
Programming with 'C' & Lab - 1

Course Code: - CSM-6151
Course Name: - Programming with

'C' & Lab

Programming with 'C' & Lab - 2

MASTER OF COMPUTER
APPLICATIONS (MCA)

PROGRAMME DESIGN COMMITTEE

Prof. Masood Parveez
Vice Chancellor – Chairman
MTSOU, Tripura

Prof. Abdul Wadood Siddiqui
Dean Academics
MTSOU, Tripura

Prof. C.R.K. Murty
Professor of Distance Education
IGNOU, New Delhi

Prof. Mohd. Nafees Ahmad Ansari
Director of Distance Education
Aligarh Muslim University, Aligarh

Prof. P.V. Suresh
Professor of Computer Science
IGNOU, New Delhi

Prof. V.V. Subrahmanyam
Professor of Computer Science

IGNOU, New Delhi

Prof. S. Nagakishore Bhavanam
Professor of Computer Science
Mangalayatan University, Jabalpur

Prof. Jawed Wasim
Professor of Computer Science
Mangalayatan University, Aligarh

COURSE WRITERS

Dr. Md. Amir Khusru Akhtar
Associate Professor of Computer Science
MTSOU, Tripura
CSM-6111 Data Communication &
Computer Networks

Dr. Ankur Kumar
Assistant Professor
MTSOU, Tripura
CSM-6112 Computer Organization &
Architecture

Dr. Manish Saxena
Assistant Professor of Computer Science
MTSOU, Tripura
CSM-6113 Discrete Mathematics

Dr. Duvvuri B. K. Kamesh
Assistant Professor of Computer Science
MTSOU, Tripura
CSM-6114 Accountancy and Financial
Management

Mr. Pankaj Kumar
Assistant Professor of Computer Science
Mangalayatan University, Aligarh
CSM-6151 Programming with 'C' & Lab

Ms. Vanshika Singh
Assistant Professor of English
MTSOU, Tripura
ENM-6101 Professional Communication

COURSE EDITORS

Prof. S. Nagakishore Bhavanam
Professor of Computer Science
Mangalayatan University, Jabalpur

Prof. Jawed Wasim
Professor of Computer Science
Mangalayatan University, Aligarh

Dr. Manoj Varshney
Associate Professor of Computer Science
MTSOU, Tripura

Dr. M. P. Mishra
Associate Professor of Computer Science

IGNOU, New Delhi

Dr. Akshay Kumar
Associate Professor of Computer Science
IGNOU, New Delhi

FORMAT EDITORS

Dr. Nitendra Singh
Associate Professor of English
MTSOU, Tripura

Ms. Angela Fatima Mirza
Assistant Professor of English

MTSOU, Tripura

Dr. Faizan
Assistant Professor of English
MTSOU, Tripura

Ms. Vanshika Singh
Assistant Professor of English
MTSOU, Tripura

MATERIAL PRODUCTION
1. Mr. Himanshu Saxena
2. Ms. Rainu Verma

3. Mr. Jeetendra Kumar
4. Mr. Khiresh Sharma

5. Mr. Ankur Kumar Sharma
6. Mr. Pankaj Kumar

Programming with 'C' & Lab - 3

CONTENT
Page No.

Programming Lab 5-50

 Introduction (Overview of the Lab)
 Objectives
 Overall Directions
 Structure of ‘C’ Program
 Salient Features of C
 ‘C’ Program development Environment

o Phase-I: Creating a Program
o Phase-II&III: Preprocessing and Compiling a ‘C’ Program
o Install Visual Studio Code on Windows

 How to design/develop a Program
 Structure of ‘C’ Program
 Compile and Run ‘C’ Program
 Practice Sessions (Session 1 to Session 5)

Programs:
1. Write a C program to find the roots of a quadratic equation.
2. Write a C program to find the total no. of digits and the sum of individual digits of a

positive integer.
3. Write a C program to generate the Fibonacci sequence of the first N numbers.
4. Write a C program to compute the area of a circle, a Square, and a Rectangle when all

the dimensions are given.
5. Write a C program to input two matrices and perform matrix multiplication on them.
6. Write a C program to check whether the given string is a palindrome or not without

using Library functions.
7. Write a C program to count the number of lines and words in a given file.
8. Write a C program to generate prime numbers in a given range using a user-defined

function.
9. Write a C program to find the factorial of a given number using a recursive function.
10. Write a C program to maintain a record of n student details using an array of

structures with four fields - Roll number, Name, Marks, and Grade. Calculate the
Grade according to the following conditions.
Marks Grade
>= 80 A
>= 60 B
>= 50 C
>= 40 D
< 40 E

Print the details of the student, given the student's roll number as input.

Programming with 'C' & Lab - 4

Programming with 'C' & Lab - 5

CSM -6151 PROGRAMMING WITH ‘C’ LAB

COURSE INTRODUCTION

Welcome to the world of C programming! This book serves as

your gateway into the foundational aspects of computer

programming using the C language. C, developed by Dennis

Ritchie in the early 1970s, remains one of the most influential

and widely used programming languages, serving as the

bedrock for numerous modern languages and systems.

This book is on C programming. We focus on problem solving

using the language and present standard programming

techniques such as alternation, iteration, and recursion. We will

look at the fundamentals of software engineering principles

such as modularization, commenting, and naming conventions

that aid in team collaboration and development.

OVERVIEW

In this book, we'll embark on an exciting journey to understand

the core concepts and principles that underpin C programming.

From mastering the syntax to comprehending powerful concepts

like pointers and memory management, each module will equip

you with the tools necessary to write efficient, robust, and

scalable programs.

What You'll Learn:

 Fundamentals: You'll begin with the basics, learning about

variables, data types, operators, and control structures that

form the building blocks of C programming.

 Functions and Modularity: Dive into the realm of

functions, understanding their role in code organization,

passing arguments, return values, and utilizing libraries.

 Memory Management: Explore the intricate world of

Programming with 'C' & Lab - 6

memory, understanding pointers, dynamic memory

allocation, and their significance in optimizing code

efficiency.

 Advanced Concepts: We'll cover more advanced topics like

file handling, structures, and preprocessor directives,

elevating your programming prowess.

How You'll Learn:

Through a blend of comprehensive lectures, hands-on coding

exercises, quizzes, and real-world examples, you'll grasp not

just the theory but also the practical applications of C

programming. The book is designed to encourage active

participation, allowing you to code alongside the lessons and

solidify your understanding through practice.

Who Is This Book For:

Whether you're a novice programmer eager to start your journey

or an experienced developer seeking to deepen your

understanding of low-level programming, this book caters to

individuals at all levels. It's ideal for students, hobbyists,

professionals, and anyone passionate about honing their

programming skills.

Conclusion:

By the end of this book, you'll emerge with a solid foundation

in C programming, equipped to write efficient algorithms,

create versatile applications, and approach more complex

programming challenges with confidence. Get ready to unlock

the potential of C programming and embark on a transformative

learning experience that will shape your programming journey

for years to come!

Programming with 'C' & Lab - 7

This introduction aims to provide a glimpse into the learning

approach, target audience, and the potential impact it can have

on a learner's programming abilities.

Programming with 'C' & Lab - 8

CSM – 6151: PROGRAMMING WITH ‘C’
LAB

Programming Lab

Introduction (Overview of the Lab)

Objectives

Overall Directions

Structure of ‘C’ Program

Salient Features of C

‘C’ Program Development Environment

Phase-I: Creating a Program

Phase-II&III: Preprocessing and Compiling a ‘C’

Program

Install Visual Studio Code on Windows

How to design/develop a Program

Structure of ‘C’ Program

Compile and Run ‘C’ Program

Lab Exercise ‘C’ Program Session-wise

OVERVIEW OF THE LAB

This lab course offers hands-on experience aimed at practical

application. Participants have finished the BCA-151 Programming

Principles and Algorithms Labs support course, which covers C

programming examples across Windows, UNIX, and DOS

systems. Each session concludes with a series of programming

problems for practice. It's essential to thoroughly review the

program documentation regulations and adhere to the general

guidelines provided.

Program development steps:

This program development involves a series of sequential steps

essential for creating in a high-level language and converting it

Programming with 'C' & Lab - 9

into machine-level language:

1. Drafting and refining the software design.

2. Linking the application with required library

modules.

3. Compiling the software.

4. Executing the program for operation.

This lab course will discuss the separate step compilation process

of the language C.

OBJECTIVES

After completing this lab course, you will be able to:

 The goal is to guide learners in comprehending the

problem-solving rationale and algorithm formulation

process.

 This includes crafting a corresponding flowchart

and comprehending the syntax and framework of C

programming.

 Proficiency in procedural language programming is

emphasized, covering the methods for assembling,

connecting, and resolving issues in C code.

 The primary aim is to impart a foundational

comprehension of C language programming to

students. This encompasses teaching them problem-

solving strategies and proficient writing techniques in

C programming.

 The curriculum covers fundamental concepts such

as functions, pointers, file handling, structures, loops,

and arrays, ensuring a comprehensive understanding of

these key components in programming.

Programming with 'C' & Lab - 10

OVERALL DIRECTIONS

To try each of the tasks and challenges listed in the list, session

by session.

You can ask the responsible lab teacher for help completing the lab

exercises. The lab teacher is clearly not expected to provide you

with solutions to the assignments as they are credit-based, but you

are welcome to ask questions about the C language or any

technical issues.

You should put comments (text in between /*... */ delimiters)

above every function in the code, including the main function, for

every application. A description of the function that has been

developed, its goal, the significance of the parameter it uses, and

the meaning of the return result, if any, should also be included.

Prior to the primary function’s source code, comprehensive

explanations outlining the purpose of the program will be

incorporated within the comment block. These explanations will

elucidate the program's objectives and functionalities. Throughout

the code, relevant comments will be strategically placed to enhance

readability and understanding.

The C program will strictly adhere to the ANSI standard for the

language, ensuring compatibility and conformity. It will be

developed as a generic and interactive application, meticulously

documented with real input and output data to facilitate

comprehension.

To maintain integrity, submissions that appear derivative,

stemming from multiple sources but exhibiting remarkable

similarities, will not be considered. It is strongly advised against

replicating or mimicking someone else's work to ensure

individuality and authenticity in submissions.

Your responsibility includes creating a separate directory

Programming with 'C' & Lab - 11

inaccessible to others for storing all programs to ensure

confidentiality. Keeping an Observation Book and Lab Record is

mandatory. The lab manual provides a session-wise list of

programs, and it's essential to prepare algorithms and record

programs in the Observation Book prior to each session.

During lab hours, dedicate time to executing, testing, and

enhancing programs for desired outputs. Upon completing a lab

exercise, approach a lab instructor or in-charge for evaluation and

signature in the Observation Book.

Lab assignments should be submitted in the form of a

comprehensive Lab Record. This record should encompass

algorithms, program codes with comments, and outputs for various

inputs provided, ensuring a thorough documentation of the work

completed.

STRUCTURE OF ‘C’ PROGRAM

A 'C' program is constructed from multiple instructions, each

written as an individual statement. It commences with the main

function enclosed in opening braces, signifying its initiation. This

is succeeded by variable and constant declarations, succeeded by

statements encompassing input and output operations.

The structure of a 'C' program typically involves several sections,

as outlined below:

1. Initialization: Begins with the 'main' function, the entry point of

execution.

2. Variable and Constant Declarations: Defines variables and

constants necessary for the program.

3. Statements: Includes instructions for data processing, involving

input/output operations and logic implementation.

Programming with 'C' & Lab - 12

These sections collectively form the structure of a 'C' program,

organizing the flow of operations:

DOCUMENTATION SECTION

LINK SECTION

DEFINITION SECTION

GLOBAL DECLARATION SECTION

Main() Function Section

{

Declaration part

Executable part

}

SUBPROGRAM SECTION

User defined function

SALIENT FEATURES OF C

C language boasts several defining characteristics that have

propelled its popularity within the programming landscape, many

of which were thoroughly covered during the BCA-151 Problem

Solving and Programming course:

1. Small Size: C's concise nature allows for efficient coding

without unnecessary overheads.

2. Extensive Use of Function Calls: Its modular approach

leverages functions for code organization and reusability.

3. Structured Language: Encourages organized and systematic

programming practices, enhancing readability and maintenance.

4. Low-Level (Bitwise) Programming Availability: Offers direct

access to memory and bitwise operations for optimized code

implementation.

5. Pointer Implementation: Extensively employs pointers for

memory management, arrays, structures, and functions, enabling

intricate data manipulation.

Programming with 'C' & Lab - 13

6. High-Level Constructs: Provides high-level constructs for

abstraction, simplifying complex operations.

7. Handling Low-Level Activities: Allows direct manipulation of

hardware, making it suitable for system programming and

embedded systems.

8. Efficient Program Output: Produces highly efficient programs

due to its close-to-hardware approach.

9. Cross-Platform Compilation: Offers portability, allowing

compilation on various computer architectures, contributing to its

versatility and widespread use."

These features collectively contribute to C's robustness, flexibility,

and efficiency, making it a prominent choice for diverse

programming needs.

 ‘C’ PROGRAM DEVELOPMENT
ENVIRONMENT

C systems generally consist of several parts: a program-

development environment, the language and the C Standard

Library. Explain the following typical C development

environment:

Programming with 'C' & Lab - 14

C programs typically go through six phases to be executed. These

are: edit, preprocess, compile, link, load and execute.

Phase – I: Creating a Program

Visual Studio Code stands out as one of the most widely utilized

code editors and integrated development environments (IDEs)

developed by Microsoft. It serves as a versatile platform for coding

in various programming languages, fostering the creation and

optimization of codebases while facilitating efficient debugging.

Notably, Visual Studio Code boasts cross-platform compatibility,

running seamlessly on Windows, macOS, and Linux operating

systems.

The editor's popularity extends globally, including in India, where

it has gained widespread adoption. Its user-friendly interface and

extensive language support, encompassing languages such as C,

C++, Java, Python, JavaScript, React, and Node.js, contribute to its

broad appeal. Visual Studio Code distinguishes itself by offering a

rich ecosystem of in-app extensions tailored for diverse

programming languages, enabling users to tailor their coding

environment to specific needs.

One of the noteworthy features of Visual Studio Code is its

visually appealing and dynamic user interface, complemented by a

sophisticated night mode that enhances the coding experience. The

editor facilitates a smooth coding process by providing users with

auto-complete code suggestions, streamlining the writing of code

and enhancing overall productivity.

In conclusion, Visual Studio Code has secured its position as a

premier code editor and IDE due to its versatility, extensive

language support, user-friendly interface, and a plethora of

Programming with 'C' & Lab - 15

features, making it a top choice for programmers across the globe,

including in India.

Phase–II&III: Preprocessing and Compiling a

‘C’ Program

The compiler translates the C program into machine-language

code, also known as object code. Before the translation phase, a

preprocessor program in the C system automatically executes. This

preprocessor adheres to special commands known as preprocessor

directives, instructing specific manipulations to be carried out on

the program before compilation. These manipulations commonly

involve including other files within the file being compiled and

performing text replacements.

The compiler converts the C program into machine-language code.

Syntax errors occur when the compiler encounters a statement that

violates the language's rules and cannot be recognized. In response,

the compiler issues an error message, aiding in locating and

rectifying the erroneous statement. It's worth noting that the

wording for error messages issued by the compiler isn't

standardized by the C Standard, leading to potential variations in

error messages across different systems. These errors are

commonly referred to as compile errors or compile-time errors.

Install Visual Studio Code on Windows

To Install Visual Studio Code on a Windows System, follow

these steps:

1. Download Visual Studio Code:

 - Open your web browser and navigate to the official Visual

Programming with 'C' & Lab - 16

Studio Code website:

https://code.visualstudio.com/.

 - Click on the "Download for Windows" button.

2. Run the Installer:

 - Once the installer executable (.exe) is downloaded, locate the

file (usually in the Downloads folder) and double-click on it to run

the installer.

3. Begin Installation:

 - The installer will prompt you to confirm that you want to install

Visual Studio Code. Click "Yes" or "Run" to proceed.

4. Choose Setup Options:

 - The installer will provide various setup options. You can

choose the default settings or customize them according to your

preferences. For most users, the default options are sufficient.

Programming with 'C' & Lab - 17

5. Select Additional Tasks:

 - The installer may offer additional tasks, such as creating

desktop shortcuts or adding entries to the PATH environment

variable. Choose the options that suit your preferences.

6. Install:

 - Click the "Install" button to initiate the installation

process. The installer will copy the necessary files and set

up Visual Studio Code on your system.

Programming with 'C' & Lab - 18

7. Complete Installation:

 - Once the installation is complete, you will see a

confirmation message. You can choose to launch Visual

Studio Code immediately by leaving the corresponding

option checked.

8. Launch Visual Studio Code:

 - If you didn't choose to launch it during the installation,

you can find the Visual Studio Code shortcut on your

desktop or in the Start menu. Double-click on the shortcut

to open Visual Studio Code.

Programming with 'C' & Lab - 19

9. Update Extensions (Optional):

 - After launching Visual Studio Code, you may want to

explore and install extensions based on your programming

needs. You can access the Extensions view by clicking on

the Extensions icon in the Activity Bar on the side.

That's it! You have successfully installed Visual Studio

Code on your Windows system, and ready to start coding

in your preferred programming languages.

successfully installed Visual Studio Code on our

Windows system.

Programming with 'C' & Lab - 20

HOW TO DESIGN/DEVELOP PROGRAM

Steps involved in program development:

To develop the program in high level language and translate it into

machine level language following steps have to be practised.

1. Writing and editing the program.

2. Linking the program with the required library modules.

3. Compiling the program.

4. Executing the program.

Algorithm:

It is a method of representing the step by step process for solving a

problem. Each step is called an instruction.

Characteristics of algorithm are:

Finiteness: It terminates with finite number of steps.

Definiteness: Each step of algorithm is exactly defined.

Effectiveness: All the operations used in the algorithm can be

performed exactly in a fixed duration of time.

Input: An algorithm must have an input before the execution of

program begins.

Output: An algorithm has one or more outputs after the execution

of the program.

Example of algorithm to find sum of two numbers:

Step1: BEGIN

Step2: READ a, b

Step3: ADD a and b and store in variable c

Step4: DISPLAY c

Step5: STOP

Programming with 'C' & Lab - 21

STRUCTURE OF ‘C’ PROGRAM

C program is a collection of several instructions where each

instruction is written as a separate statement. The C program starts

with a main function followed by the opening braces which

indicates the start of the function. Then follows the variable and

constant declarations which are followed by the statements that

include input and output statements.

C program may contain one or more sections as:

DOCUMENTATION SECTION

LINK SECTION

DEFINITION SECTION

GLOBAL DECLARATION SECTION

Main() Function section

{

Declaration part

Executable part

}

SUBPROGRAM SECTION

User defined functions

Example:

Write a C program to find the sum and average of three

numbers.

Algorithm:

Step 1: Start

Step 2: Declare variables num1, num2, num3 and sum, average.

Step 3: Read values num1, num2, num3.

Step 4: Add num1, num2, num3 and assign the result to sum.

sum num1 + num2 + num3

average sum/3

Programming with 'C' & Lab - 22

Step 5: Display sum and average

Step 6: Stop

Flow Chart:

Program:
#include<stdio.h>
void main()
{
int a,b,c;
int sum,average;
printf("Enter any three integers: ");
scanf("%d%d %d",&a,&b,&c);
sum = a+b+c;
average=sum/3;
printf("Sum and average of three integers: %d %d",sum,average);
return 0;
}
INPUT: Enter any three integers:2 4 5
OUTPUT: Sum and average of three integers: 11 3

Example:
Write a C program to find the sum of individual digits of positive
integer.
Algorithm:
Step 1: Start
Step 2: Read
Step 3: Initialize sum 0
Step 4: while(n!=0)
 Begin
Step 5: r n%10
Step 6: Sum Sum+r
Step 7: n n/10
 End
Step 8: Print “sum”
Step 9: Stop

Sum n1, n2, n3
Avg sum/3

Read n1, n2, n3

Start

Stop

Print Avg, sum

Programming with 'C' & Lab - 23

Flow Chart:

Program:
#include<stdio.h>
#include<conio.h>
void main()
{
int n,r,sum=0;
clrscr();
printf("ENTER A POSITIVE INTEGER \n");
scanf("%d",&n);
while(n!=0)
{
r=n%10;
sum=sum+r;
n=n/10;
}
printf("THE SUMOF INDIVIDUAL DIGITS OF A POSITIVE
INTEGER IS..%d",sum); getch();
}
INPUT: ENTER A POSITIVE INTEGER 5 3 2 1
OUTPUT: THE SUM OF INDIVIDUAL DIGITS OF A POSITIVE
INTEGER IS..11

Example:
Write a C program to check whether given number is Armstrong
Number or Not.

Algorithm:

Programming with 'C' & Lab - 24

Step 1: Start
Step 2: Read n
Step 3: assign sum
Step 4: if m>0 repeat

Step 4.1: m m/10
Step 4.2: count++
Step 4.3: until the condition fail

Step5: if I>0 repeat step 4 until condition fail
Step 5.1:rem I%10
Step 5.2:sum sum+pow(rem,count)
Step 5.3:I I/10

Step 6:if n=sum print Armstrong otherwise print not armstrong
Step 7:stop

Flow Chart:

Program:

#include<stdio.h>
void main()
{
int n, n1, rem, num=0;
printf("Enter a positive integer: ");
scanf("%d", &n); n1=n;
while(n1!=0)
{
rem=n1%10;
num+=rem*rem*rem;
n1/=10;
}

Programming with 'C' & Lab - 25

if(num==n)
printf("%d is an Armstrong number.",n);
else printf("%d is not an Armstrong number.",n);
}
Input: Enter a positive integer: 371
Output: 371 is an Armstrong number.

COMPILE AND RUN ‘C’ PROGRAM

To compile and run a C language program, you need a C compiler.

A compiler is software that is used to compile and execute

programs. To set up a C language compiler on your

computer/laptop, there are two ways:

1. Download a full-fledged IDE like Turbo C++ or Microsoft Visual

C++ or DevC++, which comes along with a C language compiler.

2. Or, you can use any text editor to edit the program files and

download the C compiler separately and then run the C program

using the command line.

If you haven't already installed an IDE for the C language - Follow

this step-by-step guide to Install Turbo C++ for C Language

Using an IDE - Turbo C

Programming with 'C' & Lab - 26

We recommend that you use Turbo C or Turbo C++ IDE,

which is the oldest IDE for C programming. It is freely

available over the Internet and is good for a beginner.

Step 1: Open Turbo C IDE (Integrated Development

Environment), click on File, and then click on New

Step 2: Write a Hello World program that we created in the

previous article - the C Hello World program.

Step 3: Click on Compile menu and then

on Compile option, or press the keys and press Alt + F9 to

compile the code.

Step 4: Click on Run or press Ctrl + F9 to run the code.

Yes, C programs are first compiled to generate the object

code and then that object code is Run.

Programming with 'C' & Lab - 27

Step 5: Output is

Run C Program Without using any IDE

 If you do not wish to set up an IDE and prefer the old-

school way, then download the C compiler, which is

called gcc , from the GCC

website https://gcc.gnu.org/install/

 Once you have downloaded and installed the gcc compiler,

all you have to do is open any text editor, copy and paste

the C program code for the C Hello World Program, and

save it with the name the helloworld.c like any other file

you save with a name.

 Now, Open the Command prompt or Terminal(if you use

Ubuntu or Mac OS), and go to the directory where you have

saved the helloworld.c program file.

Programming with 'C' & Lab - 28

 Type the command gcc hello.c to compile the code. This

will compile the code, and if there are no errors, then it will

produce an output file with the name a.out(default name)

 Now, to run the program, type in ./a.out , and you will

see Hello, World displayed on your screen.

C Syntax:

Example

#include <stdio.h>

int main()

 {

 printf("Hello World!");

 return 0;

}

Explained:

Line 1: #include <stdio.h> is a header file library that lets us

work with input and output functions, such as printf () (used in line

4). Header files add functionality to C programs.

Line 2: A blank line. C ignores white space. But we use it to make

the code more readable.

Line 3: Another thing that always appear in a C program is main().

This is called a function. Any code inside its curly brackets {} will

be executed.

Line 4: printf() is a function used to output/print text to the screen.

In our example, it will output "Hello World!".

Programming with 'C' & Lab - 29

Line 5: return 0 ends the main() function.

Line 6: Do not forget to add the closing curly bracket } to actually

end the main function.

Note that: Every C statement ends with a semicolon ;

Note: The body of int main() could also been written as:

int main(){printf("Hello World!");return 0;}

Remember: The compiler ignores white spaces.

However, multiple lines make the code more readable.

C Statements

Statements

A computer program is a list of "instructions" to be

"executed" by a computer.

In a programming language, these programming

instructions are called statements.

The following statement "instructs" the compiler to print

the text "Hello World" to the screen:

Example

printf("Hello World!");

It is important that you end the statement with a

semicolon.

Programming with 'C' & Lab - 30

If you forget the semicolon (;), an error will occur, and

the program will not run:

error: expected ';' before 'return.'

Many Statements

Most C programs contain many statements.

The statements are executed, one by one, in the same

order as they are written:

printf("Hello World!");

printf("Have a good day!");

return 0;

Explained

From the example above, we have three statements:

1. printf("Hello World!");

2. printf("Have a good day!");

3. return 0;

The first statement is executed first (print "Hello World!"

to the screen).

Then the second statement is executed (print "Have a

good day!" to the screen).

And at last, the third statement is executed (end the C

program successfully).

Programming with 'C' & Lab - 31

printf Functions
You can use as many printf() functions as you want. However, note that it does
not insert a new line at the end of the output:

Example
#include <stdio.h>

int main() {
 printf("Hello World!");
 printf("I am learning C.");
 printf("And it is awesome!");
 return 0;
}

New Lines

To insert a new line, you can use the \n character:

Example

#include <stdio.h>

int main()

{
 printf("Hello World!\n");
 printf("I am learning C.");
 return 0;
}

Tip: Two \n characters after each other will create a blank line:

Example

#include <stdio.h>

int main() {
 printf("Hello World!\n\n");
 printf("I am learning C.");
 return 0;
}

Programming with 'C' & Lab - 32

Comments in C

Comments can be used to explain code, and to make it more

readable. It can also be used to prevent execution when testing

alternative code.

Comments can be singled-lined or multi-lined.

Single-line Comments

Single-line comments start with two forward slashes (//).

Any text between // and the end of the line is ignored by the

compiler (will not be executed).

This example uses a single-line comment before a line of code:

Example
// This is a comment

printf("Hello World!");

C Multi-line Comments

Multi-line comments start with /* and ends with */.

Any text between /* and */ will be ignored by the compiler:

Example

/* The code below will print the words Hello World! to the screen,
and it is amazing */
printf("Hello World!");

Programming with 'C' & Lab - 33

Program 1: Check if a number is positive or negative.

Program 2: Check if a number is even or odd.

Programming with 'C' & Lab - 34

Program 3: Find the largest of two numbers.

Program 4: Check if a character is a vowel or consonant.

Program 5: Check if a number is divisible by both 3 and 5.

Program 6: Simple Calculator Using Switch.

Programming with 'C' & Lab - 35

#include <stdio.h>

int main() {

 char op;

 float a, b;

 printf("Enter an operator (+, -, *, /): ");

 scanf(" %c", &op);

 printf("Enter two operands: ");

 scanf("%f %f", &a, &b);

 switch(op) {

 case '+':

 printf("Result = %.2f\n", a + b);

 break;

 case '-':

 printf("Result = %.2f\n", a - b);

 break;

 case '*':

 printf("Result = %.2f\n", a * b);

 break;

 case '/':

 if (b != 0)

 printf("Result = %.2f\n", a / b);

 else

 printf("Error: Division by zero\n");

 break;

 default:

 printf("Invalid operator\n");

 }

 return 0;

}

Program 7: Day of the Week Using Switch.

Programming with 'C' & Lab - 36

#include <stdio.h>

int main()

{

 int day;

 printf("Enter day number (1 to 7): ");

 scanf("%d", &day);

 switch(day) {

 case 1:

 printf("Sunday\n");

 break;

 case 2:

 printf("Monday\n");

 break;

 case 3:

 printf("Tuesday\n");

 break;

 case 4:

 printf("Wednesday\n");

 break;

 case 5:

 printf("Thursday\n");

 break;

 case 6:

 printf("Friday\n");

 break;

 case 7:

 printf("Saturday\n");

 break;

 default:

 printf("Invalid day number\n");

Programming with 'C' & Lab - 37

 }

 return 0;

}

Program 8: Grade Evaluation Using Switch.

#include <stdio.h>

int main() {

 char grade;

 printf("Enter your grade (A/B/C/D/F): ");

 scanf(" %c", &grade);

 switch(grade) {

 case 'A':

 printf("Excellent!\n");

 break;

 case 'B':

 printf("Good job!\n");

 break;

 case 'C':

 printf("Well done\n");

 break;

 case 'D':

 printf("You passed\n");

 break;

 case 'F':

Programming with 'C' & Lab - 38

 printf("Better try again\n");

 break;

 default:

 printf("Invalid grade\n");

 }

 return 0;

}

Program 9: Menu-Driven Program using Switch.

Program 10: Vowel or Consonant Checker using Switch.

#include <stdio.h>

int main()

{

 char ch;

 printf("Enter a character: ");

 scanf(" %c", &ch);

Programming with 'C' & Lab - 39

 switch(ch) {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u':

 case 'A':

 case 'E':

 case 'I':

 case 'O':

 case 'U':

 printf("%c is a vowel.\n", ch);

 break;

 default:

 printf("%c is a consonant.\n", ch);

 }

 return 0;

}

Program 11: Print Numbers from 1 to 10 using for loop.

Program 12: Print Even Numbers from 2 to 20 using while loop.

Programming with 'C' & Lab - 40

Program 13: Calculate the Factorial of a Number using for loop.

Programming with 'C' & Lab - 41

Program 14: Sum of Digits of a Number using while loop.

Program 15: Print Multiplication Table of a Number using for

loop.

Programming with 'C' & Lab - 42

Program 16: Program to Print Numbers 1 to 10 but Stop at 5
using break statement.

Program 17: Program to Print Odd Numbers Between 1 to 10
using continue statement.

Program 18: Program to Find First Divisible Number by 7 in a
Range using break statement.

Programming with 'C' & Lab - 43

Program 19: Program to Skip Multiples of 3 Between 1 to 20
using continue statement.

Program 20: Program to Take Input Until Negative Number is
Entered using break statement.

Program 21: Program to Find the Sum of All Elements in an
Array.

Programming with 'C' & Lab - 44

Program 22: Program to Find the Largest Element in an Array.

Program 23: Program to Count Even and Odd Elements in an
Array.

Programming with 'C' & Lab - 45

Program 24: Program to Reverse an Array.

Program 25: Program to Insert an Element in an Array.

Program 26: Check if a String is a Palindrome.

Programming with 'C' & Lab - 46

Program 27: Count Vowels in a String.

Program 28: Compare Two Strings.

Program 29: Find Length of a String.

Programming with 'C' & Lab - 47

Program 30: Concatenate Two Strings.

Program 31: Basic Pointer Usage.

Program 32: Pointer and Array.

Programming with 'C' & Lab - 48

Program 33: Pointer to Pointer.

Program 34: Swapping Values Using Pointers.

Program 35: Dynamic Memory Allocation.

Programming with 'C' & Lab - 49

Programming with 'C' & Lab - 50

LAB EXERCISE ‘C’ PROGRAM SESSION
WISE

Session 1

1 –
a). Write a C program to find sum and average of three numbers.
b). Write a C program to check whether a year is a leap year or not.
c). Write a program in c to find even or odd numbers.
d). Write a C program to find the sum of individual digits of a given
positive integer.
e). Write a C program to generate the first n terms of the Fibonacci
sequence.

Session 2

2 –
a). Write a C program to generate prime numbers between 1 to n.
b). Write a C program to Check whether given number is Armstrong
Number or Not.
c). Write a program in c to calculate power using recursion.
d). Write a program in c to function to check lowercase letter.
e). Write program to display number 1 to 10 in octal, decimal and
hexadecimal system.

Session 3

3 –
a). Write a C program to generate following pattern:
1
1 2
1 2 3
1 2 3 4
b). Write a C program to generate following pattern:
*
* *
* * *
* * * *
c). Write a C program to generate following pattern:
1
1 1
1 1 1
1 1 1 1
d). Write a program to multiplication of two matrix.

 e). Write a program to demonstrate multiplication table input from
user till 10.

