open addressing (identifying different locations within 

the hash table) and chaining (using linked lists or other structures 

at the same hash index). Because they guarantee that all data can 

be saved and retrieved correctly, they are essential to preserving 

the efficiency and integrity of hash tables. 
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3. Chaining and open addressing for hash table collision resolution 

are compared and contrasted. 

Answer: The process of chaining entails building linked lists or 

other structures to hold numerous data components with the same 

hash code at each index of the hash table. Although it is easy to 

implement, there may be more memory overhead. Open 

addressing, on the other hand, looks for different places to put 

colliding components directly within the hash table. It is more 

memory-efficient but can cause clustering and calls for cautious 

probing techniques like linear or quadratic probing. 

 

 

4. What are the primary uses of hashing for storing and retrieving 

data? 

Answer: The answer is that hashing is widely employed in symbol 

tables in compilers to effectively handle identifiers, caching 

systems to store frequently accessed data, and database indexing 

for speedy data retrieval. It is also essential to cryptographic 

algorithms that verify data integrity and secure passwords. 

 

5. Describe the idea of the quality of a hash function. How should 

a hash function be designed? 

Answer: To reduce collisions, a good hash function should 

distribute hash codes evenly throughout the hash table. It should be 

resistant to hash collisions from identical inputs (avalanche effect), 

computationally efficient, and deterministic (same input creates 

same output). Division, multiplication, and cryptographic hash 

functions like SHA (Secure Hash Algorithm) are a few examples. 
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UNIT – 15: ADVANCED DATA 
STRUCTURES 
Structure 
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15.0 INTRODUCTION 
 

In the ever-evolving field of computer science, advanced data 

structures play a pivotal role in optimizing performance and 

solving complex problems. This unit delves into several 

sophisticated data structures, each with unique characteristics and 

applications. We will explore Scapegoat Trees, a self-balancing 

binary search tree that offers an efficient alternative to other 

balanced trees. Additionally, we will cover Tries and their variants, 

including Binary Tries, X-Fast Tries, and Y-Fast Tries, which are 

crucial for efficient information retrieval and prefix matching. 

 

Understanding these advanced data structures is essential for 

enhancing the efficiency of algorithms, particularly in scenarios 

that require fast data access and manipulation. Scapegoat Trees 

provide a robust method for maintaining balanced trees without the 
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need for frequent rotations, while Tries and their derivatives excel 

in tasks such as dictionary implementation, autocomplete features, 

and IP routing. 

 

By the end of this unit, you will gain a comprehensive 

understanding of these advanced data structures, their 

implementation, and practical applications. This knowledge will 

enable you to make informed decisions about selecting the 

appropriate data structure for specific computational problems, 

ultimately improving the performance and scalability of your 

software solutions. 

 

15.1 OBJECTIVES 
 

After completing this unit, you will be able to understand, 

Understand the concept and properties of Scapegoat Trees. 

Explore the structure and properties of Tries. 

Understand the structure and properties specific to Binary Tries. 

Explore the structure and properties unique to X-Fast Tries. 

Discuss the theoretical and practical applications of Y-Fast Tries in 

computational problems. 

 

15.2 SCAPEGOAT TREES 
 

Scapegoat trees are a type of self-balancing binary search tree 

designed to maintain an efficient average-case performance with 

logarithmic depth. Unlike other balanced trees such as AVL or 

Red-Black trees, scapegoat trees do not perform rebalancing after 

every insertion or deletion. Instead, they monitor the tree's balance 

and only rebalance when the tree becomes significantly 

unbalanced. The key concept is to identify a scapegoat node, 

whose subtree is then rebuilt to restore balance. This approach 
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simplifies the implementation while ensuring that the tree remains 

reasonably balanced over time, providing efficient average-case 

time complexity for insertion, deletion, and search operations. 

 

The insertion process in a scapegoat tree involves standard BST 

insertion followed by a check for imbalance, which may trigger the 

identification and rebalancing of the scapegoat subtree if 

necessary. Deletion similarly follows standard BST procedures but 

includes periodic rebalancing to maintain overall tree balance. The 

tree maintains a balance factor, typically a constant between 0 and 

1, which helps determine when rebalancing is needed. This method 

ensures that most operations are performed in O (log n) time on 

average, with occasional O (n) operations when rebalancing is 

required, making scapegoat trees suitable for applications like 

database indexing and memory management where dynamic data 

and efficient performance are crucial. 

 

Characteristics of scapegoat trees 

Scapegoat trees possess several distinctive characteristics that 

differentiate them from other self-balancing binary search trees: 

 

Amortized Rebalancing: Scapegoat trees do not rebalance after 

every insertion or deletion. Instead, they perform rebalancing 

operations in an amortized manner, meaning that the cost of 

rebalancing is spread out over multiple operations. This helps 

maintain efficient performance over a sequence of operations 

without the overhead of constant rebalancing. 

 

Balance Factor: A scapegoat tree maintains a balance factor, 

denoted by α, which is typically a constant between 0 and 1 

(commonly set to 2/3). This balance factor is used to determine 

whether a node in the tree is unbalanced. If the size of a subtree 
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exceeds a certain threshold relative to α, the subtree is identified 

for rebalancing. 

 

Scapegoat Identification: When the tree detects an imbalance, it 

identifies a scapegoat node. A scapegoat node is an ancestor of the 

recently inserted or deleted node whose subtree size violates the 

balance factor. The subtree rooted at the scapegoat node is then 

rebuilt to restore balance. This approach ensures that the tree does 

not become excessively unbalanced. 

 

Efficient Average-Case Performance: Scapegoat trees are 

designed to provide efficient average-case time complexity for 

insertion, deletion, and search operations. While individual 

rebalancing operations can be costly, occurring in O (n) time, the 

amortized cost remains O (log n) over a series of operations. This 

ensures that the tree performs well in practical applications. 

 

Simple Implementation: Compared to other balanced trees like 

AVL or Red-Black trees, scapegoat trees have a simpler 

implementation. They avoid the need for complex rotations and 

color properties, making them easier to implement and understand 

while still maintaining balanced tree properties. 

 

Operations on Scapegoat Trees 

Scapegoat trees involve several operations such as insertion, 

deletion, and searching. Below are the key operations along with 

their algorithms in C++. 

1. Insertion 

The insertion operation involves adding a new node to the tree and 

checking if the tree remains balanced. If the balance condition is 

violated, a scapegoat node is identified and the subtree is rebuilt. 

 



Data Structure using C++ & Lab -369 
 

Algorithm: 

Insert the new node as in a standard binary search tree. 

Check if the tree is unbalanced. 

If unbalanced, identify the scapegoat node. 

Rebuild the subtree rooted at the scapegoat node. 

 

C++ Implementation: 

#include <iostream> 

#include <vector> 

#include <algorithm> 

template<typename T> 

class ScapegoatTree { 

public: 

    struct Node { 

        T key; 

        Node *left, *right; 

        Node(T k) : key(k), left(nullptr), right(nullptr) {} 

    }; 

    ScapegoatTree(double alpha) : root(nullptr), alpha(alpha), 

maxSize(0) {} 

    void insert(T key) { 

        root = insert(root, key); 

        if (size(root) > maxSize) maxSize = size(root); 

    } 

private: 

    Node* root; 

    double alpha; 

    int maxSize; 

    Node* insert(Node* node, T key) { 

        if (!node) return new Node(key); 

        if (key < node->key) node->left = insert(node->left, key); 

        else node->right = insert(node->right, key); 
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        if (!isBalanced(node)) { 

            node = rebuild(node); 

        } 

        return node; 

    } 

    bool isBalanced(Node* node) { 

        return size(node) <= alpha * size(parent(node)); 

    } 

    Node* parent(Node* node) { 

        // Function to find the parent of a node. 

        // This function's implementation depends on the context and 

additional bookkeeping. 

        return nullptr; 

    } 

    Node* rebuild(Node* node) { 

        std::vector<Node*> nodes; 

        flatten(node, nodes); 

        return buildTree(nodes, 0, nodes.size()); 

    } 

    void flatten(Node* node, std::vector<Node*>& nodes) { 

        if (!node) return; 

        flatten(node->left, nodes); 

        nodes.push_back(node); 

        flatten(node->right, nodes); 

    } 

    Node* buildTree(std::vector<Node*>& nodes, int start, int end) 

{ 

        if (start >= end) return nullptr; 

        int mid = (start + end) / 2; 

        Node* node = nodes[mid]; 

        node->left = buildTree(nodes, start, mid); 

        node->right = buildTree(nodes, mid + 1, end); 
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        return node; 

    } 

 

    int size(Node* node) { 

        if (!node) return 0; 

        return 1 + size(node->left) + size(node->right); 

    } 

}; 

 

2. Deletion 

The deletion operation involves removing a node and checking the 

balance of the tree. If the tree becomes unbalanced, it is 

restructured to maintain balance. 

Algorithm: 

Delete the node as in a standard binary search tree. 

Check if the tree is unbalanced. 

If unbalanced, rebuild the entire tree if the current size is 

less than half of the maximum size. 

 

C++ Implementation: 

#include <iostream> 

#include <vector> 

#include <algorithm> 

template<typename T> 

class ScapegoatTree { 

public: 

    struct Node { 

        T key; 

        Node *left, *right; 

        Node(T k) : key(k), left(nullptr), right(nullptr) {} 

    }; 
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    ScapegoatTree(double alpha) : root(nullptr), alpha(alpha), 

maxSize(0) {} 

    void insert(T key) { 

        root = insert(root, key); 

        if (size(root) > maxSize) maxSize = size(root); 

    } 

    void remove(T key) { 

        root = remove(root, key); 

        if (size(root) < maxSize / 2) { 

            root = rebuild(root); 

            maxSize = size(root); 

        } 

    } 

private: 

    Node* root; 

    double alpha; 

    int maxSize; 

    Node* insert(Node* node, T key) { 

        if (!node) return new Node(key); 

        if (key < node->key) node->left = insert(node->left, key); 

        else node->right = insert(node->right, key); 

 

        if (!isBalanced(node)) { 

            node = rebuild(node); 

        } 

        return node; 

    } 

    Node* remove(Node* node, T key) { 

        if (!node) return nullptr; 

        if (key < node->key) node->left = remove(node->left, key); 

        else if (key > node->key) node->right = remove(node->right, 

key); 
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        else { 

            if (!node->left) { 

                Node* rightChild = node->right; 

                delete node; 

                return rightChild; 

            } else if (!node->right) { 

                Node* leftChild = node->left; 

                delete node; 

                return leftChild; 

            } else { 

                Node* minNode = findMin(node->right); 

                node->key = minNode->key; 

                node->right = remove(node->right, minNode->key); 

            } 

        } 

        if (!isBalanced(node)) { 

            node = rebuild(node); 

        } 

        return node; 

    } 

    Node* findMin(Node* node) { 

        while (node && node->left) { 

            node = node->left; 

        } 

        return node; 

    } 

    bool isBalanced(Node* node) { 

        return size(node) <= alpha * size(parent(node)); 

    } 

   Node* parent(Node* node) { 

        // Function to find the parent of a node. 
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        // This function's implementation depends on the context and 

additional bookkeeping. 

        return nullptr; 

    } 

    Node* rebuild(Node* node) { 

        std::vector<Node*> nodes; 

        flatten(node, nodes); 

        return buildTree(nodes, 0, nodes.size()); 

    } 

    void flatten(Node* node, std::vector<Node*>& nodes) { 

        if (!node) return; 

        flatten(node->left, nodes); 

        nodes.push_back(node); 

        flatten(node->right, nodes); 

    } 

    Node* buildTree(std::vector<Node*>& nodes, int start, int end) 

{ 

        if (start >= end) return nullptr; 

        int mid = (start + end) / 2; 

        Node* node = nodes[mid]; 

        node->left = buildTree(nodes, start, mid); 

        node->right = buildTree(nodes, mid + 1, end); 

        return node; 

    } 

    int size(Node* node) { 

        if (!node) return 0; 

        return 1 + size(node->left) + size(node->right); 

    } 

}; 

3. Searching 
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The search operation is similar to that in a standard binary search 

tree, where we traverse the tree based on the comparison of the 

search key with the node keys. 

 

C++ Implementation: 

template<typename T> 

class ScapegoatTree { 

public: 

    struct Node { 

        T key; 

        Node *left, *right; 

        Node(T k) : key(k), left(nullptr), right(nullptr) {} 

    }; 

    ScapegoatTree(double alpha) : root(nullptr), alpha(alpha), 

maxSize(0) {} 

    void insert(T key) { 

        root = insert(root, key); 

        if (size(root) > maxSize) maxSize = size(root); 

    } 

    bool search(T key) { 

        return search(root, key); 

    } 

private: 

    Node* root; 

    double alpha; 

    int maxSize; 

    Node* insert(Node* node, T key) { 

        if (!node) return new Node(key); 

        if (key < node->key) node->left = insert(node->left, key); 

        else node->right = insert(node->right, key); 

        if (!isBalanced(node)) { 

            node = rebuild(node); 
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        } 

        return node; 

    } 

    bool search(Node* node, T key) { 

        if (!node) return false; 

        if (node->key == key) return true; 

        if (key < node->key) return search(node->left, key); 

        return search(node->right, key); 

    } 

    bool isBalanced(Node* node) { 

        return size(node) <= alpha * size(parent(node)); 

    } 

    Node* parent(Node* node) { 

        // Function to find the parent of a node. 

        // This function's implementation depends on the context and 

additional bookkeeping. 

        return nullptr; 

    } 

    Node* rebuild(Node* node) { 

        std::vector<Node*> nodes; 

        flatten(node, nodes); 

        return buildTree(nodes, 0, nodes.size()); 

    } 

    void flatten(Node* node, std::vector<Node*>& nodes) { 

        if (!node) return; 

        flatten(node->left, nodes); 

        nodes.push_back(node); 

        flatten(node->right, nodes); 

    } 

    Node* buildTree(std::vector<Node*>& nodes, int start, int end) 

{ 

        if (start >= end) return nullptr; 
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        int mid = (start + end) / 2; 

        Node* node = nodes[mid]; 

        node->left = buildTree(nodes, start, mid); 

        node->right = buildTree(nodes, mid + 1, end); 

        return node; 

    } 

    int size(Node* node) { 

        if (!node) return 0; 

        return 1 + size(node->left) + size(node->right); 

    } 

}; 

 

Balancing and Restructuring 

Balancing and restructuring are essential aspects of maintaining the 

efficiency of scapegoat trees. These processes ensure that the tree 

remains balanced, providing efficient access times for insertion, 

deletion, and search operations. Below are the details about the 

conditions for imbalance and techniques for rebalancing. 

 

Conditions for Imbalance 

A scapegoat tree becomes imbalanced when a node's subtree size 

exceeds a certain threshold compared to its parent. Specifically, the 

imbalance condition is determined by a parameter α\alphaα, where 

0 < α < 1. This parameter is used to maintain a balance between the 

left and right subtrees of any node. The imbalance condition can be 

defined as: 

 

Imbalance Condition: A node v in a scapegoat tree is considered 

unbalanced if the size of any of its child subtrees exceeds α\alphaα 

times the size of v's subtree. 
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Techniques for Rebalancing 

When an imbalance is detected, the subtree rooted at the scapegoat 

node is rebuilt to restore balance. The techniques for rebalancing 

involve the following steps: 

 

Identify the Scapegoat Node: 

Traverse up from the newly inserted or deleted node to find the 

first ancestor node that violates the balance condition. 

 

Rebuild the Subtree: 

Flatten the subtree rooted at the scapegoat node into a sorted array. 

Rebuild the balanced subtree from the sorted array. 

 

Algorithm for Rebalancing: 

Identify the Scapegoat Node: 

Start from the node where the imbalance is detected. 

Move up the tree to find the first node that violates the balance 

condition. 

 

Flatten the Subtree: 

Perform an in-order traversal of the subtree rooted at the scapegoat 

node to create a sorted array of nodes. 

 

Rebuild the Subtree: 

Use the sorted array to construct a balanced subtree. 

Recursively split the array to ensure the tree remains balanced. 

 

C++ Implementation: 

#include <iostream> 

#include <vector> 

#include <algorithm> 

template<typename T> 
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class ScapegoatTree { 

public: 

    struct Node { 

        T key; 

        Node *left, *right; 

        Node(T k) : key(k), left(nullptr), right(nullptr) {} 

    }; 

    ScapegoatTree(double alpha) : root(nullptr), alpha(alpha), 

maxSize(0) {} 

    void insert(T key) { 

        root = insert(root, key); 

        if (size(root) > maxSize) maxSize = size(root); 

    } 

    void remove(T key) { 

        root = remove(root, key); 

        if (size(root) < maxSize / 2) { 

            root = rebuild(root); 

            maxSize = size(root); 

        } 

    } 

private: 

    Node* root; 

    double alpha; 

    int maxSize; 

    Node* insert(Node* node, T key) { 

        if (!node) return new Node(key); 

        if (key < node->key) node->left = insert(node->left, key); 

        else node->right = insert(node->right, key); 

        if (!isBalanced(node)) { 

            node = rebuild(node); 

        } 

        return node; 
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    } 

Node* remove(Node* node, T key) { 

if (!node) return nullptr; 

 if (key < node->key) node->left = remove(node->left, key); 

else if (key > node->key) node->right = remove(node->right, key); 

else { 

if (!node->left) { 

Node* rightChild = node->right; 

delete node; 

return rightChild; 

} else if (!node->right) { 

Node* leftChild = node->left; 

delete node; 

return leftChild; 

} else { 

Node* minNode = findMin(node->right); 

node->key = minNode->key; 

node->right = remove(node->right, minNode->key); 

} 

} 

if (!isBalanced(node)) { 

node = rebuild(node); 

} 

return node; 

} 

Node* findMin(Node* node) { 

while (node && node->left) { 

node = node->left; 

} 

return node; 

} 

bool isBalanced(Node* node) { 
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return size(node) <= alpha * size(parent(node)); 

    } 

    Node* parent(Node* node) { 

        // Function to find the parent of a node. 

        // This function's implementation depends on the context and 

additional bookkeeping. 

        return nullptr; 

    } 

    Node* rebuild(Node* node) { 

        std::vector<Node*> nodes; 

        flatten(node, nodes); 

        return buildTree(nodes, 0, nodes.size()); 

    } 

    void flatten(Node* node, std::vector<Node*>& nodes) { 

        if (!node) return; 

        flatten(node->left, nodes); 

        nodes.push_back(node); 

        flatten(node->right, nodes); 

    } 

    Node* buildTree(std::vector<Node*>& nodes, int start, int end) 

{ 

        if (start >= end) return nullptr; 

        int mid = (start + end) / 2; 

        Node* node = nodes[mid]; 

        node->left = buildTree(nodes, start, mid); 

        node->right = buildTree(nodes, mid + 1, end); 

        return node; 

    } 

    int size(Node* node) { 

        if (!node) return 0; 

        return 1 + size(node->left) + size(node->right); 

    } 
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}; 

 

Time Complexity Analysis 

Here's a breakdown of the time complexity analysis for the 

operations in a Scapegoat Tree: 

 

Insertion (insert function): 

Average Case: O(log n) 

Worst Case (Rebuilding): O(n log n) due to the need to rebuild 

the tree when a rebalance condition is violated. 

Deletion (remove function): 

Average Case: O(log n) 

Worst Case (Rebuilding): O(n log n) due to potential tree 

rebuilds. 

 

Search (assuming balanced tree): 

Average Case: O(log n) 

Worst Case: O(log n) 

 

Rebuilding (rebuild function): 

Time Complexity: O(n) 

Size Calculation (size function): 

Time Complexity: O(n) 

 

Explanation: 

Insertion and Deletion: In the average case, insertion and deletion 

operations perform in O(log n) time due to the binary search tree 

properties of the Scapegoat Tree. However, when the tree needs 

rebalancing (when the size condition is violated), rebuilding the 

tree takes O(n log n) time as it involves flattening the subtree and 

reconstructing it. This worst-case scenario occurs when the tree 

becomes highly unbalanced. 
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Search: Searching in a balanced Scapegoat Tree also operates in 

O(log n) time in both average and worst cases, similar to standard 

binary search trees. 

 

Rebuilding: The rebuild function is triggered when an imbalance 

is detected and requires flattening the subtree and reconstructing it 

in sorted order, resulting in a time complexity of O(n), where n is 

the number of nodes in the subtree. 

 

Size Calculation: The size function computes the number of nodes 

in a subtree, requiring traversal of all nodes, leading to a time 

complexity of O(n). 

 

Applications 

Scapegoat Trees find applications in scenarios where a balance 

between efficient search, insertion, and deletion operations is 

crucial, and where the tree structure needs to adapt dynamically to 

changing data sizes. Some common applications include: 

 

Database Indexing: Scapegoat Trees are used in database systems 

for indexing large datasets efficiently. They provide logarithmic 

time complexity for search operations, making them suitable for 

fast retrieval of indexed data. 

 

Dynamic Data Structures: Due to their self-adjusting nature, 

Scapegoat Trees are employed in applications where the dataset 

size varies over time. This includes real-time systems, web servers, 

and applications handling streams of data. 

 

File Systems: They are used in file systems for managing directory 

structures efficiently. Scapegoat Trees allow quick lookup and 
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modification of file paths, ensuring efficient file management 

operations. 

 

Networking: In networking applications, Scapegoat Trees can be 

used for routing tables, where fast lookup and updates are essential 

for handling network traffic and routing decisions. 

 

Compiler Design: Scapegoat Trees are utilized in compilers for 

symbol table management. They facilitate quick insertion and 

retrieval of identifiers and variables during the compilation 

process. 

 

Key-Value Stores: In systems like distributed databases and key-

value stores, Scapegoat Trees offer an efficient data structure for 

storing and retrieving key-value pairs with logarithmic time 

complexity. 

 

15.3 TRIES 
 

Tries, also known as prefix trees or digital trees, are tree-based data 

structures used for efficient storage and retrieval of strings or keys. 

Each node in a trie represents a character, and paths from the root 

to the leaf nodes correspond to sequences of characters (strings). 

This structure allows for rapid prefix-based operations such as 

search, insert, and delete. Tries are particularly useful in scenarios 

where fast autocomplete functionalities or efficient dictionary 

lookups are required. 

 

Operations on tries involve traversing the tree from the root based 

on the characters of the key being processed. Insertion involves 

creating new nodes as necessary to build the path for a new key. 

Searching in a trie involves following the path corresponding to the 
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characters of the search key; if the path exists to a leaf node, the 

key is present. Deletion can be more complex as it might involve 

pruning nodes that are no longer part of any stored key's path. Tries 

are space-efficient when keys share common prefixes but can 

consume more memory compared to other data structures when 

dealing with large alphabets or sparse data. They find applications 

in areas such as autocomplete systems, spell-checking, IP routing 

tables, and data compression algorithms like Huffman coding. 

 

Trie Node Structure 

 

 

Key properties of tries include: 

Prefix-based Storage: Tries excel in storing keys with common 

prefixes efficiently. Each node along a path in the trie corresponds 

to a character in the key, allowing for rapid prefix-based 

operations. 

 

Search Complexity: Searching in a trie is efficient, typically in 

O(m) time complexity, where m is the length of the key being 

searched. This efficiency arises because the search operation 

involves following a path from the root to a leaf or until no further 

nodes can be traversed. 

 

Insertion and Deletion: Inserting a key into a trie involves 

creating nodes as necessary to form the path for the key. Deletion 
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can be more complex, potentially requiring the removal of nodes if 

they no longer correspond to any other keys' prefixes. 

 

Space Efficiency: Tries can be memory-intensive, especially for 

large alphabets or sparse data, due to the potentially large number 

of nodes. However, they are efficient in scenarios where keys share 

common prefixes, thereby reducing redundant storage of prefixes. 

 

Applications: Tries find applications in various domains such as 

autocomplete systems, spell-checking, IP routing tables, and 

database indexing. They are particularly useful in scenarios 

requiring fast prefix matching or predictive text functionality. 

 

Operations on Tries 

Here's a brief overview of operations on tries: 

Insertion: Inserting a new key into a trie involves traversing the 

trie based on the characters of the key. Starting from the root, each 

character in the key determines the path through the trie. If a path 

corresponding to the key doesn't exist, new nodes are created. At 

the end of the key, a flag or marker is typically set to indicate that 

the key exists in the trie. 

 

 

Insertion: The insert function iterates through each character of 

the word. If the character doesn't exist in the current node's 
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children map, it creates a new node. At the end of the word, it 

marks the isEndOfWord flag as true. 

 

Deletion: Deleting a key from a trie requires traversing the trie 

similarly to insertion, but instead of adding nodes, nodes 

corresponding to the key may be removed. This operation can be 

more complex than insertion because nodes might need to be 

pruned to maintain trie properties. Removal typically involves 

checking if the key exists, then removing nodes upwards if they are 

no longer needed. 

 

Deletion: The remove function calls a helper function 

deleteHelper, which recursively traverses the Trie until the end of 

the word. If the word is found, it marks isEndOfWord as false. If a 

node has no children after deletion, its mapping in the parent's 

children map is erased recursively. 

 

 

Searching: Searching in a trie involves traversing nodes based on 

the characters of the key. Starting from the root, each character 

determines the next node to visit. If the key exists in the trie, the 

search will successfully find the key by following the path 

corresponding to its characters. If any character path is missing 
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during traversal, the search concludes that the key is not present in 

the trie. 

 

Searching: The search function traverses the Trie starting from the 

root. It checks if each character of the word exists in the children 

map of the current node. If it reaches the end of the word and 

isEndOfWord is true, it returns true; otherwise, false. 

 

 

Types of Tries 

Standard Tries (Prefix Trees): Standard Tries, also known as 

Prefix Trees, are fundamental data structures where each node 

represents a single character of the stored keys. They efficiently 

support operations like insertion, deletion, and searching based on 

prefixes. Standard Tries are versatile and used in scenarios where 

efficient prefix-based lookups are required, such as autocomplete 

systems and dictionary implementations. 

 

Compressed Tries: Compressed Tries, also called Radix Trees or 

Compact Prefix Trees, optimize space by compressing nodes that 

have a single child into one. This compression reduces memory 

usage compared to Standard Tries while maintaining fast prefix 

search capabilities. Compressed Tries are useful in applications 

where storage efficiency is critical, such as in memory-constrained 
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environments or when storing large sets of keys with common 

prefixes. 

 

Suffix Tries: Suffix Tries store all suffixes of a given text string. 

Each node represents a suffix rather than a prefix. They are 

particularly useful in string processing tasks like pattern matching, 

substring search, and text indexing. Suffix Tries facilitate fast 

searches for specific patterns within a text corpus and are integral 

to algorithms like the construction of suffix arrays and suffix trees. 

 

15.4 BINARY TRIES 
 

Binary Tries, also known as Radix Tries or Patricia Tries, are 

specialized data structures that store keys in a binary format rather 

than a character-by-character manner like Standard Tries. In Binary 

Tries, each node represents a bit in the binary representation of the 

key. This approach allows for efficient storage and retrieval of keys 

that are typically represented in binary form, such as IP addresses 

or binary-encoded data. 

The nodes in Binary Tries can have up to two children, 

representing '0' and '1' branches corresponding to the binary digits. 

This binary representation ensures that searches, insertions, and 

deletions in Binary Tries operate efficiently, often in logarithmic 

time relative to the length of the keys. Binary Tries are particularly 

useful in applications where keys are binary data or where efficient 

bitwise operations are required, such as in network routing tables 

or database indexing systems that handle binary-coded data 

formats. Their structure lends itself well to scenarios where 

memory efficiency and quick lookup times are crucial. 
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Structure and properties of binary tries 

Binary Tries, also known as Radix Tries or Patricia Tries, are 

structured similarly to standard tries but are optimized for storing 

keys represented in binary format. Here's an outline of their 

structure and properties: 

 

Node Structure: Each node in a Binary Trie contains: 

Children Pointers: Typically two pointers, representing '0' and '1', 

corresponding to the binary digits. 

 

Key: Optionally, a node may store part or all of the key associated 

with the node. 

 

Properties: 

Binary Representation: Keys are stored in a compressed binary 

format, where each node represents a bit in the key. 

Efficient Storage: Compared to standard tries, binary tries can 

save space by combining nodes along paths that share prefixes. 

Prefix Matching: Like standard tries, binary tries support prefix 

matching efficiently, making them suitable for applications 

requiring fast lookups based on binary data. 

 

Operations: Binary tries support operations such as insertion, 

deletion, and searching, typically in logarithmic time relative to the 

length of the keys. 

 

Operations on Binary Tries 

Binary Tries, also known as Patricia Tries, are a type of trie data 

structure optimized for storing keys that can be represented as 

sequences of bits. Here’s how insertion, deletion, and searching 

operations are typically implemented in Binary Tries: 
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Insertion 

Algorithm: Insert (Binary Trie T, Key k) 

 

Initialization: Start from the root of the trie. 

Traversal: For each bit in the key k: 

If the current node does not have a child corresponding to the 

current bit of k, create a new node and attach it as a child. 

Move to the child node corresponding to the current bit. 

 

Leaf Node Marking: Once all bits of k are processed, mark the 

current node as a leaf node and store k in it. 

 

Insertion: Inserts a key k into the trie by following the bits of k 

and creating nodes as necessary. At the end of the insertion, a leaf 

node is marked with k. 

 

 

Deletion 

Algorithm: Delete (Binary Trie T, Key k) 

Traversal: Start from the root and traverse the trie following the 

bits of k. 

 

Marking for Deletion: If k exists in the trie (i.e., you reach a leaf 

node marked with k): 

Mark the leaf node as deleted or remove the key from the leaf 

node. 
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Pruning: Check if any parent node of the leaf node can be pruned 

(i.e., it has no other children). If so, continue pruning up to the root 

as long as it does not violate trie properties. 

 

 

Deletion: Deletes a key k from the trie by finding the leaf node 

marked with k and removing it. It then prunes unnecessary nodes 

from the trie to maintain efficiency. 

 

Searching 

Algorithm: Search (Binary Trie T, Key k) 

Traversal: Start from the root and follow the bits of k. 

Existence Check: If all bits of k are found in the trie: 

Check if the node corresponding to the last bit of k is a leaf node 

and not marked as deleted. 

 

Return true if k is found; otherwise, return false. 
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Searching: Searches for a key k in the trie by following the bits of 

k. It checks if k exists by ensuring that the path ends at a leaf node 

marked with k and not deleted. 

 

15.5 X-FAST TRIES 
 

X-Fast Tries are a type of data structure that extends the concept of 

binary tries (or Patricia Tries) to efficiently support dynamic sets of 

keys drawn from a universe of size U. They are designed to 

provide fast operations for searching, insertion, deletion, and 

predecessor/successor queries, all in O (log log U) time 

complexity. 

 

Structure and Properties 

X-Fast Tries are structured as a hierarchical set of binary search 

trees where each level iii corresponds to a trie storing keys of 

length iii. At the lowest level, the leaves store the actual keys, and 

each internal node at level iii maintains pointers to predecessor and 

successor nodes in the trie. This structure allows for rapid traversal 

and query operations. 
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Operations on X-Fast Tries 

X-Fast Tries are advanced data structures that support efficient 

operations on dynamic sets of keys. Here's how each operation is 

performed: 

Insertion 

Search for Insertion Point: 

Begin at the root of the X-Fast Trie and traverse down through 

levels according to the bits of the key being inserted. 

Determine the path in the trie that matches the key's bits until you 

reach the leaf level. 

 

Update Predecessor and Successor Pointers: 

Once the correct leaf node is found (or created if the key doesn't 

exist), update the predecessor and successor pointers at each level 

of the trie. 

Ensure that these pointers correctly reflect the position of the new 

key relative to existing keys in the trie. 

 

Balance and Maintenance: 

Adjust the trie structure as necessary to maintain the O (log log U) 

time complexity for predecessor/successor queries. 

This may involve splitting nodes or merging nodes to balance the 

trie. 

 

 

Deletion 

Search for the Key: 

Start at the root and traverse the trie to locate the node that 

contains the key to be deleted. 
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Adjust Predecessor and Successor Pointers: 

Update the predecessor and successor pointers at each level to 

reflect the removal of the key. 

Ensure that the trie remains balanced and maintains the desired 

time complexity for queries. 

 

Remove the Key: 

Once the correct node is found, remove the key from the trie 

structure. 

Adjust the trie as needed to maintain its integrity and balance. 

 

 

Searching 

Search Operation: 

Begin at the root of the trie and traverse down through levels 

according to the bits of the search key. 

Follow the path in the trie that matches the bits of the key until you 

reach the leaf level. 

 

Validation: 

Check if the key exists in the leaf node reached by the traversal. 

If the key is found, return the corresponding data or indicate its 

presence. 

 

 

Handling Non-existent Keys: 
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If the key is not found during the traversal, handle the search 

operation accordingly (e.g., returning a null value or indicating 

absence). 

15.6 CONCLUSION 
 

Since the introduction of advanced data structures like Scapegoat 

Trees, Tries, Binary Tries, X-Fast Tries, and Y-Fast Tries, we have 

explored their unique characteristics and operations. Each structure 

offers distinct advantages in terms of efficiency and applicability 

across different problem domains. 

 

Scapegoat Trees provide a balanced tree structure with efficient 

insertion, deletion, and search operations, leveraging a dynamic 

resizing mechanism to maintain balance. Tries, known for their 

suitability in string-related applications, offer fast prefix search 

capabilities and are used extensively in dictionary implementations 

and autocomplete features. Binary Tries extend this concept to 

binary structures, accommodating more diverse data types and 

enhancing search efficiency. 

 

The introduction of X-Fast Tries introduces a hierarchical approach 

to searching, leveraging hash tables at multiple levels for rapid 

data retrieval. Similarly, Y-Fast Tries further optimize this structure 

by addressing the limitations of X-Fast Tries, particularly in terms 

of space complexity and query performance. 
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In conclusion, these advanced data structures represent significant 

advancements in data management and algorithm design, catering 

to modern computational needs across various industries. 

Understanding their intricacies and applications equips developers 

with powerful tools to tackle complex data organization and 

retrieval challenges effectively. 

 

15.7 QUESTIONS AND ANSWERS 
 

1. What are the main characteristics of Scapegoat Trees?  

Answer: Scapegoat Trees are self-balancing binary search trees 

that maintain balance through periodic rebuilding. They ensure that 

no node's height exceeds a certain threshold, balancing the tree by 

performing partial or complete rebuilds when necessary. This 

results in efficient insertion, deletion, and search operations with 

guaranteed logarithmic time complexity. 

 

2. How do Tries differ from traditional binary search trees?  

Answer: Tries are specialized tree-like data structures used for 

storing associative arrays, typically strings. Unlike binary search 

trees that compare entire keys, Tries store characters of keys at 

each node, enabling efficient prefix-based searching. This makes 

Tries especially useful for applications like autocomplete and spell 

checkers. 

 

3. What are Binary Tries and how are they utilized?  

Answer: Binary Tries are a variation of Tries optimized for binary 

data. Each node in a Binary Trie represents a bit in the key, leading 

to a maximum tree height equal to the bit-length of the keys. They 

are commonly used in networking for IP routing and prefix 

matching due to their efficient handling of binary data. 
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4. Explain the concept of X-Fast Tries.  

Answer: X-Fast Tries are advanced data structures that use a 

combination of Trie structures and hash tables to achieve efficient 

lookups, insertions, and deletions. They reduce the height of the 

Trie by storing nodes at various levels in hash tables, allowing for 

faster access times compared to traditional Tries. 

 

5. What advantages do Y-Fast Tries offer over X-Fast Tries?  

Answer: Y-Fast Tries improve upon X-Fast Tries by further 

optimizing space and query efficiency. They use a hierarchical 

structure where elements are grouped into buckets, each managed 

by a balanced binary search tree. This allows for efficient space 

usage while maintaining fast query performance. 

 

6. In what scenarios would you prefer using a Scapegoat Tree 

over other balanced trees like AVL or Red-Black Trees?  

Answer: Scapegoat Trees are particularly useful when insertions 

and deletions are more frequent and when predictable performance 

is essential. Their periodic rebalancing mechanism can be 

advantageous in environments where maintaining strict balance at 

all times (like in AVL or Red-Black Trees) might introduce 

overhead. 

 

7. Can you give an example of a real-world application of 

Tries?  

Answer: One common real-world application of Tries is in 

implementing autocomplete features in search engines. As users 

type in search queries, the Trie structure allows for efficient prefix 

matching, quickly suggesting possible completions based on the 

input provided so far. 

 



Data Structure using C++ & Lab -399 
 

15.8 REFERENCES 
 

 Bjarne Stroustrup, "The C++ Programming Language" 

 Herb Sutter, "Exceptional C++: 47 Engineering Puzzles, 

Programming Problems, and Solutions" 

 Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo, 

"C++ Primer" 

 Scott Meyers, "Effective C++: 55 Specific Ways to 

Improve Your Programs and Designs" 

 Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and 

Reference" 

 

 

 



Data Structure using C++ & Lab -400 
 

 

UNIT – 16: FILE STRUCTURES 
Structure 

 

16.0 Introduction 

16.1 Objectives 

16.2 File structures 

16.3 Sequential File Organization 

16.4 Direct (Random) File Organization 

16.5 Indexed Sequential File Organization 

16.6 File Operations 

16.7 Applications 

16.8 Conclusion 

16.9 Questions and Answers 

16.10 References 

 

16.0 INTRODUCTION 
 

In the realm of data management, efficient storage, organization, 

and retrieval of information are paramount. File structures play a 

critical role in achieving these objectives by providing systematic 

methods to manage data within files. The selection of an 

appropriate file structure can greatly impact the performance, 

accessibility, and overall efficiency of data handling operations. 

 

This unit delves into various file structures, including sequential, 

direct (random), and indexed sequential file organizations. Each of 

these structures offers distinct advantages and is suitable for 

different types of applications, depending on the specific 

requirements of data access patterns and storage needs. 

Understanding these structures is essential for optimizing data 

storage and retrieval processes in various computing environments. 
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Moreover, we will explore fundamental file operations that are 

crucial for manipulating and managing files effectively. This 

includes file creation, opening, closing, reading, writing, and 

deletion. Additionally, we will examine practical applications of 

these file structures in real-world scenarios, highlighting their 

significance in database management systems, information 

retrieval systems, and file management systems. This 

comprehensive overview will provide a solid foundation for 

understanding the importance of file structures and their practical 

applications in data management. 

 

16.1 OBJECTIVES 
 

After completing this unit, you will be able to underst and, 

Understand Different File Structures: Gain a comprehensive 

understanding of various file structures, including sequential, 

direct (random), and indexed sequential file organizations, and 

their respective advantages and disadvantages. 

 

Learn File Operations: Explore the fundamental file operations 

such as creation, opening, closing, reading, writing, and deletion, 

and understand their implementation and usage in different file 

structures. 

 

Analyze File Organization Types: Examine the characteristics, 

benefits, and limitations of different file organization types, and 

understand how they impact data storage, retrieval efficiency, and 

overall system performance. 

 

Apply Knowledge to Real-World Scenarios: Investigate practical 

applications of different file structures in various domains such as 
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database management systems, information retrieval systems, and 

file management systems, and understand how to choose the 

appropriate file structure for specific use cases. 

 

Develop Skills in Implementing Algorithms: Gain hands-on 

experience in implementing algorithms for file operations and file 

structures, particularly in the C++ programming language, to 

solidify theoretical knowledge through practical application. 

 

16.2 FILE STRUCTURES 
 

File structures in data structures encompass various methodologies 

for organizing and managing data within computer systems. At its 

core, file structures refer to how data is stored, accessed, and 

manipulated in files, which are logical collections of records. 

File structures refer to the organization and layout of data in 

computer files, essential for efficient data storage, retrieval, and 

management. The structure of a file determines how data is stored 

within it, the methods used to access and modify that data, and the 

overall efficiency of operations performed on the file. 

 

The primary components of file structures include: 

Record Format: Defines how data is organized within each 

record, specifying the type and order of fields (data elements) 

stored in the file. Records can be of fixed length or variable length, 

depending on the application's requirements. 

 

A record format defines how data is structured and organized 

within each record in a file. It specifies the layout, type, and order 

of data elements (fields) stored in the record. The format chosen 

depends on the nature of the data being stored and the 

requirements of the application accessing the file. 
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Key aspects of a record format include: 

Field Definition: Each field represents a data item of a specific 

type (integer, floating-point number, string, etc.). Fields are 

typically defined with a fixed length or a maximum length for 

variable-length fields. 

 

Field Order: Specifies the sequence in which fields are arranged 

within the record. This order is crucial for correctly interpreting 

and accessing the data during read and write operations. 

 

Field Attributes: Attributes such as field names, data types (e.g., 

integer, character, date), and constraints (e.g., maximum length, 

allowed values) are defined to ensure data integrity and facilitate 

efficient querying and manipulation. 

 

Delimiter or Separator: In some formats, especially text-based 

ones, fields may be separated by delimiters (e.g., commas, tabs, 

spaces) or have fixed positions within the record structure. 

 

Padding: Padding refers to the addition of extra characters or bytes 

to ensure that each field occupies its allotted space within the 

record. This helps maintain alignment and facilitates efficient 

storage and retrieval operations. 

 

File Organization: File organization refers to the way data is 

stored and structured within files on a computer's storage system. It 

encompasses various methods and techniques designed to optimize 

data access, retrieval, and management. The choice of file 

organization depends on factors such as the type of data, access 

patterns, and efficiency considerations. It describes how records 

are physically arranged within the file. Common file organizations 
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include sequential, indexed sequential, direct (or hashed), and 

more complex structures like B-trees for large-scale databases. 

Each organization method offers different trade-offs in terms of 

access speed, storage efficiency, and ease of modification. 

 

Access Methods: Determine how data can be retrieved from or 

stored into the file. Sequential access reads data in order from start 

to end, making it suitable for batch processing. Direct access 

allows quick retrieval of records based on their storage location, 

beneficial for random access operations. Indexed access combines 

the benefits of both, using a separate index structure to facilitate 

fast lookups based on keys. 

Access methods in the context of file organization refer to the 

techniques and algorithms used to retrieve and manipulate data 

stored within files. These methods are crucial for efficient data 

access and retrieval in computer systems. Here’s an overview of 

common access methods: 

 

Types of Access Methods: 

Sequential Access: 

Description: In sequential access, data is accessed in a linear or 

sequential manner, starting from the beginning of the file and 

proceeding sequentially to the end. 

 

Usage: Suitable for applications that process data in a batch mode 

or require full file scans, such as processing logs or sequential data 

streams. 

 

Advantages: Simple to implement and efficient for reading large 

amounts of data sequentially. 
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Disadvantages: Not efficient for random access or frequent 

updates, as accessing data out of sequence requires scanning 

through all preceding records. 

 

Direct Access: 

Description: Direct access allows data to be accessed randomly by 

specifying a key or address associated with each record. This 

method enables quick retrieval and modification of specific records 

without needing to traverse others. 

 

Usage: Ideal for applications that require frequent random access 

to data, such as databases and real-time systems. 

 

Advantages: Enables fast retrieval and modification of records 

using direct addressing based on keys or addresses. 

 

Disadvantages: More complex to implement compared to 

sequential access; may lead to fragmentation of data and increased 

storage overhead. 

 

Indexed Access: 

Description: Indexed access combines the benefits of sequential 

and direct access methods. It involves maintaining an index 

structure alongside the main data file, which maps keys to physical 

addresses or offsets of records. 

 

Usage: Suitable for applications that require both sequential and 

random access patterns, balancing efficient access with flexibility. 

 

Advantages: Provides efficient retrieval and modification 

operations using indexed lookup, supports both sequential and 

random access patterns. 
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Disadvantages: Requires additional storage for maintaining index 

structures; insertion and deletion operations may be slower due to 

index maintenance. 

 

Hashing: 

Description: Hashing involves mapping keys directly to addresses 

using a hash function, which calculates the storage location based 

on the key's value. It enables rapid access to data by reducing 

search time to constant time complexity. 

 

Usage: Commonly used in hash tables and hash-based data 

structures for fast data retrieval and storage. 

 

Advantages: Provides constant-time average access for retrieval 

and insertion operations, efficient for large datasets. 

 

Disadvantages: Collision handling (when two keys hash to the 

same address) requires additional processing; not suitable for range 

queries or ordered data retrieval. 

 

16.3 SEQUENTIAL FILE 
ORGANIZATION 
 

Sequential file organization is a method of storing and accessing 

data records in a sequential order, typically based on their physical 

placement in the file. Here's a detailed explanation of sequential 

file organization: 

 

Overview and Characteristics: 

Sequential file organization arranges data records consecutively in 

the order they are added to the file. Each record is stored 
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immediately after the previous one, forming a continuous 

sequence. Key characteristics include: 

 

Storage Structure: Data records are stored one after another in a 

linear fashion within the file. This layout simplifies appending new 

records but complicates insertion and deletion operations, as they 

may require shifting subsequent records. 

Access Method: Data access is performed sequentially, starting 

from the beginning of the file and continuing to the end. This 

means to access a specific record, all preceding records must be 

read sequentially. 

 

Applications: Sequential files are suitable for applications where 

data is processed in batches or where data is primarily read 

sequentially, such as log files, transaction processing systems with 

archival needs, and batch processing applications. 

 

 

(Image Source: Javat Point) 

Operations and Usage: 

Sequential files support basic operations tailored to their access 

pattern: 
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Reading: Data is read sequentially from the beginning of the file 

to the end. This operation is efficient for processing large volumes 

of data sequentially without requiring random access. 

 

Writing: New records are typically appended to the end of the file, 

which simplifies insertion. However, modifying or deleting 

existing records may require rewriting the entire file after the 

modification point. 

 

Searching: Sequential searching involves scanning the file from 

the start until the desired record is found. This process can be slow 

for large files or when the record is located towards the end of the 

file. 

 

Advantages and Disadvantages: 

Advantages: 

Simple and easy to implement. 

Efficient for applications that primarily read data sequentially. 

Requires less overhead compared to indexed or direct access 

methods. 

 

Disadvantages: 

Inefficient for random access operations, as accessing records out 

of sequence requires scanning through all preceding records. 

Insertions and deletions may be slow and costly, especially in large 

files. 

Not suitable for applications requiring frequent updates or random 

access patterns. 
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16.4 DIRECT (RANDOM) FILE 
ORGANIZATION 
 

Direct file organization, also known as random file organization, is 

a method of organizing data in a file that allows for direct access to 

any record based on its unique identifier or key. Unlike sequential 

file organization where records are stored in a linear sequence, 

direct file organization uses indexing or hashing techniques to 

facilitate rapid access to specific records. Here’s a detailed 

explanation of direct file organization: 

 

Overview and Characteristics: 

Direct file organization employs indexing or hashing to map record 

keys to specific locations within the file. Key characteristics 

include: 

 

Indexing: Each record in the file is assigned a unique key, which 

serves as an index. This index is used to directly locate the record 

within the file, bypassing the need to sequentially read through 

preceding records. 

Hashing: Alternatively, records may be stored in the file using a 

hashing function that computes a location based on the record's 

key. This allows for rapid calculation of the record's storage 

location and retrieval. 

 

Access Method: Accessing records in a direct file involves using 

the record's key to determine its location in the file. This method 

enables efficient random access, where any record can be retrieved 

directly without scanning through other records. 
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Applications: Direct file organization is suitable for applications 

requiring frequent and rapid access to specific data records, such as 

database systems, file systems, and data retrieval systems. 

 

 

 

(Image Source: JavatPoint) 

Operations and Usage: 

Direct file organization supports operations tailored to random 

access patterns: 

 

Reading: Records can be retrieved directly using their unique 

keys, making retrieval operations efficient even for large files. 

Writing: New records can be added directly into the file at their 

designated locations based on their keys. This operation requires 

updating the index or hash table accordingly. 

 

Updating: Existing records can be modified or deleted efficiently 

by directly accessing and modifying their locations in the file. 

 

Advantages and Disadvantages: 



Data Structure using C++ & Lab -411 
 

Advantages: 

Enables rapid access to specific records without scanning through 

other records. 

Efficient for applications requiring frequent data retrieval based on 

specific criteria. 

Supports direct insertion, deletion, and modification operations. 

 

Disadvantages: 

Requires additional overhead for maintaining and updating indexes 

or hash tables. 

Complexities may arise in handling collisions in hashing-based 

implementations. 

Initial setup and maintenance of indexes or hash tables can 

introduce additional complexity. 

 

16.5 INDEXED SEQUENTIAL FILE 
ORGANIZATION 
 

Indexed Sequential File Organization combines the benefits of 

both sequential and direct (random) file organization methods. It is 

designed to optimize data retrieval and storage efficiency by using 

indexing for fast access and maintaining sequential order to 

support range queries and efficient sequential processing. Here’s a 

detailed explanation of Indexed Sequential File Organization: 

Overview and Characteristics: 

Indexed Sequential File Organization organizes records in a 

sequential manner on disk while maintaining an index structure 

that allows for direct access to individual records based on keys. 

Key characteristics include: 

 

Sequential Storage: Records are stored sequentially on disk, 

which facilitates efficient sequential processing of data. 
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Indexing: Each record has a unique key, and an index is 

maintained separately to map these keys to their physical locations 

in the file. This index enables fast direct access to specific records. 

 

Access Method: Records can be accessed directly using their keys 

through the index, allowing for rapid retrieval operations similar to 

direct file organization. 

 

Hybrid Approach: Combines the benefits of sequential 

organization (efficient sequential processing) with direct 

organization (rapid access to individual records). 

 

(Image Source: Geeeksforgeeks) 

Operations and Usage: 

Indexed Sequential File Organization supports various operations 

tailored to both random and sequential access patterns: 

 

Indexing Structure: Typically, a B-tree or a multi-level index 

structure is used to maintain efficient access to records. This 

structure optimizes searches, insertions, and deletions. 
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Reading: Records can be retrieved directly using their keys, 

leveraging the index structure for rapid access. 

 

Writing: New records are appended to the end of the file 

sequentially, while the index structure is updated to reflect the new 

record's location. 

 

Updating: Existing records can be modified or deleted, with 

updates managed both in the sequential file and the index structure. 

 

Advantages and Disadvantages: 

Advantages: 

Supports fast access to individual records based on keys through 

indexing. 

Facilitates efficient range queries by maintaining sequential order. 

Suitable for applications requiring both random and sequential 

access patterns. 

 

Disadvantages: 

Requires additional overhead for maintaining and updating index 

structures. 

Complexities may arise in managing and balancing index 

structures, especially in distributed or large-scale systems. 

Initial setup and maintenance of indexes can be resource-intensive. 

 

16.6 FILE OPERATIONS 
 

File operations encompass a range of activities involved in 

managing files within a computer system, typically handled by 

operating systems or file management libraries. These operations 

are fundamental for reading, writing, and manipulating data stored 

in files. Here's an overview of key file operations: 
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File Operations: 

File Creation: 

Definition: Creating a new file involves allocating space in the file 

system and establishing metadata structures to manage the file. 

 

Process: Typically, the operating system or application creates a 

file by specifying a name, location, and sometimes initial content 

or attributes. 

Algorithm: 

 

 

Explanation: 

CreateFile: 

Opens the file specified by filename for writing ("w" mode), which 

creates the file if it does not already exist. 

Checks if the file was opened successfully. 

Prints a success message if the file was created. 

Closes the file after creation. 

Here's how this algorithm can be implemented in C++: 
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Implementation in C++ 

 

Opening and Closing Files: 

Opening: Accessing a file to perform read or write operations. 

Process: Applications request file access by providing a file path 

or identifier, which the operating system verifies and grants if 

permissions allow. 

 

 

Implementation: 
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Closing: Releasing resources associated with the file after 

operations are complete. 

Process: Ensures that all data buffers are flushed and file locks, if 

any, are released. 

 

 

Implementation: 

 

Reading from Files: 

Definition: Retrieving data stored in a file for processing or 

display. 
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Process: Applications specify read operations, which involve 

positioning the file pointer to the desired location within the file 

and transferring data to memory buffers. 

Algorithm: 

 

 

ReadFromFile: 

Opens the file specified by filename for reading ("r" mode). 

Checks if the file was opened successfully. 

Reads each line from the file until the end of the file 

(EndOfFile). 

Prints each line to the console. 

Closes the file after reading. 

 

Writing to Files: 

Definition: Storing new data or modifying existing data in a file. 

Process: Applications specify write operations, which involve 

positioning the file pointer and transferring data from memory 

buffers to the specified location in the file. 
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Algorithm: 

 

WriteToFile: 

Opens the file specified by filename for writing ("w" 

mode). 

Checks if the file was opened successfully. 

Writes the data string to the file. 

Closes the file after writing. 

 

Updating and Modifying Files: 

Definition: Changing or appending data within a file. 

Process: Combines reading and writing operations, where data is 

read, modified in memory, and then written back to the file. 

 

16.7 APPLICATIONS 
 

Database Management Systems (DBMS) 

File structures are integral to the efficiency and effectiveness of 

Database Management Systems. Here’s how different file 

structures are applied: 
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Sequential Files: 

Backup and Archival: Sequential files are ideal for creating 

backups and archives of data because they allow for easy and 

efficient sequential reading and writing. 

Batch Processing: Used in situations where data processing can 

occur in batches, such as end-of-day processing in banking 

systems. 

 

Indexed Sequential Files: 

Transaction Processing Systems: Often used in transaction 

processing systems where quick access to records is required, but 

the records are processed in a sequential manner. The index allows 

for quick lookup, while the sequential nature aids in efficient data 

management. 

 

Customer Relationship Management (CRM): Enables fast 

access to customer records while maintaining an ordered structure 

for efficient bulk operations. 

Direct (Random) Files: 

 

High-Performance Applications: Used in applications requiring 

rapid access to individual records, such as real-time systems in 

finance and stock trading. 

Database Indexing: Implements hash-based indexing where direct 

access to records is essential. 

 

Information Retrieval Systems 

In information retrieval systems, efficient data storage and quick 

access are crucial: 

 

Sequential Files: 
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Log Files: Ideal for maintaining log files where entries are 

recorded in sequence over time. 

 

Historical Data Archives: Useful for archiving historical data that 

is not frequently accessed but needs to be stored efficiently. 

 

Indexed Sequential Files: 

Search Engines: Used in search engines to store indexed data, 

allowing quick search operations while maintaining an ordered 

index for efficient retrieval. 

Library Systems: In library management systems, indexed 

sequential files help in organizing and retrieving book records 

efficiently. 

Direct (Random) Files: 

 

Document Management Systems: Used for storing and retrieving 

documents where each document needs to be accessed directly 

without scanning through other records. 

User Profile Management: In systems managing large user bases, 

direct files facilitate quick access to individual user profiles. 

 

File Management Systems 

File management systems rely heavily on the underlying file 

structures to ensure efficient file storage, access, and management: 

Sequential Files: 

 

Tape Storage Systems: Commonly used in tape storage systems 

where data is stored sequentially for backup and archival purposes. 

Simple Log Files: Used for simple log file management in 

operating systems and applications. 
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Indexed Sequential Files: 

File Indexing: Helps in creating indexes of large file directories, 

allowing for quick searches and organized storage. 

 

Metadata Management: Used in systems that need to maintain 

and retrieve file metadata efficiently. 

Direct (Random) Files: 

 

Operating System File Systems: Employed in operating systems 

to manage files and directories where rapid access to files is 

necessary. 

 

Database Index Files: Used for managing database index files 

where direct access to index entries is critical for performance. 

 

16.8 CONCLUSION 
 

In this unit, we delved into the essential concepts of file structures 

and their organization within the context of data management 

systems. We explored the various types of file organizations, 

including sequential, direct (random), and indexed sequential file 

organizations, highlighting their unique characteristics and use 

cases. Understanding these structures is crucial for optimizing data 

access and storage efficiency, which are foundational elements in 

the design and implementation of robust data systems. 

 

We also covered the fundamental file operations that underpin 

these file structures, such as creation, opening, closing, reading, 

writing, and deletion. Mastery of these operations is essential for 

effective data management, ensuring that data is accurately and 

efficiently manipulated within different organizational contexts. By 

examining the implementation details, particularly in the C++ 
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programming language, we bridged the gap between theoretical 

knowledge and practical application, providing a comprehensive 

view of how these concepts are realized in real-world systems. 

 

Finally, we discussed the applications of various file structures in 

different domains, including database management systems, 

information retrieval systems, and file management systems. These 

applications underscore the importance of choosing the right file 

organization method to meet specific needs and performance 

requirements. The insights gained from this unit equip us with the 

knowledge to design and implement efficient file management 

strategies, ensuring optimal data handling and retrieval in diverse 

computational environments. 

 

16.9 QUESTIONS AND ANSWERS 
 

1. What are the main types of file organizations covered in this 

unit? 

Answer: The main types of file organizations covered in this unit 

are: 

Sequential File Organization: Data is stored in a linear sequence, 

making it simple and efficient for reading large blocks of 

sequential data. 

Direct (Random) File Organization: Data is accessed directly 

using a key or address, providing quick retrieval but requiring 

more complex management. 

Indexed Sequential File Organization: Combines the advantages 

of both sequential and direct access by maintaining an index to 

allow for fast searches and sequential data processing. 

 

2. What are the key advantages of sequential file organization? 

Answer: Sequential file organization offers several advantages: 
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Simplicity in implementation and management. 

Efficient for operations that process large volumes of data 

sequentially. 

Minimal overhead for file management, as no indexing or hashing 

is required. 

 

3. How does direct file organization improve data retrieval 

times? 

Answer: Direct file organization improves data retrieval times by 

using a key or address to directly access the desired data record. 

This eliminates the need to search through data sequentially, 

significantly reducing the time required to locate and retrieve 

specific records. 

 

4. What is an indexed sequential file organization, and how 

does it work? 

Answer: Indexed sequential file organization is a hybrid approach 

that combines sequential and direct access methods. It maintains an 

index that allows for quick searches and random access to data 

records while still enabling efficient sequential data processing. 

The index maps keys to their corresponding storage locations, 

providing the benefits of both quick searches and organized 

sequential data management. 

 

 

5. What are some common file operations discussed in this 

unit? 

Answer: Common file operations discussed include: 

File Creation: Establishing a new file in the storage system. 

Opening and Closing Files: Preparing a file for reading or writing 

and properly closing it after operations are complete. 
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Reading and Writing: Accessing data from a file and modifying 

or adding data to a file. 

Deletion: Removing a file or specific data records from the storage 

system. 

 

6. Why is it important to understand different file structures 

and their applications? 

Answer: Understanding different file structures and their 

applications is crucial because it allows for the selection of the 

most appropriate file organization method based on the specific 

needs and performance requirements of an application. This 

ensures optimal data handling, efficient storage, and quick 

retrieval, which are vital for the overall performance and reliability 

of data management systems. 
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