Course Code:- CSM-6112
Course Name:- Computer
Organization &
Architecture

Computer Organization & Architecture -1

MASTER OF COMPUTER

APPLICATIONS (MCA)

PROGRAMME DESIGN COMMITTEE

Prof. Masood Parveez
Vice Chancellor — Chairman
MTSOU, Tripura

Prof. Abdul Wadood Siddiqui
Dean Academics
MTSOU, Tripura

Prof. C.R.K. Murty
Professor of Distance Education
IGNOU, New Delhi

Prof. Mohd. Nafees Ahmad Ansari
Director of Distance Education
Aligarh Muslim University, Aligarh

Prof. P.V. Suresh
Professor of Computer Science
IGNOU, New Delhi

Prof. V.V. Subrahmanyam
Professor of Computer Science

COURSE WRITER

Dr. Md. Amir Khusru Akhtar
Associate Professor of Computer
Science

MTSOU, Tripura

CSM-6111 Data Communication &
Computer Networks

Dr. Ankur Kumar

Assistant Professor

MTSOU, Tripura

CSM-6112 Computer Organization
& Architecture

Dr. Manish Saxena

Assistant Professor of Computer
Science

MTSOU, Tripura

CSM-6113 Discrete Mathematics

Dr. Duvvuri B. K. Kamesh

Assistant Professor of Computer
Science

MTSOU, Tripura

CSM-6114 Accountancy and
Financial Management

Mr. Pankaj Kumar

Assistant Professor of Computer
Science

Mangalayatan University, Aligarh
CSM-6151 Programming with 'C' &
Lab

Ms. Vanshika Singh

Assistant Professor of English
MTSOU, Tripura
ENM-6101
Communication

Professional

COURSE EDITORS

Prof. S. Nagakishore Bhavanam
Professor of Computer Science
Mangalayatan University, Jabalpur

Prof. Jawed Wasim
Professor of Computer Science
Mangalayatan University, Aligarh

Dr. Manoj Varshney

Associate Professor of Computer
Science

MTSOU, Tripura

Dr. M. P. Mishra

Associate Professor of Computer
Science
IGNOU, New Delhi

Dr. Akshay Kumar

Associate Professor of Computer
Science

IGNOU, New Delhi

FORMAT EDITORS

Dr. Nitendra Singh
Associate Professor of English
MTSOU, Tripura

Ms. Angela Fatima Mirza

Assistant Professor of English
MTSOU, Tripura

Dr. Faizan
Assistant Professor of English

MTSOU, Tripura

Ms. Vanshika Singh
Assistant Professor of English
MTSOU, Tripura

MATERIAL PRODUCTION

1. Mr. Himanshu Saxena
2. Ms. Rainu Verma

3. Mr. Jeetendra Kumar
4. Mr. Khiresh Sharma

Mr. Ankur Kumar Sharma
Mr. Pankaj Kumar

Computer Organization & Architecture -2

CONTENT

Page No.
Block 1 ; Represetation of Information and Basic Building Blocks 05-146

Unit 1: Introduction to Computer, Computer hardware generation, Number System: Binary, Octal,
Hexadecimal, Character Codes (BCD, ASCII, EBCDIC).

Unit 2: Logic gates, Boolean Algebra, K-map simplification, Half Adder, Full Adder, Subtract or,
Decoder, Encoders, Multiplexer, Demultiplexer.

Unit 3: Carry look ahead adder, Combinational logic Design, Flip-Flops, Registers, Counters
(synchronous & asynchronous).

Unit 4: ALU, Micro-Operation. ALU- chip, Faster Algorithm and Implementation (multiplication &
Division).

Block II: Basic Organization 147-243

Unit 5: Von Neumann Machine (IAS Computer), Operational flow chart (Fetch, Execute), Instruction
Cycle, Organization of Central Processing Unit.

Unit 6: Hardwired & micro programmed control unit, Single Organization, General Register
Organization, Stack Organization.

Unit 7: Addressing modes, Instruction formats, data transfer & Manipulation, I/O Organization, Bus
Architecture, Programming Registers.

Block III: Memory Organization & I/0O Organization 244-370

Unit 8: Memory Hierarchy, Main memory (RAM/ROM chips), Auxiliary memory, Associative
memory, Cache memory, Virtual Memory.

Unit 9: Memory Management Hardware, hit/miss ratio, magnetic disk and its performance, magnetic
Tape etc.

Unit 10: Peripheral devices, I/O interface, Modes of Transfer, Priority Interrupt, Direct Memory
Access, Input-Output Processor.

Unit 11: Serial Communication. I/0 Controllers, Asynchronous data transfer, Strobe Control,
Handshaking.
Block I'V: Process Organization 371-525

Unit 12: Basic Concept of 8-bit micro Processor (8085) and 16-bit Micro Processor (8086), Assembly
Instruction Set.

Unit 13: Assembly language program of (8085): Addition of two numbers, Subtraction, Block
Transfer, find greatest number.

Unit 14: Table search, Numeric Manipulation, Introductory Concept of pipeline, Flynn’s and Feng’s
Classification, Parallel Architectural classification.

Unit 15: Parallel Processing Concepts: Understanding parallel processing concepts including
parallelism types (task-level, data-level, instruction-level) and parallel architectures (SIMD, MIMD),
Multiprocessing Systems, Scalability and Load Balancing.

Unit 16: System-Level Organization: System Architectures, Analyzing system architectures
including single-processor systems, multiprocessor systems, and distributed systems.
Scalability and Reliability: Evaluating system-level scalability and reliability considerations
in large-scale computing environments.

Computer Organization & Architecture -3

Computer Organization & Architecture -4

BLOCK I: REPRESENTATION OF
INFORMATION AND BASIC
BUILDING BLOCKS

UNIT - 1: BASICS OF COMPUTERS

Structure

1.0 Introduction

1.1 Objectives

1.2 Introduction to Computer

1.2.1 Computer Applications

1.3 Computer Generations

1.4 Number System

1.5 Conversion Techniques

1.6 Character Codes

1.7 Conclusion

1.8 Unit Based Questions & Answers

1.9 References

1.0 INTRODUCTION

In today's digital age, computers have become an integral part of
our daily lives. From simple calculations to complex simulations,
computers have revolutionized the way we work, communicate,
and entertain ourselves. Understanding the basics of computers and
their underlying technology is essential for anyone seeking to

navigate this digital landscape.

This unit aims to provide a comprehensive introduction to the
fundamentals of computers, covering topics such as computer

applications, generations, number systems, conversion techniques,

Computer Organization & Architecture -5

and character codes. By the end of this unit, students will have a
solid understanding of the principles that underlie computer

systems and be able to apply this knowledge in practical ways.

In this introduction, we will set the stage for the topics that will be
covered in this unit. We will explore the various applications of
computers, the different generations of computer technology, and
the basic concepts of number systems and character codes. This
foundation will provide a solid base for understanding the more

advanced topics that will be covered in subsequent units.

1.1 OBJECTIVES

By the end of this unit, students will be able to understand,

e Understand the basic components and applications of
computers

e Identify and describe the different generations of
computer technology

e Explain the concept of number systems and perform
conversions between different number systems (binary,
decimal, hexadecimal)

e Understand the importance of character codes and their
uses

e Apply knowledge of computer fundamentals to real-
world scenarios

e Analyze and solve problems related to computer
systems and technology

e Develop critical thinking skills in understanding

computer concepts and terminology

Computer Organization & Architecture -6

1.2 INTRODUCTION TO COMPUTER

A computer is an electronic device that manipulates information or
data. It has the ability to store, retrieve, and process data.
Computers can be used to type documents, send emails, play
games, and browse the Web. They are also used to handle
spreadsheets, accounting, database management, presentations, and

more€.

Basic Functions of a Computer
Computers perform four primary functions:

1. Imput: The process of entering data and instructions into a
computer system. Input devices include keyboards, mice,
scanners, and microphones.

2. Processing: The manipulation of data by the computer's
central processing unit (CPU) to convert data into
information. This includes performing calculations, making
decisions, and executing programs.

3. Storage: Saving data and instructions in the computer's
memory for future use. There are two main types of
storage:

o Primary Storage (RAM - Random Access
Memory): Temporary storage used while the
computer is running.

o Secondary Storage (HDD, SSD, USB drives):
Permanent storage used to save data and programs.

4. Output: The process of displaying or producing
information from the computer. Output devices include

monitors, printers, speakers, and projectors.

Computer Organization & Architecture -7

The block diagram of a computer is composed of

numerous important parts.

The Arithmetical and Logical Unit is in charge of using

arithmetical and logical expressions to do calculations and make

judgments.

Control Unit (CU): This part of the computer system is
responsible for monitoring and controlling the overall
processes to make sure they are planned and executed
properly.

Registers: Integrated into the CPU, registers are little, fast
memory modules. They are in charge of keeping track of
the information and commands that the CPU is currently
processing.

Memory Unit: The memory unit functions as the computer
system's storage component, holding data and program
statements for both short- and long-term storage.

Input and Output Unit: The input and output unit is in
charge of transmitting and receiving data, enabling
communication between the computer and external devices,
and displaying information to the user, usually via a

display.

Central Processing Unit

Control Unit

Asithmetic & Loglc
Unit

| > Auxillary Storage

Memory Unit

Types of Computers

Computer Organization & Architecture -8

A variety of computers are offered in different weights, sizes, and
designs. They can do a variety of jobs because of their size and
shape. They fit into a variety of categories. The computers are
designed by qualified computer architects who fulfill certain
specifications. Different sizes and forms are utilized by computers
in households and hospitals. The many categories of computers
will be discussed in the sections that follow. An advanced
computer's capacity is based on how well it can process data or

manage tasks.

The following standards are applied in order to evaluate their
performance:
1. The amount of information which can be stored in memory.
2. The computer's internal operations are at a fast pace
3. The quantity and variety of peripheral devices.
4. The computer has various software alternatives from which

to pick

In the past, a computer's capacity was mostly determined by its
physical size: the larger the machine, the higher the volume.
Dimensions, pace of operation, and ratio in computer language are
now proportionate. Smaller machines are now produced thanks to
recent technological advancements, enabling packaging of

comparable speed and versatility in a smaller footprint.

e Micro Computers: A revolutionary age in technology
began in 1971 with the introduction of mass-produced
silicon chips, which made it possible to incorporate
computational capabilities into a wide range of equipment.

Large-scale integration of silicon chip-powered
Computer Organization & Architecture -9

microcomputers transformed their capabilities. These chips
remarkably reduced the amount of processing power
available to tiny sizes; a microprocessor small enough to fit
through the eye of a needle serves as evidence of this
progress. The creation of semiconductor-based silicon chips
was essential to the advancement of microcomputer
memories. These microcomputers coordinated stored
program control in digital computer systems using a
combination of microprocessors, programmable ROM, and
RAM. These microcomputers, sometimes referred to as
personal computers or PCs, are now widely available and
provide compact, affordable solutions for both personal and

business use in homes and businesses.

Mini Computers: Thanks to advancements in technology
throughout the 1960s, producers were able to meet the
growing need for independent devices such as
minicomputers, which filled the gap left by larger
computers being unfeasible to complete.

Often referred to as mini mainframe computers, these
systems offered faster operating speeds and larger storage
capacities than their microcomputer equivalents.
Minicomputers combined many desktop drives and were
capable of supporting a large number of high-speed
input/output devices, which allowed for the direct

processing of large data files.

Operating systems designed specifically for minicomputers
supported virtual storage and multiprogramming, allowing
several applications to run simultaneously. These systems

were able to adjust and meet a variety of user needs
Computer Organization & Architecture -10

because of their inherent flexibility. Although they couldn't
match the raw power of larger or medium-sized computers,
minicomputers were nonetheless useful because they struck
a good balance between size and capabilities, making them

a flexible option.

Medium-sized Computers: Compared to smaller
computer systems, medium-sized computers provide faster
operating speeds and larger storage capacities. Medium-
sized computer systems outperform their smaller
counterparts in terms of storage capacity and operating
performance. The expansion of a computer's data
processing capacity by adding extra components, such as

memory and peripherals, is what defines its expandability.

Large Computers: These machines represent the pinnacle
of speed and adaptability, frequently with minimal user
intervention required for control systems. Large computer
systems come in a wide range of configurations, from lone
processing units to massive national computer networks
that integrate massive devices. Large computers' internal
operating speeds are expressed in nanoseconds, which
highlights their rapidity, while the speeds of smaller
computers are expressed in microseconds, which shows a

relative difference in processing velocity.

Mainframe Computers: Computers known as mainframes
are enormous, multi-user computers designed to process
millions of instructions per second and have the capacity to
access enormous amounts of data. Because of their skill at

handling huge data volumes, they are preferred by big

Computer Organization & Architecture -11

businesses, airline reservation systems, and hospitals. A
mainframe allows users to centrally store vast volumes of
data, facilitating processing and access from several

computers spread across various locations.

But many find it financially impracticable and prohibitively
expensive to purchase a mainframe for personal usage.
These systems are usually too expensive and large for
individual purchasers to afford. Mainframes are the second
largest computers in terms of size and capability among all

computer families.

Supercomputers: Supercomputers are the modern
equivalent of the ultimate computer power, needed to
process massive amounts of data and decipher intricate
patterns across many scientific fields. These devices are
essential to vital applications like the creation of nuclear
weapons and accurate weather forecasting. Their strength is
in handling enormous volumes of scientific data, which
makes it possible to perform complex physical simulations,
quantum physics, weather forecasting, molecular modeling,
and climate research.

Supercomputers, which can process hundreds of millions to
trillions of instructions per second, are greatly sought after,
especially by governments due to their extensive
computational capabilities across various domains. They
are essential resources for many businesses, helping with

everything from product design to animation.

One of the most prominent instances is the PARAM

supercomputer series, which was developed by India's

Computer Organization & Architecture -12

Center for Development of Advanced Computing (CDAC)
and boasts astounding processing rates of up to 1 trillion
instructions per second. These supercomputers represent
the pinnacle of computing technology, facilitating
breakthroughs in a variety of fields and advancing scientific

and industrial innovation as well as computational intensity.

1.2.1 Computer Applications

Scientific Research

Computers play a crucial role in scientific research by providing

the computational power needed for complex simulations, data

analysis, and modeling.

Simulations and Modeling: Used in fields like physics,
chemistry, and biology to simulate real-world phenomena,
such as climate models, molecular modeling, and
astrophysical simulations.

Data Analysis: Processing large datasets from experiments
and observations, such as genomic data in bioinformatics or
particle collision data in physics.

Artificial Intelligence (AI) and Machine Learning (ML):
Applied to identify patterns and make predictions in

various scientific disciplines.

Business Applications

Computers enhance business operations by improving efficiency,

accuracy, and decision-making.

Office Productivity: Applications like word processors,
spreadsheets, and presentation software help with day-to-

day tasks.

Computer Organization & Architecture -13

o Enterprise Resource Planning (ERP): Integrates various
business processes like accounting, HR, and supply chain
management.

o Customer Relationship Management (CRM): Manages
interactions with customers, improves customer service,
and drives sales growth.

e Data Analysis and Business Intelligence: Analyzes
business data to support strategic decision-making and

identify market trends.

Education
Computers revolutionize education by providing new learning
methods, resources, and tools.

e E-Learning Platforms: Online courses, virtual classrooms,
and educational software enable remote learning and self-
paced education.

e Multimedia Resources: Interactive videos, animations,
and simulations enhance understanding of complex
subjects.

e Research and Collaboration: Access to online journals,
libraries, and collaborative tools facilitate research and
group projects.

e Administrative Systems: Manage student information,
scheduling, and communication within educational

institutions.

Computer Organization & Architecture -14

Entertainment

Computers offer a wide range of entertainment options,

transforming how people consume media and engage in leisure

activities.

Gaming: High-performance computers and gaming
consoles support advanced video games with realistic
graphics and complex gameplay.

Streaming Services: Platforms like Netflix, YouTube, and
Spotify provide on-demand access to movies, TV shows,
and music.

Social Media: Websites and applications like Facebook,
Instagram, and Twitter connect people and allow for
content sharing and communication.

Virtual Reality (VR) and Augmented Reality (AR):
Offer immersive experiences in gaming, education, and

virtual tours.

Healthcare

Computers improve patient care, streamline operations, and

advance medical research.

Electronic Health Records (EHR): Digitally store patient
information, making it easily accessible to healthcare
providers.

Medical Imaging: Advanced imaging techniques like MRI,
CT scans, and ultrasound rely on computer processing for
accurate results.

Telemedicine: Enables remote consultations and

monitoring, expanding access to healthcare services.

Computer Organization & Architecture -15

e Medical Research: Analyzes clinical data, supports drug
discovery, and helps in understanding diseases through

computational biology and bioinformatics.

1.3 COMPUTER GENERATIONS

The development of computers, which started in the sixteenth
century, led to the creation of modern technology. The computer

that we use now has likewise changed rapidly throughout time.

Computers underwent five major stages known as "Generations of
Computers" throughout this time. A new generation of computers
has different designs and sizes from their predecessors, but they
also have better processing and capabilities. Phase differentiation
is determined by the application of switching circuits. These

generations include:

The first generation of computers, which ran from 1940 to

1956.

e The Second Computer Generation ran from 1956 to 1963.

e The Third Generation of Computers, produced between
1964 and 1971.

e Systems that have been around since 1971.

e Computers from the fifth generation forward and beyond.

First Generation (1940s-1956s)

Vacuum tubes are a defining characteristic of early computers.
Filaments were used as an electronic source in the delicate glass

apparatus known as a vacuum tube. It is possible through the

Computer Organization & Architecture -16

manipulation and amplification of electronic impulses. These
vacuum tubes were used for control, storage, and calculation. J.
created the Electronic Numerical Integrator and Computer
(ENIAC), the first electronic computer with a general-purpose
programming. John V. Mauchly attends the University of
Pennsylvania, as does Presper Eckert. The ENIAC was a 30-foot-
long, 30-ton device that required 150,000 watts of electricity to
operate. It also had 10,000 capacitors, 70,000 registers, and 18,000
vacuum tubes. Air conditioning was necessary for first-generation
computers to function properly since they were too big and
unwieldy to install, requiring a huge room. They also used to
release a lot of heat. Programs produced in high-level
programming languages must be translated into assembly or
machine language by a compiler. A program that translates
assembly language programs into machine language is called an

assembler, also referred to as an assembly language compiler.

Before the ENIAC was finished, Von Neumann created the
Electronic Discrete Variable Automatic Computer (EDVAC),
which had the ability to store data and programs. The computer
operated significantly more swiftly as a result of its immediate
access to both data and commands. Another benefit of instruction
storage was that it made it possible for computers to reason
internally. The 1952 Universal Automatic Computer (UNIVAC),
created by Eckert and Mauchly, was thought to be the world's first

extremely lucrative computer.

Example: UNIVAC-1, EDVAC, and ENIAC

Computer Organization & Architecture -17

Second Generation (1956s-1963s)

The underlying technology of the second generation of computers
was magnetic core memory combined with solid-state components
(transistors and diodes). The transistor may open or close an
integrated circuit and magnify signals. It is made of materials
known as semiconductors. Transistors are a product of Bell Labs
and are utilized in all digital circuits, particularly those in
computers. In the initial generation of computers, transistors
replaced the heavy electric tubes. Vacuum tubes and transistors are
similar in that both use solid materials to transfer electrons instead
of a vacuum. Semiconducting material transistors controlled the
flow of electricity via the circuit. Simultaneously, they might make
computers faster, more powerful, and smaller. They use less
electricity, generate less heat, and are less expensive than vacuum

tubes. Minimal production costs were also maintained.

The second generation of computers saw the development of the
central processor unit (CPU), memory, programming grammar, and
input and output devices. Developers were able to define
commands in words by switching from the mysterious binary
machine syntax to figurative, or assembly, languages in gadgets of
the second generation. These were the first systems to use
magnetic core architecture instead of magnetic drum technology,
and they were also the first to store programs in memory. High-
level programming languages like FORTRAN (1956), ALGOL
(1958), and COBOL (1959) were created during the second

generation.

PDP-8, IBM 1400 series, IBM 1620, IBM 7090, and CDC 3600

are a few examples.
Computer Organization & Architecture -18

Third Generation (1964s-1971s)

Third-generation computers were first released in 1964. The
efficiency and productivity of computers were significantly
increased by the placement and shrinking of transistors on silicon
chips, commonly known as semiconductors. Integrated Circuits

were used by them (ICs).

A turning point in the development of computers and technology
was the discovery of integrated circuits. Chips is the term used to
describe these integrated circuits.

Due to its atomic structure, silicon is a great semiconductor
element that is utilized as a building block for the production of
semiconductors, computer chips, silicon diodes, and other
electrical circuits and switching devices. It is possible to introduce
or mix silicon with other elements—Ilike phosphorous, arsenic, or
boron—to alter its conductive properties. A typical chip, which is
smaller than 14 square inches, can have millions of transistors and
other electrical components on it. Printed circuit boards, which are
electronic panels, are used in computers to hold a large number of
chips. There are numerous varieties of chips. Microprocessors, or
CPU chips, are capable of processing an entire system, whereas

memory chips are limited to storing blank memory.

Many transistors, records, and resistors assembled on a single thin
silicon sheet make form an integrated circuit (IC). Two methods
for creating integrated circuits are medium-scale insertion (MSI)
and small-scale inclusion (SSI). The advent of multilayer printed
circuitry and the replacement of slower core memory with faster

solid-state memories superseded core memory. Because it can
Computer Organization & Architecture -19

integrate multiple circuits into a single chip, IC technology was

also known as microelectronics technology.

This generation of machines has very fast processing speeds, a big
amount of memory, low cost, and small size. During this time,
more sophisticated languages were developed, such as Basic

(Beginners All-purpose Symbolic Instruction Code).

This generation's main advantages included new input/output
devices, improved secondary storage devices, and solid-state
circuitry. The speed of the computer increased with the extra

circuitry. During this era, minicomputers were also developed.

A few examples are IBM 360,370, B6500, and NCR 395. These
days, arithmetic and logical operations could be finished in

nanoseconds or microseconds.

Fourth Generation (1970s-Present)

In 1971, fourth-generation computers were introduced as a result
of the creation of computing components using large scale
integration (LSI). Microprocessors are silicon devices used to
generate LSI circuits. The circuitry needed to carry out arithmetic,
logic, and control functions on a single chip is found in a
microprocessor. The fourth generation of computers can calculate
more than equivalent-sized third-generation computers because of
microprocessors. The ability to fit a computer's central processing
unit (CPU) on a single semiconductor is made possible by
advancements in microprocessor technology. We refer to these
devices as microcomputers. In the past, VLSI circuits mostly

replaced LSI circuits.
Computer Organization & Architecture -20

In the first generation, something might have required a full room,
but it might now fit in your palm. When the Intel 4004
microprocessor was created in 1971, it included every component
of a computer, including the input/output controllers, storage, and

main processing unit.

Microelectronics and other computer technologies, such as
multiprocessing, multiprogramming, time-sharing, quick operation,
and cloud storage, were the main innovations of this generation.
High-speed vector processors at this period changed the paradigm
for high-performance computing. Most time-shared mainframe
systems were equipped with workstations and microcomputers.
Consequently, the computer that was once somewhat large may
now be set up on a table. It is a fourth-generation computer, the
personal computer.

Throughout this time, computer networks developed.

Examples are Alter 8800 and Apple IL.

Fifth Generation (Present and Beyond)

Artificial intelligence-powered fifth-generation computers are still
in the development stages, although they have already been used
for various tasks, like speech recognition. Artificial Intelligence
(Al) is a subfield of computer science that focuses on teaching
machines to think and behave like people. Computers are now
unable to fully exhibit artificial intelligence, or to mimic human
behavior. The most advancements have been made in the gaming
sector. Right now, the best computer chess programs are able to
defeat human players. The fastest-growing area of computational

intelligence is artificial neural networks, which have shown
Computer Organization & Architecture -21

promise in a number of applications including speech recognition

and natural language processing.

Al languages are frequently referred to as programming languages
because they are typically utilized for Al applications. The two
most popular ones are LISP and Prolog. The fifth generation of
computers is incredibly fast. Developers turned their primary
attention to parallel processing in their research and development
of fifth-generation computers. Up until recently, vector
computations and pipeline construction were the only tasks that
could be done in parallel. Machines with hundreds of processors
were introduced in this age, enabling them to work on different
portions of a same program. The development of ever-more-
powerful computing devices is still ongoing. This kind of computer
is expected to be able to converse with its user in plain language,
retain enormous knowledge bases, search through them rapidly,

make deft decisions, and come to logical conclusions.

1.4 NUMBER SYSTEM

Words and characters make up the language that we speak to one
another. Words, letters, and numbers make sense to us. Computers
are not meant to handle this kind of data, though. Only numbers

are understood by computers.

Thus, data is turned into electronic pulses when entered. Every
pulse is recognized as a code, which ASCII then converts into a
numeric format. It assigns a numerical value (number) that a

computer can comprehend to each number, character, and symbol.

Computer Organization & Architecture -22

Therefore, one needs to be knowledgeable with number systems in

order to grasp the language of computers.

Computers employ one of the following number systems:
e Binary number system
e QOctal number system
e Decimal number system

e Hexadecimal number system

1. Binary System (Base 2)

The binary system uses only two digits, 0 and 1, to represent
numbers. It is the foundation of all modern computing systems

because computers operate using binary logic.

Its base is two because it only has the numbers "0" and "1." As a
result, there are only two kinds of electronic pulses in this number
system: those that indicate "0" and "1," respectively, and those that
do not. A bit is a single digit. A byte (11001010) is a group of eight
bits, whereas a nibble is a group of four bits (1101). Each binary
number's place corresponds to a certain power of the number

system's base (2).

e Advantages: Direct correspondence with digital logic and
electronic devices.
e Disadvantages: Lengthy illustration for massive numbers,

limited expressiveness for decimal fractions.

Computer Organization & Architecture -23

2. Octal System (Base 8)

The octal system uses eight digits, from 0 to 7, to represent
numbers. It is often used as a shorthand representation of binary

numbers since 8§ is a power of 2.

Its base is eight since it consists of eight digits (0, 1, 2, 3, 4, 5, 6,
7). An octal number's digits each correspond to a certain power of
its base (8). Any octal number may be converted into a binary
number using the three bits (2° = 8) of the binary number system,
since there are only eight digits. Long binary numbers can also be
shortened using this number method. A single octal digit can

represent all three binary digits.

e Advantages: Consolidated example of binary values,
readability, especially contexts.
e Disadvantages: Less usually used, more intuitive than

hexadecimal.

3. Decimal System (Base 10)

This number system's base is ten since it has ten digits: 0, 1, 2, 3,
4,5,6,7,8,9. The highest value of a digit in this number system is
nine, while the lowest value is zero. Each digit in a decimal
number indicates a certain power of the number system's base (10)
at that point. We frequently utilize this number system in our daily

lives. It can be used to represent any number.

e Advantages: Easily understable, modern for vast

arithmetic.

Computer Organization & Architecture -24

e Disadvantages: Inadequate for binary data, constrained

expressiveness for non-decimal fractions.

4. Hexadecimal System (Base 16)

The hexadecimal system uses sixteen digits, from 0 to 9 and A to F
(where A=10, B=11, F=15), to represent numbers. It is commonly
used in computing as a more human-friendly representation of

binary-coded values.

There are 16 digits in this numeral system, ranging from 0 to 9 and
A to F. Thus, sixteen is its basis. 10 to 15 decimal places are
represented by the alphabets A through F. A hexadecimal integer's
location corresponds to a certain power of base (16) in the number
system. Any hexadecimal number may be converted into a binary
number using the four bits (24=16) of the binary number system,
since there are only sixteen digits. Because it employs both
alphabets and numeric digits, it is often referred to as the

alphanumeric number system.

e Advantages: Compact representation of binary, widely
utilized in programming.
e Disadvantages: Intimidating for beginners, decimal is

more user-friendly than hexadecimal.
Importance of Number Systems in Computer Science

In computer technology, it is crucial to comprehend specific range

structures for a number of reasons.

Computer Organization & Architecture -25

Memory Management: Binary systems are used by
computers to manage their memory. Being able to convert
between binary, octal, decimal, and hexadecimal allows one
to work with memory and storage in an efficient manner.
Programming: Hexadecimal is frequently used in
programming to represent binary-coded numbers and
memory addresses. For bitwise operations, octal and binary
representations are essential.

Data Transmission: In computer architecture, binary is
crucial for record transmission. Miles are often converted
to binary for processing efficiency when records are saved
or sent.

Debugging: Hexadecimal is a low-level programming
language that is typically used in debugging. Hexadecimal
format is often used for memory dumps and machine code.
Digital electronics: Since circuits in this field are mostly
based on binary signals, it is necessary to understand
binary.

Representation of Colors: Hexadecimal is widely used in
graphics and web development to represent colorations. A
set of hexadecimal digits is used to represent each RGB
coloration element.

Hashing and Encryption: Binary models are necessary in
cybersecurity since many hash tables and encryption

methods process binary data.

1.5 CONVERSION TECHNIQUES

Binary to Octal: Group binary digits in sets of three,
starting from the right.

Computer Organization & Architecture -26

Example: Convert binary 1011 to decimal.

Solution:

1011, =1 x 28 +0x 2241 x21 41 x 29
1x84+0x4+1x2+1x1
8+0+2+1
111[?

Decimal to Binary

Example: Convert decimal 13 to binary.

Solution:

e Divide 13 by 2: quotient = 6, remainder = 1
e Divide 6 by 2: quotient = 3, remainder = 0
e Divide 3 by 2: quotient = 1, remainder = 1

e Divide 1 by 2: quotient = 0, remainder = 1

Read remainders in reverse order: 1101
So, 1310 = (1101)2
Octal to Decimal
Example: Convert octal 21 to decimal.
Solution:
21, =2 x 81 +1 x 8
IxB+1x1
1641
1710
Decimal to Octal
Example: Convert decimal 29 to octal.
Solution:
e Divide 29 by 8: quotient = 3, remainder = 5
e Divide 3 by 8: quotient = 0, remainder = 3

Read remainders in reverse order: 35

Computer Organization & Architecture -27

So, 2910 = 353
o Hexadecimal to Decimal
Example: Convert hexadecimal 1F to decimal.

Solution:

].Ir‘-"l[j 1 = 1{:}1 FF X 16”

(Note: F' = 15)
1x164+15x1
16 + 15

31y

e Decimal to Hexadecimal
Example: Convert decimal 47 to hexadecimal.
Solution:
e Divide 47 by 16: quotient = 2, remainder = 15 (F in
hexadecimal)
e Divide 2 by 16: quotient = 0, remainder = 2
Read remainders in reverse order: 2F
So, 4710=2F16
e Binary to Octal
Example: Convert binary 110110 to octal.
Solution:
e Group binary digits in sets of three, starting from
the right: 110 110

e Convert each group to its octal equivalent:
e 110, = 64
s 110, = 63

So, 110110, — 665

e Octal to Binary
Example: Convert octal 73 to binary.

Computer Organization & Architecture -28

Solution:

e Convert each octal digit to its three-digit binary

equivalent:
. ?5 111 a9
s 33 =011,

Combine the binary groups: 111011

So, T35 = 111011,

e Binary to Hexadecimal
Example: Convert binary 101101 to hexadecimal.
Solution:
e Group binary digits in sets of four, starting from the
right: 0010 1101
e Convert each group to its hexadecimal equivalent:
« 0010, = 24
o« 1101, = Dy4

So, 101101, = 2D,

o Hexadecimal to Binary
Example: Convert hexadecimal 3A to binary.
Solution:
1. Convert each hexadecimal digit to its four-digit binary

equivalent:
e 315 = 00112
* ;'-11(5 101 {]_,

Combine the binary groups: 00111010
So, 3415 = 00111010,

Number System Relationship

Computer Organization & Architecture -29

The following table depicts the relationship between decimal,

binary, octal and hexadecimal number systems.

HEXADECIMAL | DECIMAL OCTAL BINARY
0 0 0 0000
1 1 1 0001
2 2 2 0010
3 3 3 0011
4 4 4 0100
5 5 5 0101
6 6 6 0110
7 7 7 0111
8 8 10 1000
9 9 11 1001
A 10 12 1010
B 11 13 1011
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1111
1.6 CHARACTER CODES

Character codes are a way to represent characters, such as letters,
digits, and symbols, using numerical codes. These codes are used
by computers to store, process, and communicate text data. Each

character is assigned a unique numerical value, known as a code

Computer Organization & Architecture -30

point, which is used to represent that character in computer

systems.

Why are Character Codes used?

Character codes are essential in computing because they enable:

1. Text Storage: Computers can store text data efficiently
using numerical codes, which take up less space than the
actual characters.

2. Text Processing: Character codes allow computers to
perform operations on text data, such as sorting, searching,
and manipulating text.

3. Communication: Character codes enable different
computer systems to communicate with each other, by
providing a standard way to represent text data.

4. Encoding: Character codes are used to encode text data
into a format that can be transmitted over networks, stored
on devices, and displayed on screens.

5. Decoding: Character codes are used to decode encoded text
data back into its original form, allowing computers to

interpret and display text correctly.

There are some character code given below:

BCD (Binary-Coded Decimal)

BCD is a way to represent decimal numbers using binary code. It
uses 4 bits to represent each decimal digit, with each bit
corresponding to a decimal value.

Representation:

Computer Organization & Architecture -31

Decimal Digit BCD Representation
0 0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

—

O 0| Q| | | | W N

Example: The decimal number 123 would be represented in BCD

as:

0001 0010 0011

Usage: BCD is commonly used in financial and commercial

applications, such as accounting and inventory management.

Limitations: BCD is less efficient than binary representation, as it

requires more bits to represent the same number.

ASCII (American Standard Code for Information
Interchange)

ASCII is a character encoding standard that represents text data
using binary code. It assigns a unique binary code to each

character, including letters, digits, and special characters.

Computer Organization & Architecture -32

ASCII Table:

Character ASCII Code
A 65
B 66
C 67
97
b 98
c 99
0 48
49
2 50
! 33
@ 64
35

Significance: ASCII is widely used in computers and devices to
represent text data. It is the basis for many other character

encoding standards.

Example: The string "Hello" would be represented in ASCII as:
H-72
e-101
1-108
1-108
o-111

EBCDIC (Extended Binary Coded Decimal Interchange Code)

Computer Organization & Architecture -33

EBCDIC is a character encoding standard developed by IBM for
their mainframe computers. It is an extension of the BCD code,

with additional characters and symbols.

Representation: EBCDIC uses 8 bits to represent each character,
with the first 4 bits representing the zone (category) and the last 4

bits representing the digit or character.

Comparison with ASCII:
e« EBCDIC is specific to IBM mainframes, while ASCII is
widely used across different platforms.
o EBCDIC has a larger character set than ASCII, including
additional symbols and graphics.
o EBCDIC is less efficient than ASCII, requiring more bits to

represent the same character.

Example: The string "Hello" would be represented in EBCDIC as:
H-200

e-109

1-121

1-121

o-147

1.7 CONCLUSION

As we conclude this unit, we reflect on the significant journey
we've undertaken to explore the fundamental concepts of
computers. From the basic components that make up a computer

system to the various applications that have transformed the way

Computer Organization & Architecture -34

we live, work, and communicate, we've gained a deeper

understanding of the technology that drives our modern world.

We've traced the evolution of computers through the generations,
from the early mainframes to the sleek, portable devices of today,
and examined the number systems and character codes that enable
computers to process and store information. We've seen how
computers have revolutionized industries, transformed businesses,

and connected people across the globe.

Through this unit, we've developed a solid foundation in computer
fundamentals, which will serve as a springboard for further
learning and exploration in the field of computer science. We've
acquired a vocabulary of key terms and concepts, a understanding
of the underlying principles, and a appreciation for the impact of

computers on our daily lives.

As we move forward in this rapidly changing digital landscape,
we're equipped with the knowledge and skills to navigate the
exciting world of computers and technology. We're prepared to
embrace new technologies, to innovate, and to shape the future of
computing. The journey ahead promises to be thrilling, and we're
ready to take on the challenges and opportunities that come our

way.

1.8 UNIT BASED QUESTIONS &
ANSWERS

1. What is the basic component of a computer system that performs

calculations and executes instructions?

Computer Organization & Architecture -35

Answer: The Central Processing Unit (CPU) is the brain of the
computer and performs calculations, executes instructions, and
controls the other components. It takes in instructions, decodes

them, and carries out the necessary actions.

2. Which generation of computers introduced the wuse of
transistors?

Answer: The second generation of computers (1956-1963)
introduced the use of transistors, which replaced vacuum tubes.
Transistors were smaller, faster, and more reliable, leading to

significant improvements in computer performance.

3. What is the binary number system based on?

Answer: The binary number system is based on two digits: 0 and 1.
This system uses bits (binary digits) to represent information, with
each bit having a value of either O or 1. Binary is the fundamental

language of computers.

4. What is the purpose of character codes in computing?
Answer: Character codes are used to represent characters, such as
letters, symbols, and digits, using numerical codes. This allows

computers to store, process, and communicate text data efficiently.

5. What is the most common character code used in computing?

Answer: ASCII (American Standard Code for Information
Interchange) is the most widely used character code in computing.
It assigns a unique numerical value to each character, making it

possible for computers to understand and exchange text data.

6. What is the process of converting data from one number system

to another called?
Computer Organization & Architecture -36

Answer: The process of converting data from one number system
to another is called data conversion or numerical conversion. This
is necessary when working with different computer systems or

programming languages that use different number systems.

1.9 REFERENCES

e "Advanced Computer Architecture: Parallelism, Scalability,
Programmability" by Hwang, Kai

e "Computer Applications In Management" Dahiya, U/
Nagpal, S.

e "Computer Applications With C & C++: With Programs &
Numerical Problems" Abhyankar, A. K.

o "Computer Architecture & Organization" Hayes, J. P.

e "Computer Data-base Organization" Martin, James

o "Computer Graphics" Hearn, D/ Baker, M.

Computer Organization & Architecture -37

UNIT - 2: BASICS OF CIRCUITS

Structure

2.0 Introduction
2.1 Objectives
2.2 Logic Gates
2.3 Boolean Algebra
2.4 K-map Simplification
2.4.1 2-Variable K-map
2.4.2 3-variable K-map
2.4.3 The 4-Variable Karnaugh Map
2.4.4 Don't Care Conditions
2.5 Half Adder
2.6 Full Adder
2.7 Multiplexer
2.8 Demultiplexer
2.9 Decoder
2.10 Encoders
2.11 Conclusion
2.12 Unit Based Questions & Answers

2.13 References

2.0 INTRODUCTION

In digital electronics and computer engineering, understanding
fundamental concepts such as logic gates, Boolean algebra, and
combinational circuits is essential. These concepts form the
backbone of modern computing systems, enabling the design and
implementation of complex circuits that perform various tasks
efficiently and reliably.

Computer Organization & Architecture -38

This unit delves into several key components and techniques
within digital electronics. Starting with an exploration of logic
gates, which are the basic building blocks of digital circuits, we
move on to Boolean algebra—a mathematical framework used to
analyze and design these circuits. The unit further covers Karnaugh
map (K-map) simplification techniques, which offer systematic

methods for minimizing Boolean expressions.

Combinational circuits like half adders and full adders are
introduced, illustrating how simple logic elements can perform
arithmetic operations crucial for computing. Multiplexers and
demultiplexers are then explored, demonstrating their roles in data
selection and distribution within digital systems. Decoders and
encoders are discussed next, highlighting their applications in tasks

such as memory addressing and data conversion.

Through a structured approach, this unit aims to provide a
comprehensive understanding of these foundational concepts and
their practical applications in digital electronics. Unit-based
questions and answers are included to reinforce learning and

assessment, ensuring a thorough grasp of the material covered.

2.1 OBJECTIVES

After completing this unit, students will able to understand,
e Understand Logic Gates: Explore the fundamental types
of logic gates (AND, OR, NOT, NAND, NOR, XOR,
XNOR) and their truth tables.

Computer Organization & Architecture -39

Apply Boolean Algebra: Apply Boolean laws and
theorems (commutative, associative, distributive, De
Morgan's) to simplify Boolean expressions.

Master K-map Simplification: Learn the concept of
Karnaugh maps (K-maps) and their importance in
simplifying Boolean expressions.

Study Half Adder and Full Adder: Understand the
structure and operation of half adders and full adders.
Explore Multiplexers (MUX) and Demultiplexers
(DEMUX): Define the function and operation of
multiplexers in selecting one of several input signals based

on a control signal.

2.2 LOGIC GATES

Logic gates are the building blocks of digital electronics and

computer systems. They are electronic circuits that perform logical

operations on one or more input signals to produce an output

signal. There are seven basic types of logic gates: AND, OR, NOT,
NAND, NOR, XOR, and XNOR.

1. AND Gate

The AND gate produces an output of 1 only if all the input signals

are 1.

A

Truth Table:

Computer Organization & Architecture -40

A B Output
0 0 0
0 1 0
1 0 0
1 1 1
2. OR Gate

The OR gate produces an output of 1 if any of the input signals are
1.

AT Vo
Truth Table:
A B Output
0 0 0
0 1 1
1 0 1

Computer Organization & Architecture -41

A B Output

3. NOT Gate (Inverter)
The NOT gate produces an output that is the opposite of the input

signal.

A—Do—out

Truth Table:
A Output
0 1
1 0

4. NAND Gate

The NAND gate produces an output of 1 only if none of the input

signals are 1.

A

Computer Organization & Architecture -42

Truth Table:

A Output
0 1
0 1
1 1
1 0
5. NOR Gate

The NOR gate produces an output of 1 if all the input signals are 0.

A Q
B
Truth Table:
A Output
0 1
0 0
1 0
1 0

Computer Organization & Architecture -43

6. XOR Gate

The XOR gate produces an output of 1 if the input signals are
different.

A

R
Truth Table:
A B Output
0 0 0
0 1 1
1 0 1
1 1 0
7. XNOR Gate

The XNOR gate produces an output of 1 if the input signals are the

same.
A
out

B

Truth Table:
A B Output
0 0 1
0 1 0

Computer Organization & Architecture -44

A B Output

Gate-Level Minimization

Gate-Level Minimization (GLM) is a technique used to simplify

digital circuits by reducing the number of logic gates required to

implement a particular function. The goal is to minimize the

complexity of the circuit while maintaining its functionality.

GLM involves:

1.

Simplifying Boolean expressions: Using laws and
theorems of Boolean algebra to simplify the Boolean
expression representing the digital circuit.

Removing redundant gates: Identifying and removing
gates that don't affect the output of the circuit.

Combining gates: Merging multiple gates into a single
gate or a smaller number of gates.

Optimizing gate configuration: Reconfiguring the gates to
reduce the overall number of gates and improve

performance.

Computer Organization & Architecture -45

Some common techniques used in GLM include:

1. Karnaugh Maps (K-maps): A graphical method for
simplifying Boolean expressions and identifying prime
implicants.

2. Quine-McCluskey Algorithm: A tabular method for
minimizing Boolean expressions.

3. Espresso Algorithm: A computer-aided design (CAD) tool

for minimizing digital circuits.

GLM is important because it:
1. Reduces circuit complexity: Fewer gates mean less power
consumption, reduced area, and increased performance.
2. Improves reliability: Less complex circuits are less prone
to errors and faults.
3. Reduces cost: Fewer gates and reduced complexity lead to

lower manufacturing costs.

Gate-level minimization is the process of simplifying a digital
circuit to reduce the number of gates and improve performance.

This can be done using various techniques such as:

o Karnaugh maps (K-maps)
e Quine-McCluskey algorithm

o Espresso algorithm
These techniques help to minimize the number of gates required to

implement a digital circuit, reducing the overall cost and

improving performance.

Computer Organization & Architecture -46

2.3 BOOLEAN ALGEBRA

Boolean algebra is a branch of mathematics that deals with logical
operations and their representations. It is named after George
Boole, who introduced this concept in the mid-19th century.
Boolean algebra is used to analyze and simplify digital circuits,
computer networks, and logical statements. It consists of logical
operators, variables, and constants that follow specific rules and

laws.

Boolean Laws and Theorems

Boolean laws and theorems are fundamental properties that govern
Boolean algebra. These laws and theorems help in simplifying and
manipulating Boolean expressions. Here are some of the key
Boolean laws and theorems:

Here are all the Boolean laws:

1. Commutative Laws
e OR:A+B=B+A
e AND:AB=BA
2. Associative Laws
e OR:(A+B)+C=A+B+0)
e AND: (AB)C=A(BC)
3. Distributive Laws
e OR:AB+C)=AB+AC
e AND:A+BC=(A+B)(A+C)
4. Identity Laws
e OR:A+0=A
e AND:Al=A
e OR:A+1=1

Computer Organization & Architecture -47

e AND:AO=0
5. Complement Laws
o A=A
o A=A
6. Involution Law

. (AY=A

7. De Morgan's Laws
e !(A+B)='AB
« !(AB)=!A+!B
8. Absorption Laws
e A(A+B)=A
e A+AB=A
9. Simplification Laws
e A+!A=1
e AlA=0
10. Consensus Laws
e AB+!AC=AB+C
e A+BC=A+!AB+C
11. Boolean Algebra Theorems
e« (A+B)(A'+B')=AA'+BB'
e (A+B)A+B)=A

Boolean Expressions and Equation Simplification

Boolean expressions are formed using logical operators, variables,
and constants. Simplifying Boolean expressions involves applying
Boolean laws and theorems to reduce the complexity of the

expression.

Computer Organization & Architecture -48

o Simplification: Simplifying a Boolean expression means
reducing it to its simplest form without changing its
original meaning.

e Equation: A Boolean equation is a statement that two

Boolean expressions are equal.

Simplification techniques include:
e Removing redundant parentheses
e Applying De Morgan's theorem
e Using distributive law

e Combining like terms

Example for the simplification:
Simplifying Boolean expressions and equations involves applying
Boolean laws and theorems to reduce the complexity of the
expression. Here are some examples:
Example 1: Simplifying a Boolean Expression
Expression: (A + B) (A+ C)
Step 1: Apply the distributive law
(A+B)(A+O)=AA+C)+B(A+C)
Step 2: Simplify
AA+C)+B(A+C)=A"2+AC+AB +BC
Step 3: Remove redundant terms (A2 = A)
A2 +AC+AB+BC=A+AC+AB+BC
Simplified Expression: A+ AC + AB + BC
Example 2: Simplifying a Boolean Equation
Equation: AB+AC=A(B +C)
Step 1: Apply the distributive law
AB+C)=AB+AC

Step 2: Equate the two expressions
Computer Organization & Architecture -49

AB+AC=AB+AC

Simplified Equation: True (the equation is always true)
Example 3: Simplifying a Boolean Expression with De Morgan's
Theorem

Expression: !(A + B)

Step 1: Apply De Morgan's theorem

'(A+B)="'A!B

Simplified Expression: !A!B
Example 4: Simplifying a Boolean Equation with Redundant
Parentheses

Equation: (A+B)+C=A+ (B +C)

Step 1: Remove redundant parentheses

(A+B)+C=A+B+C

Step 2: Equate the two expressions

A+B+C=A+B+C

Simplified Equation: True (the equation is always true)

These examples demonstrate how to simplify Boolean expressions
and equations using Boolean laws and theorems. By applying these
techniques, we can reduce the complexity of Boolean expressions

and equations, making them easier to analyze and understand.

2.4 K- MAP SIMPLIFICATION

Boolean expressions can be systematically made simpler with the
K-map. The minimal expression, which is the simplest POS and
SOP expression, can be found with the aid of the K-map approach.
A simplified cookbook is offered by the K-map.

Computer Organization & Architecture -50

A K-map, like a truth table, lists every possible combination of
input variable values and matching output values. In K-map, on the
other hand, the values are kept in the array's cells. Every input

variable has a binary value that is kept in each cell.

When creating expressions with 2, 3, 4, and 5 variables, the K-map
approach is employed. The Quine-McClusky approach is another
technique for simplification that is utilized for bigger numbers of
variables. The total number of variable input combinations is
comparable to the number of cells in a K-map. For instance, if
there are three variables, there are 23=8 cells, and if there are four
variables, there are 24 cells. K-map accepts both the POS and SOP
versions. The Os and 1s are used to fill the K-map grid. Creating

groups is the solution to the K-map.

The expressions are solved using K-map in the following steps:

e Initially, we determine the K-map based on the quantity of
variables.

e Determine the expression's maxterm and minterm.

e Put 1 in each of the K-map's SOP cells corresponding to the
minterms.

e Put 0 in the block's POS cells corresponding to the
maxterm.

e Next, we aim to cover as many elements as we can in a
single group by forming rectangular groups with total terms
in the power of two, such as 2, 4, §,...

e We locate the product words and compile them into the

SOP form with the aid of these groupings.

Computer Organization & Architecture -51

2.4.1 2-Variable K-map
There is a total of 4 variables in a 2-variable K-map. There are two
variables in the 2-variable K-map. The following figure shows the

structure of the 2-variable K-map:

e There is only one way to arrange four neighboring
minterms in the above image.
e Grouping two adjacent minterms can take the following

forms: {(m0, m1), (m2, m3), (m0, m2), and (m1, m3)}.

2.4.2 3-variable K-map

An array with eight cells represents the three-variable K-map. In
this instance, the variables were A, B, and C. Any letter can be
used to represent a variable in its name. Variables A and B's binary
values are on the left, whereas variable C's values are across the
top. The binary values of A and B at the left side of the same row
paired with the value of C at the top of the same column make up
the value of the given cell. For instance, the binary values of the
cells in the bottom right corner and upper left corners, respectively,

are 101 and 000, respectively.

Computer Organization & Architecture -52

2.4.3 The 4-Variable Karnaugh Map
An array of 16 cells represents the 4-variable K-map. The binary

values of C and D are across the top, and A and B are down the
left. The binary values of A and B at the left side of the same row
paired with the binary values of C and D at the top of the same
column represent the value of the given cell. For instance, the
binary values of the cells in the lower right corner (1010) and

upper right corner (0010) are respectively.

Computer Organization & Architecture -53

Simplification of Boolean expressions using Karnaugh Map

K-map accepts both SOP and POS versions, as is well known.
Thus, the minterm and maxterm solutions are the two potential
solutions for the K-map. Now let's get started by learning how to

determine the K-map's minterm and maxterm solutions.

Karnaugh Maps (K-maps) provide a visual method for simplifying
Boolean expressions. They help identify patterns and groups of 1s

or Os in the truth table, making it easier to minimize the expression.

Steps to Simplify Boolean Expressions Using K-maps

1. Create the K-map: Draw a grid for the K-map
corresponding to the number of variables in the expression.

2. Fill the K-map: Place the 1s and Os in the K-map
according to the truth table.

3. Group the 1s (for SOP) or 0s (for POS): Form groups of
1,2, 4,8, etc. Each group should be as large as possible.

4. Write the simplified expression: Write the Boolean
expression for each group and combine them using OR (for

SOP) or AND (for POS).

Example: 3-Variable K-map Simplification

Truth Table

A B c Y

0 0 0 0

Computer Organization & Architecture -54

Step 1: Create the K-map
For 3 variables (A, B, C), the K-map is a 2x4 grid:

Step 2: Fill the K-map

BC

Step 3: Group the 1s
Group the adjacent 1s in rectangles. Remember, groups must be

powers of two (1, 2, 4, 8, etc.) and can wrap around edges.

I {1) & (1) |
| (2)¢13(1)

We can form the following groups:
e Group 1: (0,1), (1,1), (1,0), (0,0)
e Group 2: (1,1), (1,0)

Step 4: Write the simplified expression

For Group 1:
e Variable B changes (0,1,0), so B is eliminated.
o Expression for Group 1: A

For Group 2:
e Variable A changes (0,1), so A is eliminated.
o Expression for Group 2: B.C

Final simplified expression:

Computer Organization & Architecture -55

Y=A+B.C

2.4.4 Don't Care Conditions

In some Boolean functions, certain input combinations never occur
or the output doesn't matter. These are known as "don't care"
conditions, represented by an 'X' in the truth table. Don't care
conditions can be used in Karnaugh Maps (K-maps) to simplify
expressions further by allowing flexibility in grouping 1s.

Example: Simplifying with Don't Care Conditions

Truth Table

A B C Y
0 0 o 1
0 0 1 1
0 1 0 X
0 1 1 0

0 0 1

0 1 X

Step 1: Create the K-map
For 3 variables (A, B, C), the K-map is a 2x4 grid:

Step 3: Group the 1s and Xs

Computer Organization & Architecture -56

We can form groups using 1s and Xs to simplify the expression. Xs

can be treated as either 0 or 1 to form the largest groups.

| (1) x) |
(1) () (1) |

e Group 1: (0,0), (0,1), (1,0), (1,1)
e Group 2: (1,0), (1,1)
Step 4: Write the simplified expression
For Group 1:
e A=0
e Variable C changes (0,1), so C is eliminated.
o Expression for Group 1: A
For Group 2:
e Variable A changes (0,1), so A is eliminated.
o Expression for Group 2: B.C
Final simplified expression:

Y=A+B.C

Essential Prime Implicants

Essential prime implicants are the groups in a K-map that cover at
least one '1' that no other group covers. These are necessary for the
simplified expression.

Example: Finding Essential Prime Implicants

Truth Table

Computer Organization & Architecture -57

o|l=|o|le|o|=| 2| B

Step 1: Create the K-map
For 3 variables (A, B, C), the K-map is a 2x4 grid:

BC

Step 2: Fill the K-map

BC

Step 3: Group the 1s

We can form the following groups:

Step 4: Identify Essential Prime Implicants
e Group 1: (0,0), (0,1) - A.B
e Group2:(0,0),(1,1) > C
e Group 3: (0,0), (0,1), (0,10) = B.A
Here, Group 1 and Group 2 are essential prime implicants because
they cover unique 1s that no other group covers.
Final Simplified Expression:
Combining the essential prime implicants, the final simplified
expression is:
Y=AB+ C+B.A

Computer Organization & Architecture -58

2.5 HALF ADDER

A fundamental building component for adding two numbers as
inputs and producing two outputs is the half-adder. The OR
operation of two single-bit binary values is carried out by the
adder. The half adder has two output states, "carry" and "sum," and

two input states, the augent and addent bits.

Block Diagram:
A > »Sum
Half Adder
B > »Carry
Truth table:
Inputs Outputs
A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
i | 1§ 0 1

In the table above,
e The input states are "A" and "B," while the output states are
"sum" and "carry."
e When none of the inputs is 1, the carry output is 0.
e The'sum' bit defines the least important part of the sum.
e The sum and carry have the following SOP form:
Sum =x'y + xy'

Carry = xy
Computer Organization & Architecture -59

Design of Half Adder Circuit:
As can be seen, the block diagram has two inputs and two outputs.
The half adder's input states are represented by the augent and
addent bits, while its output states are carry and sum. The two logic
gates listed below are used in the design of the half adder:

e 2-gate AND input.

e 2-input Exclusive-OR Gate or Ex-OR Gate 2.
The Half Adder is designed by combining the 'XOR' and 'AND'

gates and provide the sum and carry.

A® SUM
Be ouT

® Coyr

Half-Adder Circuit

There is the following Boolean expression of Half Adder circuit:
e Sum=A XOR B (A+B)
e Carry=AAND B (A.B)

Half Adder Applications:
Half adders are fundamental components in various digital systems
and arithmetic circuits. Here are some key applications:

1. Binary Addition: Half adders are used to perform basic

binary addition of single-bit numbers.

Computer Organization & Architecture -60

2. Building Full Adders: Multiple half adders can be
combined to create full adders, which can add multi-bit
binary numbers.

3. Arithmetic Logic Units (ALUs): ALUs in processors use
half adders and full adders to perform arithmetic
operations.

4. Digital Counters: Half adders are used in the design of

digital counters and registers.

2.6 FULL ADDER

Only two numbers can be added using the half adder. In order to
solve this issue, the full adder was created. The three 1-bit binary
values A, B, and carry C are added using the whole adder. There
are two output stages—sum and carry—and three input states in

the entire adder.

Block diagram:
A Sum
Full Adder
B Carry
Ci n
Truth Table

Computer Organization & Architecture -61

Inputs Outputs
A B Cin Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

In the above truth table,

e These are the input variables: "A" and "B." These variables
stand for the two important bits that will be added.

e The third input, "Cin," stands for the carry. The carry bit is
obtained from the preceding lower significant place.

e The output variables that define the output values are 'Sum'
and 'Carry'.

e All conceivable combinations of 0 and 1 that can occur in
these variables are indicated by the eight rows under the

input variable.

Design of Full Adder:
OUTPUT
A——> —_— F—>»sum
Half-Adder Half-Adder
INPUT " Circuit A CircuitB | ¢
B—> Cin—> —_—
OR Gate Carry
COUT

»

The building of the whole adder circuit is shown in the block
diagram above. The OR gate is used to merge the two half-adder
circuits in the circuit above. A and B are the two single-bit binary
inputs of the first half adder. As is well known, the half adder
generates the outputs sum and carry. In the second half adder, the
'Carry' output of the first adder will be the second input, and the
'Sum' output of the first adder will be the first input.

Computer Organization & Architecture -62

'Sum' and 'Carry' will once more be provided by the second half
adder. The 'Sum' bit is the result of the complete adder circuit. We
feed the "Carry" outputs from the first and second adders into the
OR gate in order to determine the final output of the "Carry." The
final execution of the entire adder circuit will result from the OR
gate.

e The last 'Carry' bit is to represent the MSB.

e The 'AND' and 'XOR' gates combined with an OR gate can

be used to build the entire adder logic circuit.

D TP
Dy

Full-Adder Circuit

The diagram above depicts the entire adder's actual logic circuit. A
Boolean statement can also be used to express the complete adder

circuit architecture.

Sum:

e Perform the XOR operation of input A and B.

e Perform the XOR operation of the outcome with carry. So,
the sum is (A XOR B) XOR Cin which is also represented
as: (A @ B) @ Cin

Carry:
e Perform the 'AND' operation of input A and B.

Computer Organization & Architecture -63

Perform the 'XOR' operation of input A and B.
Perform the 'OR' operations of both the outputs that come
from the previous two steps. So the 'Carry' can be

represented as: A.B + (A @ B)

Full Adder Applications

Full adders are crucial components in various digital systems and

arithmetic circuits. Here are some key applications:

1.

Multi-bit Binary Addition: Full adders can be connected
in series to add multi-bit binary numbers.
Arithmetic Logic Units (ALUs): ALUs in processors use

full adders to perform arithmetic operations.

. Digital Counters: Full adders are used in the design of

digital counters and registers.

Binary Multipliers: Full adders are used in binary
multipliers for performing addition of partial products.
Subtraction Circuits: Full adders can be modified to

perform binary subtraction.

2.7 MULTIPLEXER

A combinational circuit with twon input lines and one output line

is called a multiplexer. A combinational circuit with numerous

inputs and one output is what a multiplexer is, put simply.

The input lines provide the binary data, which is then sent to the

output line.

One of these data inputs will be connected to the output based on

the values of the selection lines.

Computer Organization & Architecture -64

There are n selection lines and 2n input lines, as opposed to an
encoder and a decoder. Thus, there are 2N potential combinations

of inputs in total. Another term for a multiplexer is Mux.

The multiplexer comes in different varieties, which include the
following:

2x1 Multiplexer:

There are just two inputs (A0 and A1), one selection line (S0), and
one output (Y) in a 2x1 multiplexer. One of these two inputs will
be connected to the output based on the combination of inputs that
are present at selection line SO. Below are the 2x1 multiplexer's

block diagram and truth table.

Block diagram:
Enable
(E)
Y
Aj—
2x1 .
Multiplexer Ol[tyr;m
B
Select (S)
Truth Table:
INPUTS Output
So Y
0 Ag
1 Ay

The logical expression of the term Y is as follows:
Computer Organization & Architecture -65

Y =So'. Ao+ So. Aj

Logical circuit of the above expression is given below:

Ai ‘},,

Select input S

MUX Applications
Multiplexers have various applications in digital systems,
including:

1. Data Routing:

o Multiplexers are used to select one of several data
sources and route it to a single output line. This is
common in communication systems and digital
signal processing.

2. Memory Addressing:

o In memory systems, multiplexers are used to select
specific memory locations based on address lines,
allowing data read and write operations.

3. Control Signal Selection:

o Multiplexers can be used to select control signals in

microprocessor design, enabling different

operations based on the instruction set.

4. Analog-to-Digital Conversion:
o Multiplexers are wused in analog-to-digital
converters (ADCs) to select different analog input

signals for conversion to digital form.

Computer Organization & Architecture -66

5. Data Compression:
o In data compression techniques, multiplexers can be
used to combine multiple data streams into a single

stream, reducing bandwidth requirements.

2.8 DEMULTIPLEXER

One input line and two or more output lines make up a
combinational circuit known as a demultiplexer. A single-input,
multi-output combinational circuit is all that the multiplexer is. The
single input lines provide the information, which is then sent to the
output line. One of these outputs will be connected to the input
based on the values of the selection lines. The de-multiplexer is the

other multiplexer.

There are two n outputs and n selection lines, in contrast to an
encoder and a decoder. Thus, the available combinations of inputs

are 2n in total. De-multiplexer is handled similarly to De-mux.

The following are some of the different types of demultiplexers:
1x2 De-multiplexer:

There are just two outputs (YO and Y1), one selection line (S0),
and one input (A) in the 1 to 2 De-multiplexer. The input will be

connected to one of the outputs based on the selected value.

Below are the 1x2 multiplexer's block diagram and truth table.

Block Diagram:

Computer Organization & Architecture -67

Output
—> v,
Input %2
A De-Ml.:(ItipIexer
— Y
Truth Table:
INPUTS Output

So Yy Yo

0 0 A

1 A 0

The logical expression of the term Y is as follows:
Yo=So'. A

Y1=S0.A

Logical circuit of the above expressions is given below:

S

._DF

}
}Y.

Computer Organization & Architecture -68

DEMUX Applications
Demultiplexers have various applications in digital systems,
including:

1. Data Routing:

o Demultiplexers are used to take a single input and
distribute it to multiple output lines based on control
signals. This is essential for data distribution in
communication systems and digital signal

processing.

Computer Organization & Architecture -69

2. Memory Decoding:

o In memory systems, demultiplexers are used to
decode memory address lines and select specific
memory locations for read or write operations.

3. Display Drivers:

o Demultiplexers can be used in display systems to
select individual segments or rows in a multi-
segment display.

4. Analog Multiplexing:
o In analog systems, demultiplexers are used to select

different analog signals for processing or routing.

2.9 DECODER

Decoders are combinational circuits that convert binary data into
two or more output lines. N input lines are used to transmit the
binary data. The binary information's 2N-bit coding is defined by
the output lines. To put it simply, the Decoder reverses the actions
of the Encoder. For simplicity, only one input line is active at a

time. The binary data is equivalent to the generated 2N-bit output

code.
— >
" —
!\l — N to 2 —
e 2 Decoder ¢ 2
: : outputs
—_— -

There are various types of decoders which are as follows:

2 to 4-line decoder:

Computer Organization & Architecture -70

There are three inputs (A0, Al, and E) and four outputs (YO0, Y1,
Y2, and Y3) in the 2 to 4 line decoder. When the enable 'E' is set to
1, one of these four outputs will be 1 for each combination of
inputs. Below are the 2 to 4 line decoder's block diagram and truth

table.

Block Diagram:
—--=>Y1
Aj———>
—>Y>
Aog——> 2to4
Decoder
Y,
E ——»
—Yp
Truth Table:
Enable INPUTS OUTPUTS
E A, Ao Y; Y, Y, Yo
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 i 1 i 0 0 0

The logical expression of the term YO, YO, Y2, and Y3 is as

follows:

Y3=EA;.Aq

Y>=EA.AQ
Yi=EAi' Ag
YO=E.A; Ay

Computer Organization & Architecture -71

Logical circuit of the above expressions is given below:

Ag
A,

Decoder Applications
Decoders have numerous applications in digital systems, some of
which include:

1. Memory Address Decoding:

o Decoders are used to select specific memory
locations based on the address lines. This is crucial
in memory management and access.

o Example: In a 16x4 memory chip, a 4-to-16 decoder
can select one of the 16 memory locations based on
the 4-bit address input.

2. Demultiplexing: Decoders are used to route a single input
signal to one of many output lines, functioning as a
demultiplexer.

3. Imstruction Decoding: In microprocessors, decoders are
used to decode instruction codes into control signals,
enabling specific operations based on the instruction set.

Computer Organization & Architecture -72

4. Digital Display Systems: Decoders are used in digital
displays to convert binary input codes to corresponding
display outputs, such as in seven-segment displays.

5. Data Routing: In communication systems, decoders help
route data signals to the correct destination based on

encoded address information.

2.10 ENCODERS

Encoders are combinational circuits that convert binary
information into N output lines. 2~ input lines are used to transmit
the binary data. The binary information's N-bit coding is defined in
the output lines. To put it simply, the Encoder reverses the actions
of the Decoder. For simplicity, only one input line is active at a
time. The binary data is equivalent to the generated N-bit output

code.

2"Input Lines

N Output Lines

Encoder

[
B

There are various types of encoders which are as follows:

4 to 2-line Encoder:

An encoder with a 4 to 2 line has two outputs (A0 and Al) and
four inputs (Y0, Y1, Y2, and Y3). To obtain the corresponding

binary code on the output side, one input line at a time in four

Computer Organization & Architecture -73

input lines is set to true. The 4 to 2 line encoder's truth table and

block schematic are shown below.

Block Diagram:
Y3—)>
V2e——) Al
4:2 ENCODER
o— —> A0
Y0 ————)
Truth Table:
INPUTS OUTPUTS
Y3 Y2 Y1 Yo A, Ao
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 1 1

The logical expression of the term A0 and Al is as follows:
A1=Y31Y2
Ao=Y31+Y,

Logical circuit of the above expressions is given below:
Y3

) Al
h .

) AQ
Y1

Computer Organization & Architecture -74

Encoder Applications

Encoders have numerous applications in digital systems, some of

which include:

1.

Data Compression: Encoders can be used to compress
data by reducing the number of bits required to represent
information. This is useful in digital communication and
storage.

Keyboard Encoding: Keyboards use encoders to convert
key presses into binary codes that represent each key. These
binary codes are then processed by the computer to
determine which key was pressed.

Multiplexing: Encoders can be used in multiplexing
systems to encode multiple input signals into a smaller
number of output lines, enabling efficient data
transmission.

Priority Encoders: Priority encoders assign priority to
inputs, encoding the highest-priority input that is active.
These are used in interrupt systems to handle multiple

interrupt signals.

2.11 CONCLUSION

In this unit on digital electronics, we have explored foundational

concepts that are crucial for understanding and designing digital

circuits. We began by examining logic gates, which form the basic

building blocks of digital systems. Understanding their operations

and truth tables provided insights into how logical decisions are

made within electronic circuits.

Computer Organization & Architecture -75

Moving forward, we delved into Boolean algebra, which serves as
a formal method for simplifying and analyzing Boolean
expressions. By applying Boolean laws and theorems such as De
Morgan's and the distributive law, we learned systematic
approaches to optimize circuit designs, ensuring efficient use of

resources.

A significant portion of our study focused on combinational
circuits, including half adders and full adders, which are essential
for performing basic arithmetic operations in digital computing.
These circuits not only showcased the application of logic gates
and Boolean algebra but also illustrated how complex tasks can be

broken down into simpler components within digital systems.

Lastly, we explored multiplexers, demultiplexers, decoders, and
encoders—devices that enable data selection, distribution, and
conversion in digital systems. Understanding their functionalities
and applications highlighted their role in enhancing the efficiency
and versatility of modern electronic devices.

By mastering these concepts and tools, learners are equipped to
analyze, design, and optimize digital circuits effectively. This unit
has laid a solid foundation for further exploration in digital
electronics, providing practical skills that are essential for both

academic study and professional practice in the field.

2.12 UNIT BASED QUESTIONS &
ANSWERS

1. Explain the function of an XOR gate and provide its truth table.

Computer Organization & Architecture -76

Answer: An XOR gate outputs true (1) when the number of true
inputs differs (exactly one is true), and outputs false (0) when both

inputs are the same (both true or both false). The truth table is:

| Input A | Input B | Output |

2. Simplify the Boolean expression: A'B + AB’ + AB.
Answer: Apply Boolean algebra laws step-by-step:

A'B+ AB' + AB = A'B + AB' + AB (Original expression)

= A'B + AB" 4+ AB(1) (identity: AB — AB(1))

— A'B + AB' + AB(1 + B) (Distributive law)

— A'B + AB' + AB (Absorption: AB(1 + B) — AB)

= A'B + AB' (Idempotent law: AB + AB' = A(B + B') = A)
— B(A' + A) (Distributive law)

— B1 (Complement law: A’ + A = 1)

— B (Identity law: B1 = B)

3. Explain the function of a half adder and provide its truth table.
Answer: A half adder adds two single-bit binary numbers (A and
B) and produces a sum (S) and carry-out (C). Truth table:

4. What are logic gates? Explain the function of each of the
following gates: AND, OR, NOT, NAND, NOR, XOR, and
XNOR.

Answer: Logic gates are fundamental building blocks of digital

circuits that perform Boolean operations on one or more binary

Computer Organization & Architecture -77

inputs to produce a single binary output. Here are the functions of

each gate:

e AND Gate: Outputs true (1) only if all inputs are true.

e OR Gate: Outputs true (1) if at least one input is true.

e NOT Gate: Inverts the input; outputs true (1) if the input is
false (0), and vice versa.

e NAND Gate: Inverts the output of an AND gate; outputs
false (0) only if all inputs are true.

e NOR Gate: Inverts the output of an OR gate; outputs true
(1) only if all inputs are false.

e XOR Gate: Outputs true (1) if exactly one input is true.

e XNOR Gate: Outputs true (1) if all inputs are the same

(either all true or all false).

5. Define Boolean algebra. How is Boolean algebra used in digital
circuit design? Provide examples of Boolean expressions and their
simplification using Boolean laws.

Answer: Boolean algebra is a mathematical system used to
analyze and simplify Boolean expressions. It consists of basic
operations (AND, OR, NOT) and laws (commutative, associative,
distributive, De Morgan's) that govern these operations. In digital
circuit design, Boolean algebra helps in optimizing circuits by

reducing the number of gates and improving efficiency. Example:

Computer Organization & Architecture -78

Boolean Expression: F — AB + A'C' + AC

Simplified Expression: Apply Boolean laws step-by-step:
F=AB+ A'C'+ AC

= AB + A'C’' + AC(1) (identity: AC = AC(1))

= AB + A'C" + AC(1 + ") (Distributive law)

= AB + A'C' + AC (Absorption: AC(1 + C') = AC)
— A(B + (') (Distributive law)

2.13 REFERENCES

e Floyd, Thomas L. Digital Fundamentals. Pearson
Education, 2015.

e Taub, Herbert, and Donald L. Schilling. Digital Integrated
Electronics. McGraw-Hill Education, 1994.

e Mano, M. Morris, and Michael D. Ciletti. Digital Design:
With an Introduction to the Verilog HDL. Pearson
Education, 2017.

e Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals
of Logic Design. Cengage Learning, 2013.

e Streetman, Ben G., and Sanjay Banerjee. Solid State
Electronic Devices. Prentice Hall, 2005.

e Hayes, John P. Introduction to Digital Logic Design.
Addison-Wesley, 1993.

Computer Organization & Architecture -79

UNIT - 3: COMBINATIONAL AND
SEQUENTIAL CIRCUITS

Structure

3.0 Introduction
3.1 Objectives
3.2 Combinational Logic Circuit Design
3.3 Flip-Flops
3.3.1 SR Flip Flop:
3.3.2 JK Flip Flop
3.3.3 D Flip Flop
3.3.4 T Flip Flop
3.4 Registers
3.5 Counters (Synchronous & Asynchronous)
3.6 Conclusion
3.7 Unit Based Questions & Answers

3.8 References

3.0 INTRODUCTION

Digital electronics form the backbone of modern technology,
enabling the creation and operation of computers, communication
systems, and a myriad of electronic devices. Central to these
systems are logic circuits, which process binary information using
various components such as combinational logic circuits, flip-
flops, registers, and counters. Understanding these components and
their design principles is crucial for anyone involved in the design

and implementation of digital systems.

Computer Organization & Architecture -80

This unit delves into the core elements of digital electronics,
starting with combinational logic circuit design, which involves
creating circuits that generate outputs based solely on current
inputs.

We then explore flip-flops, which are essential for storing binary
data and forming the building blocks of sequential circuits. The
discussion extends to registers, which store multiple bits of data
and facilitate data manipulation and transfer within digital systems.
Finally, we examine counters, which play a critical role in timing,

sequencing, and frequency division in digital circuits.

By the end of this unit, you will have a comprehensive
understanding of these fundamental components, their operations,
and their applications in various digital systems. This knowledge
will equip you with the skills necessary to design and analyze

complex digital circuits effectively.

3.1 OBJECTIVES

e Understand Combinational Logic Circuit Design:
Comprehend the principles of combinational logic circuits
and their design methodologies.

e Master Flip-Flops: Explain the operation and
characteristics of various types of flip-flops, including SR,
JK, D, and T flip-flops.

e Gain Proficiency in Registers: Understand the
applications of registers in data storage and manipulation,

including SISO, SIPO, PISO, and PIPO configurations.

Computer Organization & Architecture -81

e Understand and Design Counters: Understand the
concept of modulo-N counting and create state diagrams
for counters.

e Apply Knowledge in Practical Applications: Identify the
applications of combinational circuits, flip-flops, registers,

and counters in real-world digital systems.

3.2 COMBINATIONAL LOGIC
CIRCUIT DESIGN

A combinational circuit in digital electronics is a type of logic
circuit where the output at any instant of time is determined solely
by the present combination of input signals. In other words, the
output depends only on the current state of its inputs, with no
memory or feedback involved. Combinational circuits are
fundamental building blocks used extensively in digital systems for
various tasks such as data processing, arithmetic operations, and

logical decisions.

Characteristics of Combinational Circuits:

1. No Feedback: Combinational circuits do not have any
form of feedback; hence, their outputs depend strictly on
the current input values.

2. Deterministic QOutput: For a given set of input values, a
combinational circuit will always produce the same output
values. There are no timing dependencies or sequential
states affecting the output.

3. Logic Gates and Boolean Algebra: Combinational circuits
are constructed using basic logic gates (AND, OR, NOT,

etc.) and are governed by principles of Boolean algebra.

Computer Organization & Architecture -82

Boolean expressions are used to describe and simplify the
logic implemented by these circuits.
Examples of Combinational Circuits:
1. Multiplexer (MUX):

o A multiplexer selects one of several input lines and
forwards it to a single output line based on a control
signal. It is designed using logic gates to enable data
routing in digital systems. For example, a 4-to-1
MUX selects one of four data inputs based on a 2-
bit control signal.

Decoder:

o A decoder takes a binary-coded input and activates
one of several output lines based on the input code.
It is typically used for memory address decoding,
where different memory locations are accessed

based on the binary address input.

Adder (Half Adder and Full Adder):

o Adders are combinational circuits used for
arithmetic operations. A half adder adds two single-
bit binary numbers, producing a sum and a carry-
out. A full adder adds two binary numbers along

with a carry-in, producing a sum and a carry-out.

A o
B o
Cin O

Encoder:

Computer Organization & Architecture -83

o An encoder performs the opposite function of a
decoder. It converts multiple input signals into a
coded output, typically used in data compression

and error detection applications.

Advantages and Applications:
e Speed: Combinational circuits operate at high speeds since
the output is determined instantly by the inputs.
e Simplicity: They are relatively simple to design and
understand compared to sequential circuits.
e Versatility: Used in various applications such as arithmetic
operations, data routing, address decoding, and logical

decision-making in digital systems.

3.3 FLIP-FLOPS

A flip flop is a circuit that has two stable states. These stable states
are utilized to hold binary data, which is modifiable by the
application of different inputs. The basic components of the digital

system are the flip flops.
Examples of data storage components are latches and flip flops.
The flip flop is the fundamental storage element of a sequential

logical circuit. Although they function differently, latches and flip

flops are the fundamental components of storage.

The following categories of flip flops exist:

Computer Organization & Architecture -84

3.3.1 SR Flip Flop:

The SR flip flop is a bistable device with one bit of memory that
accepts two inputs: SET and RESET. The device is set or an output
of 1 is produced by the SET input 'S', and the device is reset or an
output of 0 is produced by the RESET input 'R'. The labels S and R
designate the inputs for SET and RESET, respectively.

"Set-Reset" flip flops are known as SR flip flops. Resetting the flip
flop to its initial state from its current state with an output of 'Q' is
accomplished using the reset input. The logic levels "0" and "1"
determine the set and reset conditions that determine this output.

A simple flip flop that feeds feedback back to its opposing input
from both of its outputs is the NAND gate SR flip flop. The single
data bit in the memory circuit is stored in this circuit. Thus, the SR
flip flop has three inputs in total—"S," "R," and "Q," as well as the
current output. The present history or state is relevant to this
output, 'Q'. Since the device can be "flipped" to a logic set state or
"flopped" back to the opposing logic reset state, the term "flip-
flop" refers to how the gadget actually operates.

The NAND Gate SR Flip-Flop

By connecting two cross-coupled 2-input NAND gates, we may
create a set-reset flip flop. Feedback is supplied in the SR flip flop
circuit from each output to one of the other NAND gate inputs.
The gadget thus has two inputs, Set ('S') and Reset ('R'), and two
outputs, Q and Q', correspondingly. The S-R flip flop's circuit and
block diagrams are shown below.

Block diagram:

Computer Organization & Architecture -85

Circuit Diagram:

S———

T
3
I

The Set State

The NAND gate Y in the preceding diagram has an input of 0,
which will result in the output Q' 1, when the input R is set to false
or 0 and the input S is set to true or 1. When the value of Q' is
passed to the NAND gate 'X' as input 'A’, both of the gate's inputs
are now 1(S=A=l), resulting in the output 'Q' 0.

At this point, the inputs of NAND gate 'Y' are R=1 and B=0 if the
input R is changed to 1 and 'S' stays at 1. Since one of the inputs in
this case is also 0, Q's output is 1. Thus, Q=0 and Q'=1 are used to
set or latch the flip flop circuit.

Reset State
In the second stable condition, the output Q is 1, and the output Q'
is 0. It is determined by S =0 and R = 1. The NAND gate 'X' has a

zero input and a one output, Q. As input B, output Q is faded to
Computer Organization & Architecture -86

NAND gate Y. Since NAND gate Y's two inputs are both set to 1,
Q' =0.

Hence, if the input S is modified to 0 but 'R' stays at 1, the result Q'
will also be 0 and the state will remain unchanged. Thus, the flip
flop circuit's reset state has been created, and the set/reset actions
are specified in the truth table that follows:

The S-R flip flop is the simplest and easiest circuit to understand.

Truth Table:
S R Y Y
0 0 0 1
0 1 0 1
1 0 1 0
1 1 == ==
3.3.2 JK Flip Flop

The Set-Reset flip flop, also known as the SR flip flop, offers
many benefits. However, it has the following issues when
switching:
e This circumstance is never encountered when the inputs for
Set 'S' and Reset 'R' are both set to 0.
e Incorrect latching happens when the enable input is set to 1,

and the Set or Reset inputs alter their state.

These two issues with the SR Flip Flop are eliminated by the JK
Flip Flop.

One of the most popular flip flips in digital circuits is the JK flip
flop. The JK flip flop, which has two inputs named "J" and "K," is
a universal flip flop. The 'S' and 'R' of an SR flip flop stand for Set
and Reset, respectively, although J and K do not. The independent

Computer Organization & Architecture -87

letters J and K were selected to set the flip flop design apart from

other varieties.

The JK flip flop functions similarly to the SR flip flop. Instead of
"S" and "R," the JK flip flop has "J" and "K" flip flops. The
primary distinction between an SR flip flop and a JK flip flop is
that an SR flip flop generates invalid states as outputs when both of
its inputs are set to 1, whereas a JK flip flop does not produce any

invalid states when either of its inputs is set to 1.

The JK Flip Flop is an SR flip-flop that is gated and has a clock
input circuit added to it. When both inputs are set to 1, an invalid
or illegal output state arises, which can be avoided by including a
clock input circuit. Thus, there are four possible input
combinations for the JK flip-flop: 1, 0, "no change," and "toggle."
With the addition of a clock input, the JK flip flop symbol is
identical to the SR Bistable Latch symbol.

Block Diagram:

Symbol

Computer Organization & Architecture -88

Circuit Diagram:

Toggles on leading SR Flip-Flop
edge of clock signal /f

}(. oQ

o

F Y

Clke

0
ol

K o———]

ol

i

Circuit

The inputs 'S' and 'R' of an SR flip flop are swapped out for two
inputs, J and K. This indicates that S and R are equivalent to J and
K, respectively.

We swap out the two 2-input AND gates for two 3-input NAND
gates. Each gate's third input is linked to the outputs at Q and Q'.
Since the two inputs of the SR flip-flop are now interlocked, the
previously invalid condition of (S ="1", R ="1") can be exploited

to generate the "toggle action" due to cross-coupling.

The J input is cut off from Q's "0" position through the lower
NAND gate if the circuit is "set". K input is cut off from Q's 0
locations through the higher NAND gate if the circuit is in the
"RESET" state. We can utilize Q and Q' to manipulate the input
because they are always different. According to the provided truth
table, the JK toggles the flip flop when both inputs "J" and "K" are

setto 1.

Truth Table:

Computer Organization & Architecture -89

Same | Clock Input Output Descrif
asfor | Clk) K Q Q’
SR X 0 0 1 0 Mem
Latch X 0 0 0 1 no cha
2 0 1 1 0 Reset (
X 0 1 0 1
o 1 0 0 1 Set Q¢
X 1 0 1 0
Toggle | |, 1 1 0 1 Togg
action | |, 1 i 1 0

The circuit will toggle between the SET and RESET states when
the JK flip flop's two inputs are both set to 1 and the clock input is
pulsating "High." When both of the JK flip flop's inputs are set to
1, it functions as a T-type toggle flip flop.

An enhanced timed SR flip flop is the JK flip flop. However, the
issue of "race" persists. When the output Q is altered before the
timing pulse of the clock input has a chance to turn "Off," an issue
arises. To prevent this time, we must maintain short timing plus

period (T).

3.3.3 D Flip Flop
In digital systems, the D flip flop is a commonly used flip flop.

Input synchronization, counters, and shift registers are the main

applications for the D flip flop.

Computer Organization & Architecture -90

v

CLK

!

Truth Table:

Clock
J » 0
T™»1
J»0
T»1

Sl l=R=Ri=]K 4

== oS0

(=) N S e

3.3.4 T Flip Flop

T flip flops are utilized similarly to JK flip flops. In contrast to JK
flip flops, T flip flops have a single clock input. The JK flip flop's

two inputs are connected as a single input to create the T flip flop.

T I_ﬁ
—

CLK

=0 T

The T flip flop is also known as Toggle flip-flop. These T flip-

flops are able to find the complement of its state.

Computer Organization & Architecture -91

Truth Table:

Y (t+1)

=l =
== OO | =
| = | =

Flip-Flop Applications

Flip-flops are versatile components in digital electronics, crucial

for storing binary data and implementing various sequential

circuits. Here are some common applications of flip-flops:

1. Registers:

o

Description: Registers are sequential circuits
composed of flip-flops used for temporary storage
of data within a processor or digital system.

Types: Parallel-in-Parallel-out (PIPO), Serial-in-
Parallel-out (SIPO), Parallel-in-Serial-out (PISO),
Serial-in-Serial-out (SISO).

Applications: Used in microprocessors, CPUs, and
arithmetic logic units (ALUs) for data buffering,

temporary storage, and data transfer operations.

2. Counters:

o

Description: Counters are sequential circuits that
generate a sequence of binary numbers in response
to clock pulses.

Types: Up counters, Down counters, Up/Down

counters.

Computer Organization & Architecture -92

o Applications: Used in digital clocks, frequency
dividers, digital signal processing (DSP), and event
counting in digital systems.

3. Memory Elements:

o Description: Flip-flops form the basic storage
elements of memory units in digital systems.

o Types: SRAM (Static Random Access Memory),
registers, cache memory.

o Applications: Primary storage in computers,
buffering data between different speed devices, and

temporary data storage in embedded systems.

Edge-Triggered vs. Level-Triggered Flip-Flops
1. Edge-Triggered Flip-Flops:

o Operation: Respond to transitions (edges) of the
clock signal (rising or falling edge).

o Advantages: Ensures stable operation with precise
timing control, minimizing timing hazards.

o Applications: Used in synchronous digital systems
where data changes state at specific points in the
clock cycle.

2. Level-Triggered Flip-Flops:

o Operation: Respond to the continuous level of the
clock signal (HIGH or LOW).

o Behavior: Output changes state whenever the clock
signal is at a specific logic level.

o Applications: Less common in digital designs due
to potential for timing hazards and less precise

synchronization.

Computer Organization & Architecture -93

Comparison and Selection
e Selection Criteria:

o Timing Requirements: Edge-triggered flip-flops
are preferred for synchronous designs requiring
precise timing and synchronization.

o Complexity: Level-triggered flip-flops may be
simpler but are less commonly used due to their
limitations in timing control.

o Application Specific: The choice between edge-
triggered and level-triggered flip-flops depends on
the specific requirements of the digital system and
the design goals for timing, synchronization, and

performance.

3.4 REGISTERS

Registers are essential components in digital electronics used for
temporary data storage and manipulation. They are composed of
flip-flops and enable various operations such as data buffering,
arithmetic operations, and data transfer. Here’s an in-depth

exploration of registers:

Types of Registers
1. Shift Registers: A flip-flop is a type of one-bit memory
cell that can be used to store digital information. We must
utilize a set of flip-flops to improve the storage capacity in
terms of bits. A register is a collection of flip-flops like this
one. An n-bit word can be stored in the n-bit register, which
is made up of n flip-flops.

Computer Organization & Architecture -94

It is possible to transfer the binary data between flip-flops
inside a register. Shift registers are the registers that permit
these kinds of data transfers. A shift register can operate in
four different ways.

Shift registers are sequential circuits that shift data bit-by-
bit either left or right based on clock pulses.

Types:

= Serial-in, Serial-out (SISO): Data is shifted
in and out serially.

= Serial-in, Parallel-out (SIPO): Data is
shifted in serially and outputted in parallel.

= Parallel-in, Serial-out (PISO): Data is
loaded in parallel and outputted serially.

= Parallel-in, Parallel-out (PIPO): Data is
loaded and outputted in parallel.

Let’s discuss one by one:

Serial-in, Serial-out (SISO):

Assume that every flip-flop started out in the reset state,
with Q3 = Q2 = QI = Q0 = 0. When a four-bit binary
number, such as 1 1 1 1, is entered into the register, it
should be applied to the Din bit first, using the LSB bit.
Din, the serial data input, is coupled to FF-3's D input, or
D3. The input of the flip-flop after it, D2, is connected to
the output of FF-3, or Q3.

Computer Organization & Architecture -95

Qs ——D: Q: —eD: Q.

FF-3 PR FF-1

CLK

[=)

Serial Input Parallel Output

These kinds of processes involve the serial entry
and parallel extraction of data.

Piece by piece, data is loaded. As long as the data is
loading, the outputs are disabled.

The outputs are turned on so that all of the loaded
data is simultaneously available across all of the
output lines as soon as the data loading process is
finished and all of the flip-flops have the necessary
data.

A four-bit word can only be loaded with four clock
cycles. As a result, SIPO mode operates at the same

speed as SISO mode.

| . s

D-—D: Q: 1 — Dl Q. - D. Q. -
) FF-3 ol FF-2 =) FF-1

CLK)

Parallel Input Serial Output (PISO)

o Bits of data are entered in parallel.

o A four bit parallel input serial output register is

depicted in the circuit below.

Computer Organization & Architecture -96

o A combinational circuit connects the input of the
subsequent Flip Flop to the output of the preceding
one.

o The identical combinational circuit is used to apply
the binary input words B0, B1, B2, and B3.

o This circuit can function in either the load mode or

the shift mode.

Load Mode

The AND gates 2, 4, and 6 become active when the
shift/load bar line is low (0). They then pass the bits B1,
B2, and B3 to the appropriate flip-flops. The binary inputs
B0, B1, B2, and B3 will be loaded into the appropriate flip-
flops on the clock's low-going edge. Parallel loading occurs

as a result.

Shift Mode

The AND gates 2, 4, and 6 are rendered inactive when the
shift/load bar line is low (1). Thus, it is no longer possible
to load the data in parallel. However, the 1, 3, and 5 AND
gates open. As a result, when clock pulses are applied, data
is bit by bit shifted from left to right. As a result, the

parallel in serial out operation occurs.

Computer Organization & Architecture -97

Block Diagram:

Parallel inputs
Shift/Load B: B:. B ?:

B

¥

[—lr) FFO | I—p FF-1
L

Parallel Input Parallel Output (PIPO)

In this mode, the data inputs DO, D1, D2, and D3 of the
four flip-flops, respectively, receive the four-bit binary
input BO, B1, B2, and B3. Upon application of a negative
clock edge, the input binary bits will be simultaneously fed
into the flip-flops. On the output side, the loaded bits will
show up simultaneously. To load every bit, a clock pulse is

the only requirement.

Block Diagram:
————————————— Paralle! output ———-—-———-——-—-————-
B B- B B
L D (8 F D O Lo D Q |

= —.‘i £ A
— FF-3 T FF-2 — FF-1

CLK

2. Parallel Registers:

Computer Organization & Architecture -98

o Description: Parallel registers store data in parallel
form, allowing simultaneous input and output of
data.

o Types: Includes general-purpose registers in CPUs,
memory registers in microcontrollers, and special-
purpose registers for control and status handling.

o Operation: Input and output occur simultaneously

in parallel, suitable for high-speed data processing.

Design and Operation of Shift Registers
o Design: Shift registers are constructed using interconnected
flip-flops and control logic for shifting data.
e Operation:
o Serial-in, Serial-out (SISO): Data is shifted in and
out serially, bit-by-bit.
o Serial-in, Parallel-out (SIPQO): Data is shifted in
serially and outputted in parallel.
o Parallel-in, Serial-out (PISO): Data is loaded in
parallel and outputted serially.
o Parallel-in, Parallel-out (PIPO): Data is loaded

and outputted in parallel.

Applications of Registers in Data Storage and Manipulation
o Data Storage: Registers hold operands and results in
arithmetic operations within CPUs.
e Data Manipulation: Used for data transfer between
memory and peripherals, buffering data in communication

systems, and managing control signals in digital systems.

Register Transfer Level (RTL) Description and

Implementation
Computer Organization & Architecture -99

RTL Description: RTL is a low-level hardware description
language describing the flow of data between registers in a
digital circuit.

Implementation: RTL is used to model and simulate
digital systems at a register transfer level, aiding in design

verification and synthesis into physical hardware.

Example Application: Shift Register in Serial-to-Parallel

Conversion

A 4-bit SIPO shift register converts serial data input (SI) into

parallel data output (PO):

Operation: Serial input data (1011) is clocked into the shift
register bit-by-bit. After complete input, the parallel data
output (1011) is available simultaneously at the output.

Diagram:

Registers:

Types of registers (Shift registers, Parallel registers)

Design and operation of shift registers

Applications of registers in data storage and manipulation
Serial-in, serial-out (SISO), serial-in, parallel-out (SIPO),
parallel-in, serial-out (PISO), parallel-in, parallel-out
(PIPO) registers

Register transfer level (RTL) description and

implementation

Computer Organization & Architecture -100

3.5 COUNTERS (SYNCHRONOUS &
ASYNCHRONOUS)

A counter is a specific kind of sequential circuit that counts pulses;

counters are collections of flip flops that receive a clock signal.

One of the most common uses for the flip flop is as a counter. The
output of the counter has a predetermined state based on the clock

pulse. With the counter's output, one may count the number of

pulses.
Truth table:
Clock | Counter output | State | Decimal
Qs Q. number | counter
output
Initially 0 0 - 0
" 0 1 1 1
- 1 0 2 2
3d 1 | 3 3
4 0 0 4 0

Types of Counters
e Asynchronous Counters

e Synchronous Counters

Asynchronous or ripple counters

The ripple counter is another name for the asynchronous counter.
The 2-bit Asynchronous counter schematic, which made use of two
T flip-flops, is shown below. By permanently setting both inputs to

Computer Organization & Architecture -101

1, we can use the JK flip flop in addition to the T flip flop. The

external clock is applied to the clock input of flip flop number one,

FF-A, and its output, FF-B, is applied to the clock input of flip flop

number two.
Block Diagram:
Logic 1
LTA Qa L Te Qg|— Output
Clk— @ FF-A L- FF-B
Qo
High High
J Set Q J Set Ql—aQ
Clk——d
KGNS eI
Signal Diagram:
1 1 2 3
Clk
O
1
1
Qo 0 1
0 O
! 1 1
-~ 0 0
Operation:

e Condition 1: When both flip flops are in the reset state is

the first condition.

Computer Organization & Architecture -102

Operation: Both flip flops' outputs, QA and QB, will be 0.
Condition 2: When the first clock edge is negative is the
second condition.

Operation: The output of the first flip flop will switch
from 0 to 1. It will toggle. The clock input of the
subsequent flip flop will receive the output of this one. The
second flip flop will interpret this output as a clock with a
positive edge. Since it is a negative edge triggered flip flop,
this input will not alter the state of the flip flop's output.
Thus, QB =0and QA=1.

Condition 3: Upon application of the second negative
clock edge.

Operation: The initial flip flop will toggle once more,
changing its output from 1 to 0. The second flip flop will
interpret this output as a clock with a negative edge. Since
it is a negative edge triggered flip flop, this input will alter
the second flip flop's output state.

Hence, QB =1 and QA =0.

Condition 4: Upon application of the third negative clock
edge.

Operation: The initial flip flop will toggle once more,
changing its output from 0 to 1. The second flip flop will
interpret this output as a clock with a positive edge. Since it
is a negative edge triggered flip flop, this input will not
alter the state of the flip flop's output.

QA =1, then, and QB = 1.

Condition 5: Upon application of the fourth negative clock
edge.

Operation: The initial flip flop will toggle once more,

changing its output from 1 to 0. The second flip flop will

Computer Organization & Architecture -103

interpret this output as a clock with a negative edge. The
second flip flop's output state will be altered by this input.
Thus, QB =0 and QA= 0.

Synchronous counters

The output of the current counter feeds into the input of the
subsequent counter in an asynchronous counter. As a result, the
counters are chained together. This system's disadvantage is that it
causes the propagation delay during the counting stage in addition
to the counting delay itself. This disadvantage is meant to be

eliminated by the synchronous counter.

The clock input of each flip flop in the synchronous counter
receives the identical clock pulse. Each and every flip flop
generates an identical clock signal. The schematic of a 2-bit
synchronous counter with the inputs of the first flip flop, or FF-A,
set to 1, is shown below. The initial flip-flop will therefore function
as a toggle flip-flop. Both of the next JK flip flop's inputs receive
the output of the first flip flop.

Logical Diagram

Logic 1

FF-B @ FF-A @

Ke[— Kal—

Clk

Computer Organization & Architecture -104

High

Kar Q Kar Q K cir Q
FF-0 FF-1 FF-2
Clk >

Set Set) 1|, set
J Q Q. J Q Q, J Q Q,

Signal Diagram

1

2 3 21 5 6 7

|

— _

Operation:

Condition 1: When both flip flops are in the reset state is
the first condition.

Operation: Both flip flops' outputs, QA and QB, will be 0.
Thus, QB =0 and QA = 0.

Condition 2: When the first clock edge is negative is the
second condition.

Operation: The output of the first flip flop will be
switched from 0 to 1 by toggling it. The first flip flop's
output will be zero after the first negative clock edge is
passed. The first flip flop's clock input and both of its
inputs will be set to 0. The second flip flop will continue to
be in the same state in this manner.

Thus, QB =0 and QA= 1.

Condition 2: When the second negative clock edge is

passed is the second condition.
Computer Organization & Architecture -105

Operation: The first flip flop will be toggled once more,
changing its output from 1 to 0. Upon passing the second
negative clock edge, the first flip flop's output will be 1.
The first flip flop's clock input and both of its inputs will be
set to 1. The second flip flop's state will go from 0 to 1 in
this fashion.

Thus, QB =1 and QA= 0.

Condition 2: When the third clock edge is negative,
condition two is met.

Operation: The inputs and the clock input are both set to 0
in this case, therefore the initial flip flop will toggle
between 0 and 1. As a result, the results will not change.
QA =1, then, and QB = 1.

Condition 2: Second condition: Upon the passage of the
fourth negative clock edge.

Operation: The initial flip-flop will alternate between 1
and 0. The second flip flop's inputs and clock input are
currently set to 1. The outputs will therefore shift from 1 to
0.

Thus, QB =0 and QA= 0.

3.6 CONCLUSION

In this unit, we have explored the fundamental components and

design principles that underpin digital electronics. Starting with

combinational logic circuits, we examined how these circuits

generate outputs based on current inputs and the importance of

Boolean algebra and Karnaugh Maps in optimizing their design.

Understanding these concepts is crucial for creating efficient and

effective digital systems.

Computer Organization & Architecture -106

We delved into flip-flops, the building blocks of sequential circuits,
and discussed their various types, including SR, JK, D, and T flip-
flops. By analyzing their timing diagrams and truth tables, we
gained insights into how flip-flops store and transfer data. This
knowledge is vital for designing complex digital circuits that

require precise timing and synchronization.

Registers and counters were also covered extensively. Registers,
essential for data storage and manipulation, come in various forms
such as shift registers and parallel registers. We explored their
design, operation, and applications. Counters, both synchronous
and asynchronous, play a critical role in timing, sequencing, and
frequency division. Understanding their design and
implementation enables the creation of digital systems that can

count, divide frequencies, and generate specific sequences.

Overall, this unit has provided a comprehensive understanding of
combinational and sequential logic circuits, equipping you with the
skills to design and analyze digital systems. These foundational
concepts are integral to the advancement in digital electronics and

will be instrumental in your future endeavors in the field.

3.7 UNIT BASED QUESTIONS &
ANSWERS

1. What is a combinational logic circuit?
Answer: A combinational logic circuit is a type of digital circuit

where the output is determined solely by the current inputs,

Computer Organization & Architecture -107

without any memory or feedback elements. Examples include

adders, multiplexers, and decoders.

2. How can Boolean algebra be used in the design of
combinational circuits?

Answer: Boolean algebra provides a mathematical framework to
simplify and optimize logic expressions, which can then be

implemented using logic gates in combinational circuits.

3. What is the purpose of using Karnaugh Maps (K-maps)?
Answer: K-maps are used to simplify Boolean expressions by
minimizing the number of terms and variables, resulting in a

simpler and more efficient combinational circuit design.

4. What is the primary function of a flip-flop?
Answer: A flip-flop is a digital memory element used to store one

bit of data. It is a fundamental building block in sequential circuits.

5. How does a D flip-flop differ from a JK flip-flop?

Answer: A D flip-flop has a single data input (D) and stores the
value of the input at the rising or falling edge of the clock signal. A
JK flip-flop has two inputs (J and K) and can toggle its state, set, or

reset based on the inputs and clock signal.

6. Explain the concept of edge-triggered vs. level-triggered flip-
flops.

Answer: Edge-triggered flip-flops change their state only at
specific moments of the clock signal's rising or falling edge, while

level-triggered flip-flops respond to the level (high or low) of the
Computer Organization & Architecture -108

clock signal, changing their state as long as the clock is at the

triggering level.

7. What are shift registers, and how are they used?

Answer: Shift registers are sequential logic circuits that shift the
data stored in them by one position on each clock pulse. They are
used in data manipulation, storage, and transfer applications, such

as serial-to-parallel and parallel-to-serial data conversion.

3.8 REFERENCES

e Floyd, Thomas L. Digital Fundamentals. Pearson
Education, 2015.

e Taub, Herbert, and Donald L. Schilling. Digital Integrated
Electronics. McGraw-Hill Education, 1994,

e Mano, M. Morris, and Michael D. Ciletti. Digital Design:
With an Introduction to the Verilog HDL. Pearson
Education, 2017.

e Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals
of Logic Design. Cengage Learning, 2013.

e Streetman, Ben G., and Sanjay Banerjee. Solid State
Electronic Devices. Prentice Hall, 2005.

e Hayes, John P. Introduction to Digital Logic Design.
Addison-Wesley, 1993.

Computer Organization & Architecture -109

UNIT - 4: ALU DESIGN

Structure

4.0 Introduction

4.1 Objectives

4.2 Introduction to ALU

4.3 ALU Design

4.4 ALU Micro-Operations

4.5 ALU-Chip

4.6 Introduction to Faster Algorithms
4.7 Multiplication Algorithms

4.8 Division Algorithms

4.9 Conclusion

4.10 Unit Based Questions & Answers

4.11 References

4.0 INTRODUCTION

In this chapter, we will explore the fundamental concepts and
techniques used in the design and implementation of Arithmetic
Logic Units (ALUs) and faster algorithms for multiplication and
division. An ALU is a critical component of a computer's central
processing unit (CPU), responsible for performing arithmetic and
logical operations. The efficiency and speed of an ALU have a

direct impact on the overall performance of a computer system.

We will begin by outlining the objectives of this chapter and
providing an introduction to ALU, including its definition,
functions, and importance in computer systems. We will then delve

Computer Organization & Architecture -110

into the design of ALUs, including the different types of ALUs,
their components, and how they operate.

Next, we will explore the micro-operations that take place within
an ALU, including arithmetic and logical operations, and how they
are executed. We will also discuss the ALU-chip, which is a

hardware implementation of an ALU.

In the second part of this chapter, we will introduce faster
algorithms for multiplication and division, including the Karatsuba
multiplication algorithm and the SRT division algorithm. These
algorithms are designed to optimize the performance of ALUs and

improve the overall efficiency of computer systems.

Finally, we will conclude this chapter by summarizing the key
concepts and techniques discussed, and provide unit-based
questions and answers to reinforce your understanding. We will

also provide references for further reading and exploration.

4.1 OBJECTIVES

After completion of this unit, you will be able to understand:
e Understand the definition and functions of an ALU
e Learn about the design and operation of ALUs
e Explore micro-operations within an ALU
e Study the ALU-chip and its components
e Introduce faster algorithms for multiplication and
division
e Understand the importance of ALUs in computer

systems

Computer Organization & Architecture -111

4.2 INTRODUCTION TO ALU

The Arithmetic Logic Unit (ALU) is a critical component of a

computer's central processing unit (CPU). It is responsible for

performing arithmetic and logic operations, which are the

fundamental tasks required for processing data in computers.

Function:

Arithmetic Operations: The ALU performs basic
arithmetic operations such as addition, subtraction,
multiplication, and division.

Logic Operations: It also carries out logical operations
including AND, OR, NOT, XOR, and bitwise shifts.

Data Transfer: Some ALUs support data transfer
operations like loading data from memory and storing data

to memory.

The ALU receives input data from the CPU registers, processes the

data according to the operation specified by the control unit, and

then sends the result back to the registers or memory.

Figure 1: Basic ALU Block Diagram

Computer Organization & Architecture -112

.

Control Unit (CU)

. 4

Input Unit Arithmetic & Logic Unit e Output Unit
(ALU)

r 3

Memory Unit (MU)

A

(Image Source: Spiceworks)
Basic Operations (Arithmetic and Logic Operations)
Arithmetic Operations:
e Addition: Adds two binary numbers. Example: 0101 +
0011 =1000.
e Subtraction: Subtracts one binary number from another.
Example: 0101 — 0011 = 0010.
e Multiplication: Multiplies two binary numbers. Example:
0011 x 0010 =0110.
o Division: Divides one binary number by another. Example:
0110 +0010=0011.
Figure 2: Arithmetic Operations in ALU

inputs inputs inputs inputs
00 10 (3 1. 1
OR gate
0 1 1 1
output output output output

Image Source: Study.com
Computer Organization & Architecture -113

Logic Operations:

AND: Performs a bitwise AND operation. Example:
0101 AND 0011 = 0001.

OR: Performs a bitwise OR operation. Example:
0101 OR 0011 =0111.

NOT: Performs a bitwise NOT operation (inversion).
Example: NOT 0101 =1010.

XOR: Performs a bitwise XOR operation. Example:
0101 XOR 0011 =0110.

Figure 3: Logic Operations in ALU

Importance of ALU in CPUs and Digital Systems
Role in CPUs: The ALU is integral to the operation of the CPU,

performing the essential calculations and logic decisions needed

for processing instructions. It allows the CPU to:

Execute complex mathematical computations.
Perform logical comparisons for decision-making.

Process data quickly and efficiently.

Impact on Performance:

Speed: The efficiency and speed of the ALU directly affect
the overall performance of the CPU. Faster ALUs enable
quicker data processing and better performance in
applications requiring intensive calculations.

Versatility: Modern ALUs are designed to handle a wide
range of operations, making CPUs versatile for various
applications, from scientific computations to everyday

computing tasks.

Figure 4: ALU within a CPU Block Diagram

Computer Organization & Architecture -114

Registers

Importance of ALU in CPUs and Digital Systems

The ALU is indispensable in CPUs and digital systems for several

reasons:

1.

Core Processing Element: The ALU is the heart of the
CPU, handling all arithmetic and logic operations. Without
it, the CPU cannot perform essential computations.
Performance and Efficiency: The efficiency of an ALU
directly impacts the performance of a CPU. Optimized
ALU designs lead to faster computation speeds and
improved overall system performance.

Versatility: The ALU supports a wide range of operations,
making it versatile for various computational tasks, from
simple arithmetic to complex logical decision-making
processes.

Integration in Complex Operations: ALUs are integrated
into larger processing units such as Floating Point Units
(FPUs) for advanced mathematical computations and
Graphics Processing Units (GPUs) for rendering graphics,
highlighting their critical role in both general-purpose and

specialized computing tasks.

Computer Organization & Architecture -115

5. Role in System Stability and Reliability: The precision
and accuracy of the ALU are vital for the stability and
reliability of a digital system. Errors in ALU operations can

propagate through the system, causing malfunctions.

Memory Management

CPU
Clock

Unit (MMU)
Control | |
Unit
1
Cache
L1i Cache

[A Register || B Register

Instruction
Pointer Arithmetic and
Logic Unit
(ALU)
Instruction
Register

[Accumulator |

4.3 ALU DESIGN

Components of an ALU

The Arithmetic Logic Unit (ALU) is a crucial component of a CPU
(Central Processing Unit) responsible for performing arithmetic
and logic operations on data. Here are the main components that

typically make up an ALU:

Computer Organization & Architecture -116

1. Registers:

o

o

Operand Registers (A and B): These registers
hold the operands (input data) on which the ALU
will perform operations such as addition,
subtraction, etc.

Result Register (R): This register stores the result
of the operation performed by the ALU.

2. Arithmetic Unit:

o

Adder: The adder circuit within the ALU performs
addition operations. It can handle adding two
operands and a carry-in bit for multi-bit addition.

Subtractor: In some ALUs, a subtractor circuit is
also included to perform subtraction operations.
Subtraction often utilizes two's complement

arithmetic to handle negative numbers.

3. Logic Unit:

o

Logic Gates (AND, OR, XOR, NOT): These gates
perform various logical operations:
= AND Gate: Outputs true (1) only if both
inputs are true.
= OR Gate: Outputs true (1) if at least one
input is true.
= XOR Gate: Outputs true (1) if inputs are
different.
= NOT Gate: Inverts the input.

4. Multiplexers (MUX):

o

Selector MUX: This component selects which
operation (arithmetic or logic) to perform based on
control signals received from the CPU's control

unit.
Computer Organization & Architecture -117

5. Control Unit:

o

Control Lines: These lines carry signals from the
CPU's control unit to the ALU, specifying the
operation to be performed (addition, subtraction,
AND, OR, etc.).

Status Flags: Flags are set based on the result of
operations (e.g., zero flag, carry flag, overflow flag)

and are used by the CPU for decision-making.

6. Timing and Control Circuits:

o

Clock Signals: These synchronize the timing of
operations within the ALU and with other parts of
the CPU.

Control Logic: Decodes instructions and generates
control signals to coordinate the operations of the

ALU.

7. Data Paths:

o

Internal Data Paths: These pathways allow data to
flow between the registers, arithmetic unit, logic

unit, and multiplexers within the ALU.

Block Diagram of ALU
Memory Unit |
device | ol | *—{ ovics, |
Control Unit .

v v

Secondary Storage Unit

Computer Organization & Architecture -118

4.4 ALU MICRO-OPERATIONS

Micro-operations are fundamental operations performed at the
register transfer level within a CPU. They involve manipulating
data at the bit level and are essential for executing higher-level
instructions and tasks. These operations are atomic, meaning they
cannot be further broken down into smaller operations.
Types of Micro-Operations
1. Register Transfer Micro-Operations:
o Transfer: Moves data from one register to another.
o Load: Loads data from memory into a register.
o Store: Writes data from a register back to memory.
2. Arithmetic Micro-Operations:
o Addition: Adds two operands to produce a sum.
o Subtraction: Subtracts one operand from another to
produce a difference.
o Increment: Adds 1 to a register's value.
o Decrement: Subtracts 1 from a register's value.
3. Logical Micro-Operations:
o ND: Performs a bitwise AND operation on
corresponding bits of two operands.
o OR: Performs a bitwise OR operation on
corresponding bits of two operands.
o XOR: Performs a bitwise XOR operation on
corresponding bits of two operands.
o NOT: Inverts each bit of an operand.
4. Shift Micro-Operations:
o Logical Shift: Shifts bits left or right, filling empty

bit positions with zeros.

Computer Organization & Architecture -119

o Arithmetic Shift: Shifts bits left or right,
preserving the sign bit for signed numbers.
o Rotate: Circularly shifts bits left or right, with bits
shifted out re-entering at the opposite end.
Execution of Micro-Operations within an ALU
The execution of micro-operations within an Arithmetic Logic Unit
(ALU) involves several steps:

e Fetching Data: Input operands (typically stored in
registers) are fetched into the ALU's operand registers (A
and B).

e Selecting Operation: The control unit of the CPU sends
control signals to the ALU, specifying which micro-
operation (arithmetic, logical, shift) to perform.

e Operation Execution: The ALU executes the specified
operation on the operands:

o For arithmetic operations (addition, subtraction), the
ALU uses adder circuits.

o Logical operations (AND, OR, XOR) are performed
using corresponding logic gates.

o Shift operations are executed using shift registers or
dedicated shift circuits within the ALU.

e Result Storage: After performing the operation, the result
is stored in the ALU's result register (R) or transferred back
to registers or memory, depending on the instruction and
subsequent micro-operations.

Control Unit and Micro-Operation Sequencing
The Control Unit coordinates the sequencing of micro-operations
within the CPU:

e Instruction Decoding: It decodes instructions fetched from
memory to determine the sequence of micro-operations

required to execute the instruction.
Computer Organization & Architecture -120

Control Signal Generation: Based on the decoded
instruction, the control unit generates control signals that
specify which micro-operations to execute and in what
sequence.

Timing and Synchronization: It ensures that micro-
operations occur in the correct order and at the appropriate
clock cycles to synchronize with other components of the
CPU.

Feedback and Error Handling: The control unit monitors
the execution of micro-operations, handling errors or
exceptional conditions that may arise during execution,
such as overflow or underflow conditions in arithmetic

operations.

PROCESSOR

CONTROL ARITHMETIC
UNIT LOGIC UNIT (ALL)

1!

MEMORY

PRIMARY
MEMORY
INFUT i |:

DEVICES |— A —

4.5 ALU-CHIP

An Arithmetic Logic Unit (ALU) Chip is a critical component of

microprocessors and central processing units (CPUs). It is

responsible for performing arithmetic and logic operations.

Modern ALU chips are highly integrated and optimized for speed

Computer Organization & Architecture -121

and efficiency, capable of handling complex instructions within a
MiCroprocessor.
Intel and AMD are two leading manufacturers of microprocessors,
and their ALU designs are integral to the performance of their
CPUs:
e Intel ALU Chips: Known for their integration in Intel’s
microprocessors, such as the Core i7 and Xeon series.
These chips are designed for high performance in both
general computing and specialized tasks.
e AMD ALU Chips: Integrated into AMD’s Ryzen and
EPYC series, these ALU chips focus on providing high-

performance computing and efficient power consumption.

Architecture and Features of ALU Chips
The architecture of an ALU chip typically includes several key
components:
1. Arithmetic Unit: Handles basic arithmetic operations like
addition, subtraction, multiplication, and division.
2. Logic Unit: Performs logical operations such as AND, OR,
XOR, and NOT.
3. Shifter: Responsible for bitwise shifting operations.
4. Registers: Temporary storage for operands and results.
5. Control Unit: Manages the operation of the ALU by
interpreting control signals from the CPU.

Features of Modern ALU Chips:
e Pipelining: Allows multiple instructions to be processed
simultaneously at different stages of execution.
e Parallelism: Supports parallel execution of operations to

enhance performance.

Computer Organization & Architecture -122

e Power Efficiency: Optimized for low power consumption,
critical for mobile and portable devices.
o Integrated Floating-Point Unit (FPU): Handles complex

arithmetic operations involving floating-point numbers.

Figure: Simplified Architecture of an ALU Chip

Integer Integer
Operand Operand

v v

A v B
Status

Opcode

€4 <

Integration of ALU Chips in Microprocessors
The ALU chip is integrated into microprocessors as part of the
CPU’s core architecture. It interacts closely with other

components, such as:

e Instruction Fetch Unit: Retrieves instructions from
memory and sends them to the ALU for execution.

e Register File: A collection of registers that store
intermediate data and operands for the ALU.

e Cache Memory: Provides high-speed data access for
frequently used data and instructions, reducing the latency
of ALU operations.

e Control Unit: Directs the operation of the ALU, ensuring

correct execution order and handling control signals.

Computer Organization & Architecture -123

Figure: ALU Integration in a Microprocessor

a

<= rc

Memory

CLK3

R &

=

EA

AC =D

Internal bus

OR

Performance Metrics of ALU Chips

Address 77777700

Enable

> ¢

The performance of ALU chips is evaluated using several key

metrics:

1. Clock Speed: Measured in GHz, indicating how many

cycles per second the ALU can execute.

2. Instructions Per Cycle (IPC): Indicates the number of

instructions the ALU can process in a single clock cycle.

3. Latency: The time it takes to complete a single instruction,

measured in clock cycles.

4. Throughput: The rate at which the ALU can process

instructions over a given period.

Computer Organization & Architecture -124

5. Power Consumption: Measured in watts, indicating the
energy efficiency of the ALU chip.

6. Heat Dissipation: The amount of heat generated by the
ALU during operation, which impacts cooling requirements

and overall system design.

4.6 INTRODUCTION TO FASTER
ALGORITHMS

Faster algorithms are computational procedures designed to
achieve optimal performance in terms of time complexity, space
complexity, or both, compared to their counterparts. These
algorithms are crucial in computer science and engineering for
solving complex problems efficiently. Here’s a detailed exploration

of faster algorithms:

Definition and Importance
Faster algorithms refer to algorithms that achieve improved
efficiency, typically measured by their computational complexity.

Efficiency can be in terms of:

e Time Complexity: How fast the algorithm runs as a
function of the size of its input.
e Space Complexity: How much memory the algorithm

requires to run as a function of the size of its input.

The importance of faster algorithms lies in their ability to handle
larger datasets or more complex computations within feasible time

and resource constraints. This is critical in modern computing

Computer Organization & Architecture -125

applications such as data analysis, machine learning, cryptography,

and real-time systems.

Types of Faster Algorithms
1. Divide and Conquer Algorithms:

o Definition: Divide the problem into smaller
subproblems, solve them recursively, and combine
the results.

o Example: Merge Sort, Quick Sort, Strassen's
Matrix Multiplication.

2. Greedy Algorithms:

o Definition: Make locally optimal choices at each
stage with the hope of finding a global optimum.

o Example: Dijkstra's Algorithm for shortest path,
Prim's Algorithm for minimum spanning tree.

3. Dynamic Programming:

o Definition: Break down complex problems into
simpler overlapping subproblems and store the
results to avoid redundant computations.

o Example: Fibonacci series computation using
dynamic programming.

4. Randomized Algorithms:

o Definition: Introduce randomness in the algorithm
to achieve faster average-case performance.

o Example: Quick Sort with randomized pivot
selection.

5. Approximation Algorithms:

o Definition: Provide solutions that are close to

optimal for hard problems where finding exact

solutions is computationally expensive.

Computer Organization & Architecture -126

o Example: Approximation algorithms for NP-hard

problems like Traveling Salesman Problem.

Advantages of Faster Algorithms

Scalability: Faster algorithms enable scaling of
computations to larger inputs or higher complexities
without significant increases in computation time.
Resource Efficiency: They optimize the use of
computational resources such as CPU time, memory, and
energy consumption.

Real-Time Processing: Essential for applications requiring
quick responses and real-time data processing, such as

robotics, financial trading systems, and online services.

Challenges and Considerations

Complexity Analysis: Understanding and analyzing the
time and space complexity of algorithms is crucial to
implementing faster solutions.

Implementation: Efficient implementation requires careful
consideration of algorithmic techniques, data structures,
and optimization strategies.

Trade-offs: Faster algorithms may sacrifice precision or
exactness in favor of speed, necessitating trade-offs in

certain applications.

Overview of Faster Algorithms for Multiplication and Division

Faster Algorithms for Multiplication

Multiplication is a fundamental arithmetic operation with several

algorithms optimized for efficiency:

Computer Organization & Architecture -127

1. Binary Multiplication:

o

Description: Involves multiplying binary numbers
using bit-wise operations.

Advantages: Simple and widely used in digital
circuits and computer systems.

Example: Booth's Algorithm optimizes binary
multiplication by reducing the number of addition

operations.

2. Karatsuba Algorithm:

o

Description: A fast multiplication algorithm that
uses a divide-and-conquer approach.

Advantages: Reduces the number of required
multiplications compared to traditional methods.
Example: Breaks down multiplication into smaller

multiplications, reducing time complexity.

3. Toom-Cook Multiplication:

o

Description: Extends Karatsuba algorithm by using
interpolation and evaluation at specific points.
Advantages: Efficient for large operands, reducing
complexity further than Karatsuba.

Example: Used in cryptographic algorithms and

digital signal processing.

4. Fast Fourier Transform (FFT)-based Multiplication:

o

Description: Uses FFT to perform multiplication in
O(n log n) time complexity.

Advantages: Highly efficient for very large
integers or polynomials.

Example: Common in signal processing and digital

communication systems.

Computer Organization & Architecture -128

Faster Algorithms for Division

Division algorithms focus on efficiently dividing one number by

another:

1. Binary Division:

o

Description: Divides binary numbers using bit-
wise operations.

Advantages: Simple and fundamental in digital
systems.

Example: Non-Restoring Division Algorithm
optimizes binary division by avoiding restoration

steps.

2. Restoring Division:

o

Description: Divides numbers by repeatedly
subtracting the divisor from the dividend.
Advantages: Guarantees exact division results.
Example: Used in microprocessor design and

arithmetic logic units (ALUs).

3. SRT Division (Sweeney, Robertson, and Tocher):

o

Description: Advanced division algorithm
combining digit selection and iterative refinement.
Advantages: Faster than traditional division
algorithms for large operands.

Example: Common in high-performance

computing and numerical analysis.

4. Newton-Raphson Division:

o

Description: Uses iterative approximation to find
reciprocal and multiply to achieve division.
Advantages: Provides fast convergence for division

of real numbers.
Computer Organization & Architecture -129

o Example: Used in mathematical software libraries

and numerical simulations.

Applications and Advancements

e Cryptographic Algorithms: Faster multiplication and
division algorithms are crucial for encryption and
decryption processes in secure communication protocols.

o Digital Signal Processing: FFT-based multiplication
supports efficient signal analysis and synthesis in audio and
video processing applications.

o High-Performance Computing: SRT division and
advanced multiplication algorithms enable faster numerical

simulations and scientific computing tasks.

4.7 MULTIPLICATION ALGORITHMS

Multiplication algorithms are methods used to perform
multiplication of two numbers, either binary or decimal. These
algorithms are essential in digital electronics and computer
arithmetic, as they enable efficient and accurate multiplication of
numbers. Various multiplication algorithms exist, each with its

own strengths and weaknesses.

Some common multiplication algorithms include Binary
Multiplication, Booth's Algorithm, Modified Booth's Algorithm,
Array Multiplier, and Wallace Tree Multiplier. Each algorithm uses
a different approach to perform multiplication, such as shifting and

adding, or using lookup tables.

Computer Organization & Architecture -130

The choice of multiplication algorithm depends on factors such as
the size of the numbers, the desired speed, and the available
hardware resources. For example, Booth's Algorithm is suitable for
multiplying large numbers, while the Array Multiplier is better

suited for smaller numbers.

Understanding multiplication algorithms is crucial in designing
and optimizing digital systems, such as computers, smartphones,
and other electronic devices. By selecting the appropriate
multiplication algorithm, developers can improve the performance,
power efficiency, and accuracy of these systems. Additionally,
multiplication algorithms have applications in various fields,
including cryptography, signal processing, and scientific

simulations.

Binary Multiplication Basics

Binary multiplication is the process of multiplying two binary
numbers. It is similar to decimal multiplication but uses only the
digits 0 and 1. The basic steps are:

1. Partial Products: Each bit of one number is multiplied by
each bit of the other number, similar to multiplying by each
digit in decimal multiplication.

2. Shifting: Each partial product is shifted left based on its
position.

3. Summation: The shifted partial products are summed to

get the final product.

Computer Organization & Architecture -131

Example:

shifted position

shifted two positions

shifted three positions

Booth’s Algorithm for Multiplication

Booth's Algorithm is an efficient way to perform binary
multiplication, particularly for numbers with both positive and
negative values. It reduces the number of additions required by

encoding the multiplicand in a specific way.

Steps:
1. Inmitialization: Load the multiplicand and multiplier.
2. Examine Bits: Look at two bits of the multiplier at a time.
3. Decision Making: Depending on the bit pairs (00, 01, 10,
11), add or subtract the multiplicand and shift.

4. Shift: Right-shift the accumulator and multiplier as a unit.

Example:

Computer Organization & Architecture -132

START

.'|.l'|].1_]'_|1 L]
M o Mudtipticand

10 + Multiplier
Counl — A

Modified Booth’s Algorithm
Modified Booth's Algorithm extends Booth's algorithm by
encoding three bits at a time, improving performance for large bit-

width multiplications.

Steps:
1. Group Bits: Divide the multiplier into overlapping groups
of three bits.
2. Recoding: Encode each group into a single digit.
3. Multiply and Accumulate: Use the recoded digits to

multiply and accumulate partial products.

Computer Organization & Architecture -133

Figure: Modified Booth's Algorithm

T
mi AT - *u --Ih-llhh
[ovmpal — =, % =+ 0

-
. w s
Shif el A OF
R - N
i
he ™ & o @7 e
s L 3 =
- LS
T A
o Count % Count -1
T
AR T e =0 Ny oy,
e o _w Ml = AMHER ¥
i Fi AR aFEDl B 0 Fasninignl = mleser-
iR R 1 0 0dAkE Tk
[I T rNe—]
(RSN I 0 maAE oy ANy e
dEaEdF A i HapdE e R |

- s cEme m ol - =

Array Multiplier

An Array Multiplier is a combinational circuit that uses an array of
AND gates and adders to perform binary multiplication. Each row
represents a partial product, and all partial products are summed in

parallel.

Example:

For 4-bit multiplication:

Multiplicand (M) = 1101

Multiplier (Q) = 1011

Each bit of the multiplier multiplies the entire multiplicand,

generating partial products which are then added.

Computer Organization & Architecture -134

dy d; dy

x by b, by

Pao Paa Py

P31 P21 P11 Pe

Psz P2z P12 Poz X
Paz Paa Paa Pra X J

Wallace Tree Multiplier
A Wallace Tree Multiplier uses a tree of adders to sum partial
products more efficiently than a linear array. It reduces the number
of sequential addition steps by summing multiple partial products
simultaneously.
Steps:
1. Partial Product Generation: Generate all partial products.
2. Reduction: Use a tree structure to reduce the partial
products to two rows.

3. Final Addition: Add the two rows to get the final product.

Figure: Wallace Tree Multiplier

Computer Organization & Architecture -135

Implementation and Hardware Design
Implementing these multiplication algorithms in hardware involves
designing circuits that can efficiently perform the required

operations.

1. Booth’s and Modified Booth’s Multipliers:
o Control Logic: For examining bits and deciding
operations.
o Add/Subtract Units: For performing addition and
subtraction based on control signals.
o Shift Registers: For shifting operations.
2. Array Multiplier:
o AND Gates: For generating partial products.
o Full Adders: For summing partial products.
3. Wallace Tree Multiplier:
o Compressor Circuits: For reducing multiple partial
products in parallel.
o Final Adder: For summing the reduced partial

products.

Computer Organization & Architecture -136

Figure: Hardware Design of Multipliers

aol——>m=
[ooz] [=z]
al[—>=)
T? T T ‘:]
[Ce=e] == [=
= .
1T 11 1T

4.8 DIVISION ALGORITHMS

A division algorithm is a method for dividing one number by
another and obtaining the quotient and remainder. There are

several types of division algorithms, including:

1. Binary Division: This algorithm is used for dividing binary
numbers. It is based on the concept of shifting and
subtracting the divisor from the dividend.

2. Restoring Division: This algorithm is used for dividing
signed numbers. It is based on the concept of restoring the
dividend to its original value after each subtraction.

3. Non-Restoring Division: This algorithm is used for
dividing signed numbers. It is based on the concept of not
restoring the dividend to its original value after each

subtraction.

Computer Organization & Architecture -137

4.

SRT Division: This algorithm is used for dividing binary
numbers. It is based on the concept of using a lookup table
to determine the quotient and remainder.

Goldschmidt Division: This algorithm is used for dividing
binary numbers. It is based on the concept of using a series

of shifts and adds to determine the quotient and remainder.

Division Algorithm Steps

The steps for a division algorithm typically include:

1.

Initialization: Initialize the dividend, divisor, quotient, and
remainder.

Shift: Shift the dividend and divisor to align the most
significant bits.

Subtract: Subtract the divisor from the dividend.

Test: Test the result of the subtraction to determine if the
dividend is greater than or equal to the divisor.

Quotient: Update the quotient based on the result of the
test.

Remainder: Update the remainder based on the result of
the test.

Repeat: Repeat steps 2-6 until the dividend is less than the

divisor.

Division Algorithm Example

Suppose we want to divide 16 by 4 using the binary division

algorithm.

1.

Initialization: Dividend = 16, Divisor = 4, Quotient = 0,
Remainder = 0
Shift: Shift the dividend and divisor to align the most

significant bits.

Computer Organization & Architecture -138

3. Subtract: Subtract the divisor from the dividend. 16 - 4 =
12

4. Test: Test the result of the subtraction. 12 >= 4, so we
update the quotient and remainder.

5. Quotient: Quotient = 1, Remainder = 12

6. Repeat: Repeat steps 2-5 until the dividend is less than the

divisor.

Binary Division Basics
Binary division is the process of dividing one binary number by
another, similar to long division in the decimal system. The steps
involve repeated subtraction and shifting.
1. Initialization: Set up the dividend and divisor.
2. Comparison: Compare the dividend (or part of it) with the
divisor.
3. Subtraction and Shift: If the divisor is less than or equal
to the dividend, subtract the divisor from the dividend and
record a 'l' in the quotient. If not, record a '0'.
4. Shift: Shift the remainder and bring down the next bit of
the dividend.
5. Repeat: Continue until all bits of the dividend have been

processed.

Example:

Dividend (D) =

Divisor (d) =

(1=t two bits D): = 08, quotient =
. Shift down bit D:

, quotient = (shift down bit)

- Repeat all bits processed.

Final quotient =

Computer Organization & Architecture -139

Restoring Division Algorithm

The Restoring Division Algorithm is a method for binary division

that involves restoring the original value of the dividend if the

subtraction results in a negative value.

Steps:
1.
2.

Initialize: Load the dividend and divisor.

Align: Place the divisor aligned with the leftmost bit of the
dividend.

Subtract: Subtract the divisor from the current portion of
the dividend.

Check: If the result is positive, set the corresponding
quotient bit to '1". If negative, restore the original value by
adding the divisor back and set the quotient bit to '0'.

Shift: Shift the remainder and bring down the next bit of
the dividend.

Repeat: Continue until all bits have been processed.

Computer Organization & Architecture -140

Figure: Restoring Division Algorithm

A-Accumulator

(__START) \-Divisor
Q — dividend Q-Dividend/Quoti

F Y

COUI\JJVT\L 0

M <« divisor
A«—0Q
v

Left-shift A, Q |
v

A — A-M |

A <07 Yes

v
Q(0) <0

N | A« A+M

Q(0) « 1

R

F 3

Non-Restoring Division Algorithm
The Non-Restoring Division Algorithm improves efficiency by
avoiding the restoration step. It adjusts the quotient and remainder

based on the result of the subtraction.

Steps:

1. Initialize: Load the dividend and divisor.

2. Align: Place the divisor aligned with the leftmost bit of the
dividend.

3. Subtract: Subtract the divisor from the current portion of
the dividend.

4. Check: If the result is positive, set the corresponding
quotient bit to '1' and shift left. If negative, set the quotient
bit to '0' and shift left.

Computer Organization & Architecture -141

5. Correction: If the remainder is negative after the final step,
add the divisor back.

6. Repeat: Continue until all bits have been processed.

Figure: Non-Restoring Division Algorithm

e ET=]

Fshift Left A.C Shift Left A,
A= R4M i i
I I

YT A L Pl
= ot

’?“lx’—hlr_‘nnnt=ﬁﬂun.—_—'i o

’T,

L5

SRT Division Algorithm
The SRT Division Algorithm is a method for dividing binary
numbers using a combination of shifts, adds, and subtracts. It was

developed by Sweeney, Robertson, and Tocher in the 1950s.

Implementation
The SRT Division Algorithm is implemented using the following
steps:

1. Initialization: Initialize the dividend, divisor, quotient, and

remainder.

Computer Organization & Architecture -142

2. Shift: Shift the dividend and divisor to align the most
significant bits.

3. Add/Subtract: Add or subtract the divisor from the
dividend, depending on the sign of the dividend.

4. Test: Test the result of the add/subtract operation to
determine if the dividend is greater than or equal to the
divisor.

5. Quotient: Update the quotient based on the result of the
test.

6. Remainder: Update the remainder based on the result of
the test.

7. Repeat: Repeat steps 2-6 until the dividend is less than the

divisor.
4-bit CPA
Iy A M A
W, W_ | Wo . W, ¢
Select
quotient digit

R
NV

Form divisor
multaple

e Dﬁcin ih

Carry Save Add
(CSA)

4.9 CONCLUSION

In this chapter, we explored the fundamental concepts and

techniques used in the design and implementation of Arithmetic

Computer Organization & Architecture -143

Logic Units (ALUs) and faster algorithms for multiplication and
division. We learned about the definition and functions of an ALU,
the different types of ALUs, and their components. We also delved
into the micro-operations that take place within an ALU, including

arithmetic and logical operations.

The importance of ALUs in computer systems cannot be
overstated. They are responsible for performing arithmetic and
logical operations, which are essential for data processing and
decision-making. The design and operation of ALUs are crucial for
optimizing the performance of computer systems. Furthermore,
faster algorithms for multiplication and division can significantly
improve the performance of ALUs, leading to faster and more

efficient processing of arithmetic and logical operations.

In conclusion, this chapter provided a comprehensive overview of
ALUs and faster algorithms for multiplication and division. We
hope that this information will be useful for students, researchers,
and practitioners in the field of computer science and engineering.
By understanding the concepts and techniques discussed in this
chapter, we can appreciate the importance of ALUs in computer
systems and the need for faster algorithms to optimize their
performance. This knowledge can be applied to improve the design
and implementation of computer systems, leading to faster and

more efficient processing of arithmetic and logical operations.

Computer Organization & Architecture -144

4.10 UNIT BASED QUESTIONS &
ANSWERS

1. Define micro-operations within an ALU. Give examples.
Answer: Micro-operations are elementary operations performed
by an ALU on data stored in registers. Examples include register
transfer operations (move, load, store), arithmetic operations (add,
subtract), logic operations (AND, OR, XOR), and shift operations
(left shift, right shift).

2. How does the control unit manage micro-operation
sequencing in an ALU?

Answer: The control unit decodes instructions and generates
control signals that coordinate the execution of micro-operations
within the ALU, ensuring operations are performed in the correct

sequence.

3. Compare and contrast the architecture of ALU chips from
different manufacturers like Intel and AMD.

Answer: While specifics vary, both Intel and AMD ALU chips
typically feature high-speed arithmetic and logic circuits optimized
for performance and power efficiency, integrated into their

respective microprocessor designs.

4. Describe the Karatsuba algorithm for multiplication. What
are its advantages?
Answer: The Karatsuba algorithm uses a divide-and-conquer

approach to multiply numbers efficiently by reducing the number

Computer Organization & Architecture -145

of required multiplications. It's advantageous for large number

multiplications, reducing computational complexity.

5. Explain the restoring division algorithm. How does it ensure
accurate division results?

Answer: Restoring division involves repeatedly subtracting the
divisor from the dividend, restoring the dividend if necessary. It
ensures accurate results by maintaining consistency and handling

remainders effectively.

6. Why are faster algorithms for multiplication and division
important in modern computing?

Answer: Faster algorithms improve computational efficiency by
reducing processing time and resource consumption, making them
crucial for handling large-scale data, real-time applications, and

complex computations.

Computer Organization & Architecture -146

4.11 REFERENCES

e Floyd, Thomas L. Digital Fundamentals. Pearson
Education, 2015.

e Taub, Herbert, and Donald L. Schilling. Digital Integrated
Electronics. McGraw-Hill Education, 1994.

e Mano, M. Morris, and Michael D. Ciletti. Digital Design:
With an Introduction to the Verilog HDL. Pearson
Education, 2017.

e Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals
of Logic Design. Cengage Learning, 2013.

e Streetman, Ben G., and Sanjay Banerjee. Solid State
Electronic Devices. Prentice Hall, 2005.

e Hayes, John P. Introduction to Digital Logic Design.
Addison-Wesley, 1993.

Computer Organization & Architecture -147

BLOCK II: BASIC ORGANIZATION

UNIT - 5: CENTRAL PROCESSING
UNIT

5.0 Introduction

5.1 Objectives

5.2 Von Neumann Architecture

5.3 IAS Computer (Institute for Advanced Study Computer)
5.4 Operational Flow Chart

5.5 Organization of Central Processing Unit (CPU)

5.6 CPU Architecture and Design

5.7 Memory Hierarchy

5.8 Conclusion

5.9 Unit Based Questions & Answers

5.10 References

5.0 INTRODUCTION

The evolution of computer architecture has laid the foundation for
modern computing systems, with one of the most significant
milestones being the development of the Von Neumann
architecture. Proposed by John von Neumann in the mid-20th
century, this architecture introduced the concept of storing both
instructions and data in the same memory, a principle that greatly
simplified computer design and paved the way for more versatile
and powerful computing machines. Understanding the principles
and components of this architecture is crucial for grasping how

contemporary computers function and process information.

Computer Organization & Architecture -148

The IAS computer, developed at the Institute for Advanced Study
under von Neumann's guidance, was one of the first practical
implementations of this architecture. It played a pivotal role in
demonstrating the feasibility and efficiency of the stored-program

concept.

This unit delves into the historical background and technical
details of the IAS computer, highlighting its contributions to early
computing and its lasting impact on modern computer architecture.
By examining the operational flow chart, including the fetch and
execute cycles, students will gain insight into the fundamental

processes that underpin CPU operations.

Furthermore, this unit explores the organization and design of the
Central Processing Unit (CPU), the core component of any
computer system. Detailed discussions on CPU architecture,
including pipelining, superscalar architecture, and branch
prediction, will elucidate how modern CPUs achieve high
performance and efficiency. Additionally, the concept of memory
hierarchy, which includes registers, cache memory, main memory,
and secondary storage, will be covered to illustrate how data is

managed and accessed at different levels within a computer.

By the end of this unit, students will have a comprehensive
understanding of these critical aspects of computer architecture and
their significance in the development of advanced computing

systems.

Computer Organization & Architecture -149

5.1 OBJECTIVES

After completing this unit, you will be able to understand;

To understand the principles and components of the Von
Neumann architecture.

To explore the historical development and significance of
the IAS computer.

To comprehend the operational flow chart, including the
fetch and execute cycles.

To learn about the organization and architecture of the
Central Processing Unit (CPU).

To examine the concept and importance of memory
hierarchy in computer systems.

To understand how these elements integrate to enhance

computing performance.

5.2 VON NEUMANN ARCHITECTURE

The Von Neumann architecture, named after mathematician and

physicist John von Neumann, is a foundational design for

computing systems. It describes a theoretical framework that

outlines the basic structure of a computer and how it operates. Key

principles include:

Stored Program Concept: Programs and data are stored in
the same memory unit, allowing instructions to be fetched
and executed sequentially.

Sequential Execution: Instructions are executed one after

another, following the Fetch-Decode-Execute cycle.

Computer Organization & Architecture -150

e Central Processing Unit (CPU) Control: The CPU
interprets and executes instructions fetched from memory,

controlling the flow of data within the system.

Components
1. CPU (Central Processing Unit):

o Function: Executes instructions by performing
arithmetic, logic, and control operations.

o Components: ALU (Arithmetic Logic Unit)
performs arithmetic and logic operations, CU
(Control Unit) directs operations based on
instructions fetched, and registers temporarily hold
data and instructions.

2. Memory:

o Function: Stores both data and instructions that the
CPU accesses during execution.

o Types: Main memory (RAM) for fast access by the
CPU and secondary storage (like hard drives) for
long-term storage.

3. Input/Output (I/0O) Devices:

o Function: Facilitate communication between the
computer and external entities (e.g., keyboards,
monitors, printers).

o Interface: Uses buses to transfer data between 1/O
devices and memory/CPU.

4. Bus System:

o Function: Provides pathways for data and control
signals to travel between components (CPU,
memory, I/O devices).

o Types: Data bus (for data transfer), address bus (for

memory address), control bus (for control signals).
Computer Organization & Architecture -151

Advantages

Flexibility: The ability to store programs and data in the
same memory allows for easier programming and
reprogramming of computers.

Efficiency: Sequential execution simplifies control and
coordination within the CPU, enhancing overall system
efficiency.

Standardization: Von Neumann architecture has become a
standard for general-purpose computing, facilitating

compatibility and interoperability across different systems.

Limitations

Bottleneck: The single bus structure can create a
bottleneck as all components must share the same pathway
for data transfer.

Vulnerability: Centralized control through the CPU and
single bus system can lead to performance limitations and
potential system failures.

Scalability: Scaling the architecture to support parallel
processing and real-time computing tasks can be

challenging due to its sequential nature.

Comparison with Other Architectures

Harvard Architecture: Separates data and instruction
memory, allowing simultaneous access to both, which can
enhance performance in specific applications but requires
more complex hardware.

Parallel Architectures: Designed for simultaneous

execution of multiple instructions or tasks, offering

Computer Organization & Architecture -152

superior performance in parallel computing tasks but

requiring specialized programming and hardware.

Central Processing Unit

Cantral Unit

Input ArithmaticiLagic Unit
Davice

5.3 IAS COMPUTER (INSTITUTE FOR
ADVANCED STUDY COMPUTER)

Historical Background and Development

he IAS Computer project emerged in the aftermath of World War
II, during a period marked by rapid advancements in electronic
computing technology and theoretical computer science. Key
figures involved in its inception included John von Neumann, a
prominent mathematician and physicist renowned for his
contributions to mathematics, quantum mechanics, and computing

theory.

Computer Organization & Architecture -153

Development Timeline

1. 1946-1948: Early Conceptualization

o

The idea for the IAS Computer took shape in the
mid-1940s at the Institute for Advanced Study
(TAS) in Princeton, New Jersey. John von Neumann,
along with a team of engineers and scientists, began
conceptualizing a new type of computing machine
that could store and manipulate both data and

instructions electronically.

2. 1948-1951: Construction and Implementation

o

Construction of the IAS Computer commenced in
1948, with the primary goal of creating a practical
implementation of von Neumann’s stored-program
computer architecture. The project faced numerous
technical challenges, including the development of
electronic circuits capable of handling complex

mathematical computations.

3. 1951: Operational Phase

o

By 1951, the IAS Computer became operational,
marking a significant milestone in the history of
computing. It represented one of the earliest
examples of a fully functional stored-program
computer, where programs and data were stored in
the same memory unit and processed sequentially

by a central processing unit (CPU).

Computer Organization & Architecture -154

Significance and Impact

The development of the IAS Computer had profound implications

for both theoretical computer science and practical computing

applications:

Stored-Program Concept: The [IAS Computer
demonstrated the feasibility and advantages of von
Neumann’s stored-program concept, which became the
basis for most subsequent computer architectures. This
concept revolutionized the way computers processed
information, enabling more efficient program execution
and flexibility in software development.

Computational Power: As one of the first electronic
computers capable of executing stored programs, the IAS
Computer facilitated advanced scientific computations and
mathematical simulations that were previously impractical.
Its computational power accelerated research in fields such
as physics, engineering, and mathematics.

Architectural Influence: The design principles of the IAS
Computer influenced the development of subsequent
computing systems, including commercial mainframes and
early academic research computers. Its architecture served
as a blueprint for future generations of computers, shaping

the evolution of modern computing technology.

Architecture and Components

The architecture of the IAS Computer reflected the foundational

principles of the Von Neumann architecture:

Central Processing Unit (CPU): The IAS Computer
featured a single CPU responsible for executing

instructions fetched from memory. It consisted of:
Computer Organization & Architecture -155

o Arithmetic Unit: Responsible for performing
arithmetic operations.
o Control Unit: Managed the execution of
instructions and coordination of data flow.
Memory System: It utilized a shared memory design
where both data and instructions were stored in a single
memory unit. This architecture facilitated the sequential
execution of instructions, a hallmark of the Von Neumann
architecture.
Input/Output (I/0O) System: The IAS Computer was
equipped with basic I/O devices such as punched card
readers and printers, enabling interaction with external data

sources and output devices.

Contribution to Early Computing and Modern Computer

Architecture

The IAS Computer made several significant contributions to the

field of computing:

Stored-Program Concept: It demonstrated the feasibility
and advantages of the stored-program concept, where
instructions and data reside in the same memory. This
concept became foundational for subsequent computer
designs and architectures.

Architectural Influence: The design principles of the IAS
Computer heavily influenced the development of early
computing systems and architectures. It served as a model
for subsequent computers, including commercial machines
and academic research projects.

Computational Advancements: By providing a platform
for scientific computation and research, the IAS Computer

contributed to advancements in mathematics, physics, and
Computer Organization & Architecture -156

engineering. It facilitated complex calculations and
simulations that were previously impractical or impossible.
e Legacy: The legacy of the IAS Computer extends to
modern computer architecture, where principles such as the
Von Neumann architecture and the stored-program concept
remain integral. Its influence can be seen in the design of
CPUs, memory systems, and I/O devices used in

contemporary computing devices.

5.4 OPERATIONAL FLOW CHART

The IAS Computer follows a structured sequence of operations for
executing instructions stored in its memory. This sequence, known
as the instruction cycle, can be represented by an operational flow
chart. The instruction cycle primarily consists of two main phases:
the Fetch phase and the Execute phase. Below is a detailed
explanation and a visual representation of the operational flow

chart.

Steps in the Instruction Cycle
1. Fetch Phase:

o Step 1: The Control Unit (CU) sends a signal to
fetch the instruction stored at the memory location
pointed to by the Program Counter (PC).

o Step 2: The instruction is fetched from memory and
placed into the Instruction Register (IR).

o Step 3: The Program Counter (PC) is incremented

to point to the next instruction in sequence.

Computer Organization & Architecture -157

2. Decode Phase:

o Step 4: The instruction in the Instruction Register
(IR) is decoded to determine the operation to be
performed and the operands involved.

3. Execute Phase:

o Step 5: The appropriate signals are sent to the
Arithmetic Logic Unit (ALU) and other components
to perform the required operation (e.g., addition,
subtraction, logical operations).

o Step 6: The result of the operation is stored in the
appropriate register or memory location.

o Step 7: If the instruction involves branching
(conditional or unconditional jump), the Program
Counter (PC) is updated accordingly.

4. Repeat Cycle:

o Step 8: The cycle repeats, starting again from the

fetch phase, until all instructions are executed or a

halt instruction is encountered.
Visual Representation of the Operational Flow Chart

Below is a simplified visual representation of the operational flow

chart for the IAS Computer:

Computer Organization & Architecture -158

Update Program Continue to
Counter for Jump Instructicn

Explanation of the Flow Chart

Start Instruction Cycle (Fetch): This marks the beginning
of the instruction cycle. The CPU prepares to fetch the next
instruction from memory.

Fetch Instruction from Memory: The instruction is
fetched from the memory location specified by the Program
Counter (PC) and placed into the Instruction Register (IR).
Increment Program Counter (PC): The Program Counter
is incremented to point to the next instruction in sequence.
Decode Instruction: The Control Unit decodes the
instruction in the Instruction Register to determine what
operation to perform.

Execute Instruction: The ALU and other components
execute the decoded instruction. This may involve

arithmetic or logical operations, data transfer, etc.
Computer Organization & Architecture -159

e Store Result: The result of the executed instruction is
stored in the appropriate register or memory location.

e Check for Branching or Halt: The Control Unit checks if
the instruction involves branching (jumping to another
memory address) or if it is a halt instruction (to stop
execution).

o Update Program Counter for Jump: If branching is
required, the Program Counter is updated to the target
address.

e Continue to Next Instruction Cycle: The CPU prepares
for the next instruction cycle if there are more instructions
to execute.

o Halt Execution: If a halt instruction is encountered, the

CPU stops executing further instructions.

5.5 ORGANIZATION OF CENTRAL
PROCESSING UNIT (CPU)

The Central Processing Unit (CPU) is the core component of a
computer system responsible for executing instructions and
processing data. The organization of the CPU involves various
components and subsystems that work together to perform these
tasks efficiently. Below is a detailed explanation of the
organization of the CPU, including its main components and their

functions.

Main Components of the CPU
1. Arithmetic Logic Unit (ALU):
o The ALU performs arithmetic and logical

operations on the data.

Computer Organization & Architecture -160

o

It handles operations such as addition, subtraction,
multiplication, division, and logical operations like
AND, OR, XOR, and NOT.

The ALU is a critical component for executing
mathematical computations and making logical

decisions.

2. Control Unit (CU):

o

The Control Unit directs the operation of the CPU
by generating control signals.

It interprets instructions fetched from memory,
decodes them, and controls the execution process by
coordinating with the ALU, registers, and other
components.

The CU manages the flow of data between the CPU

and other parts of the computer.

3. Registers:

o

o

o

Registers are small, fast storage locations within the
CPU used to hold data temporarily.

Common registers include the Accumulator (ACC),
Program Counter (PC), Instruction Register (IR),
Memory Address Register (MAR), Memory Data
Register (MDR), and General Purpose Registers
(GPRs).

Registers facilitate quick access to data and

instructions during execution.

4. Cache Memory:

o

Cache memory is a high-speed memory located
close to the CPU that stores frequently accessed

data and instructions.

Computer Organization & Architecture -161

o

5. Buses:

o

6. Clock:

It reduces the time needed to access data from the
main memory (RAM), enhancing overall
performance.

The CPU typically has multiple levels of cache (L1,
L2, L3) to improve efficiency.

Buses are communication pathways that connect the
CPU with other components, such as memory and
input/output devices.

The main types of buses are the Data Bus (transfers
data), Address Bus (transfers memory addresses),
and Control Bus (transfers control signals).

Buses enable the transfer of data, instructions, and
control signals between different parts of the

computer.

The clock generates timing signals that synchronize
the operations of the CPU and other components.
The clock speed, measured in Hertz (Hz),
determines the rate at which instructions are
executed.

Higher clock speeds generally result in faster

processing.

Organization and Interaction of CPU Components

The organization of the CPU involves the interaction and
coordination of its components to execute instructions and process
data efficiently. Below is a diagram and explanation of how these

components interact:

Computer Organization & Architecture -162

| Memory

1. Control Unit (CU):

o

Fetches instructions from the main memory (RAM)
via the buses.

Decodes the instructions and generates control
signals to direct the operation of the ALU and

registers.

2. Registers:

o

o

3. ALU:

o

o

Temporarily hold data, instructions, and addresses
needed for execution.

Interface with the ALU for performing operations
and with the CU for fetching and decoding

instructions.

Performs arithmetic and logical operations on data
from the registers.
Sends the results back to the registers or main

memory as directed by the CU.

Computer Organization & Architecture -163

4. Cache Memory:

o Provides fast access to frequently used data and
instructions, reducing the need to access slower
main memory.

o Interfaces directly with the registers and the CU to

enhance performance.

5. Buses:

o Facilitate the transfer of data, instructions, and
control signals between the CPU, main memory,
and other components.

o Ensure that data and instructions are available when

needed by the CPU.

Functions of the CPU Components

ALU: Executes arithmetic and logical operations, which
are fundamental for processing data.

CU: Manages the instruction cycle (fetch, decode, execute,
store) and ensures proper coordination among CPU
components.

Registers: Provide fast access storage for intermediate data
and instructions during processing.

Cache Memory: Enhances processing speed by reducing
access time to frequently used data and instructions.

Buses: Enable efficient communication and data transfer
between the CPU and other system components.

Clock: Synchronizes the operations of the CPU, ensuring

that all components work in harmony.

Computer Organization & Architecture -164

56 CPU ARCHITECTURE AND
DESIGN

1. Instruction Set Architecture (ISA): The ISA defines the
set of instructions that the CPU can execute, the data types,
the registers, the addressing modes, and the memory
architecture. Common ISAs include RISC (Reduced
Instruction Set Computing) and CISC (Complex Instruction
Set Computing).

2. Microarchitecture: Microarchitecture is the detailed
implementation of the ISA. It includes the design of the
ALU, CU, cache, pipeline stages, and other components to
achieve efficient instruction execution.

3. Pipeline Design: Pipelining allows multiple instructions to
be processed simultaneously by dividing the instruction
execution process into several stages, such as fetch, decode,
execute, and write-back. This improves CPU throughput.

4. Superscalar Architecture: Superscalar architecture allows
the CPU to execute more than one instruction per clock
cycle by using multiple execution units, which significantly
increases processing speed.

5. Branch Prediction: Branch prediction is a technique to
improve the flow in the instruction pipeline. It attempts to
guess whether a conditional branch will be taken or not,
thus allowing the pipeline to be filled more efficiently.

6. Out-of-Order Execution: This technique allows
instructions to be executed out of order for optimal use of
CPU resources, reducing idle times and increasing overall

efficiency.

Computer Organization & Architecture -165

Detailed Design Examples
1. Arithmetic and Logic Unit (ALU):

o The ALU is designed to handle arithmetic
operations like addition and subtraction, as well as
logic operations like AND, OR, XOR, and NOT.
Below is an example of an ALU design for a simple

4-bit processor:

Components:

o Adder/Subtractor Circuit: Performs addition and
subtraction.

o Logic Circuit: Performs logical operations.

o Multiplexer: Selects between different operations
based on control signals.

2. Control Unit (CU):

o The CU manages the execution of instructions by
generating appropriate control signals. Here is a
simplified diagram of a control unit:

e Components:

o Instruction Decoder: Decodes the fetched
instruction.

o Control Signal Generator: Produces signals to
control the ALU, registers, and other components.

o Timing and Control Logic: Ensures instructions are
executed in correct sequence and timing.

3. Pipeline Architecture:

o Pipelining breaks down the execution of
instructions into several stages, with each stage
being processed in parallel. Here is a simple 5-stage
pipeline diagram:

Computer Organization & Architecture -166

e Stages:
@)

o

Fetch (F): Instruction is fetched from memory.
Decode (D): Instruction is decoded to understand
the operation.

Execute (E): Operation is performed by the ALU.
Memory (M): Data is read from or written to
memory.

Write-back (W): Results are written back to the

register file.

CPU Architecture Types

1. Von Neumann Architecture:

o

A single memory space stores both instructions and

data, with a single bus for accessing memory.

2. Harvard Architecture:

o

Separate memory spaces and buses for instructions

and data, allowing simultaneous access to both.

5.7 MEMORY HIERARCHY

Memory hierarchy in computer architecture refers to the structured

arrangement of different types of storage technologies to balance

cost, capacity, and access speed. This organization allows a

computer system to achieve efficient performance and manage the

storage of data

and instructions in a way that maximizes processing

speed while minimizing cost.

Levels of Memory Hierarchy

Registers

Computer Organization & Architecture -167

Small, built-in memory within the CPU (typically 8-64
registers)

Store temporary results, data, and instructions

Fastest access time (typically 1-2 clock cycles)

Volatile memory (loses data when power is turned off)

Cache Memory

Small, fast memory that stores frequently accessed data
Divided into levels (L1, L2, L3, etc.) with increasing size
and access time

L1 cache is smallest and fastest (typically 8-64 KB)

L2 cache is larger and slower (typically 256 KB-1 MB)

L3 cache is shared among multiple CPU cores (typically 1-
10 MB)

Reduces access times and improves cache hit rates

Main Memory (RAM)

Larger, volatile memory that stores programs and data
Typically 4-64 GB in size

Access time is slower than cache (typically 50-100 clock
cycles)

Data is lost when power is turned off

Secondary Storage (Hard Drives, SSDs)

Non-volatile storage for long-term data retention

Hard disk drives (HDDs) use spinning disks and
mechanical heads

Solid-state drives (SSDs) use flash memory and are faster
Access times are slower than main memory (typically 1-10
ms)

Data is retained even when power is turned off

Computer Organization & Architecture -168

The memory hierarchy is designed to optimize data access and
processing efficiency by:
o Storing frequently accessed data in faster memory levels
e Reducing access times and transfers between memory
levels
e Improving cache hit rates and minimizing cache misses

o Providing a large storage capacity for programs and data

Computer Memory Hierarchy

small size
small capacity

processor registers
very fast, very expensive

power on
immediate term

small size
small capacity

medium size power on random acces:
medium capacity very short term fast, affordabl¢
small size power off flash /
large capacity short term slower,

laraie size / nower off \

processor cache
very fast, very expensi\

5.8 CONCLUSION

In summary, the Von Neumann architecture has been instrumental
in shaping the landscape of modern computing. Its core principles,
including the stored program concept and the integration of data
and instructions within a single memory, have set a standard for
computer design that persists to this day. The exploration of the
IAS computer provided a historical context, showcasing an early
implementation that validated these principles and significantly

influenced subsequent computer architectures.

Computer Organization & Architecture -169

The detailed examination of the operational flow within a CPU,
particularly the fetch and execute cycles, offered insights into the
fundamental processes that enable computers to perform complex
tasks. Understanding the organization and architectural design of
the CPU, along with advanced techniques such as pipelining,
superscalar execution, and branch prediction, highlighted the
advancements that have been made to enhance processing speed
and efficiency. Additionally, the concept of memory hierarchy
underscored the importance of efficiently managing data storage

and retrieval to optimize overall system performance.

By delving into these topics, students have gained a comprehensive
understanding of the foundational elements of computer
architecture. This knowledge not only provides a solid grounding
in the principles and history of computer design but also equips
students with the insights needed to appreciate the ongoing
advancements in technology. As computing continues to evolve,
these foundational concepts will remain crucial, guiding future

innovations and developments in the field.

5.9 UNIT BASED QUESTIONS &
ANSWERS

1. What are the main principles of the Von Neumann
architecture?

Answer: The main principles include the use of a single memory to
store both instructions and data, sequential execution of
instructions, and the concept of the stored-program where

instructions are fetched from memory and executed by the CPU.

Computer Organization & Architecture -170

2. Describe the components of a Von Neumann machine.
Answer: The main components are the Central Processing Unit
(CPU), memory, input/output devices, and a bus system for data
transfer. The CPU is further divided into the Arithmetic Logic Unit
(ALU) and the control unit.

3. What was the significance of the IAS computer in the
development of computer architecture?

Answer: The IAS computer, developed under the guidance of John
von Neumann, was one of the first practical implementations of the
stored-program concept. It demonstrated the feasibility and

efficiency of this architecture, influencing future computer designs.

4. Explain the fetch and execute cycle in a CPU's operational
flow chart.

Answer: The fetch and execute cycle involves fetching an
instruction from memory, decoding it to understand the required
operation, executing the operation by the ALU or other CPU
components, and then storing the result back in memory or a

register.

5. How does the CPU architecture differ between single-core
and multi-core processors?

Answer: A single-core processor has one processing unit that
handles all tasks, while a multi-core processor has multiple
processing units (cores) that can execute instructions concurrently,

improving performance and multitasking capabilities.

Computer Organization & Architecture -171

6. What are the advantages of pipelining in CPU design?

Answer: Pipelining allows multiple instructions to be processed
simultaneously at different stages of execution, increasing
instruction throughput and overall CPU performance by making

more efficient use of the CPU's resources.

5.10 REFERENCES

Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

e Taub, Herbert, and Donald L. Schilling. Digital Integrated
Electronics. McGraw-Hill Education, 1994.

e Mano, M. Morris, and Michael D. Ciletti. Digital Design:
With an Introduction to the Verilog HDL. Pearson
Education, 2017.

e Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals
of Logic Design. Cengage Learning, 2013.

e Streetman, Ben G., and Sanjay Banerjee. Solid State
Electronic Devices. Prentice Hall, 2005.

e Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -172

UNIT - 6 HARDWIRED &
MICROPROGRAMMED CONTROL
UNIT

6.0 Introduction

6.1 Objectives

6.2 Introduction to Control Units

6.3 Hardwired Control Unit

6.4 Microprogrammed Control Unit
6.5 Single Organization

6.6 Data Path and Control Path

6.7 Instruction Set Architecture (ISA)
6.8 General Register Organization
6.9 Stack Organization

6.10 Conclusion

6.11 Unit Based Questions & Answers

6.12 References

6.0 INTRODUCTION

To effectively manage and execute instructions within a central
processing unit (CPU), the design and functionality of its control
units play a pivotal role. Control units serve as the "brain" of the
CPU, orchestrating the fetching, decoding, and execution of
instructions. They are integral to ensuring that operations within a
computer system are performed accurately and efficiently. This
section delves into the intricacies of control units, exploring both

hardwired and microprogrammed approaches, as well as the

Computer Organization & Architecture -173

organizational aspects of CPU architecture and instruction set

design.

Understanding these components is essential for comprehending
how computers process instructions and manage data flow. This
section will explore the fundamental principles behind control unit
design, the trade-offs between hardwired and microprogrammed
implementations, and how these units interact with other critical
elements like data paths, registers, and memory structures.
Moreover, it will delve into the organizational strategies that CPUs
employ to streamline operations, such as single organization

models and the organization of data paths and control paths.

By examining these topics, readers will gain insights into the
foundational elements that underpin CPU operation, paving the
way for a deeper understanding of computer architecture and its

practical applications in both hardware and software engineering.

6.1 OBJECTIVES

¢ Understand the Role of Control Units: Define the role
and significance of control units within a CPU and digital
systems.

e Differentiate Between Hardwired and
Microprogrammed Control Units: Explore the
differences in design, implementation, and operation
between hardwired and microprogrammed control units.

e Examine Single Organization Models: Investigate

organizational strategies within CPU architecture, focusing

Computer Organization & Architecture -174

on single organization models and their impact on
performance and efficiency.

Analyze Data Path and Control Path Interactions:
Understand how data paths and control paths interact
within a CPU, influencing the execution of instructions and
overall system performance.

Explore Instruction Set Architecture (ISA): Introduce the
concept of ISA and its role in defining the set of
instructions that a CPU can execute, including instruction

formats and addressing modes.

6.2

INTRODUCTION TO CONTROL

UNITS

A control unit (CU) is a critical component of a computer's central

processing unit (CPU). Its primary role is to manage and

coordinate the operations of the CPU by directing the flow of data

between the CPU and other components of the computer system.

The control unit interprets the instructions from the computer's

memory and generates the necessary control signals to execute

these instructions.

Functions of the Control Unit:

1.

Instruction Fetching: Retrieving instructions from
memory.

Instruction Decoding: Interpreting the instructions to
determine the required actions.

Generating Control Signals: Producing signals that

control the operations of the other CPU components.

Computer Organization & Architecture -175

4. Execution Coordination: Managing the execution of

instructions by coordinating the ALU, registers, and other
components.
Data Flow Control: Ensuring that data moves to and from

the correct locations at the right times.

The control unit essentially acts as the brain of the CPU, ensuring

that all parts of the computer work together smoothly and

efficiently.

Differences between Hardwired and Microprogrammed

Control Units

Hardwired Control Unit:

Diagram shows the CLK
typical hardwired counter

control unit. l l

Design: Utilizes fixed logic circuits to control signals based
on combinational logic. The control signals are generated
using hardware components such as gates, flip-flops,
decoders, and multiplexers.

Speed: Generally faster because it directly translates
instructions into control signals without intermediary steps.
Flexibility: Less flexible as changes to the control logic
require physical alterations to the hardware.

Complexity: Can become very complex and difficult to
design, especially for CPUs with large instruction sets.
Example: Often used in simple, high-speed processors and

in applications where performance is critical.

Control step

- External
Fixed : inputs
I A
" e
b Condition
codes
foel

Control signals

Computer Organization & Architecture -176

Microprogrammed Control Unit:

Design: Uses a sequence of microinstructions stored in
control memory to generate control signals. Each
instruction is broken down into a series of simpler steps
called micro-operations.

Speed: Generally slower than hardwired control units
because microinstructions must be fetched and executed
from control memory.

Flexibility: More flexible as changes can be made by
updating the microprogram in control memory, without
altering the physical hardware.

Complexity: Simplifies the design process and is easier to
implement and modify, especially for complex CPUs with
extensive instruction sets.

Example: Commonly used in complex CPUs,
microcontrollers, and systems where the ease of updates

and maintenance is essential.

b

—— W Seguencer

= & [starting and branch address genaerator)

| il

Control Address Register (LLPC)
Address
L,
Controsl
e i
Read command MMennory

=

Micro Iinstruction Register

Computer Organization & Architecture -177

Controd word (Cw')

|

Comparison Summary:

Feature Hardwired Control Unit Microprogrammed Control Unit

Design Fixed logic circuits Sequence of microinstructions

Speed Generally faster Generally slower

Flexibility Less flexible More flexible

Complexity More complex to design and modify Easier to design and modify

Use Cases Simple, high-speed processors Complex CPUs and systems requiring upd:

6.3 HARDWIRED CONTROL UNIT

A hardwired control unit is a fundamental component of a
computer's central processing unit (CPU) responsible for
generating control signals that direct the operation of other CPU
components based on the instructions fetched from memory. Here's

a detailed explanation of the hardwired control unit:

Definition and Function

The hardwired control unit operates using fixed logic circuits
composed of gates (AND, OR, NOT), flip-flops, decoders,
multiplexers, and other digital components. Its primary function is
to decode the instructions fetched from memory into a series of

control signals that coordinate the operation of the CPU.

Design and Operation
e Instruction Decoding: Upon fetching an instruction from
memory, the control unit decodes it using dedicated logic
circuits. Each instruction opcode (operation code) is
mapped to specific control signals that instruct the CPU's
components, such as the arithmetic logic unit (ALU),

registers, and memory, on what actions to perform.

Computer Organization & Architecture -178

Direct Control Signal Generation: Unlike
microprogrammed control units that use microinstructions
stored in memory, the hardwired control unit directly
generates control signals based on the instruction's opcode.
This direct approach makes it faster in terms of execution
compared to microprogrammed control units.

Combinational Logic: It employs combinational logic
circuits to interpret the instruction's opcode and generate
appropriate outputs based solely on the current inputs

(instruction opcode and possibly some status bits).

Advantages

Speed: Hardwired control units are generally faster than
microprogrammed control units because they execute
instructions directly ~without the need to fetch
microinstructions from memory.

Simplicity: The design is straightforward and relies on
fixed circuits, making it easier to understand, implement,

and verify.

Disadvantages

Flexibility: Changes or updates to the instruction set
architecture (ISA) may require physical changes to the
hardware, which can be complex and costly.

Complexity for Large ISAs: Designing a hardwired
control unit for CPUs with large instruction sets can
become challenging and may lead to intricate and extensive

circuitry.

Computer Organization & Architecture -179

Example of Hardwired Control Unit

Consider a simplified example of a hardwired control unit for a
CPU that supports basic arithmetic (add, subtract), logic (AND,
OR), and data movement instructions (load, store):

1. Instruction Fetch: Fetch an instruction from memory.

2. Instruction Decode: Decode the instruction opcode using
combinational logic circuits to determine the required
control signals:

o For an arithmetic operation (e.g., ADD): Set control
lines to activate the ALU and select addition mode.

o For a data movement operation (e.g., LOAD):
Activate memory read lines and set address lines.

3. Control Signal Generation: Generate control signals
based on the decoded instruction, directing the CPU's

components to execute the instruction effectively.

Implementation with combinational logic circuits
Implementing a hardwired control unit involves using
combinational logic circuits to decode instruction opcodes and

generate control signals. Here’s how it is typically implemented:

1. Instruction Fetch
e Fetch Cycle: The CPU fetches an instruction from
memory. This instruction is typically stored in the

instruction register (IR).

2. Instruction Decode
e Opcode Decoding: The opcode of the fetched instruction is
decoded using combinational logic circuits. Each opcode
corresponds to a unique set of control signals that will

direct the CPU’s components.
Computer Organization & Architecture -180

3. Control Signal Generation

e Control Logic: Combinational logic circuits such as AND
gates, OR gates, NOT gates, and multiplexers are used to
interpret the opcode and generate specific control signals.

o Example: Suppose the CPU supports basic operations like
ADD, SUBTRACT, LOAD, and STORE. Each operation
has a unique opcode. The control unit’s combinational logic
will decode these opcodes and set appropriate control lines:

o ADD Operation: Opcode 0001
= Control Signals: ALU control lines set to
perform addition.
o SUBTRACT Operation: Opcode 0010
= Control Signals: ALU control lines set to
perform subtraction.
o LOAD Operation: Opcode 0100
= Control Signals: Memory control lines set to
perform data read from memory.
o STORE Operation: Opcode 0101
= Control Signals: Memory control lines set to

perform data write to memory.

4. Output Control Signals
o Signal Lines: The generated control signals are sent to
various components of the CPU:
o ALU (Arithmetic Logic Unit): Directs arithmetic
and logic operations.
o Memory Interface: Controls data transfer to and
from memory.
o Register File: Manages data movement between

registers and ALU.

Computer Organization & Architecture -181

Example Circuit
Here’s a simplified example of how combinational logic circuits
might decode and generate control signals for basic operations:
In this diagram:
e Opcode Decoder: Combinational logic circuits decode the
opcode stored in the IR.
o Control Signal Generator: Based on the decoded opcode,
specific control lines (ALU control, memory control) are

activated.

6.4 MICROPROGRAMMED CONTROL
UNIT

A microprogrammed control unit is a type of control unit in a CPU
that uses microinstructions stored in memory to execute
instructions. Unlike a hardwired control unit, which uses fixed
logic circuits to generate control signals directly from instruction
opcodes, a microprogrammed control unit fetches
microinstructions from memory. Here’s a detailed explanation of a

microprogrammed control unit:

Definition and Function
e Microinstructions: Microprogrammed control units
operate using microinstructions, which are stored in a
control memory (often referred to as a control store or
microstore). Each microinstruction corresponds to a set of
control signals that direct the operation of the CPU during

the execution of an instruction.

Computer Organization & Architecture -182

e Instruction Execution: When an instruction is fetched
from memory, its opcode is decoded to determine the
address of the corresponding microinstruction in the control
memory.

e Control Memory: The microinstruction fetched from the
control memory specifies control signals for various
components of the CPU, including the ALU (Arithmetic

Logic Unit), registers, and memory interface.

Components and Operation
1. Control Memory (Microstore):

o Stores microinstructions, each containing control
signals.

o Addresses are typically generated by the opcode of
the fetched instruction, directing which
microinstruction to fetch.

2. Microinstruction Format:

o Includes fields for control signals that activate
various operations in the CPU.

o Fields may include ALU control, memory control,
register transfer operations, and status flag updates.

3. Control Unit Sequencer:

o Decodes the fetched instruction's opcode to
determine the address of the microinstruction in the
control memory.

o Controls the sequencing of microinstructions during
the execution of an instruction.

Advantages
o Flexibility: Easily accommodates changes to the

instruction set architecture (ISA) by modifying

Computer Organization & Architecture -183

microinstructions in the control memory without altering
hardware.

Complexity Management: Suitable for CPUs with large
and complex instruction sets, as it simplifies the design of

control logic.

Disadvantages

Speed: Slower execution compared to hardwired control
units due to the need to fetch and execute multiple
microinstructions per instruction.

Complexity: Designing and managing microinstructions
and control memory can be more complex and require

careful planning.

Example Circuit

Here’s a simplified example illustrating the operation of a

microprogrammed control unit:

In this diagram:

Control Memory: Stores microinstructions.

Control Sequencer: Decodes the fetched instruction's
opcode to address the control memory.

Microinstruction Format: Specifies control signals for

ALU operations, memory access, and register transfers.

Applications

Widely used in modern CPUs to efficiently manage and
execute complex instruction sets.
Allows for easier debugging and modification of control

logic without hardware changes.

Computer Organization & Architecture -184

6.5 SINGLE ORGANIZATION

In computer architecture, "single organization" typically refers to a

specific type of organization of the CPU and its components.

Here’s a detailed explanation of what it entails:

Single Organization in CPU Design

1. Definition:

o

Single organization refers to a CPU architecture
where the CPU components such as registers, ALU
(Arithmetic Logic Unit), control unit, and internal
buses are designed to process and execute a single
instruction at a time.

This contrasts with multiple organization (or
pipelined organization), where the CPU can process
multiple instructions simultaneously in different

stages of execution.

2. Components:

o

Control Unit: Manages the operation of the CPU
and directs data flow between components based on
the instruction being executed.

Registers: Store operands, instructions, and
intermediate results during computation.

ALU: Performs arithmetic and logic operations
specified by the instructions.

Memory Interface: Handles communication
between the CPU and memory, fetching instructions

and storing data.

Computer Organization & Architecture -185

3. Operation:

o

Instruction Cycle: The CPU fetches an instruction
from memory, decodes it, executes the operation
specified, and stores or transfers the result.

Sequential Execution: Instructions are executed
one after another in a sequential manner, with each

instruction completing before the next one begins.

4. Advantages:

o

Simplicity: Easier to design and implement
compared to pipelined or superscalar architectures.
Control: Clear control flow and easier to debug and
verify.

Resource Allocation: Resources such as registers
and ALU are dedicated to executing one instruction
at a time, minimizing complexity in resource

management.

5. Disadvantages:

o

Efficiency: May not fully utilize CPU resources,
leading to lower throughput compared to pipelined
architectures.

Performance: Slower execution for tasks that
benefit from parallelism or simultaneous instruction
execution.

Scalability: Limited scalability for applications
requiring high-performance computing due to

sequential nature.

Computer Organization & Architecture -186

Example and Application

o Example CPU: Early microprocessors like the Intel 8080
or Motorola 6800 were designed with single organization.
They executed instructions one at a time, making them
suitable for simpler computing tasks and early personal
computers.

o Application: Single organization CPUs are still used in
embedded systems, simple controllers, and devices where
power efficiency and simplicity are prioritized over high

throughput and parallel processing capabilities.

Simple processor architecture

A simple processor architecture typically refers to a basic design of
a central processing unit (CPU) that focuses on essential
functionalities while minimizing complexity. Here’s an overview

of what constitutes a simple processor architecture:

Components of Simple Processor Architecture
1. Imstruction Fetch and Decode Unit:
o Instruction Fetch: Retrieves instructions from
memory.
o Instruction Decode: Decodes fetched instructions

to determine the operation to be performed.

2. Execution Unit:
o Arithmetic Logic Unit (ALU): Performs arithmetic
(addition, subtraction, etc.) and logic (AND, OR,
NOT) operations on data.

Computer Organization & Architecture -187

o Control Unit: Coordinates the operation of the
CPU, directing data flow and controlling the

execution of instructions.

3. Registers:

o Program Counter (PC): Keeps track of the
memory address of the next instruction to be
fetched.

o Instruction Register (IR): Stores the current
instruction being executed.

o General-Purpose Registers: Hold data operands

and intermediate results during computations.

4. Memory Interface:
o Data Bus: Transfers data between the CPU and
memory.
o Address Bus: Specifies the memory address for

read or write operations.

IHC

WTE
—1 iw

Operation of Simple Processor Architecture
e Instruction Cycle:
o Fetch: The CPU fetches the next instruction from
memory using the address stored in the PC.

Computer Organization & Architecture -188

o Decode: The fetched instruction is decoded to
determine its operation and operands.

o Execute: The ALU performs the operation specified
by the instruction, utilizing data from registers or
memory.

o Store: Results are stored back in registers or

memory, depending on the instruction.

Advantages of Simple Processor Architecture
o Ease of Design: Simplified design makes it easier to
implement and understand.
e Low Cost: Requires fewer components, making it cost-
effective for basic computing tasks.
e Low Power Consumption: Minimal circuitry leads to
lower power consumption, suitable for battery-operated

devices and embedded systems.

Limitations of Simple Processor Architecture
e Limited Performance: Sequential execution limits
throughput compared to more advanced architectures like
pipelined or superscalar processors.
o Instruction Set Limitations: Basic instruction set may not
support complex operations or optimizations.
e Scalability: Limited scalability for applications requiring

high computational power or parallel processing.

Example Applications
e Embedded Systems: Used in microcontrollers for simple
control and monitoring tasks.
e Basic Computing Devices: Found in early personal

computers and calculators.
Computer Organization & Architecture -189

e Education: Often used in academic settings to teach

fundamental CPU operation and architecture.

6.6 DATA PATH AND CONTROL PATH

In computer architecture, the terms "data path" and "control path”

refer to essential components of a processor's design that

collectively enable the execution of instructions. Let's delve into

each concept in detail:

Data Path

The data path in a processor is responsible for the actual

manipulation and processing of data. It consists of hardware

components that perform arithmetic and logical operations on data

as directed by instructions. Key elements of the data path include:

1. Registers: These are storage locations within the CPU that

hold data temporarily during processing. They include:

o

General-Purpose Registers: Used for storing
operands, intermediate results, and data for
calculations.

Special Purpose Registers: Include program
counter (PC), instruction register (IR), and
condition code registers (CCR) used for control

flow and status information.

2. Arithmetic Logic Unit (ALU): The ALU performs

arithmetic operations (addition, subtraction, multiplication,

division) and logical operations (AND, OR, NOT, XOR) on

data fetched from registers or memory.

Computer Organization & Architecture -190

3. Data Paths: These are the physical connections (buses)
that allow data to flow between registers, ALU, and
memory. They include:

o Data Bus: Transfers data between the CPU and
memory or between CPU components.

o Address Bus: Specifies memory addresses for read
or write operations.

o Control Bus: Carries control signals that coordinate

the operation of various CPU components.

Control Path

The control path manages the operation and sequencing of the data
path. It interprets instructions fetched from memory and generates
the necessary control signals to coordinate the activities of the data

path components. Key elements of the control path include:

1. Control Unit: The control unit decodes instructions fetched
from memory and generates control signals that direct the
operation of the data path. It includes:

o Instruction Decoder: Decodes the instruction
opcode to determine the type of operation to be
performed.

o Control Signals: These signals activate specific
paths within the data path to execute the instruction.

2. Clock Signals: These signals synchronize the activities of
the data path and control path, ensuring that operations

proceed in a coordinated manner.

Interaction Between Data Path and Control Path
e Instruction Execution: During the execution of an

instruction, the control unit fetches the instruction, decodes
Computer Organization & Architecture -191

it to determine the operation, and generates control signals.
The data path then executes the operation using the ALU
and registers.

e Cycle Execution: The fetch-decode-execute cycle involves
the control path fetching an instruction, decoding it to
generate control signals, and directing the data path to

perform the specified operation.

Example

In a simple processor architecture, the data path includes registers
for storing operands and results, an ALU for arithmetic and logical
operations, and buses for data transfer. The control path consists of
a control unit that fetches instructions, decodes them, and
generates control signals to coordinate the activities of the data

path components.

Read
address

- = Instruction

6.7 INSTRUCTION SET
ARCHITECTURE (ISA)

Instruction Set Architecture (ISA) refers to the set of instructions
that a computer's CPU (Central Processing Unit) can understand

and execute. It serves as an interface between the hardware (the

Computer Organization & Architecture -192

CPU and its components) and the software (the programs and
applications that run on the computer). Here's a detailed overview

of ISA:

Components of Instruction Set Architecture (ISA)

1. Instruction Set: The ISA defines a set of instructions that
the CPU can execute. These instructions are typically
categorized into several types:

o Data Transfer: Move data between memory and
registers.

o Arithmetic: Perform basic arithmetic operations
like addition, subtraction, multiplication, and
division.

o Logical: Perform logical operations such as AND,
OR, XOR, and NOT.

o Control Transfer: Change the sequence of
execution (branching, jumping).

o Input/Output: Transfer data between the CPU and
peripheral devices.

2. Registers: ISA specifies the number of registers and their
roles in storing operands, addresses, and intermediate
results during computation. Registers are critical for
efficient instruction execution.

3. Memory Addressing Modes: Different modes for
accessing memory locations (e.g., direct addressing,
indirect addressing, indexed addressing) are defined by
ISA.

4. Data Types: Specifies the data types supported by the CPU

(e.g., integer, floating-point, character).

Computer Organization & Architecture -193

Importance of ISA

Compatibility: ISA provides compatibility between
software and hardware. Programs written for a particular
ISA can run on any CPU that implements that ISA.
Performance: ISA influences the efficiency and speed of
executing programs. Optimizations in ISA can lead to faster
execution of instructions.

Portability: Software developed for one CPU architecture
(ISA) can be ported to another compatible architecture with

minimal changes.

Examples of ISA

x86: Used in most PCs and laptops, known for its complex
instruction set architecture (CISC).

ARM: Dominates mobile devices and embedded systems,
known for its reduced instruction set architecture (RISC).
MIPS: Commonly used in educational settings and

embedded systems, also a RISC architecture.

ISA Design Considerations

Complexity vs. Simplicity: CISC architectures have more
complex instructions, while RISC architectures focus on
simpler, more efficient instructions.

Instruction Encoding: Efficient encoding of instructions
to minimize memory usage and maximize performance.
Support for Parallelism: ISA may include instructions
that support parallel execution (e.g., SIMD instructions for

vector processing).

Computer Organization & Architecture -194

Evolution of ISA
e Advances in Technology: ISA evolves with advancements
in CPU architecture, addressing new challenges such as
power efficiency, multi-core processing, and specialized
computing tasks (e.g., Al, machine learning).
e Standardization: Industry standards bodies (e.g., IEEE,
ISO) often define ISA standards to ensure compatibility and

interoperability across different hardware platforms.

6.8 GENERAL REGISTER
ORGANIZATION

General register organization refers to the structure and
management of registers within a central processing unit (CPU).
Registers are small, fast storage locations within the CPU that hold
data temporarily during processing. Here’s a detailed overview of

general register organization:

Components of General Register Organization
1. Types of Registers:

o Data Registers: Hold data operands and
intermediate results during arithmetic and logical
operations.

o Address Registers: Store memory addresses for
data access.

o Control Registers: Manage control and status

information within the CPU.

Computer Organization & Architecture -195

2. Role of Registers:

o

Operand Storage: Data registers hold operands
that are currently being processed by the arithmetic
logic unit (ALU).

Address Calculation: Address registers compute
memory addresses for fetching or storing data.
Program Control: Control registers manage
program flow and execution status (e.g., program

counter, status registers).

3. Register File:

o

Registers are typically organized into a register file,
a set of storage locations directly accessible by the
CPU.

The size and organization of the register file vary

based on the CPU architecture and design goals.

4. Register Transfer Operations:

o

o

o

Load (L): Transfer data from memory to a register.
Store (S): Transfer data from a register to memory.
Move (M): Transfer data between registers.
Arithmetic and Logic Operations: Registers are
operands for arithmetic (addition, subtraction, etc.)

and logical (AND, OR, XOR) operations.

Importance of General Register Organization

e Speed: Registers are the fastest form of memory within the

CPU, enabling rapid access and manipulation of data.

o Efficiency: Minimizes memory access times by storing

frequently accessed data and operands.

Computer Organization & Architecture -196

Program Execution: Facilitates efficient execution of
instructions by providing storage for operands and results.

Context Management: Registers store critical information
during context switches between different tasks or

processes.

Examples of Register Usage

Data Processing: Arithmetic and logical operations utilize
data registers for storing operands and results.

Address Calculation: Address registers compute memory
addresses for load and store operations.

Control and Status Management: Control registers
manage program flow and execution status, such as flags

indicating arithmetic overflow or comparison results.

Design Considerations

Register Size: Determines the range and precision of
numeric data that can be processed.

Number of Registers: Balances the need for fast access
with the complexity and cost of CPU design.

Special Purpose Registers: Includes program counters,
stack pointers, and status registers tailored for specific

functions.

Evolution and Optimization

Multi-Core Processors: Each core typically has its own set
of registers, enhancing parallel execution.

Vector Processing: Special registers (vector registers)
support SIMD (Single Instruction, Multiple Data)

operations for efficient parallel processing.

Computer Organization & Architecture -197

e Cache Coherency: Registers play a role in maintaining

cache coherency across multi-level memory hierarchies.

Types of Registers

Registers in a CPU serve various purposes, categorized into

general-purpose registers and special-purpose registers. Here's an

overview of each type:

General-Purpose Registers

1. Data Registers:

o

Purpose: Used to hold operands and intermediate
results during arithmetic and logical operations.
Role: Facilitate data manipulation and computation
within the CPU.

Examples: Accumulator (ACC), data registers in
the ALU (Arithmetic Logic Unit).

2. Address Registers:

o

o

Purpose: Store memory addresses for data access.
Role: Compute effective addresses during load and
store operations.

Examples: Index registers, base registers.

3. Index Registers:

o

Purpose: Assist in indexed addressing modes for
accessing elements in arrays or data structures.
Role: Store offsets or indices used in memory
operations.

Examples: Index Register (IX), Index Register 1
(IX1), Index Register 2 (I1X2).

Computer Organization & Architecture -198

4. Stack Pointer (SP):

o Purpose: Manage the stack in memory, used in
stack-based operations like subroutine calls and
returns.

o Role: Points to the top of the stack or the next
available location.

o Examples: Stack Pointer (SP), Stack Pointer 1
(SP1), Stack Pointer 2 (SP2).

Special-Purpose Registers
1. Program Counter (PC):
o Purpose: Holds the memory address of the next
instruction to be fetched and executed.
o Role: Controls the sequence of program execution.
o Examples: Program Counter (PC), Instruction

Pointer (IP).

2. Status Registers (Flags):
o Purpose: Hold status information about the result
of the last operation performed by the CPU.
o Role: Flag conditions such as zero, carry, overflow,
and negative results.
o Examples: Condition Code Register (CCR), Flag
Register (FL), Status Register (SR).

3. Instruction Register (IR):
o Purpose: Temporarily holds the current instruction
being executed.
o Role: Facilitates decoding and execution of the

instruction.

Computer Organization & Architecture -199

o Examples: Instruction Register (IR), Current

Instruction Register (CIR).

4. Memory Address Register (MAR):

o Purpose: Holds the memory address of data that
needs to be fetched or stored.

o Role: Interfaces with the memory unit to fetch or
store data.

o Examples: Memory Address Register (MAR),
Memory Buffer Register (MBR).

Usage and Optimization

Efficiency: Registers are the fastest form of memory in the
CPU, optimizing data access and computation.

Context Switching: Special-purpose registers assist in
managing process and task states during context switches.
Instruction Execution: General-purpose registers support
efficient arithmetic and logical operations, while special-
purpose registers manage control flow and status

monitoring.

Design Considerations

Register Size: Determines the range and precision of data
that can be processed.

Number of Registers: Balances hardware complexity with
performance requirements.

Specialization: Tailors registers for specific functions like

addressing, control, and status monitoring.

Computer Organization & Architecture -200

6.9 STACK ORGANIZATION

Stack organization refers to the structure and management of the

stack memory within a computer system. The stack is a special

area of memory used for temporary storage of data, particularly

during subroutine calls and returns, as well as for storing local

variables and preserving execution context. Here’s a detailed

explanation of stack organization:

Components of Stack Organization

1. Stack Memory:

o

Purpose: Reserved region of memory used for
storing data temporarily.

Implementation: Typically organized as a Last-In-
First-Out (LIFO) structure, where the last item
pushed onto the stack is the first item popped off.
Usage: Primarily used for subroutine calls, local
variable storage, parameter passing, and managing

program execution flow.

2. Stack Pointer (SP):

o

Purpose: Special-purpose register that points to the
top of the stack.

Role: Tracks the current position in the stack where
the next push or pop operation will occur.

Usage: Adjusts dynamically as items are pushed

(added) or popped (removed) from the stack.

Computer Organization & Architecture -201

3. Frame Pointer (FP):

o

Purpose: Optional register used in some
architectures to point to the base of the current stack
frame.

Role: Facilitates efficient access to local variables
and parameters within a subroutine.

Usage: Helps maintain the stack frame structure
during subroutine execution and aids in debugging

and optimization.

Operations in Stack Organization

1.

Push Operation:

o

Function: Adds a new item (data or address) onto
the top of the stack.

Implementation: Decreases the stack pointer (SP)
to reserve space for the new item and stores the item

at the new top of the stack.

2. Pop Operation:

o

o

Function: Removes the top item from the stack.

Implementation: Retrieves the item at the current
top of the stack, increments the stack pointer (SP) to
release the space, and returns the item for further

processing.

Usage in Program Execution

Subroutine Calls: Before calling a subroutine, parameters

and return addresses are typically pushed onto the stack.

During subroutine execution, local variables and the frame

pointer (if used) help manage data within the subroutine.

Computer Organization & Architecture -202

Context Switching: Stack organization aids in saving and
restoring the execution context of processes or tasks during
context switches, ensuring seamless task management in
multitasking environments.

Memory Management: Efficient use of stack memory
helps conserve overall memory resources and supports

nested subroutine calls and recursive function execution.

Design Considerations

Stack Size: Determined by hardware constraints and the
needs of the software being executed.

Stack Frame Structure: Defines how data is organized
within each subroutine call, including parameters, return
addresses, and local variables.

Stack Management: Requires careful handling to avoid
stack overflow (exceeding available stack space) or

underflow (attempting to pop from an empty stack).

Benefits of Stack Organization

Simplicity: Provides a straightforward method for
managing temporary data storage within a program.
Efficiency: Facilitates rapid access and manipulation of
data, crucial for subroutine execution and parameter
passing.

Reliability: Ensures data integrity and orderly execution

flow through well-defined push and pop operations.

Instruction Set for Stack Organization

The instruction set for stack organization typically involves a set of

operations that allow manipulation of the stack memory. These

operations enable programs to push data onto the stack, pop data

Computer Organization & Architecture -203

off the stack, and manage the stack pointer effectively. Here’s an

outline of the typical instruction set for stack organization:

Basic Stack Operations
1. Push Operation:
o Description: Adds a data item onto the top of the
stack.
o Instruction: PUSH operand
o Functionality:
= Decreases the stack pointer (SP) to reserve
space for the new item.
= Stores the operand at the memory location
pointed to by the stack pointer.
= Updates the stack pointer to point to the new
top of the stack.
2. Pop Operation:
o Description: Removes the data item from the top of
the stack.
o Instruction: POP operand
o Functionality:
= Retrieves the data item from the memory
location pointed to by the stack pointer.
= Increments the stack pointer (SP) to release
the space previously occupied by the item.
= Stores the retrieved data item into the
specified operand location.
Stack Pointer Management
1. Initialize Stack Pointer:
o Description: Sets the initial position of the stack
pointer.

o Instruction: INIT SP value
Computer Organization & Architecture -204

o Functionality: Initializes the stack pointer (SP) to a
specific memory location (value), typically at the
beginning of the stack memory.

2. Reset Stack Pointer:

o Description: Resets the stack pointer to its initial
position.

o Instruction: RESET SP

o Functionality: Sets the stack pointer (SP) back to
the initial memory location, effectively clearing the

stack.

Additional Operations
1. Peek Operation:
o Description: Retrieves the top item from the stack
without removing it.
o Instruction: PEEK operand
o Functionality:
= Reads the data item from the memory
location pointed to by the stack pointer.
= Stores the retrieved data item into the
specified operand location.
= Does not modify the stack pointer (SP).
2. Check Stack Empty:
o Description: Checks if the stack is empty.
o Instruction: STACK EMPTY
o Functionality:
= Checks if the stack pointer (SP) is at the
initial position (indicating no items are on
the stack).
= Sets a status flag or returns a boolean

indicating the stack's empty status.
Computer Organization & Architecture -205

Control Flow with Stack
1. Call Operation:
o Description: Initiates a subroutine call.
o Instruction: CALL subroutine address
o Functionality:
= Pushes the return address (usually the
address of the next instruction after the call)
onto the stack.
= Jumps to the specified subroutine address to

begin subroutine execution.

2. Return Operation:
o Description: Returns from a subroutine call.
o Instruction: RETURN
o Functionality:
= Pops the return address from the stack and
jumps to that address to resume execution

after the subroutine call.

Example Instruction Set

PUSH 42 : Pushes the walue 42 onto the stack
POP R1 ; Pops the top of the stack into register R1
PEEK R2 5 Peeks at the top of the stack and stores it inm register R2

INIT_SP exl1eee ; Initializes the stack pointer to memory address 8x10ee

CALL Subroutine ; Calls the subroutine named Subroutine

RETURMN : Returns from the subroutine

Usage and Considerations
o Efficiency: Stack operations should be efficient to
minimize overhead during program execution.
e Memory Management: Careful management of the stack
pointer ensures correct allocation and deallocation of stack

space.
Computer Organization & Architecture -206

e Error Handling: Proper checks should be in place to

handle stack overflow (exceeding stack size) and underflow

(popping from an empty stack).

Advantages and Disadvantages of Stack Organization

Stack organization offers several advantages and disadvantages in

computer architecture and programming. Here's a detailed look at

both:

Advantages of Stack Organization

1. Simplicity and Efficiency:

o

Push and Pop Operations: Stack operations
(PUSH and POP) are simple and efficient, involving
only a few instructions.

Memory Management: Provides an organized and
straightforward method for managing temporary
data storage and local variables during program

execution.

2. Support for Subroutines and Function Calls:

o

Subroutine Management: Enables the
implementation of subroutine calls (CALL and
RETURN), supporting structured programming and
modular code design.

Parameter Passing: Facilitates passing parameters
to functions and procedures, enhancing code

reusability and maintainability.

Computer Organization & Architecture -207

3. Memory Optimization:

o

Automatic Memory Allocation: Allocates and
deallocates memory dynamically as items are
pushed and popped from the stack.

Space Efficiency: Utilizes memory efficiently by
reusing stack space for different subroutine calls

and local variable scopes.

4. Context Management:

o

Execution Context: Helps in preserving the
execution context of a program during subroutine
calls, ensuring seamless execution flow and easier

debugging.

5. Hardware Support:

o

Hardware Stack Support: Many CPUs have
dedicated instructions and hardware support for
stack operations, optimizing performance and

reducing overhead.

Disadvantages of Stack Organization

1. Limited Size and Overflow Issues:

o

Stack Size Limitations: The size of the stack is
typically fixed or limited, leading to potential stack
overflow errors if too many items are pushed onto
the stack.

Runtime Errors: Stack overflow occurs when the
stack exceeds its allocated size, leading to program

termination or crashes.

Computer Organization & Architecture -208

2. Fragmentation:

o

Memory Fragmentation: Continuous push and
pop operations can lead to memory fragmentation,
where small pockets of unused memory are

scattered throughout the stack.

3. No Random Access:

o

Sequential Access: Access to stack elements is
sequential, making random access or arbitrary
retrieval of data inefficient compared to other data

structures like arrays.

4. Complexity in Multithreading:

o

Thread Safety: In multithreaded environments,
managing stacks across different threads can be
complex and require careful synchronization to

prevent data corruption or race conditions.

5. Limited Data Scope:

o

Scope Limitation: Data stored on the stack is
typically local to the subroutine or function where it
is allocated, limiting its scope and visibility outside

that context.

Considerations for Use

Usage in Embedded Systems: Stack organization is
widely used in embedded systems and microcontrollers due
to its simplicity and efficient use of memory.

Real-Time Systems: In real-time systems, careful stack
management is critical to ensure predictable execution

times and avoid stack overflow conditions.

Computer Organization & Architecture -209

e Alternative Data Structures: For applications requiring
dynamic memory allocation and larger data storage,
alternative data structures like heaps or dynamic arrays may

be more suitable.

6.10 CONCLUSION

In conclusion, the study of control units and CPU organization
reveals fundamental aspects of computer architecture essential for
understanding how instructions are processed and executed within
a CPU. Control units serve as the orchestrators of instruction
execution, managing the flow of data and operations within the
CPU. The comparison between hardwired and microprogrammed
control units highlights the trade-offs between hardware

complexity and flexibility in instruction handling.

The exploration of single organization models underscores the
importance of efficient data and control path management in
enhancing CPU performance. Understanding the interaction
between data paths and control paths provides insights into
optimizing instruction execution and system throughput.
Furthermore, the discussion on instruction set architecture (ISA)
emphasizes the role of standardized instruction formats and
addressing modes in enabling software compatibility and system

efficiency.
General register organization and stack organization demonstrate

practical implementations within CPUs, facilitating efficient data

storage and management. These organizational strategies are

Computer Organization & Architecture -210

pivotal in supporting diverse computing tasks and enhancing

system responsiveness.

Overall, a nuanced grasp of these concepts equips engineers and
developers with the knowledge to design, optimize, and
troubleshoot CPUs and computing systems effectively. As
technology advances, continued exploration and innovation in
control unit design and CPU organization will drive improvements

in computing performance and capability.

6.11 UNIT BASED QUESTIONS &
ANSWERS

1. What is the role of a control unit in a CPU?

Answer: The control unit manages the execution of instructions
within the CPU. It coordinates the fetch-decode-execute cycle,
controls data flow between different CPU components, and ensures

that instructions are executed in the correct sequence.

2. Compare and contrast hardwired and microprogrammed
control units.

Answer: Hardwired control units are implemented using
combinational logic circuits, directly controlling the CPU's
operations. Microprogrammed control units use a sequence of
microinstructions stored in memory to control the CPU, offering

flexibility but at the cost of additional memory access time.

Computer Organization & Architecture -211

3. Explain the concept of single organization in CPU
architecture.

Answer: Single organization refers to a CPU design where both
data path and control path components are integrated into a single
unit. This design simplifies the CPU structure but may limit

flexibility compared to more complex organizational models.

4. How do data path and control path interact in a CPU?

Answer: The data path performs arithmetic and logical operations
on data, while the control path directs the flow of instructions and
data within the CPU. They interact closely to execute instructions

efficiently and manage system resources.

5. What is Instruction Set Architecture (ISA)?

Answer: ISA defines the set of instructions that a CPU can
execute, including instruction formats, addressing modes, and
operations. It serves as a bridge between hardware and software,

ensuring compatibility and defining the capabilities of a CPU.

6. Discuss the importance of general register organization in
CPU design.

Answer: General registers store data temporarily during
instruction execution, facilitating quick access and manipulation of
data. They play a crucial role in optimizing CPU performance by
reducing memory access times and enhancing computational

efficiency.

Computer Organization & Architecture -212

6.12 REFERENCES

e Floyd, Thomas L. Digital Fundamentals. Pearson
Education, 2015.

e Taub, Herbert, and Donald L. Schilling. Digital Integrated
Electronics. McGraw-Hill Education, 1994.

e Mano, M. Morris, and Michael D. Ciletti. Digital Design:
With an Introduction to the Verilog HDL. Pearson
Education, 2017.

e Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals
of Logic Design. Cengage Learning, 2013.

e Streetman, Ben G., and Sanjay Banerjee. Solid State
Electronic Devices. Prentice Hall, 2005.

e Hayes, John P. Introduction to Digital Logic Design.
Addison-Wesley, 1993.

Computer Organization & Architecture -213

UNIT - 7: ADDRESSING MODES AND
INSTRUCTION FORMAT

7.0 Introduction

7.1 Objectives

7.2 Addressing Modes

7.3 Instruction Formats

7.4 Data Transfer & Manipulation
7.5 I/O Organization

7.6 Bus Architecture

7.7 Programming Registers

7.8 Conclusion

7.9 Unit Based Questions & Answers

7.10 References

7.0 INTRODUCTION

In computer architecture, understanding the internal operations of a
system 1is crucial for designing efficient hardware and software.
This unit delves into several fundamental aspects of computer
architecture and organization that are vital for grasping how
computers execute instructions and manage data. We will explore
addressing modes, which define how the processor locates data in
memory, and instruction formats, which specify how instructions

are structured and encoded within machine code.

Furthermore, the unit covers data transfer and manipulation,
essential for understanding how data is moved between registers,

memory, and I/O devices. The Input/Output (I/O) organization and
Computer Organization & Architecture -214

bus architecture are also examined to provide insight into how
computers interface with peripheral devices and handle
communication between different system components. Finally, the
role of programming registers in managing data and executing
instructions will be analyzed to complete the picture of internal
processor operations. This comprehensive exploration provides a
foundational understanding necessary for further study and

practical application in computer system design and optimization.

7.1 OBJECTIVES

After completing this unit, you will be able to understand;

e Addressing Modes: Learn how different addressing modes
affect data retrieval and instruction execution.

e Instruction Formats: Understand the structure of
instructions, including opcode and operand fields, and their
impact on instruction processing.

e Data Transfer & Manipulation: Explore methods for data
movement and manipulation between memory, registers,
and I/O devices.

e I/O Organization: Investigate how input and output
operations are organized and managed within the computer
system.

e Bus Architecture & Programming Registers: Study the
role of bus architecture in system communication and the
function of programming registers in executing

instructions.

Computer Organization & Architecture -215

7.2 ADDRESSING MODES

An addressing mode in computer architecture defines how a
processor accesses operands to perform operations. It specifies the
method or format by which the CPU identifies and retrieves data
from memory or registers. Addressing modes are fundamental in
instruction set architecture (ISA), guiding how programs interact
with data and instructions. They vary in complexity and
functionality, offering flexibility in how programs manage memory

and compute results.

Addressing modes include immediate, direct, indirect, register,
indexed, relative, base-offset, stack, auto-increment/decrement,
and memory-indirect modes, each tailored for specific
programming needs. Immediate mode, for instance, directly
embeds constant values within instructions, simplifying simple
calculations. Direct mode accesses specific memory locations
directly by their address, suitable for fixed data storage. Indirect
mode uses a memory address that points to the actual data location,
allowing for dynamic data access and data structures. Register
mode accesses data stored within CPU registers, offering rapid

data manipulation capabilities.

These modes enable efficient program execution and memory
management, crucial for optimizing performance in computing
tasks. They are integral to designing compilers, operating systems,
and application software, ensuring programs operate effectively
across diverse hardware platforms. Understanding and selecting

appropriate addressing modes are essential for developers aiming

Computer Organization & Architecture -216

to maximize computational efficiency and memory utilization in

modern computer systems.

1. Immediate Addressing Mode:

e Description: In immediate addressing mode, the actual
operand value is specified within the instruction itself
rather than referencing a memory location.

o Example: MOV A, #25

This instruction moves the immediate value 25 directly into
register A.

e Advantages:

o Simplifies programming as operands are directly
specified.

o Useful for constants or literal values that do not
change.

o Disadvantages:

o Wasteful of memory if the same constant is used
multiple times.
o Limits flexibility as operands cannot be modified

dynamically.

2. Direct Addressing Mode:
e Description: The operand's memory address is directly
specified in the instruction.
e Example: MOV A, 2000H
This instruction moves the contents of memory location 2000H
into register A.
e Advantages:
o Simple and straightforward to implement.
o Efficient for accessing specific memory locations.

o Disadvantages:
Computer Organization & Architecture -217

o Limited flexibility as the exact memory address
must be known at compile-time.

o Not suitable for position-independent code.

3. Indirect Addressing Mode:
e Description: The instruction specifies a memory address
that holds the actual memory address of the operand.
o Example: MOV A, @X
Here, if X contains 2000H, the contents of memory location 2000H
are moved into register A.
e Advantages:
o Allows for flexible memory referencing.
o Useful for accessing data structures where memory
addresses are dynamic.
o Disadvantages:
o Requires an extra memory access to fetch the actual
operand address.
o Slower compared to direct addressing due to the

additional memory access.

4. Register Addressing Mode:
e Description: The operand is located in a processor register.
o Example: MOV A, B
This instruction moves the contents of register B into register A.
e Advantages:
o Fastest access mode as it involves direct register-to-
register transfer.
o Suitable for frequently accessed data and arithmetic
operations.
o Disadvantages:

o Limited number of registers available.
Computer Organization & Architecture -218

o Register content might need to be saved and

restored during context switches or interrupts.

5. Indexed Addressing Mode:
e Description: An offset is added to a base address to reach
the operand.
e Example: MOV A, [X + 2]
This instruction moves the contents of memory location (X + 2)
into register A.
e Advantages:
o Useful for accessing elements in arrays and data
structures.

o Supports position-independent code.

o Disadvantages:
o Requires additional arithmetic operations to
compute the effective address.
o Overhead in maintaining and updating the base

register.

6. Relative Addressing Mode:
e Description: The operand's address is calculated relative to
the program counter or instruction pointer.
o Example: JMP LABEL
This instruction jumps to the address specified by LABEL, which
is a relative address from the current instruction.
e Advantages:
o Supports position-independent code.
o Simplifies code relocation and memory

management.

Computer Organization & Architecture -219

o Disadvantages:
o Limited range of relative addressing depending on
instruction format.
o Risk of errors if the offset is not correctly

calculated.

7. Base or Base-Offset Addressing Mode:
e Description: An offset added to a base address stored in a
register or specified in the instruction.
o Example: MOV A, [BASE + OFFSET]
This instruction moves the contents of memory location (BASE +
OFFSET) into register A.
e Advantages:
o Supports efficient access to data structures and
arrays.
o Facilitates modular programming and data
segmentation.
o Disadvantages:
o Requires additional registers or memory locations to
store base addresses.
o Complexity in managing multiple base registers in

larger programs.

8. Stack Addressing Mode:
e Description: Operands are implicitly accessed from the top
of the stack.
o Example: PUSH A
This instruction pushes the contents of register A onto the stack.
e Advantages:
o Supports last-in-first-out (LIFO) data structures.

o Facilitates function calls and parameter passing.
Computer Organization & Architecture -220

o Disadvantages:
o Slower access compared to register or direct
addressing modes.

o Limited stack size and potential for stack overflow.

9. Auto-increment and Auto-decrement Addressing Mode:
e Description: The memory address automatically
increments or decrements after each access.
e Example: LDA [X+]
This instruction loads the contents of memory at address X into the
accumulator and increments X.
e Advantages:
o Simplifies sequential memory access operations.
o Reduces the need for explicit address manipulation

in loops.

o Disadvantages:
o Limited support in modern architectures.
o Requires careful management to avoid unintended

side effects.

10. Memory Indirect Addressing Mode:
e Description: Similar to indirect addressing, but the
operand address is located in memory.
o Example: MOV A, @2000H
This instruction moves the contents of the memory address stored
at 2000H into register A.
e Advantages:
o Flexibility in accessing dynamically allocated
memory.

o Supports complex data structures and pointers.
Computer Organization & Architecture -221

o Disadvantages:

o

o

Increased memory access time due to additional
indirection.

Potential for pointer errors and memory leaks.

7.3 INSTRUCTION FORMATS

Instruction formats in computer architecture define the structure

and layout of machine instructions that the CPU executes. They

specify how operations and operands are encoded within the binary

instructions, guiding the processor on how to fetch, decode, and

execute each instruction. Instruction formats are crucial for

defining the instruction set architecture (ISA) of a processor,

determining its capabilities and compatibility with software.

Components of Instruction Formats:

1. Opcode (Operation Code):

o

Defines the operation or instruction to be performed
by the CPU.

Typically occupies a fixed portion of the instruction
word.

Examples include arithmetic operations (add,
subtract), data movement (load, store), and control

flow (jump, branch).

2. Operands:

o

o

Data or addresses on which the operation acts.
Can be specified in various ways depending on the
addressing mode (immediate, direct, indirect,

register, etc.).

Computer Organization & Architecture -222

o Operand fields may vary in size and position within

the instruction format.

3. Addressing Mode Specification:
o Specifies how to interpret or compute the operand
address.
o Directly impacts how operands are fetched from
memory or registers.
o Can be part of the opcode or in a separate field

within the instruction format.

4. Control Bits:
o Flags or control information that governs the
execution behavior of the instruction.
o Includes condition codes, interrupt enable/disable,

privilege levels, etc.

Mode Operation - Address OR
Code Data

ADDRESSING

MODE OPCODE OPERAND

Part-1 Part -2 Part -3
‘ MACHINE INSTRUCTION |

Common Instruction Formats:
1. Fixed-Length Format:
o All instructions have the same length in bits.
o Simplifies instruction fetching and decoding but
may lead to inefficient use of space for simpler

instructions.

Computer Organization & Architecture -223

2. Variable-Length Format:
o Instructions vary in length based on the complexity
of the operation or addressing mode.
o Efficient for compact instruction sets but requires

more complex decoding logic.

3. Three-Address Format:
o Allows operations with three operands.
o Useful for complex arithmetic operations and

scientific computing.

4. Two-Address Format:
o Typically used in older architectures where one
operand serves as both a source and destination.
o Limited flexibility but efficient for certain

operations.

5. One-Address Format:
o Operates on data stored in one register.
o Often used in stack-based or accumulator-based

architectures.

Design Considerations:

o Efficiency: Instruction formats aim to balance between
compactness and flexibility, optimizing instruction
decoding and execution.

o Compatibility: Formats must support a wide range of
operations and addressing modes specified by the ISA.

e Encoding Scheme: Instructions must be encoded
efficiently to minimize memory usage and maximize

execution speed.
Computer Organization & Architecture -224

Here are the various aspects of instruction formats and machine
language instructions:
1. Instruction Length and Format:
o Defines the size and structure of machine
instructions.
o Determines how instructions are fetched, decoded,
and executed by the CPU.
o Can be fixed-length or variable-length depending on

the architecture.

2. Opcode and Operand Fields:
o Opcode: Specifies the operation to be performed
(addition, subtraction, load, store, etc.).
o Operand Fields: Hold data or addresses required
for the operation.
o Format includes fields for different addressing

modes (immediate, direct, indirect, etc.).

3. Fixed-Length vs. Variable-Length Instructions:
o Fixed-Length: All instructions are of the same size
in bits.
o Variable-Length: Instructions vary in size based on
complexity or addressing modes.
o Trade-offs between simplicity of decoding (fixed-
length) and efficient use of memory (variable-

length).

4. Three-Address vs. Two-Address vs. One-Address

Formats:

Computer Organization & Architecture -225

Three-Address: Operates on three operands, useful
for complex arithmetic.

Two-Address: Uses one operand for both source
and destination.

One-Address: Operates on data stored in one

register or accumulator.

5. Instruction Encoding and Decoding:

o

Encoding: Translating assembly language
mnemonics into machine code.

Decoding: Process of interpreting machine code
instructions for execution by the CPU.

Involves mapping opcodes and operands to binary

representations.

6. Machine Language Instructions:

o

Low-level instructions directly executable by the
CPU.
Binary representation of operations and data

movements.

7. Assembly Language Instructions:

o

o

Human-readable mnemonics representing machine
instructions.

Translated into machine code by an assembler.

8. Format for Arithmetic Operations:

o

Specifies how arithmetic instructions (addition,

subtraction, multiplication, division) are structured.

Computer Organization & Architecture -226

o Includes opcode, operand fields for source and

destination registers or memory locations.

9. Format for Logical Operations:
o Defines structure for logical operations (AND, OR,
XOR, NOT).
o Similar to arithmetic operations but with different

opcodes.

10. Format for Data Transfer Operations:
o How data is moved between registers, memory, and
I/O devices.
o Includes opcodes for load (from memory to
register) and store (from register to memory)

operations.

7.4 DATA TRANSFER &
MANIPULATION

Data transfer and manipulation in computer architecture refer to
the operations involved in moving and processing data within a
computer system. These operations are fundamental to the
execution of programs and the functioning of applications. Here's

an overview of the key aspects:

Data Transfer:
1. Load (L) and Store (S) Operations:
o Load (L): Moves data from memory to a register or

Processor.

Computer Organization & Architecture -227

o Store (S): Writes data from a register or processor
to memory.
o Operands typically specify memory addresses or

offsets.

2. Move (MOV) Operations:
o Directly transfers data between registers or memory
locations.
o Often used for copying data within the CPU or

between different parts of memory.

3. Data Transfer between I/0 Devices:
o Facilitates communication between the CPU and
peripherals (e.g., keyboards, displays, disks).
o Uses specialized instructions or I/O ports for data

exchange.

Data Manipulation:
1. Arithmetic Operations:
o Addition (ADD), Subtraction (SUB),
Multiplication (MUL), Division (DIV):
= Operate on numerical data stored in registers
Or memory.
= Results typically stored back in registers or

specified memory locations.

2. Logical Operations:
o AND, OR, XOR, NOT:
= Manipulate binary data to perform Boolean

operations.

Computer Organization & Architecture -228

= Useful for bit manipulation, data masking,

and conditional checks.

3. Shift and Rotate Operations:

o Shift (SHL, SHR): Move bits left or right within a
binary number.
o Rotate (ROL, ROR): Circularly shift bits,

wrapping around the ends.

4. Bitwise Operations:

o Bitwise AND, OR, XOR: Perform operations on
individual bits of data.
o Essential for low-level data manipulation and

setting/clearing specific bits.

Examples:

Data Transfer Example (Load Operation): LDR RI1,
[R2]; Load data from memory address in R2 into register
R1

Arithmetic Operation Example (Addition): ADD R3,
R1, R2; Add contents of R1 and R2, store result in R3
Logical Operation Example (AND): AND R4, RS, R6;
Perform bitwise AND of R5 and R6, store result in R4

Importance:

Program Execution: Essential for executing instructions
and processing data within programs.

System Interaction: Facilitates communication between
components (CPU, memory, I/O devices).

Performance Optimization: Efficient data handling

enhances overall system performance.
Computer Organization & Architecture -229

Here are the different aspects related to data handling, processing,

and communication in computer systems:

Data Movement Instructions:
o Instructions that move data between registers, memory, and
I/O devices.

e Include operations like load, store, move, and exchange.

Load and Store Operations:
e Specific instructions for fetching data from memory (load)
and writing data to memory (store).
e Vital for manipulating variables and data structures in

programs.

Data Conversion Instructions:
e Operations that convert data from one format to another
(e.g., integer to floating-point, ASCII to Unicode).

o Ensure compatibility and correct representation of data.

Bit Manipulation Instructions:
e Instructions for manipulating individual bits or groups of
bits within data.
e Used for tasks like setting/clearing bits, bitwise operations

(AND, OR, XOR), and shifting.

Data Packing and Unpacking:
e Techniques for compactly storing multiple data items in a
single memory location (packing).
e Unpacking retrieves individual items from packed data

structures.
Computer Organization & Architecture -230

Data Sorting Algorithms:

Algorithms that arrange data in a specified order (e.g.,
ascending or descending).
Essential for efficient searching, indexing, and data

retrieval.

Parallel Data Processing:

Techniques and architectures that enable simultaneous
processing of multiple data streams or tasks.
Includes multi-core processors, parallel computing

frameworks, and GPU acceleration.

Data Transfer Protocols:

Standards and protocols governing the reliable and efficient
transfer of data between systems or devices.

Examples include TCP/IP, UDP, HTTP, and FTP.

Data Compression Techniques:

Methods for reducing the size of data to save storage space
or transmission bandwidth.
Include lossless (e.g., ZIP) and lossy (e.g., JPEG)

compression algorithms.

Data Encryption and Decryption:

Techniques to secure data by encoding it in a way that only
authorized parties can access (encryption).
Decryption reverses encryption to retrieve the original data

securely.

Computer Organization & Architecture -231

7.5 I/0 ORGANIZATION

I/O (Input/Output) organization refers to how computer systems

interact with external devices to exchange data and instructions.

Here's an overview of the key aspects:

Components of I/O Organization:

1. I/O Interfaces:

o

Hardware components that facilitate communication
between the CPU and peripherals.
Examples include USB ports, network interfaces,

serial ports, and expansion slots.

2. Device Controllers:

o

Interface between the CPU and specific I/O devices
(e.g., disk controllers, display controllers).
Manage data transfer, error handling, and device-

specific operations.

3. Interrupts and DMA (Direct Memory Access):

o

Mechanisms for efficient data transfer and device
signaling without CPU intervention.

Interrupts allow devices to request attention, while
DMA enables high-speed data transfers between

devices and memory.

Computer Organization & Architecture -232

Insertace

Keyboard

& Dinplay
Termiralg

ol R

Operation Modes:
1. Programmed 1/O:
o Basic mode where the CPU manages data transfer
between devices and memory.
o Each byte or word transfer requires CPU
involvement, making it slower for large data

volumes.

2. Interrupt-Driven 1/O:
o Devices trigger interrupts to signal readiness or
completion of data transfers.
o CPU responds to interrupts, allowing it to perform

other tasks while data transfer occurs.

3. DMA (Direct Memory Access):
o Specialized mode where devices transfer data
directly to/from memory without CPU intervention.
o Improves system performance by offloading data

transfer tasks from the CPU.

Computer Organization & Architecture -233

I/0 Techniques:

1. Polling:

o

CPU continuously checks the status of devices to
initiate or complete data transfers.
Simple but inefficient for real-time or high-speed

applications.

2. Interrupt Handling:

o

Devices signal interrupts to notify the CPU of data
readiness or completion.
Enables asynchronous data transfer and

multitasking capabilities.

3. Buffering:

o

Temporarily stores data in buffers (memory) to
accommodate speed mismatches between devices
and CPU.

Prevents data loss and optimizes data flow.

Importance of I/0 Organization:

e System Connectivity: Facilitates interaction with diverse

peripherals, expanding system capabilities.

e Performance Optimization: Efficient data transfer

mechanisms improve overall system responsiveness and

throughput.

e Device Management: Ensures seamless integration and

operation of peripherals within the computing environment.

Examples:

Computer Organization & Architecture -234

e USB Interface: Standardized I/O interface for connecting
peripherals like keyboards, mice, and storage devices.

e Network Interface Card (NIC): Facilitates data exchange
between computers over networks.

e Graphics Processing Unit (GPU): Specialized device
controller for rendering graphics and accelerating complex

computations.

7.6 BUS ARCHITECTURE

Bus architecture refers to the design and implementation of the
communication system that allows various components within a
computer system to transfer data between each other. Here's an

overview of the key aspects of bus architecture:

Components of Bus Architecture:
1. Bus Types:
o Data Bus: Carries data between the CPU, memory,
and peripherals.
o Address Bus: Specifies memory locations for
read/write operations.
o Control Bus: Manages signals for coordinating

operations (e.g., read, write, interrupt).

2. Bus Width:
o Determines the number of bits that can be
transmitted simultaneously.
o Common widths include 8-bit, 16-bit, 32-bit, and
64-bit buses.

Computer Organization & Architecture -235

3. Bus Speed:
o Measures how fast data can be transferred across
the bus.
o Expressed in MHz or GHz, indicating cycles per

second.

4. Bus Topology:
o Single Bus (Shared Bus): All components connect
to a single bus.
o Multi-Bus: Uses separate buses for data, address,
and control signals.
o Hierarchical Bus: Combines multiple buses with

varying speeds and functions.

Control bus _i__

I
Address bus
L

Operation Modes:
1. Synchronous Bus:
o Operates on a clock signal synchronized across all
devices.

o Data transfers occur at fixed intervals.

Computer Organization & Architecture -236

2. Asynchronous Bus:

o Does not rely on a centralized clock signal.
o Devices signal readiness independently, enabling

variable data transfer rates.

Bus Arbitration:

Master-Slave Configuration: Determines which device
controls the bus during data transfers.
Bus Arbitration Protocols: Resolve conflicts when

multiple devices request bus access simultaneously.

Types of Bus:

System Bus: Connects major system components like
CPU, memory, and chipset.

Peripheral Bus: Links external devices such as USB,
SATA, and PCI Express.

Internal Bus: Facilitates communication within CPU or

chipset components.

Importance of Bus Architecture:

Data Transfer Efficiency: Determines how quickly data
moves between components, affecting overall system
performance.

Compatibility: Standardizes interfaces for hardware
compatibility and interoperability.

Scalability: Supports expansion through additional devices

or higher data rates.

Examples:

PCI Bus: Peripheral Component Interconnect bus for

connecting hardware peripherals.
Computer Organization & Architecture -237

e USB Bus: Universal Serial Bus for external devices like

keyboards, mice, and storage.

e Memory Bus: Links CPU and memory modules for fast

data access.

7.7 PROGRAMMING REGISTERS

Programming registers refer to special storage locations within a
CPU or a microcontroller that hold data temporarily during
program execution. These registers are directly accessible by the
CPU and are crucial for various operations such as arithmetic

calculations, logical operations, and data manipulation.

Function Number of Frequency CBiaS QOutput
deﬁpition sllices Range T::;?:; : connection
: 5 !
1) ' r ¥
.: : rI '; ,:
I1 : :’ ’r f
Y Y 4 ¥ 4
: ¥
i 1
PrO Prl| Pr2......Pr10: Pri1l: Pr12.......Pr15 Prl6......Pr24
1 1
FwW PW RW
Programming Register

Here’s an overview of programming registers:

Types of Registers:
1. General-Purpose Registers:

o Used for storing operands, intermediate results, and

memory addresses.

Computer Organization & Architecture -238

o Examples include the Accumulator (ACC), Data
Register (DR), and Index Register (IR).

2. Special-Purpose Registers:

o Dedicated to specific tasks like addressing, status
flags, and control signals.

o Examples include Program Counter (PC), Stack
Pointer (SP), and Condition Code Register (CCR).

Functionality and Operations:

Operand Storage: Hold data for arithmetic and logical
operations performed by the CPU.

Addressing: Store memory addresses for fetching
instructions or data.

Control Signals: Manage control flow and execution status
within the CPU.

Status Flags: Indicate conditions such as overflow, carry,

zero, and negative results.

Programming Register Usage:

Arithmetic Operations: Registers store operands and
results for addition, subtraction, multiplication, and
division.

Logical Operations: Perform bitwise operations (AND,
OR, XOR) using register contents.

Data Movement: Transfer data between registers, memory,
and I/O devices.

Program Control: Modify program flow using branch

instructions and condition checks.

Computer Organization & Architecture -239

Programming Model:

Register Organization: Defines the number, size, and
purpose of registers in a CPU architecture.

Instruction Set Architecture (ISA): Specifies how
registers are accessed and manipulated by machine

instructions.

Examples:

x86 Architecture: Uses general-purpose registers like AX,
BX, CX, DX alongside special-purpose registers such as IP
(Instruction Pointer) and FLAGS.

ARM Architecture: Includes general-purpose registers
RO-R15, Program Counter (PC), and Current Program
Status Register (CPSR).

Benefits of Programming Registers:

Speed: Direct access to registers improves processing
speed compared to accessing memory.

Efficiency: Reduces memory access times and enhances
overall system performance.

Versatility: Enables diverse computations and operations

through flexible register usage.

Considerations:

Register File Size: Balances the number of registers for
optimal performance and cost-efficiency.
Register Naming Conventions: Maintains clarity and

consistency in register usage across software development.

Computer Organization & Architecture -240

7.8 CONCLUSION

In conclusion, this unit has provided a comprehensive overview of
essential concepts related to computer architecture and system
operations. Addressing modes and instruction formats are
fundamental to understanding how processors execute commands
and interact with memory. By exploring data transfer and
manipulation techniques, we gain insight into the mechanisms that
enable efficient communication between various components of a

computer system.

The organization of input and output operations is crucial for
effective data exchange between peripheral devices and the central
processing unit. Additionally, the study of bus architecture sheds
light on the system’s communication infrastructure, while
programming registers play a key role in executing instructions
and managing data. Overall, these elements collectively enhance
our understanding of computer system design and operation, laying
a foundation for more advanced topics in computer science and

engineering.

7.9 UNIT BASED QUESTIONS &
ANSWERS

1. What are addressing modes in computer architecture, and
why are they important?

Answer: Addressing modes are techniques used to specify the
operand(s) for an instruction in computer architecture. They define

how the CPU should access the data required for an operation.

Computer Organization & Architecture -241

Addressing modes are important because they provide flexibility in
accessing data, allowing for more efficient and effective instruction
execution. Common addressing modes include Immediate, Direct,
Indirect, Register, and Indexed addressing. Each mode helps in
optimizing memory usage and operational speed based on the

requirements of different applications.

2. Explain the different types of instruction formats used in
computer systems.

Answer: Instruction formats are the layouts used to encode
instructions into binary form. Common types of instruction formats
include:

o Fixed-Length Instructions: All instructions are of the
same length, simplifying decoding but potentially wasting
space.

e Variable-Length Instructions: Instructions vary in length,
providing more flexibility and potentially reducing code
size but complicating decoding.

e Three-Address Format: Uses three fields to specify two
source operands and one destination operand.

e Two-Address Format: Uses two fields, often one for
source and one for destination, with one operand serving as
both source and destination in some cases.

e One-Address Format: Typically involves an implicit

accumulator and one explicit operand.

3. What is the role of data transfer and manipulation
instructions in a computer system?

Answer. Data transfer instructions are responsible for moving data
between registers, memory, and I/O devices. These instructions

include operations like LOAD, STORE, and MOV. Manipulation
Computer Organization & Architecture -242

instructions perform operations on data, such as arithmetic (ADD,
SUB), logical (AND, OR), and bit manipulation (SHIFT,
ROTATE). These instructions are essential for executing programs
and performing computations, enabling the CPU to handle and
process data effectively.

4. Describe the role of I/0O organization in a computer system.
Answer: 1/0O organization refers to the methods and structures used
for managing input and output operations in a computer system. It
involves interfaces and controllers that facilitate communication
between the CPU and peripheral devices, such as keyboards,
printers, and disks. Efficient I/O organization is crucial for
ensuring smooth data transfer and proper device operation,
minimizing bottlenecks, and optimizing overall system

performance.

5. What is bus architecture, and how does it impact system
performance?

Answer: Bus architecture refers to the system's communication
pathways that connect the CPU, memory, and peripheral devices. It
consists of data buses, address buses, and control buses. The bus
architecture impacts system performance by determining the speed
and efficiency of data transfer between components. A well-
designed bus architecture can enhance data throughput and reduce

latency, leading to improved overall system performance.

7.10 REFERENCES

e Floyd, Thomas L. Digital Fundamentals. Pearson
Education, 2015.

Computer Organization & Architecture -243

Taub, Herbert, and Donald L. Schilling. Digital Integrated
Electronics. McGraw-Hill Education, 1994,

Mano, M. Morris, and Michael D. Ciletti. Digital Design:
With an Introduction to the Verilog HDL. Pearson
Education, 2017.

Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals
of Logic Design. Cengage Learning, 2013.

Streetman, Ben G., and Sanjay Banerjee. Solid State
Electronic Devices. Prentice Hall, 2005.

Hayes, John P. [Introduction to Digital Logic Design.
Addison-Wesley, 1993.

Computer Organization & Architecture -244

BLOCK III: MEMORY ORGANIZATION &
I/0 ORGANIZATION

UNIT - 8: MEMORY HIERARCHY

Structure

8.0 Introduction

8.1 Objectives

8.2 Memory Hierarchy Overview:

8.3 Main Memory

8.4 Cache Memory

8.5 Virtual Memory

8.6 Associative Memory

8.7 Memory Management Techniques
8.8 Performance Metrics

8.9 Conclusion

8.10 Unit Based Questions & Answers

8.11 References

8.0 INTRODUCTION

In the landscape of modern computing, memory hierarchy stands
as a critical framework that enables efficient data processing. This
hierarchy encompasses a spectrum of memory types, each
strategically designed to balance the need for speed, capacity, and
cost-effectiveness. At its core lies main memory (RAM), which
directly interfaces with the processor to provide fast data access
during program execution. Complementing RAM are cache
memories, meticulously designed to bridge the speed gap between
the CPU and main memory by storing frequently accessed data and
instructions. Virtual memory expands this hierarchy by utilizing a

Computer Organization & Architecture -245

combination of RAM and disk storage, providing an illusion of
vast memory space that exceeds physical limitations. Associative
memory, in contrast, offers rapid access to data through content-
addressable memory techniques, ideal for certain types of

specialized computations.

The efficient management of memory is crucial for maximizing
system performance. Memory management techniques encompass
strategies for allocating and deallocating memory space, handling
fragmentation issues, and optimizing memory usage. Contiguous
and non-contiguous allocation methods cater to different needs,
whether ensuring uninterrupted memory blocks or dynamically
allocating scattered segments. Fragmentation, both internal within
allocated memory blocks and external due to unused but reserved
memory, necessitates careful management to prevent
inefficiencies. Performance metrics, such as throughput, latency,
and memory utilization, provide quantitative measures of how
effectively memory resources are utilized, guiding optimizations

and system enhancements.

This section explores the intricacies of memory hierarchy, delving
into the architectural details, management methodologies, and
performance evaluations that underpin efficient memory usage in
computer systems. By understanding these fundamentals, one
gains insight into how memory impacts overall system
responsiveness, scalability, and reliability in diverse computing

environments.

Computer Organization & Architecture -246

8.1 OBJECTIVES

After completing this unit, you will be able to understand;

Memory hierarchy organizes storage in computers by speed
and proximity to the CPU, from registers to auxiliary
storage.

RAM stores data and instructions temporarily for quick
access by the CPU, while ROM holds essential system
instructions.

Cache memory sits between RAM and the CPU, speeding
up operations by storing frequently used data.

Virtual memory expands RAM's capacity by swapping data
between RAM and storage devices like hard drives.
Memory management includes techniques for efficient
allocation and usage, addressing fragmentation to optimize

system performance.

8.2

MEMORY HIERARCHY

OVERVIEW

Memory hierarchy refers to the arrangement of different types of

memory storage devices in a computer system, organized in levels

based on their speed, capacity, and cost. The primary objective of

memory hierarchy is to provide the CPU with fast access to data

and instructions while optimizing cost and capacity. The hierarchy

typically includes registers, cache memory, main memory (RAM),

secondary storage (like SSDs and HDDs), and tertiary storage

(such as optical discs and tapes).

Computer Organization & Architecture -247

Each level in the hierarchy represents a trade-off between speed
and cost. Registers and cache memory, being closer to the CPU,
offer the fastest access times but are expensive and have limited
capacity. Main memory provides larger capacity but with slower
access times compared to cache. Secondary storage offers even
greater capacity at the cost of slower access times than main
memory. Tertiary storage, although the slowest, provides the

largest storage capacity at the lowest cost per unit.

Importance of Hierarchy in Computer Systems:
The memory hierarchy is crucial for performance optimization in
computer systems for several reasons:
1. Reduced Access Latency: By placing frequently accessed
data and instructions in faster memory levels (registers and
cache), the CPU can retrieve them more quickly, reducing

latency and improving overall system performance.

2. Improved Throughput: Faster memory access allows the
CPU to process data more efficiently, increasing the

system's throughput and handling more tasks concurrently.

3. Cost-Effective Design: Memory hierarchy allows
designers to balance the need for speed with cost
constraints. Faster memory (registers and cache) is more
expensive per unit of storage, while slower memory
(secondary and tertiary storage) offers larger capacities at

lower costs.

4. Scalability and Flexibility: The hierarchical structure of
memory enables systems to scale and adapt to varying

workload demands. Different levels of memory
Computer Organization & Architecture -248

accommodate different types of data access patterns and

usage scenarios, optimizing overall system efficiency.

5. Enhanced Reliability: Multiple levels of memory
hierarchy contribute to data integrity and reliability.
Redundancy and error-checking mechanisms can be
implemented at various levels to ensure data integrity and
system stability.

The primary goal of memory hierarchy is to optimize the
performance of the system by balancing speed, capacity, and cost.

Here's an overview of memory hierarchy:

Levels of Memory Hierarchy:
1. Registers:
o Located within the CPU.
o Fastest and smallest type of memory.
o Used to store data being actively processed by the
CPU.
o Examples: Accumulator (ACC), Program Counter

(PC).

2. Cache Memory:

o Small-sized memory located close to the CPU.

o Designed to store frequently accessed data and
instructions.

o Divided into multiple levels (L1, L2, L3) based on
proximity to CPU and size.

o Faster than main memory but more expensive.

o Helps reduce the gap between CPU speed and main

memory access time.

Computer Organization & Architecture -249

3. Main Memory (RAM - Random Access Memory):

o

o

Primary storage directly accessible by the CPU.
Stores data and instructions required for current
tasks.

Volatile memory (loses data when power is off).
Examples: Dynamic RAM (DRAM), Static RAM
(SRAM).

4. Secondary Storage (Auxiliary Memory):

o

Non-volatile storage used for long-term data
storage.

Examples: Hard Disk Drives (HDDs), Solid State
Drives (SSDs), Optical Discs (CDs, DVDs).

Slower access times compared to main memory but

larger storage capacity.

5. Tertiary Storage:

o

o

o

Typically used for archival purposes.
Examples: Magnetic tapes.
Extremely slow access times but very high storage

capacity and low cost per unit of storage.

Computer Organization & Architecture -250

Computer Memory Hierarchy

small size
small capacity

processor registers
very fast, very expensive

power on

immediate term

small size
small capacity

medium size power on random acces:
medium capacity very short term fast, affordable
small size power off flash /
large capacity short term slower,

larae cize / nower off \

processor cache
very fast, very expensi

Functions and Importance:

e Performance Optimization: By placing frequently
accessed data closer to the CPU (in registers and cache),
memory hierarchy reduces latency and improves processing
speed.

e Cost-Effectiveness: Balances the cost of faster, smaller
memory (like registers and cache) with larger, slower
memory (like secondary and tertiary storage).

o Capacity Management: Provides a scalable approach to
managing data and instructions based on their usage

patterns and access requirements.

8.3 MAIN MEMORY

Main memory in computer systems refers to the primary storage
that is directly accessible by the CPU for storing data and

instructions required during program execution. It is essential for

Computer Organization & Architecture -251

the operation of the system and comes in two primary types: RAM

(Random Access Memory) and ROM (Read-Only Memory).

RAM (Random Access Memory)

RAM, or Random Access Memory, is a crucial component in
modern computer systems and digital devices. It serves as the
primary memory where data and instructions are temporarily
stored for quick access by the CPU (Central Processing Unit).
RAM is volatile memory, meaning it requires a constant supply of
power to retain stored data. When the power is turned off or the
device is restarted, the data stored in RAM is lost, distinguishing it
from non-volatile storage like ROM (Read-Only Memory).

The main function of RAM is to provide fast read and write access
to data that the CPU needs to operate on in real-time. It acts as a
bridge between the CPU and storage devices, facilitating rapid data
exchange. RAM comes in different types, such as DRAM
(Dynamic RAM) and SRAM (Static RAM), each with unique
characteristics in terms of speed, cost, and power consumption.
This memory is crucial for multitasking, as it allows the system to
store and retrieve data quickly, enhancing overall performance by
reducing the need to access slower storage devices like hard drives

or SSDs for frequently used information.

Computer Organization & Architecture -252

Dynamic RAM (DRAM):
e Function: Stores data and instructions temporarily for the
CPU.
o Characteristics:
o Requires refreshing at regular intervals to maintain
data integrity.
o Uses capacitors to store bits of data as electrical
charges.
o Slower and less expensive per bit compared to
SRAM.
o Usage:
o Mainly used as main memory (RAM) in computers
and other digital devices.
o Provides high-density storage at a lower cost per

bit.

Static RAM (SRAM):
e Function: Provides high-speed data storage for faster
access.
o Characteristics:

o Does not require refreshing like DRAM.

Computer Organization & Architecture -253

o Uses flip-flops made of transistors to store data,
which makes it faster but more expensive than
DRAM.

o Faster access times and lower power consumption

compared to DRAM.

o Usage:
o Used in cache memory and other applications where
speed and reliability are critical.
o Acts as a buffer between the CPU and slower main

memory (DRAM).

ROM (Read-Only Memory)

ROM, or Read-Only Memory, is a type of storage medium used in
computers and electronic devices to store permanent data and
instructions that are essential for the operation of the system.
Unlike RAM (Random Access Memory), ROM is non-volatile
memory, meaning it retains its contents even when the power is
turned off. This characteristic makes ROM suitable for storing
critical system software, firmware, and instructions that must not

be altered or erased during normal operation.

The primary function of ROM is to provide read-only access to
data and instructions that are integral to the system's functionality.
It typically contains firmware, boot loaders, basic input/output
system (BIOS), and other essential software components that
initialize the hardware and facilitate the startup process of the

computer or device. ROM chips are manufactured with the data

Computer Organization & Architecture -254

already stored during production, using methods that permanently
encode the information into the memory cells.

There are several types of ROM, including PROM (Programmable
ROM), EPROM (Erasable Programmable ROM), and EEPROM
(Electrically Erasable Programmable ROM), each offering varying
degrees of programmability and permanence suited to different

application needs in computing and electronics.

PROM (Programmable Read-Only Memory):
o Function: Stores data and instructions that are permanently
programmed during manufacturing.
e Characteristics:
o Can be programmed only once using a special
device called a PROM programmer.
o Once programmed, the data cannot be changed or
erased.
o Cost-effective for small production runs of custom
software or firmware.
o Usage:
o Stores boot firmware, basic system instructions, and

other critical data that must remain unchanged.

Computer Organization & Architecture -255

EPROM (Erasable Programmable Read-Only Memory):
e Function: Allows for erasing and reprogramming of the
memory multiple times.
o Characteristics:

o FErased using ultraviolet (UV) light exposure, which
clears the memory cells.

o Once erased, new data can be written using a
PROM programmer.

o Commonly wused for firmware updates and
development purposes.

o Usage:

o Ideal for applications where occasional updates or
corrections are necessary without replacing the
entire chip.

EEPROM (Electrically Erasable Programmable Read-Only
Memory):
e Function: Allows for electrical erasing and reprogramming
of the memory.
o Characteristics:

o Can be erased and reprogrammed electrically,
which is faster and more convenient than EPROM.

o Retains data without power, similar to other ROM
types.

o Used in devices where frequent updates or changes
to the stored data are required, such as BIOS
settings and configuration data.

o Usage:

o Commonly found in consumer electronics,

embedded systems, and devices requiring flexible

storage of configuration settings.

Computer Organization & Architecture -256

Auxiliary Memory:

Auxiliary memory, also known as secondary storage, refers to
external storage devices used alongside the primary memory
(RAM) of a computer system. Unlike RAM, which provides fast
access to data but is volatile, auxiliary memory offers larger
storage capacities at a lower cost per byte and retains data even

when the power is turned off.

The primary role of auxiliary memory is to provide long-term
storage for large volumes of data, programs, and files that are not
currently in use by the CPU. This includes persistent storage
solutions such as hard disk drives (HDDs), solid-state drives
(SSDs), optical discs (CDs/DVDs), magnetic tapes, and cloud
storage services. These devices typically have slower access speeds
compared to RAM but offer much larger storage capacities,
making them suitable for storing operating systems, applications,

multimedia files, and user data.

Auxiliary memory plays a critical role in enhancing the overall
functionality and efficiency of computer systems by enabling data
persistence, allowing users to store and access vast amounts of
information beyond the immediate capabilities of RAM. It
supports functions such as data backup, archiving, and data sharing
across multiple platforms, ensuring that information remains

accessible and secure over extended periods.

Computer Organization & Architecture -257

Types of Auxiliary Memory
1. Hard Disk Drives (HDDs)

Hard disk drives use spinning magnetic disks coated with a
magnetic material to store data. They are one of the most common
types of auxiliary memory due to their relatively high storage
capacity, cost-effectiveness, and widespread compatibility with
computer systems. HDDs are suitable for storing operating

systems, applications, and large files like multimedia.

2. Solid State Drives (SSDs)

Solid state drives use flash memory technology to store data
electronically. They offer faster read and write speeds compared to
HDDs, resulting in quicker access to data. SSDs are known for
their reliability, energy efficiency, and resistance to physical shock,
making them ideal for high-performance computing tasks and

portable devices.

3. Optical Discs (CDs, DVDs)

Optical discs use laser technology to read and write data on a
reflective surface. CDs (Compact Discs) and DVDs (Digital
Versatile Discs) are examples of optical discs that offer relatively
large storage capacities and are commonly used for distributing
software, music, movies, and archival data. They provide a

portable and durable storage solution.

4. Magnetic Tapes
Magnetic tapes use magnetic storage to record data sequentially on
a long strip of tape. They offer high storage capacities at a low cost

per byte, making them suitable for long-term archival storage and

Computer Organization & Architecture -258

backup purposes. Magnetic tapes are often used in enterprise

environments for data backup and disaster recovery due to their

durability and cost-effectiveness.

8.4 CACHE MEMORY

Cache memory is a type of high-speed volatile memory located

directly within or very close to the CPU (Central Processing Unit)

of a computer. Its primary role is to store frequently accessed data

and instructions that are temporarily needed by the CPU, reducing

the average time to access data from the main memory (RAM).

Role and Functionality of Cache Memory:

1.

Speed Enhancement: Cache memory operates at a much
faster speed than main memory (RAM) and is designed to
bridge the speed gap between the CPU and RAM. By
storing frequently accessed data and instructions closer to
the CPU, cache memory helps to minimize the time it takes
for the CPU to fetch data, thereby improving overall system
performance.

Hierarchy: Cache memory is organized into multiple
levels, typically L1, L2, and sometimes L3 caches, with
each level providing progressively larger storage capacity
but slower access speeds compared to the previous level.
L1 cache is the fastest but smallest, located closest to the
CPU, while L2 and L3 caches are larger and located further
away.

Cache Coherency: Cache memory implements
mechanisms to ensure data consistency between different

levels of cache and main memory. When data is updated in

Computer Organization & Architecture -259

the CPU cache, these updates are eventually propagated to
the main memory to maintain data integrity.

Automatic Management: Cache memory utilizes
hardware and software algorithms to manage data
placement and replacement based on access patterns. This
includes prefetching data likely to be needed soon and

evicting data that is least likely to be used.

Types of Cache Memory:

L1 Cache: The smallest and fastest cache directly
integrated into the CPU. It typically stores instructions and
data that are currently being executed by the CPU cores.

L2 Cache: Located between L1 cache and main memory,
L2 cache is larger in size and provides additional storage
for frequently accessed data. It serves as a buffer between
L1 cache and main memory.

L3 Cache: Found in some multi-core processors, L3 cache
is shared among multiple CPU cores within a processor. It
offers larger storage capacity than L1 and L2 caches and
helps improve overall system performance by reducing the

need to access main memory.

Computer Organization & Architecture -260

CPU Lewed 1 Level 2 Level 3

Faste Faat

(L1} cache (L2} cache (L3} cache

LiEss
Importance of Cache Memory:
Cache memory plays a crucial role in enhancing the speed and
efficiency of modern computer systems by reducing latency in
memory access. It optimizes the utilization of the CPU's
processing power by ensuring that frequently accessed data and
instructions are readily available, thereby minimizing the idle time
of the CPU waiting for data from slower main memory. This
efficient data retrieval mechanism significantly improves the
overall responsiveness and performance of computers, especially
in tasks requiring rapid data processing and execution of complex

software applications.

8.5 VIRTUAL MEMORY

Virtual memory is a memory management technique used by
operating systems to provide the illusion of a larger and contiguous
memory space than physically available in the main memory
(RAM). It allows programs to operate as if they have access to a
large, continuous block of memory, even though physical memory

may be limited or fragmented.

Computer Organization & Architecture -261

Key Concepts and Functionality of Virtual Memory:

1.

Address Space: Virtual memory extends the address space
visible to a program beyond the actual physical memory
installed on the computer. Each program sees a virtual
address space that starts from zero and goes up to the
maximum addressable limit, defined by the architecture and
operating system.

Demand Paging: Virtual memory uses demand paging, a
strategy where portions of a program's code and data are
loaded into the main memory only when they are actively
needed. This minimizes the amount of physical memory
required to run programs and optimizes the usage of
available resources.

Page Faults: When a program accesses a portion of
memory that is not currently in the main memory but
resides in the virtual memory, a page fault occurs. The
operating system then retrieves the required data from the
secondary storage (usually the hard disk) into the main
memory and updates the page tables to reflect this
mapping.

Page Tables: Virtual memory relies on page tables to
manage the mapping between virtual addresses used by
programs and physical addresses in the main memory.
These tables store information about which pages of
memory are currently resident in physical memory and
facilitate quick lookups during address translation.
Memory Protection: Virtual memory systems provide
memory protection mechanisms to isolate and protect the
memory space of different processes from unauthorized

access. This ensures that each program operates within its

Computer Organization & Architecture -262

designated memory boundaries, enhancing system security

and stability.

Benefits of Virtual Memory:

o Efficient Memory Management: Virtual memory allows
efficient utilization of physical memory by dynamically
swapping data between main memory and secondary
storage as needed, optimizing overall system performance.

e Support for Large Applications: Virtual memory enables
the execution of large applications that require more
memory than available physical RAM, enhancing the
capabilities of modern software systems.

e Simplified Programming: Programmers can write code
without worrying about physical memory limitations, as the
operating system manages memory allocation and paging

transparently.

Implementation and Considerations:

Virtual memory is implemented by the operating system using a
combination of hardware support (such as memory management
units in CPUs) and software algorithms (like page replacement
policies). Efficient management of virtual memory requires
balancing factors such as page size, page replacement algorithms
(e.g., LRU - Least Recently Used), and disk I/O performance to

minimize overhead and maximize system responsiveness.

Paging and segmentation techniques in virtual memory
systems.

Paging and segmentation are two fundamental techniques used in
virtual memory systems to manage and utilize memory efficiently.

Here's a detailed explanation of each:
Computer Organization & Architecture -263

Paging:

Definition: Paging divides physical memory into fixed-size blocks

called pages and logical memory into blocks of the same size

called frames. Pages are the unit of data transfer between

secondary storage and main memory.

Key Concepts:

1.

Page Table: Each process has a page table that maps
virtual pages to physical frames. The page table typically
resides in main memory and is managed by the operating
system. It translates virtual addresses generated by the CPU
into physical addresses.

Page Fault: When a program references a page not
currently in main memory (a page fault occurs), the
operating system loads the required page from secondary
storage (e.g., disk) into a free frame in main memory. This
process is known as demand paging.

Page Replacement: If all frames are occupied and a page
fault occurs, the operating system must replace a page in
main memory with the required page. Various algorithms
like Least Recently Used (LRU), First-In-First-Out (FIFO),
and Clock are used for page replacement decisions.
Benefits: Paging allows efficient use of physical memory
by allocating memory on-demand, supports memory
protection through page-level permissions, and simplifies

memory allocation by using fixed-size pages.

Segmentation:

Definition: Segmentation divides a program's address space into

variable-sized logical segments (such as code, data, stack) rather

than fixed-size pages.

Computer Organization & Architecture -264

Key Concepts:

1.

Segment Table: Each segment is mapped to a segment
table entry that stores the base address and size of the
segment in main memory. The segment table is typically
stored in the CPU and is indexed by a segment number
obtained from the virtual address.

Address Translation: When a virtual address is generated
by the CPU, the segment number is used to index the
segment table to retrieve the base address of the segment.
The offset within the segment is then added to the base
address to obtain the physical address.

Segmentation Fault: Similar to page faults, segmentation
faults occur when a program attempts to access a segment
that is not present in main memory or violates memory
protection rules.

Benefits: Segmentation allows for more flexible memory
allocation than paging, as segments can vary in size and
type (code, data, stack). It supports modular program
design and simplifies memory management by providing a

hierarchical view of memory.

Comparison:

Granularity: Paging uses fixed-size pages, whereas
segmentation uses variable-sized segments.

Address Translation: Paging translates virtual addresses to
physical addresses using page tables, while segmentation
uses segment tables.

Flexibility: Segmentation provides more flexibility in
memory allocation and management compared to paging

but may lead to external fragmentation.

Computer Organization & Architecture -265

Combined Approach (Paging and Segmentation):

Modern virtual memory systems often combine paging and
segmentation techniques to leverage their respective advantages.
This hybrid approach, known as paged segmentation or
segmented paging, allows for both flexible memory allocation and

efficient use of physical memory.

8.6 ASSOCIATIVE MEMORY

Associative memory, also known as content-addressable memory
(CAM), is a type of computer memory that enables rapid search
and retrieval of data based on its content rather than its location in

memory. Here's a detailed explanation of associative memory:

Definition and Function:

Associative Memory: Unlike conventional memory structures
where data is accessed via an address, associative memory allows
data retrieval based on its content. It stores data as pairs of key-
value or tag-data entries, where the key serves as a search
argument.

Functionality: When a search is performed in associative memory,
the system compares the search key against all stored keys
simultaneously. If a match is found, the associated data or value is
retrieved. This parallel search capability makes associative
memory extremely fast for certain types of operations, such as

database queries or caching mechanisms.

Key Concepts:
1. Content-Based Access: Data retrieval i1s based on the

content or value of the data rather than its memory address.

Computer Organization & Architecture -266

3.

This makes associative memory suitable for applications
where quick access to specific information is critical.
Search Operation: Associative memory performs searches
in parallel, comparing the search key against all stored keys
simultaneously. This parallelism allows for rapid access
times, often in constant time O(1), making it efficient for
real-time applications.

Applications: Associative memory is used in various
fields, including:

o Cache Memory: CPU caches often use associative
memory to quickly retrieve recently accessed data.

o Database Systems: Associative = memory
accelerates search operations in databases,
improving query response times.

o Pattern Recognition: Used in Al and image

processing applications to match patterns quickly.

Comparison with Conventional Memory:

Access Time: Associative memory offers faster access
times compared to traditional random-access memory
(RAM), which requires sequential access based on memory
addresses.

Storage Efficiency: While associative memory is efficient
for quick retrieval based on content, it typically stores
fewer data entries than conventional memory due to its

specialized search mechanism.

Implementation:

Hardware: Associative memory is typically implemented

using special-purpose hardware known as associative

Computer Organization & Architecture -267

memory chips or content-addressable memory (CAM)
chips.

Structure: Each entry in associative memory consists of a
tag or key and associated data. Modern implementations
may use ternary content-addressable memory (TCAM) for
more flexible search operations, allowing for matches,

mismatches, and "don't care" conditions.

Advantages and Limitations:

Advantages: Fast access times, parallel search capability,
suitable for real-time applications.
Limitations: Higher cost and complexity compared to

conventional memory, limited scalability for large data sets.

Comparison with conventional memory types (RAM, ROM).
Access Method:

Speed:

Associative Memory: Access is based on content (data),
allowing for parallel searches across all stored entries
simultaneously.

RAM: Access is based on physical addresses assigned to
each memory cell, requiring sequential access or direct

addressing.

Associative Memory: Provides very fast access times,
often in constant time (O(1)), due to parallel search
capability.

RAM: Offers fast access times but depends on the memory
address, leading to variable access times depending on the

location of data in memory.

Computer Organization & Architecture -268

Applications:

Associative Memory: Ideal for applications requiring
quick retrieval based on content, such as cache memories
and database systems.

RAM: Used for general-purpose computing tasks where
sequential or direct access to specific memory locations is

sufficient.

Capacity and Cost:

Associative Memory: Typically stores fewer entries
compared to RAM due to its specialized search mechanism,
which can increase costs.

RAM: Offers larger storage capacity and is more cost-

effective for storing large amounts of data.

Comparison with ROM (Read-Only Memory):

Access and Modification:

Associative Memory: Allows for both reading and writing
of data based on content, making it versatile for dynamic
applications.

ROM: Generally used for storing fixed data or firmware

that cannot be easily modified or updated.

Speed and Usage:

Associative Memory: Provides fast access times similar to
RAM, making it suitable for applications requiring frequent
data retrieval and updates.

ROM: Offers fast read access times but limited or no write
capability, suitable for storing programs, firmware, and

essential system data.

Computer Organization & Architecture -269

Flexibility:

e Associative Memory: Offers flexibility in data retrieval
and search operations, supporting complex search patterns
and conditions.

e ROM: Provides fixed data storage, limiting its flexibility

compared to associative or random-access memory.

Cost and Implementation:

e Associative Memory: Generally more expensive and
complex to implement compared to ROM due to its
specialized hardware requirements.

e ROM: Cost-effective for applications requiring permanent

storage of data that does not change frequently.

87 MEMORY MANAGEMENT
TECHNIQUES

Memory management techniques are fundamental in computer
systems to efficiently allocate and manage memory resources. Here
are key techniques related to memory allocation strategies and

fragmentation management:

Memory Allocation Strategies
1. Contiguous Allocation:
o Concept: Allocates a contiguous block of memory
to a process.
o Implementation: Typically used in systems with
fixed-size partitions or with dynamic partitioning

where a large enough contiguous block is available.

Computer Organization & Architecture -270

o

o

Advantages: Simple implementation, minimal
overhead.

Disadvantages: Can lead to external fragmentation.

2. Non-contiguous Allocation:

o

Causes:

Concept: Allocates memory to a process in non-
contiguous blocks.

Implementation: Includes paging and
segmentation techniques.

Advantages: Reduces external fragmentation,
allows efficient memory usage.

Disadvantages: Requires more complex
management due to page tables (for paging) or

segment tables (for segmentation).

Fragmentation Types and Management Techniques

Fragmentation in memory management refers to the inefficient use
of memory space, resulting in wastage or fragmentation of
available memory. There are two main types of fragmentation:
internal fragmentation and external fragmentation, each requiring

specific management techniques.

Internal Fragmentation
Definition: Internal fragmentation occurs when allocated memory

space is larger than what is actually needed by the process.

o Fixed-size Allocation: When memory is allocated in fixed-

size blocks and a process does not fully utilize the entire

block.

Computer Organization & Architecture -271

Variable-size Allocation: When variable-sized allocations
result in leftover space due to alignment requirements or

memory allocation policies.

Management Techniques:

Best Fit, Worst Fit, First Fit: These allocation strategies
aim to reduce internal fragmentation by matching process
size closely to the available memory block size. For
example, Best Fit allocates the smallest block that fits the
process, minimizing leftover internal fragmentation.

Memory Compaction: In systems with dynamic
partitioning, memory compaction involves rearranging
memory contents to place all free memory together,
allowing larger contiguous blocks to be allocated to

processes.

External Fragmentation

Definition: External fragmentation occurs when there is enough

total memory space to satisfy a request, but it is fragmented into

small, non-contiguous blocks, making it unusable.

Causes:

Dynamic Allocation: Frequent allocation and deallocation
of memory lead to small holes (free blocks) scattered
throughout memory.

Memory Reclamation: As processes finish and free
memory, the remaining memory may be fragmented into

small pieces that cannot be used efficiently.

Computer Organization & Architecture -272

Management Techniques:

Memory Compaction: Similar to managing internal
fragmentation, memory compaction involves rearranging
memory to place all free blocks together, reducing external
fragmentation and making larger contiguous blocks
available for allocation.

Buddy System: Allocates memory in powers of two sizes.
When a block is freed, it checks if its buddy (adjacent free
block of the same size) is also free. If so, it merges them
into a larger block, reducing fragmentation.

Paging and Segmentation: Techniques used in virtual
memory systems where memory is divided into fixed-size
pages or variable-sized segments. Paging reduces external
fragmentation by allocating memory in fixed-size pages,
while segmentation allows for more flexible allocation but
requires management of segment tables to handle

fragmentation.

8.8 PERFORMANCE METRICS

Performance metrics in computing are essential for evaluating the

efficiency and effectiveness of various system components and

processes. These metrics provide insights into how well a system

performs under different conditions and workloads. Here are some

key performance metrics commonly used in computing:

Computer Organization & Architecture -273

1. Execution Time (Response Time)

Definition: The total time taken to complete a task or
process.

Importance: Indicates the speed at which a system
executes tasks, directly impacting user experience and

system throughput.

2. Throughput

Definition: The number of tasks completed or processed
per unit of time.

Importance: Measures the system's capacity to handle
multiple tasks simultaneously, providing an overall

measure of system performance under load.

3. CPU Utilization

Definition: The percentage of time the CPU is actively
executing instructions.

Importance: Reflects how efficiently the CPU resources
are being utilized. High CPU utilization may indicate

resource contention or inefficient code execution.

4. Memory Utilization

Definition: The percentage of available memory resources
(RAM) being used.

Importance: Monitors the efficiency of memory allocation
and usage. High memory utilization may lead to paging or

swapping, impacting overall system performance.

5. Latency

Definition: The time delay between initiating a request and

receiving a response.
Computer Organization & Architecture -274

Importance: Critical for real-time systems and interactive
applications, where low latency 1is essential for

responsiveness.

6. Bandwidth

Definition: The amount of data transferred per unit of time
over a network or between components.
Importance: Determines the capacity and speed of data

transmission, influencing network and system performance.

7. Cache Hit Rate

Definition: The percentage of memory accesses that are
satisfied from the cache without accessing main memory.

Importance: Higher cache hit rates indicate efficient use of
cache memory, reducing memory latency and improving

overall system performance.

8. Fault Tolerance

Definition: The ability of a system to continue operating in
the event of hardware or software failures.
Importance: Measures system reliability and resilience,

crucial for mission-critical applications and systems.

9. Scalability

Definition: The ability of a system to handle increasing
workload or resource demands by adding resources.

Importance: Evaluates how well a system can grow to
meet future needs without compromising performance or

functionality.

Computer Organization & Architecture -275

8.9 CONCLUSION

In examining the intricacies of memory hierarchy, it becomes
evident that its layered structure is fundamental to the efficiency
and functionality of modern computing systems. Main memory,
encompassing both volatile RAM and non-volatile ROM, serves as
the immediate repository for data and instructions needed by the
CPU. This proximity ensures swift access times critical for rapid
computation and responsiveness. Cache memory further optimizes
performance by storing frequently accessed data closer to the CPU,

reducing latency and enhancing overall system speed.

Virtual memory extends the capabilities of physical RAM by
utilizing secondary storage, such as hard drives, to simulate larger
memory spaces. This technique allows for efficient multitasking
and handling of large datasets that exceed the limitations of
physical RAM alone. Associative memory introduces specialized,
fast-access storage solutions tailored for specific applications, such
as high-speed data retrieval in databases or real-time processing in

embedded systems.

Effective memory management techniques, including allocation
strategies and fragmentation management, are essential for
maximizing the use of available memory resources. By minimizing
wasted space and optimizing data placement, these techniques
ensure that applications can efficiently utilize memory without
unnecessary delays or inefficiencies. Performance metrics play a
crucial role in evaluating the effectiveness of memory systems,

measuring factors like latency, throughput, and overall system

Computer Organization & Architecture -276

responsiveness to guide improvements in memory architecture and

design.

In conclusion, a well-designed memory hierarchy is essential for
achieving optimal performance in computing systems. It balances
the need for speed, capacity, and flexibility, accommodating
diverse computing tasks and workloads efficiently. As computing
continues to evolve, advancements in memory technology and
management will play a pivotal role in shaping the capabilities of
future systems, enhancing both user experience and computational

capabilities across various domains.

8.10 UNIT BASED QUESTIONS &
ANSWERS

1. Explain the concept of memory hierarchy and its importance in
computer systems.

Answer: Memory hierarchy refers to the layered structure of
memory in a computer system, from fast and expensive memory at
the top (registers and cache) to slower and cheaper memory at the
bottom (secondary storage). It optimizes performance by balancing
speed, capacity, and cost-effectiveness, ensuring that data can be

accessed quickly by the CPU when needed.

2. Compare Dynamic RAM (DRAM) and Static RAM (SRAM) in
terms of structure and performance.

Answer: DRAM uses capacitors to store data and requires
refreshing, whereas SRAM uses flip-flops and is faster but more

expensive. DRAM is suitable for main memory due to its higher

Computer Organization & Architecture -277

density and lower cost per bit, while SRAM is used in cache

memory for its faster access times.

3. Explain the principle of locality and its relevance to cache
memory.

Answer: The principle of locality suggests that programs tend to
access a small subset of their data and instructions at any given
time. Cache memory leverages this by storing recently accessed
data and instructions close to the CPU, reducing the time required

to fetch them from main memory.

3. How does virtual memory expand the address space available to
programs?

Answer: Virtual memory uses disk space as an extension of RAM,
allowing programs to access more memory than physically
available. It uses paging or segmentation to manage memory,
swapping data between RAM and disk based on demand, thereby

enabling efficient multitasking and handling of large datasets.

4. Discuss the advantages and applications of associative memory.
Answer: Associative memory enables rapid data retrieval by
storing data and its associated addresses together. It is used in
applications requiring fast access times, such as databases, real-

time systems, and hardware-based pattern recognition.

5. Explain the difference between internal and external
fragmentation.

Answer: Internal fragmentation occurs when allocated memory is
larger than required, wasting space within a block. External

fragmentation occurs when there is enough total memory space to

Computer Organization & Architecture -278

satisfy a request, but it is fragmented into small non-contiguous

blocks, making it unusable.

6. Define latency and throughput in the context of memory
performance metrics.

Answer: Latency refers to the time taken for a memory operation
to complete, such as the time between requesting data and
receiving it. Throughput measures the rate at which data can be

transferred, indicating the overall bandwidth of memory systems.

8.11 REFERENCES

e Floyd, Thomas L. Digital Fundamentals. Pearson
Education, 2015.

e Taub, Herbert, and Donald L. Schilling. Digital Integrated
Electronics. McGraw-Hill Education, 1994.

e Mano, M. Morris, and Michael D. Ciletti. Digital Design:
With an Introduction to the Verilog HDL. Pearson
Education, 2017.

e Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals
of Logic Design. Cengage Learning, 2013.

e Streetman, Ben G., and Sanjay Banerjee. Solid State
Electronic Devices. Prentice Hall, 2005.

e Hayes, John P. Introduction to Digital Logic Design.
Addison-Wesley, 1993.

Computer Organization & Architecture -279

UNIT - 9: MEMORY MANAGEMENT
HARDWARE

9.0 Introduction

9.1 Objectives

9.2 Memory Management Unit (MMU)
9.3 Paging Hardware

9.4 Segmentation Hardware

9.5 TLB (Translation Lookaside Buffer)
9.6 Hit/Miss Ratio

9.7 Magnetic Disk and Its Performance

9.8 Magnetic Tape

9.9 Conclusion

9.10 Unit Based Questions & Answers

9.11 References

9.0 INTRODUCTION

In the realm of computer systems, effective memory management
is crucial for ensuring optimal performance, efficient data access,
and seamless execution of applications. Memory management
involves a variety of hardware components and algorithms
designed to manage the flow of data between the computer's main
memory and other storage devices. This unit delves into the
essential aspects of memory management hardware, including the
Memory Management Unit (MMU), paging, segmentation, and the
Translation Lookaside Buffer (TLB).

Furthermore, the unit explores the performance implications of

memory management, focusing on the hit/miss ratio, a critical

Computer Organization & Architecture -280

metric for assessing the efficiency of memory access. The role of
magnetic storage devices, such as magnetic disks and tapes, in
providing reliable and high-capacity data storage is also examined.
Understanding these components and their interplay is
fundamental for anyone looking to grasp the complexities of

modern computer architectures.

By the end of this unit, readers will gain a comprehensive
understanding of how memory management hardware functions,
the significance of different memory access strategies, and the
performance considerations associated with various storage media.
This knowledge is essential for both designing efficient computer

systems and troubleshooting performance issues in existing setups.

9.1 OBJECTIVES

After completing this unit, student will able to understand;

e Understand the role and function of the Memory
Management Unit (MMU) in computer systems.

e Explain the hardware mechanisms for paging and
segmentation in memory management.

e (alculate and analyze the hit/miss ratio and its impact on
system performance.

e Explore the structure and performance characteristics of
magnetic disks and RAID configurations.

e Describe the uses and performance implications of

magnetic tape storage systems.

Computer Organization & Architecture -281

9.2 MEMORY MANAGEMENT UNIT
(MMU)

The Memory Management Unit (MMU) is a crucial hardware
component in a computer system responsible for handling memory
and caching operations. It primarily translates virtual addresses to
physical addresses, enabling processes to utilize memory
efficiently and securely. The MMU plays a key role in
implementing virtual memory, which allows a system to use more
memory than is physically available by swapping data to and from
the disk.

Functions of the MMU

1. Address Translation: The MMU translates virtual
addresses generated by the CPU into physical addresses in
the main memory.

2. Memory Protection: It ensures that a process cannot
access the memory allocated to another process, thus
providing isolation and security.

3. Paging: The MMU divides virtual memory into pages and
maps these pages to physical memory frames. This helps in
efficient memory allocation and management.

4. Segmentation: The MMU can support segmentation,
where memory is divided into segments of varying lengths,
each associated with specific permissions and attributes.

5. Cache Control: It manages the translation lookaside buffer
(TLB), which caches recent address translations to speed

up memaory access.

Computer Organization & Architecture -282

Components of an MMU

1.

Page Table: The page table is a data structure used by the
MMU to keep track of the mapping between virtual pages
and physical frames. Each entry in the page table contains
information such as the frame number, access permissions,
and status bits.

Segment Table: If segmentation is used, the MMU
maintains a segment table containing base addresses and
limits for each segment, along with access control
information.

Translation Lookaside Buffer (TLB): The TLB is a cache
that stores recent translations of virtual addresses to
physical addresses. It helps speed up the address translation
process by reducing the need to access the page table
frequently.

Control Registers: These registers hold configuration and
status information related to the MMU, such as base
addresses for page tables and segment tables, and control

bits for enabling or disabling features.

Address Translation Process

1.

Virtual Address Generation: The CPU generates a virtual
address for accessing memory.

TLB Lookup: The MMU first checks the TLB to see if the
translation for the virtual address is already cached.

o TLB Hit: If the translation is found in the TLB, the
physical address is obtained quickly, and memory
access proceeds.

o TLB Miss: If the translation is not found, the MMU
accesses the page table to find the corresponding

physical address.
Computer Organization & Architecture -283

3.

Page Table Access: The MMU uses the virtual address to
index into the page table and retrieve the physical address.
If paging is used, this involves locating the appropriate
page table entry.

Address Translation: The MMU translates the virtual
address into a physical address using the information from
the page table.

Memory Access: The physical address is used to access the

desired memory location.

Components of an MMU Diagram

To illustrate the components of an MMU, here is a simplified block

diagram:

1. CPU: Generates virtual addresses.

2. TLB: Stores recent address translations.

3. Page Table: Maps virtual pages to physical frames.

4. Physical Memory: Actual memory locations accessed
using physical addresses.

Benefits of MMU

1. Efficient Memory Utilization: The MMU allows for
efficient use of physical memory by mapping only the
necessary pages, reducing fragmentation.

2. Security: By isolating processes, the MMU ensures that
one process cannot interfere with another, providing
memory protection.

3. Flexibility: Virtual memory enables running larger

applications than the available physical memory by

swapping pages in and out of disk storage.

Computer Organization & Architecture -284

4. Performance: The TLB and caching mechanisms within
the MMU help improve the speed of address translation
and memory access.

Figure: MMU Address Translation

vSphere ESXi physical memory

software MMU
(VMM)

9.3 PAGING HARDWARE

Paging is a memory management scheme that eliminates the need
for contiguous allocation of physical memory, thereby reducing
issues like fragmentation. It divides the virtual memory into blocks
of physical memory called "pages," which are typically of fixed
size (e.g., 4KB). The main components involved in paging are the
page table, the Translation Lookaside Buffer (TLB), and the

physical memory.

Components of Paging Hardware
1. Page Table:
o Definition: A data structure used to map virtual
addresses to physical addresses.
o Function: Each process has its own page table,
which keeps track of the frame number

corresponding to each page number.

Computer Organization & Architecture -285

aoeds ssauppe |eaisAyd

o Structure: Contains entries that include the frame
number and status bits (e.g., valid/invalid bit, access

permissions, dirty bit).

2. Translation Lookaside Buffer (TLB):

o Definition: A cache that stores recent page table
entries.

o Function: Reduces the time taken to access the
page table by caching recent translations of virtual
addresses to physical addresses.

o Structure: A small, fast memory structure within

the MMU.

3. Memory Management Unit (MMU):

o Definition: The hardware component responsible
for handling all memory and caching operations,
including paging.

o Function: Translates virtual addresses to physical

addresses using the page table and TLB.

4. Physical Memory (RAM):
o Definition: The hardware where data and
instructions are stored.
o Function: Stores the actual data corresponding to

the virtual pages.

Paging Process
1. Virtual Address Generation: The CPU generates a virtual

address that needs to be translated to a physical address.

Computer Organization & Architecture -286

2. TLB Lookup: The MMU first checks the TLB to see if the
translation is cached.

o TLB Hit: If found, the physical address is quickly
retrieved, and the memory access proceeds.

o TLB Miss: If not found, the MMU accesses the
page table.

3. Page Table Access: The MMU uses the virtual page
number to index into the page table and retrieve the
corresponding frame number.

4. Address Translation: The virtual address is converted into
a physical address using the frame number obtained from
the page table.

5. Memory Access: The physical address is used to access the

desired memory location.

Detailed Steps in Paging
1. CPU Generates Virtual Address:
o The virtual address consists of a virtual page
number (VPN) and an offset within that page.
o Example: If the virtual address is 0x1234 and the
page size is 4KB, the VPN might be Ox1 and the
offset 0x234.

2. TLB Lookup:
o The TLB is checked for an entry matching the VPN.
o If an entry is found (TLB hit), it provides the
corresponding frame number.
o If no entry is found (TLB miss), the MMU must

access the page table.

Computer Organization & Architecture -287

3. Page Table Access:

o

o

The VPN is used to index into the page table.

The page table entry (PTE) contains the frame
number and status bits.

If the PTE is marked valid, the frame number is
used for address translation.

If the PTE is invalid (e.g., page not in memory), a
page fault occurs, and the operating system must
handle it by loading the page from disk into

memory.

4. Physical Address Calculation:

o

The physical address is formed by combining the
frame number from the PTE with the offset from
the virtual address.

Example: If the frame number is 0x2 and the offset

is 0x234, the physical address is 0x2234.

5. Memory Access:

o

The physical address is used to access the desired

data in the RAM.

Diagram of Paging Hardware

Here is a simplified block diagram of paging hardware:

cPuU

address address fo000 . .. 0000

logical physical

f d |

1191 ... 1111

f

rPhysical
memory

Ppage table

Computer Organization & Architecture -288

Key Points
e TLB: Enhances performance by caching recent address
translations.
o Page Table: Maps virtual pages to physical frames, with
entries containing frame numbers and status bits.
e MMU: Manages the entire address translation process,

utilizing the TLB and page table.

Benefits of Paging Hardware
1. Efficient Memory Management: Allows non-contiguous
memory allocation, reducing fragmentation.
2. Security and Isolation: Ensures processes cannot access
each other's memory.
3. Performance Optimization: TLB and page table

structures improve address translation speed.

9.4 SEGMENTATION HARDWARE

Segmentation is a memory management technique that divides the
memory into different segments based on the logical divisions of a
program, such as code, data, and stack. Each segment has its own
base address and limit, which helps in accessing and managing
memory efficiently. Unlike paging, which divides memory into
fixed-size blocks, segmentation deals with variable-sized

segments.

Components of Segmentation Hardware

1. Segment Table:

Computer Organization & Architecture -289

o

Definition: A data structure that maintains
information about all segments of a process.
Function: Each entry in the segment table holds the
base address and limit of a segment.

Structure: Contains entries with fields for the
segment base address, segment limit, and status bits

(e.g., valid/invalid bit, access permissions).

2. Segment Table Register (STR):

o

Definition: A special register that holds the base
address of the segment table.
Function: Points to the segment table in memory,

enabling the CPU to access segment information.

3. Memory Management Unit (MMU):

o

o

Definition: The hardware component responsible
for translating logical addresses to physical
addresses using the segment table.

Function: Facilitates address translation by
accessing the segment table and combining the

segment base address with the offset.

Segmentation Process

1.

Logical Address Generation: The CPU generates a logical
address that consists of a segment number and an offset
within that segment.

Segment Table Access: The MMU uses the segment
number to index into the segment table and retrieve the
base address and limit of the segment.

Address Translation: The MMU checks if the offset is

within the segment limit. If valid, the logical address is

Computer Organization & Architecture -290

translated into a physical address by adding the offset to the

segment base address.

4. Memory Access: The physical address is used to access the

desired memory location.

Detailed Steps in Segmentation

1. CPU Generates Logical Address:

o

The logical address is composed of a segment
number (SN) and an offset (O).

Example: If the logical address is SN:O = 3:0x456
and the segment size is 4KB, SN is 3 and the offset
is 0x456.

2. Segment Table Lookup:

o

The MMU uses the segment number to index into
the segment table.
Retrieves the base address and limit for the

segment.

3. Address Translation:

o

The MMU checks if the offset is within the segment
limit.

If the offset is wvalid, the physical address is
calculated by adding the segment base address to
the offset.

Example: If the segment base address is 0x2000 and
the offset is 0x456, the physical address is 0x2000 +
0x456 = 0x2456.

Computer Organization & Architecture -291

4. Memory Access:
o The physical address is used to access the desired

data in RAM.

Diagram of Segmentation Hardware

Here is a simplified block diagram of segmentation hardware:

Segmentation Hardwar

B

Key Points
o Segment Table: Maps segment numbers to base addresses
and limits.
e Segment Table Register (STR): Holds the base address of
the segment table.
e MMU: Translates logical addresses to physical addresses

using segment table entries.

Benefits of Segmentation Hardware
1. Logical Organization: Aligns with the logical divisions of
a program, making it easier to manage code, data, and stack
separately.

Computer Organization & Architecture -292

2. Memory Protection: Each segment can have its own
access permissions, enhancing security.
3. Dynamic Memory Allocation: Segments can grow or

shrink as needed, reducing fragmentation.

9.5 TLB (TRANSLATION LOOKASIDE
BUFFER)

The Translation Lookaside Buffer (TLB) is a specialized cache
used to improve the speed of virtual address translation in
computer systems. It is a part of the memory management unit
(MMU) and stores recent translations of virtual addresses to

physical addresses.

Importance of TLB

Without a TLB, every memory access would require a page table
lookup, which involves accessing main memory and can
significantly slow down the system. By caching recent translations,
the TLB reduces the number of memory accesses needed for

address translation, thereby improving overall system performance.

Components of TLB

1. Tag: Identifies the virtual page number.

2. Page Frame Number: The corresponding physical page
frame number.

3. Valid Bit: Indicates whether the TLB entry is valid.

4. Access Control Bits: Permissions and access rights for the
page.

5. Other Bits: May include bits for managing replacement

policies (e.g., LRU).

Computer Organization & Architecture -293

Operation of TLB

1. Virtual Address Generation: The CPU generates a virtual

address.

2. TLB Lookup: The MMU checks the TLB for a match with

the virtual page number.

3. TLB Hit: If a match is found (TLB hit), the corresponding

physical page frame number is used to form the physical

address, and the memory access proceeds.

4. TLB Miss: If no match is found (TLB miss), the MMU

must perform a page table lookup.

o

The page table lookup retrieves the physical page
frame number.

The TLB is updated with the new translation.

The memory access then proceeds with the

translated address.

Detailed Steps in TLB Operation

1. Virtual Address Generation:

o

The CPU generates a virtual address, consisting of a
virtual page number and an offset within the page.

Example: For a 32-bit virtual address with a 4 KB
page size, the top 20 bits could represent the virtual
page number, and the bottom 12 bits represent the

offset.

2. TLB Lookup:

o

The MMU uses the virtual page number to search
the TLB.
If the TLB has multiple entries, associative or

direct-mapped search techniques may be used.
Computer Organization & Architecture -294

3. TLB Hit:

o

If the virtual page number is found in the TLB, the
corresponding physical page frame number is
retrieved.

The physical address is constructed by combining
the physical page frame number with the offset.
Example: If the TLB entry maps virtual page
number 0x123 to physical page frame 0x456, and
the offset is 0x789, the physical address is
0x456789.

4. TLB Miss:

o

If the virtual page number is not found in the TLB,
a page table lookup is initiated.

The MMU retrieves the page table entry for the
virtual page number, obtaining the physical page
frame number.

The TLB is updated with the new translation.

The physical address is then constructed, and the

memory access proceeds.

5. Memory Access:

o

The constructed physical address is used to access

the memory.

Diagram of TLB Operation

Here is a simplified block diagram of TLB operation:

Computer Organization & Architecture -295

CPU

1 naer
—— 1 1 PHYSICAL
1 * MEMORY

TUB AISS

Benefits of TLB

1. Speed: Significantly reduces the time needed for address
translation by caching recent translations.

2. Efficiency: Decreases the number of memory accesses
required for translation, freeing up memory bandwidth for
other operations.

3. Performance: Improves the overall performance of the

system by reducing latency in memory access.

Challenges and Solutions

1.

TLB Miss Penalty: When a TLB miss occurs, the penalty
is the time taken to perform a page table lookup. This can
be mitigated by optimizing page table structures and using
larger TLBs.

TLB Size: A larger TLB can store more entries, reducing
the miss rate but at the cost of increased hardware
complexity and power consumption. Balancing TLB size

and performance is critical.

Computer Organization & Architecture -296

9.6 HIT/MISS RATIO

The hit/miss ratio refers to a metric used to measure the
effectiveness of caching algorithms in computer systems,
particularly in relation to cache memory. It represents the ratio of
cache hits (successful accesses where the requested data is found in
the cache) to cache misses (failed accesses where the requested
data is not found in the cache and must be fetched from main
memory or another lower-level cache).

In more detail, the hit/miss ratio is calculated using the formula:

Hit;ffl\"liSS Ratio = Number of Cache Hits % 100%

Number of Cache Hits+Number of Cache Misses

A high hit ratio indicates that a significant portion of memory
accesses are satisfied by the cache, which is desirable for
optimizing system performance. Conversely, a low hit ratio
suggests that many accesses require fetching data from slower
main memory or storage, which can impact performance
negatively.

Efficient caching strategies and algorithms aim to maximize the hit
ratio by predicting which data will be needed soon and ensuring it
is readily available in the cache. Various factors, such as cache
size, replacement policies (like LRU - Least Recently Used), and
access patterns, influence the hit/miss ratio in practical computing

scenarios.

Calculation

Calculating the hit/miss ratio involves using the following formula:

AT e Ratin — Number of Cache Hits O,
Hit /Miss Ratio Total Memory Accesses x 100%

Computer Organization & Architecture -297

Here’s how you can calculate it step-by-step:
1. Count Cache Hits and Misses:
o Cache Hits: Count the number of times the
requested data is found in the cache.
o Cache Misses: Count the number of times the
requested data is not found in the cache and must be
fetched from main memory or another level of

cache.

2. Total Memory Accesses:
o Sum of both cache hits and cache misses. This gives
you the total number of memory accesses made by

the system.

3. Calculate the Ratio:
o Divide the number of cache hits by the total number
of memory accesses.
o Multiply the result by 100% to convert it into a

percentage.

Example Calculation:
Let's say a system has 1000 memory accesses, out of which 800

accesses were cache hits and 200 accesses were cache misses.

Hit/Miss Ratio = —0% x 100%

Hit /Miss Ratio = 0.8 x 100% = 80%
So, in this example, the hit/miss ratio is 80%. This means that 80%
of the memory accesses were satisfied by the cache, while 20%
required fetching data from slower memory levels due to cache

misses.

Computer Organization & Architecture -298

Factors Affecting Hit/Miss Ratio

Several factors influence the hit/miss ratio in a caching system,

impacting its effectiveness and overall performance:

1.

Cache Size: Larger caches tend to have higher hit ratios
because they can store more data and accommodate more
frequently accessed items.

Cache Replacement Policy: The policy used to decide
which items to remove from the cache when it is full
affects the hit ratio. LRU (Least Recently Used), LFU
(Least Frequently Used), and random replacement policies
can significantly impact cache performance.

Cache Mapping Technique: Different mapping techniques
like direct mapping, set-associative mapping, and fully
associative mapping affect how addresses are mapped to
cache locations. More associative mappings typically result
in higher hit ratios.

Data Size and Alignment: The size of data blocks stored
in the cache and their alignment with cache line boundaries
affect the likelihood of cache hits. Optimal block size and
alignment reduce the number of cache misses.

Processor Architecture and Bus Speed: Faster processors
and buses reduce the latency associated with accessing data
from caches and main memory, potentially improving the
hit ratio by reducing the penalty for cache misses.

Cache Placement: How caches are placed in the memory
hierarchy, their proximity to the processor, and their level
(L1, L2, L3 caches) affect the hit ratio. Caches closer to the
processor typically have higher hit rates due to faster access

times.

Computer Organization & Architecture -299

Improving Hit/Miss Ratio

Improving the hit/miss ratio in a caching system is crucial for

optimizing performance. Here are several strategies to enhance the

hit ratio and reduce cache misses:

1.

Increase Cache Size: Larger caches can hold more data,
reducing the likelihood of cache evictions and increasing
the chances of finding requested data in the cache.
Optimize Cache Replacement Policy: Choose a
replacement policy that best suits the application's access
patterns. Policies like LRU (Least Recently Used), LFU
(Least Frequently Used), or adaptive policies can improve
hit ratios by keeping frequently accessed data in the cache
longer.

Use Higher Associativity: Higher associativity allows
more flexibility in mapping data to cache lines, reducing
collisions and improving the hit ratio. Moving from direct-
mapped to set-associative or fully associative caches can be
beneficial.

Prefetching: Implement prefetching algorithms that
anticipate future memory accesses based on current access
patterns. This can reduce misses by bringing data into the
cache before it's requested.

Compiler Optimizations: Compiler optimizations such as
loop unrolling, software prefetching, and code restructuring
can optimize memory access patterns, reducing cache
misses and improving overall performance.

Cache Coherency and Consistency: Ensure cache
coherency in multi-core or distributed systems to prevent
unnecessary cache invalidations and misses due to stale

data.

Computer Organization & Architecture -300

9.7 MAGNETIC DISK AND ITS
PERFORMANCE

A magnetic disk, often referred to as a hard disk drive (HDD), is a
non-volatile storage device that uses magnetic storage to store and
retrieve digital data. Here's an overview of its structure, operation,

and performance characteristics:

Structure and Operation
A typical magnetic disk consists of the following components:

e Platters: Circular, metallic disks coated with a magnetic
material where data is stored.

e Read/Write Heads: Positioned above and below each
platter, these heads magnetically read data from and write
data to the platters.

e Actuator Arm: Moves the read/write heads across the

surface of the disk to access different tracks and sectors.

Data on a magnetic disk is organized into concentric tracks (circles
on the surface of each platter) and sectors (pie-shaped divisions
within each track). The disk spins at a high speed (e.g., 5400 to
15000 revolutions per minute), allowing the read/write heads to

access data quickly.

Performance Characteristics
1. Access Time: The time it takes for the read/write heads to
position over the correct track and sector. It includes:
o Seek Time: Time to move the heads to the correct

track.

Computer Organization & Architecture -301

o Latency: Time for the desired sector to rotate under

the heads.

2. Data Transfer Rate: The speed at which data can be read

from or written to the disk, measured in megabytes per
second (MB/s). It depends on factors like rotational speed,
data density, and interface type (e.g., SATA, SAS).
Capacity: HDDs typically offer large storage capacities,
ranging from gigabytes to multiple terabytes, making them
suitable for storing vast amounts of data at a relatively low
cost per gigabyte compared to other storage technologies.
Reliability and Durability: Modern HDDs are robust and
can withstand shocks and vibrations to some extent, but

they are mechanical devices prone to wear over time.

Performance Factors

Rotational Speed: Higher speeds generally reduce latency
and improve data access times.

Data Density: Higher density allows more data to be
stored per platter, increasing transfer rates.

Caching: Use of onboard cache (buffer memory) helps
improve read and write speeds by temporarily storing

frequently accessed data.

Applications

Magnetic disks are widely used in:

Personal Computers: Primary storage for operating
systems, applications, and user data.
Servers and Data Centers: Bulk storage for databases,

files, and backups.

Computer Organization & Architecture -302

o External Storage: Portable HDDs for data backup and

transfer.

RAID (Redundant Array of Independent Disks)

RAID (Redundant Array of Independent Disks) is a technology
that combines multiple physical disk drives into a single logical
unit to improve performance, redundancy, or both. Here's an

overview of common RAID levels and their characteristics:

RAID Levels and Characteristics
1. RAID 0: Striping

o Characteristics: Data is divided ("striped") evenly
across multiple disks without parity information.

o Performance: Improves read and write speeds
significantly because data is accessed in parallel
across all disks.

o Reliability: No redundancy; if one disk fails, data

on all disks may be lost.

2. RAID 1: Mirroring

o Characteristics: Data is mirrored across pairs of
disks.

o Performance: Read performance can be enhanced
since data can be read from both disks
simultaneously.

o Reliability: Provides fault tolerance; if one disk

fails, data is still accessible from the mirrored disk.

Computer Organization & Architecture -303

3. RAID 5: Striping with Distributed Parity

o Characteristics: Data is striped across multiple
disks with distributed parity (parity information is
distributed across all disks).

o Performance: Offers good read performance and
moderate write performance.

o Reliability: Provides fault tolerance with
distributed parity; can withstand the failure of one

disk without losing data.

4. RAID 6: Striping with Dual Parity
o Characteristics: Similar to RAID 5 but with dual
parity, which means parity information is written to
two disks.
o Performance: Slower than RAID 5 due to dual
parity calculations, but offers better fault tolerance.
o Reliability: Can tolerate the failure of up to two

disks simultaneously without losing data.

5. RAID 10 (RAID 1+0): Mirrored Striping
o Characteristics: Combines RAID 1 (mirroring)
and RAID 0 (striping).
o Performance: Provides high performance and fault
tolerance.
o Reliability: Offers excellent fault tolerance as long
as at least one disk in each mirrored pair is

operational.

Benefits of RAID Configurations
e Improved Performance: RAID configurations,

particularly RAID 0 and RAID 10, can significantly
Computer Organization & Architecture -304

improve read and write speeds by distributing data across
multiple disks and allowing parallel access.

o Enhanced Reliability: RAID levels like RAID 1, RAID 5,
and RAID 6 provide varying degrees of fault tolerance,
allowing systems to continue functioning even if one or
more disks fail.

e Scalability: Some RAID levels, such as RAID 5 and RAID
6, allow for expansion by adding more disks to the array
without significant downtime or data migration.

e Data Protection: Redundancy provided by RAID
configurations ensures that data remains accessible even in
the event of disk failures, reducing the risk of data loss and

downtime.

Disk Caching

Disk caching plays a crucial role in enhancing the performance of
magnetic disks (hard disk drives, or HDDs) by leveraging faster
access times of volatile memory compared to the slower
mechanical operations of disk drives. Here's an exploration of its

role and mechanisms:

Role of Disk Caches in Improving Performance

Disk caches act as a buffer between the CPU and the slower
magnetic disks, storing frequently accessed data and metadata
temporarily in faster volatile memory (RAM). This mechanism
accelerates read and write operations by reducing the number of
times the CPU needs to wait for data retrieval from the

comparatively slower HDDs. Key benefits include:

o Faster Data Access: By keeping frequently accessed data

in RAM, disk caches reduce latency associated with
Computer Organization & Architecture -305

mechanical disk operations, enhancing overall system
responsiveness.

Improved Throughput: Caches ensure that data required
by the CPU is readily available, minimizing idle time and
maximizing data throughput from the disk subsystem.
Enhanced User Experience: Applications load faster and
respond more quickly to user commands when critical data
is cached in memory, leading to smoother user interactions

and reduced perceived latency.

Cache Mechanisms and Strategies for Magnetic Disks

1.

Read-ahead and Write-back Caching:

o Read-ahead: Pre-fetching data into the cache
before it's requested by the CPU, anticipating
sequential access patterns.

o Write-back: Holding writes in the cache
temporarily and committing them to the disk later,
optimizing write performance by batching smaller

writes into larger, more efficient operations.

Write-through Caching:
o Immediate Write: Writing data both to the cache
and to the disk simultaneously ensures data
consistency but can impact performance due to

frequent disk writes.

LRU (Least Recently Used) and LFU (Least Frequently
Used) Policies:
o LRU: Evicting the least recently accessed data from

the cache when space is needed for new data.
Computer Organization & Architecture -306

o LFU: Removing the least frequently accessed data

to optimize cache usage and performance.

4. Cache Size and Placement:

o Size: Balancing the cache size with available RAM
and workload requirements to maximize hit rates
without excessively consuming system resources.

o Placement: Strategically positioning caches to
minimize latency and maximize effectiveness based

on access patterns and workload characteristics.

9.8 MAGNETIC TAPE

Magnetic tape is a type of data storage media that uses magnetic
material coated on a thin strip of plastic to store digital
information. It has been used for decades for various storage
purposes, particularly for backup, archiving, and bulk data transfer.

Here's an in-depth exploration of magnetic tape:

Definition and Role

Magnetic tape is a sequential storage medium that stores data in a
linear format. It consists of a thin strip of plastic film coated with a
magnetic material, typically iron oxide or a similar compound.
Data is written to and read from the tape by a tape drive, which
magnetizes or demagnetizes specific areas of the tape to represent

binary information.

Role in Data Storage:
e Backup and Archiving: Magnetic tape is widely used for

backing up large volumes of data due to its high storage

Computer Organization & Architecture -307

capacity and durability. It is also preferred for long-term
archiving because it can retain data for several decades if
stored properly.

o Cost-Effective Storage: Compared to other storage media
like hard drives and SSDs, magnetic tape offers a lower
cost per gigabyte, making it an economical choice for
storing large datasets.

e Bulk Data Transfer: Magnetic tapes are used to transport
large datasets physically, especially in scenarios where

network transfer is impractical or too slow.

Types of Magnetic Tape Storage
1. Cartridge Tapes: These are enclosed in protective
cartridges and include formats like Linear Tape-Open
(LTO) and Digital Linear Tape (DLT).
2. Reel-to-Reel Tapes: Traditional open reels of tape, now
largely obsolete, but historically significant in early

computing.

Performance Characteristics
1. Storage Capacity:
o Modern magnetic tapes, such as LTO-9, offer
capacities of up to 18 terabytes (native) and 45

terabytes (compressed).

2. Data Transfer Rate:
o High data transfer rates are possible, with LTO-9
offering transfer rates up to 400 MB/s (native) and
1,000 MB/s (compressed).

Computer Organization & Architecture -308

3. Durability and Longevity:
o Tapes can last up to 30 years or more when stored
in optimal conditions, making them ideal for long-

term data preservation.

Advantages and Disadvantages
Advantages:

o High Capacity: Magnetic tape can store large amounts of
data, making it suitable for enterprise-level backup and
archival solutions.

o Cost-Effective: Low cost per gigabyte compared to disk-
based storage.

e Durability: Resistant to physical shocks and can last for

decades if stored properly.

Disadvantages:

e Sequential Access: Data access is slower compared to
random access storage devices like HDDs and SSDs, as the
tape must be wound to the specific location of the data.

o Physical Storage: Requires significant physical space for
tape libraries and proper environmental conditions to
ensure longevity.

e Maintenance: Regular maintenance of tape drives and

libraries is necessary to ensure reliable performance.

Usage Scenarios
1. Enterprise Backup Systems: Companies use magnetic
tape for regular backup operations, storing copies of critical

data to protect against data loss.

Computer Organization & Architecture -309

2. Data Archiving: Organizations archive historical data,
research data, and compliance-related information on
magnetic tape to ensure long-term preservation.

3. Disaster Recovery: Magnetic tapes are part of disaster
recovery plans, providing a reliable medium for restoring

data in case of catastrophic failures.

9.9 CONCLUSION

In this unit, we explored critical components and concepts related
to memory management and storage systems in computer
architecture. We began by examining the Memory Management
Unit (MMU), understanding its role in facilitating efficient
memory access and protection. We delved into the hardware
mechanisms behind paging and segmentation, gaining insights into
how modern systems handle memory allocation and address

translation.

We then analyzed the hit/miss ratio, an essential performance
metric for evaluating cache effectiveness. Understanding the
factors affecting this ratio and methods to improve it is vital for
optimizing system performance. Our discussion extended to
magnetic disks, where we examined their performance
characteristics, RAID configurations for enhanced reliability and
performance, and the role of disk caching. Finally, we explored
magnetic tape, a storage medium still relevant for specific archival

and backup applications due to its cost-effectiveness and capacity.

This comprehensive exploration of memory management

hardware, performance metrics, and storage solutions underscores

Computer Organization & Architecture -310

the importance of these components in designing efficient and
reliable computer systems. The knowledge gained in this unit
provides a solid foundation for further studies and practical

applications in computer architecture and system optimization.

9.10 UNIT BASED QUESTIONS &
ANSWERS

1. What is the role of the Memory Management Unit (MMU) in
a computer system?

Answer: The MMU is responsible for translating logical addresses
to physical addresses, managing memory protection, and handling
virtual memory. It ensures that each process in the system has its
own address space, providing both isolation and efficient memory

utilization.

2. How does paging hardware facilitate memory management?
Answer: Paging hardware divides the memory into fixed-size
pages and manages the mapping between virtual pages and
physical frames. It helps in reducing fragmentation and enables
efficient use of memory by allowing non-contiguous memory

allocation.

3. Explain the concept of hit/miss ratio in the context of cache
memory.

Answer: The hit/miss ratio is a performance metric that measures
the effectiveness of a cache. A "hit" occurs when the requested data

is found in the cache, while a "miss" occurs when it is not. The hit

Computer Organization & Architecture -311

ratio is the proportion of hits to total accesses, and a higher hit ratio
indicates better cache performance.

4. What are RAID levels, and how do they improve
performance and reliability?

Answer: RAID (Redundant Array of Independent Disks) levels
define various ways of storing data across multiple disks to
improve performance and reliability. For example, RAID 0
improves performance by striping data across disks, RAID 1
improves reliability through mirroring, and RAID 5 and 6 provide

a balance of performance and reliability with distributed parity.

5. Describe the purpose of disk caching and how it improves
magnetic disk performance.

Answer: Disk caching temporarily stores frequently accessed data
in a faster storage medium to reduce access times. It improves
performance by minimizing the latency associated with reading
from or writing to a magnetic disk, thus speeding up data retrieval

and overall system performance.

6. What is the significance of Translation Lookaside Buffer
(TLB) in memory management?

Answer: The TLB is a cache used by the MMU to reduce the time
taken to access the translation tables. It stores recent translations of
virtual addresses to physical addresses, significantly speeding up

address translation and improving overall system performance.

Computer Organization & Architecture -312

9.11 REFERENCES

e Floyd, Thomas L. Digital Fundamentals. Pearson
Education, 2015.

e Taub, Herbert, and Donald L. Schilling. Digital Integrated
Electronics. McGraw-Hill Education, 1994.

e Mano, M. Morris, and Michael D. Ciletti. Digital Design:
With an Introduction to the Verilog HDL. Pearson
Education, 2017.

e Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals
of Logic Design. Cengage Learning, 2013.

e Streetman, Ben G., and Sanjay Banerjee. Solid State
Electronic Devices. Prentice Hall, 2005.

e Hayes, John P. Introduction to Digital Logic Design.
Addison-Wesley, 1993.

Computer Organization & Architecture -313

UNIT - 10: PERIPHERAL DEVICES &
I/O INTERFACES

Structure

10.0 Introduction

10.1 Objectives

10.2 Peripheral Devices

10.3 I/O Interface

10.4 Modes of Transfer

10.5 Priority Interrupt

10.6 Direct Memory Access (DMA)
10.7 Input-Output Processor (IOP)
10.8 Conclusion

10.9 Unit Based Questions & Answers
10.10 References

10.0 INTRODUCTION

In modern computer systems, the efficient management of input
and output operations is crucial for optimal performance and user
experience. Peripheral devices, such as keyboards, mice, printers,
and storage devices, form an essential part of the computing
environment, allowing interaction with the system and extending
its capabilities. These devices require robust interfaces and transfer
methods to communicate effectively with the central processing

unit (CPU) and memory.

The architecture and methods used to handle input and output

operations significantly impact the overall system performance.
Computer Organization & Architecture -314

Various techniques, including direct memory access (DMA),
priority interrupts, and the use of specialized input-output
processors (IOPs), have been developed to streamline these
operations and reduce the CPU's workload. Each of these
techniques has its unique advantages and is suited to different

types of tasks and performance requirements.

This unit explores the fundamental concepts and structures related
to peripheral devices and their interaction with computer systems.
It covers the various types of I/O interfaces, modes of data transfer,
the concept and implementation of priority interrupts, and the role
of DMA in improving data transfer efficiency. Additionally, we
delve into the design and function of input-output processors,
which further enhance the system's ability to handle complex /O
operations seamlessly. Through this comprehensive examination,
we aim to provide a clear understanding of how input-output
operations are managed in modern computer systems and their

impact on overall performance.

10.1 OBJECTIVES

After completing this unit, you will be able to understand;
e Understand the role and types of peripheral devices in
computer systems.
e Explore the different types of I/O interfaces and their
functionalities.
e Learn about various modes of data transfer and their
applications.

e Comprehend the concept of priority interrupts and their

implementation.

Computer Organization & Architecture -315

e (Gain insights into Direct Memory Access (DMA) and
its benefits.

e Study the architecture and function of Input-Output
Processors (I0Ps).

10.2 PERIPHERAL DEVICES

Peripheral devices are hardware components that are not part of the
central processing unit (CPU) or main memory of a computer
system but are essential for various input, output, and storage
functions. They are typically connected to the computer via various

ports and interfaces.

Definition and Examples of Peripheral Devices

Peripheral devices are external devices that provide input to the
computer, output from the computer, or storage capabilities. They
enhance the functionality of the computer system by allowing it to
interact with the external environment and store data persistently.

Examples of peripheral devices include:

o Input Devices: Keyboard, mouse, scanner, microphone.
e Output Devices: Monitor, printer, speakers.
o Storage Devices: Hard drives, solid-state drives (SSDs),

optical drives (CDs, DVDs).

Classification of Peripheral Devices

1. Input Devices

Computer Organization & Architecture -316

o Keyboard: A primary input device used to input
text and commands into the computer.

o Mouse: A pointing device that allows users to
interact with the computer's graphical user interface.

o Scanner: A device that converts physical
documents into digital format.

o Microphone: An audio input device used for voice

recording or communication.

2. Output Devices
o Monitor: The primary output device used to display
visual information from the computer.
o Printer: A device that produces hard copies of
digital documents.

o Speakers: Audio output devices used to play sound.

3. Storage Devices
o Hard Disk Drives (HDDs): Traditional storage
devices that use spinning disks to read and write
data.
o Solid-State Drives (SSDs): Faster, more reliable
storage devices that use flash memory.
o Optical Drives: Devices that read and write data

from optical discs like CDs, DVDs, and Blu-rays.

Types of Peripheral Devices
1. Input Devices
o Keyboard: The keyboard is a primary input device
used to input text and commands into the computer.

Keyboards come in various layouts, with the

Computer Organization & Architecture -317

QWERTY layout being the most common. They can
be wired or wireless.

Mouse: The mouse is a pointing device that allows
users to interact with the computer's graphical user
interface. It can be moved on a surface to control
the position of a cursor on the screen and has
buttons for clicking and selecting items.

Scanner: A scanner converts physical documents
into digital format by capturing images of the
documents. Scanners can be flatbed, sheet-fed, or
handheld, and are used for digitizing printed text,
images, and other documents.

Microphone: Microphones capture audio input for
recording or communication purposes. They can be
standalone devices or integrated into other hardware

like headsets, webcams, and laptops.

2. Output Devices

o

Monitor: Monitors display visual output from the
computer. They come in various sizes and
resolutions, with technologies like LCD, LED, and
OLED. Monitors can be used for general
computing, gaming, graphic design, and other
applications.

Printer: Printers produce hard copies of digital
documents. They can be inkjet, laser, or 3D printers,
each suited for different tasks like printing photos,
documents, or three-dimensional objects.

Speakers: Speakers output audio from the
computer, providing sound for multimedia

applications, music, and communication. They can
Computer Organization & Architecture -318

be part of a sound system or integrated into other

devices.

3. Storage Devices

o

Hard Disk Drives (HDDs): HDDs use spinning
disks coated with magnetic material to read and
write data. They offer large storage capacities and
are commonly used for data storage and backup.
Solid-State Drives (SSDs): SSDs use flash memory
to store data, providing faster read/write speeds and
greater reliability compared to HDDs. They are
increasingly used in modern computers for their
performance benefits.

Optical Drives: Optical drives read and write data
from optical discs like CDs, DVDs, and Blu-rays.
They are used for data distribution, media playback,

and backup storage.

10.3 1/0 INTERFACE

drives.

The /O (Input/Output) interface is a critical component of a
computer system, facilitating communication between the CPU
and peripheral devices. It ensures that data is transferred efficiently
and accurately between the internal system components and

external devices, such as keyboards, monitors, printers, and storage

Definition and Role of I/O Interface
The I/O interface acts as a bridge between the CPU and peripheral

devices, managing data exchange and ensuring compatibility

Computer Organization & Architecture -319

between different hardware components. It translates data and
control signals from the CPU into a form that peripheral devices
can understand and vice versa. This interface also handles the
timing and synchronization of data transfers, enabling smooth

operation of the entire system.

Types of I/O Interfaces
1. Parallel Interface
o Definition: A type of interface that transfers multiple bits
of data simultaneously across multiple channels or wires.
o Examples: Parallel ports, used primarily for printers and
older storage devices.
o Characteristics:
o Speed: High-speed data transfer as multiple bits are
transferred at once.
o Cable Length: Limited to shorter lengths due to
signal degradation over distance.
o Noise: Susceptible to noise and crosstalk between
wires.
o Applications: Older computers for connecting printers and

other high-speed peripherals.

2. Serial Interface
e Definition: Transfers data one bit at a time over a single
channel or wire.
o Examples:

o USB (Universal Serial Bus): Widely used for
connecting peripherals like keyboards, mice, and
storage devices.

o RS-232: Older standard used for serial

communication in modems and other devices.
Computer Organization & Architecture -320

o SATA (Serial ATA): Used for connecting hard
drives and SSDs.
Characteristics:
o Cable Length: Can use longer cables without
significant signal degradation.
o Interference: Less susceptible to interference and
crosstalk.
Applications: Modern computers for most peripheral

connections.

3. USB (Universal Serial Bus)

Definition: A serial interface standard designed to connect
peripheral devices to a computer.
Features:

o Plug-and-Play: Automatically recognized by the

system when connected.

o Hot-Swappable: Devices can be connected and

disconnected without rebooting.

o Hubs: Supports multiple devices through hubs.
Versions: USB 1.0, 2.0, 3.0, 3.1, and USB-C, each offering
higher data transfer rates and better power delivery.
Applications: Connecting a wide range of devices

including keyboards, mice, external storage, printers, etc.

4. SCSI (Small Computer System Interface)

Definition: A set of standards for connecting and
transferring data between computers and peripheral
devices.

Applications: Primarily used in servers, high-performance
workstations, and storage systems.

Characteristics:
Computer Organization & Architecture -321

o Multiple Devices: Supports multiple devices on a
single bus.
o Speed: High-speed data transfer rates.
o Complexity: More complex configuration and
higher cost.
o Applications: High data throughput and reliability

environments like servers and professional workstations.

5. Bluetooth and Wireless Interfaces
e Definition: Wireless communication protocols for short-
range data transfer.
o Examples:
o Bluetooth: For peripherals like keyboards, mice,
and headphones.
o Wi-Fi: For connecting devices to local networks
and the internet.
o Characteristics:
o Mobility: Eliminates the need for physical cables.
o Range: Limited range for Bluetooth, wider for Wi-
Fi.
o Interference: Potential for interference from other
wireless devices.
e Applications: Mobile devices, laptops, and peripherals

requiring wireless connectivity.

I/0 Interface Components
1. I/O Ports
o Definition: Physical connectors on the computer
where peripheral devices are attached.
o Examples: USB ports, Ethernet ports, HDMI ports,

audio jacks.
Computer Organization & Architecture -322

o Function: Provide a point of connection and
communication between the computer and external

devices.

2. 1/O Controllers
o Definition: Hardware components that manage the
communication between the CPU and peripheral
devices.
o Examples: Disk controllers, network interface cards
(NICs), graphics cards.
o Function: Handle data transfer, error detection, and
correction, and ensure proper operation of

connected devices.

3. Device Drivers
o Definition: Software programs that enable the
operating system to communicate with peripheral

devices.
o Function: Translate high-level commands from the
OS into low-level commands understood by the
device, manage data transfer, and provide an

interface for device configuration and control.

Data Transfer Techniques
1. Programmed I/O
o Definition: The CPU is responsible for all data
transfer between the peripheral devices and
memory.
o Advantages: Simple and straightforward

implementation.

Computer Organization & Architecture -323

o

Disadvantages: CPU is heavily involved, leading to

inefficiency and slower performance.

2. Interrupt-Driven I/O

o

Definition: Peripheral devices interrupt the CPU to
signal that they are ready for data transfer, allowing
the CPU to perform other tasks in the meantime.
Advantages: More efficient use of CPU resources.
Disadvantages: Increased complexity in handling

interrupts and context switching.

3. Direct Memory Access (DMA)

o

Definition: A method where data is transferred
directly between peripheral devices and memory
without CPU involvement.

Advantages: Frees up CPU resources, faster data
transfer.

Components: DMA controller, which manages the

data transfer process.

Importance of I/0 Interface

1. Efficient Data Transfer

o

Ensures fast and reliable communication between
the CPU and peripheral devices.
Minimizes delays and maximizes system

performance.

2. Device Compatibility

o

Standardized interfaces ensure compatibility
between different hardware components.
Allows for easy integration and expansion of

computer systems.

Computer Organization & Architecture -324

3. System Stability
o Properly designed I/O interfaces and controllers
ensure stable and error-free operation of connected
devices.

o Helps prevent data corruption and system crashes.

10.4 MODES OF TRANSFER

The modes of transfer in computer systems refer to the methods
used to move data between the computer's central processing unit
(CPU), memory, and input/output (I/O) devices. Efficient data
transfer is crucial for system performance, and different modes are
used depending on the data transfer requirements and the hardware

capabilities. Here are the primary modes of transfer:

1. Programmed 1/0
e Definition: In this mode, the CPU is responsible for
executing I/O instructions, checking the status of I/O
devices, and transferring data between memory and I/O
devices.
o Characteristics:

o CPU Involvement: The CPU actively manages the
transfer, which can lead to inefficiencies as the CPU
is occupied with I/O operations.

o Polling: The CPU continuously checks the status of
an I/O device in a loop until the device is ready for
data transfer.

o Applications: Suitable for systems with simple and low-

speed I/O operations.

Computer Organization & Architecture -325

2. Interrupt-Driven 1/0

Definition: This mode allows I/O devices to notify the

CPU when they are ready for data transfer by generating an

interrupt signal.

Characteristics:

o

CPU Efficiency: The CPU can perform other tasks
and is interrupted only when the I/O device is ready,
improving overall system efficiency.

Interrupt Handling: The CPU executes an
interrupt service routine (ISR) to handle the data

transfer when an interrupt is received.

Applications: Commonly used in systems where /O

devices need to transfer data intermittently and efficiency is

important.

3. Direct Memory Access (DMA)

Definition: DMA is a technique that allows I/O devices to

directly transfer data to and from memory without CPU

intervention.

Characteristics:

o

DMA Controller: A dedicated hardware
component, the DMA controller, manages the data
transfer process.

CPU Offloading: The CPU initiates the DMA
transfer and is then free to perform other tasks,
significantly improving system performance.
High-Speed Transfer: Suitable for high-speed data
transfer applications like disk drives and network

cards.

Computer Organization & Architecture -326

Applications: Used in systems requiring high-speed data
transfers such as multimedia applications and high-speed

network interfaces.

4. Memory-Mapped 1/0

Definition: In this mode, I/O devices are assigned specific
memory addresses, and data transfer occurs through
standard memory access instructions.
Characteristics:
o Unified Addressing: The same instructions used for
memory access are used for I/O operations.
o Efficiency: Simplifies the CPU's design as no
special I/O instructions are needed.
Applications: Commonly used in systems with simple I/O
requirements and where the integration of memory and I/O

addressing simplifies system design.

5. Isolated 1I/O

Definition: Isolated I/O uses a separate address space for
I/O devices, distinct from the memory address space.
Characteristics:
o Special Instructions: Requires specific 1/O
instructions to access I/O devices.
o Complexity: More complex CPU design due to the
need for additional I/O instructions.
Applications: Used in older computer systems and
microcontrollers where a clear distinction between memory

and I/O addressing is necessary.

Computer Organization & Architecture -327

10.5 PRIORITY INTERRUPT

Priority interrupt systems are designed to handle multiple interrupt

requests from various I/O devices based on their priority levels.

The main goal is to ensure that the most critical tasks are addressed

first, enhancing the efficiency and responsiveness of the system.

This section delves into the concept, mechanisms, and applications

of priority interrupt systems.

1. Definition and Purpose

Definition: A priority interrupt system assigns priority
levels to different interrupt sources and ensures that higher-
priority interrupts are serviced before lower-priority ones.

Purpose: The primary purpose is to manage multiple
interrupt requests efficiently, ensuring that critical tasks
receive immediate attention while less critical tasks are

deferred.

2. Priority Levels

Hierarchy: Interrupt sources are organized into a hierarchy
of priority levels. Each device or interrupt source is
assigned a specific priority level.

Preemptive Handling: If a high-priority interrupt occurs
while a lower-priority interrupt is being serviced, the
current process is suspended, and the high-priority interrupt

1s handled first.

Computer Organization & Architecture -328

3. Mechanisms for Priority Interrupts

Daisy-Chaining: A simple hardware approach where
devices are connected in series. The first device in the chain
has the highest priority, and the priority decreases down the
chain.

Parallel Priority Interrupt: A more complex and faster
approach where each device is connected to a priority
encoder. The encoder determines the highest-priority
interrupt and sends a signal to the CPU.

Software Polling: The CPU polls the interrupt sources in a
predefined priority order. This method is simpler but slower

compared to hardware-based mechanisms.

4. Interrupt Vectors and Service Routines

Interrupt Vector Table (IVT): A table that holds the
addresses of the interrupt service routines (ISRs) for
various interrupts. Each interrupt source has a specific
entry in the IVT.

Interrupt Service Routine (ISR): A special block of code
executed in response to an interrupt. The ISR for a high-
priority interrupt must complete quickly to minimize the

delay for lower-priority interrupts.

5. Applications

Real-Time Systems: Priority interrupt systems are crucial
in real-time systems where timely processing of critical
tasks is essential, such as in embedded systems, industrial
control systems, and medical devices.

Multitasking Operating Systems: Used in operating
systems to manage hardware interrupts from various

peripheral devices like keyboards, mice, and network cards.
Computer Organization & Architecture -329

Communication Systems: Ensures that urgent
communication tasks, like handling incoming data packets,

are given priority over less critical tasks.

6. Challenges and Considerations

Complexity: Implementing a priority interrupt system can
add complexity to both hardware and software design.
Overhead: Context switching and handling multiple
interrupts can introduce overhead, impacting system
performance if not managed efficiently.

Starvation: Lower-priority tasks may face starvation if
high-priority interrupts occur frequently. Proper system

design and scheduling are necessary to mitigate this issue.

Types of Priority Interrupt Systems

Priority interrupt systems can be classified based on their

implementation methods and the way they manage and handle

multiple interrupt requests. Here are the main types of priority

interrupt systems:

1. Daisy-Chaining Priority System

Mechanism: Devices are connected in a series (daisy-
chain) with each device having an interrupt enable line that
passes through it to the next device in the chain.

Priority Determination: The device closest to the CPU
has the highest priority. If it generates an interrupt, it will
block further interrupts from lower-priority devices.
Advantages: Simple and cost-effective.

Disadvantages: Not scalable for systems with many

devices; lower-priority devices may experience long wait

Computer Organization & Architecture -330

times if higher-priority devices frequently generate

interrupts.

2. Parallel Priority Interrupt System

Mechanism: Each interrupting device has a separate
interrupt line connected to a priority encoder, which
determines the highest-priority interrupt.

Priority Determination: The priority encoder identifies
the highest-priority interrupt and sends the corresponding
interrupt vector to the CPU.

Advantages: Fast and efficient; better suited for systems
with multiple interrupt sources.

Disadvantages: More complex and expensive due to

additional hardware (priority encoder).

3. Software Polling

Mechanism: The CPU periodically checks each device's
status in a predefined order to determine if it has requested
an interrupt.

Priority Determination: The order in which devices are
polled defines their priority.

Advantages: Simple to implement in software; no need for
additional hardware.

Disadvantages: Slower than hardware-based systems; not
suitable for systems requiring immediate interrupt

servicing.

4. Interrupt Priority Level System

Mechanism: Each interrupt request line is assigned a
priority level. The CPU includes a priority controller that

handles multiple interrupt requests based on these levels.
Computer Organization & Architecture -331

Priority Determination: The priority controller ensures
that the highest-priority interrupt is serviced first.
Advantages: Highly flexible and can handle complex
priority schemes; allows dynamic priority assignment.
Disadvantages: Requires sophisticated hardware and

software support.

5. Vectored Interrupt System

Mechanism: Each interrupt source is assigned a unique
vector address, which directly points to the interrupt service
routine (ISR).

Priority Determination: The priority is determined by the
vector addresses assigned to the interrupt sources.
Advantages: Fast and efficient interrupt handling; reduces
the need for interrupt processing overhead.

Disadvantages: Complex to implement; requires hardware

support for vector addresses.

6. Nested Interrupts

Mechanism: Allows an interrupt service routine (ISR) to
be interrupted by higher-priority interrupts.

Priority Determination: Higher-priority interrupts can
interrupt lower-priority ISRs.

Advantages: Improves system responsiveness for high-
priority tasks; prevents critical task delays.

Disadvantages: Increases system complexity; requires
careful management to prevent stack overflow and ensure

ISR completion.

Computer Organization & Architecture -332

10.6 DIRECT MEMORY ACCESS
(DMA)

Direct Memory Access (DMA) is a method that allows peripheral
devices to transfer data to and from memory without the
continuous involvement of the CPU. This mechanism significantly
enhances the data transfer speed and efficiency within a computer

system by offloading the data transfer workload from the CPU.

Components of a DMA System
1. DMA Controller (DMAC)
o Manages the data transfer between memory and
peripheral devices.
o Controls the timing and sequencing of data transfer
operations.
o Often has multiple channels to handle multiple

devices simultaneously.

2. Peripheral Devices
o Include devices like disk drives, network cards, and
sound cards that need to transfer large amounts of

data.

3. System Bus
o The communication pathway that connects the
DMA controller, CPU, memory, and peripheral

devices.

Computer Organization & Architecture -333

How DMA Works
1. Initiation
o The CPU initializes the DMA controller by
providing it with the necessary parameters,
including:
*= Source address (where the data is coming
from).
= Destination address (where the data is
going).
* The amount of data to be transferred.
o The CPU then instructs the peripheral device to

begin the data transfer.

2. Data Transfer
o The DMA controller takes over the data transfer
process.
o It sends requests to the memory to read or write data
directly.
o The DMA controller handles the data transfer
between the peripheral device and the memory

while the CPU performs other tasks.

3. Completion
o Once the data transfer is complete, the DMA
controller sends an interrupt to the CPU.
o The CPU then resumes control and processes the

data as needed.

Computer Organization & Architecture -334

Hailkaks

Types of DMA Transfers

1. Burst Mode

o Transfers a block of data in a single, continuous
burst.

o The DMA controller takes control of the bus and
transfers all the data before releasing the bus back
to the CPU.

o Provides high-speed data transfer but can cause the

CPU to watt if it needs the bus.

2. Cycle Stealing Mode
o The DMA controller transfers one data word per bus
cycle, allowing the CPU to access the bus between
transfers.
o This mode balances bus usage between the DMA

and the CPU, reducing the CPU's waiting time.

3. Transparent Mode
o The DMA controller transfers data only when the
CPU is not using the bus.
o Provides the lowest data transfer speed but does not

interfere with the CPU's operations.

Computer Organization & Architecture -335

Advantages of DMA

Increased Efficiency: Offloads data transfer tasks from the
CPU, allowing it to focus on more critical operations.
Faster Data Transfer: Enables high-speed data transfers
directly between memory and peripheral devices.

Reduced CPU Overhead: Minimizes CPU involvement in

data transfer processes, reducing processing overhead.

Disadvantages of DMA

Complexity: Adds complexity to the system design and
requires additional hardware (DMA controller).

Bus Contention: Potential for bus contention, as both the
DMA controller and the CPU may need to access the bus

simultaneously.

DMA Operation Flow

1.

CPU Initiates DMA Transfer: The CPU sets up the DMA
controller with source, destination addresses, and transfer
size.

DMA Controller Requests Bus Access: The DMA
controller sends a request to the bus arbiter for control of
the system bus.

Bus Arbiter Grants Bus Access: The bus arbiter grants the
DMA controller access to the system bus.

DMA Controller Performs Data Transfer: The DMA
controller reads data from the source and writes it to the

destination.

Computer Organization & Architecture -336

. DMA Controller Sends Interrupt: After completing the

transfer, the DMA controller sends an interrupt to the CPU.
CPU Processes Data: The CPU processes the data as

required.

10.7

INPUT-OUTPUT PROCESSOR

(IOP)

An Input-Output Processor (IOP) is a specialized processor used to

manage input and output operations in a computer system. It

offloads these tasks from the main CPU, enabling more efficient

processing and better overall system performance. The IOP is

designed to handle data transfer between the main memory and

peripheral devices independently of the CPU.

Functions of an IOP

1.

Data Transfer Management: The IOP controls the transfer
of data between the main memory and peripheral devices,
ensuring that data is correctly transmitted and received.

Interrupt Handling: The IOP manages interrupts from
peripheral devices, freeing the CPU from having to handle
these interruptions directly. It processes the interrupt

requests and signals the CPU only when necessary.

. Device Control: The IOP issues commands to peripheral

devices, controlling their operation and status. It ensures
that devices are correctly configured and ready for data
transfer.

Buffering: The IOP often includes buffer memory to

temporarily store data during transfers. This buffering helps

Computer Organization & Architecture -337

to smooth out differences in data transfer rates between the
CPU, memory, and peripheral devices.

5. Error Detection and Correction: The IOP can detect and
correct errors that occur during data transfer, ensuring data

integrity and reliability.

Architecture of an IOP

1. Control Unit: Manages the execution of input-output
instructions and coordinates the operations of the IOP.

2. Buffer Memory: Temporarily stores data during transfers
to manage differences in data rates between devices.

3. Device Interfaces: Connects the IOP to various peripheral
devices, allowing it to send and receive data.

4. Interrupt System: Handles interrupt signals from
peripheral devices, prioritizing and processing them as
needed.

5. Communication Bus: Connects the IOP to the main CPU

and memory, enabling data exchange and coordination.

Salient parts detection Incremental feature representation 1
g | e L s e D e R G e 1

Incremental prototypes generation

Appearance

(N4

(C1 features = Prototypes
e 7 T ™)

,]"pm —M¢ Bottom-up
image saliency
map

Similarity vec!
(Np*K)

Activation
rate

K-means
clustering

Shape
N2

i Localized C1 features|

IOP Operation Flow
1. Initialization: The CPU initializes the IOP with the

necessary parameters for data transfer, including source and

Computer Organization & Architecture -338

destination addresses, transfer size, and device control
information.

Data Transfer: The IOP takes over the data transfer
process, moving data between memory and peripheral
devices according to the instructions provided by the CPU.
Interrupt Handling: The IOP processes interrupts from
peripheral devices, performing the necessary actions and
notifying the CPU only when essential.

Completion: Upon completing the data transfer or
handling an interrupt, the IOP signals the CPU, allowing it
to resume or take necessary actions based on the completed

task.

Advantages of Using an IOP

Increased CPU Efficiency: Offloads input-output tasks
from the CPU, allowing it to focus on core processing
tasks.

Improved System Performance: Manages data transfer
more efficiently, reducing bottlenecks and improving
overall system throughput.

Enhanced Reliability: Provides dedicated error detection
and correction, ensuring data integrity.

Scalability: Allows for easier integration of additional
peripheral devices without significantly impacting CPU

performance.

Input-Output Processor (IOP)

1.

Definition and Role of IOP
o Explanation of input-output processors.

o Difference between IOP and CPU.

Computer Organization & Architecture -339

2. Architecture of IOP
o Components and operation.

o Interaction with CPU and peripheral devices.

3. Applications and Benefits
o Use cases in modern computing.

o Advantages of using 1OPs.

10.8 CONCLUSION

The management of input and output operations is a critical aspect
of computer system design, directly influencing performance and
efficiency. Peripheral devices, through their various types and
functionalities, expand the capabilities of a computer system,
allowing it to interact with the external environment effectively.
The interfaces and modes of transfer used for these devices must
be well-designed to ensure smooth communication between the

peripheral devices, the CPU, and memory.

Understanding the different types of I/O interfaces, such as serial
and parallel interfaces, is crucial for selecting the right method for
specific tasks. Modes of data transfer, including programmed /O,
interrupt-driven /O, and direct memory access (DMA), each have
their advantages and ideal use cases, impacting how efficiently
data is transferred and processed. Priority interrupts and their
types, such as vectored and non-vectored interrupts, play a
significant role in managing the flow of data and ensuring that
high-priority tasks are addressed promptly.

The introduction of specialized components like Direct Memory

Access (DMA) controllers and Input-Output Processors (IOPs) has

Computer Organization & Architecture -340

further enhanced the system's ability to handle I/O operations
efficiently. DMA reduces the CPU's involvement in data transfer
tasks, freeing it up for other processing activities, while IOPs
manage complex I/O operations independently, significantly

improving system performance.

Through this unit, we have explored the various components and
techniques involved in managing input-output operations in
computer systems. By understanding these concepts, we gain a
deeper appreciation of the intricacies involved in computer
architecture and the continuous advancements aimed at improving

system efficiency and performance.

10.9 UNIT BASED QUESTIONS &
ANSWERS

1. What is the role of peripheral devices in a computer system?
Answer: Peripheral devices are hardware components that connect
to the computer to provide additional functionality and
input/output capabilities. Examples include keyboards, mice,
printers, and external storage devices. They enable the computer to
interact with the external environment, allowing users to input

data, receive output, and expand storage capacity.

2. Explain the difference between serial and parallel 1/O
interfaces.

Answer: Serial I/O interfaces transmit data one bit at a time over a
single channel, making them suitable for long-distance
communication and simpler connections, such as USB and RS-

232. Parallel I/O interfaces transmit multiple bits simultaneously

Computer Organization & Architecture -341

over multiple channels, which allows for faster data transfer rates
but is often limited by cable length and complexity, as seen in

older parallel ports like the LPT port.

3. What are the different modes of data transfer, and how do
they impact system performance?
Answer: The primary modes of data transfer are:

e Programmed I/0O (PIO): The CPU actively controls data
transfers, which can be slow as it requires continuous CPU
intervention.

e Interrupt-driven 1/0: The CPU is notified via interrupts
when data transfer is required, reducing idle time and
improving efficiency compared to PIO.

e Direct Memory Access (DMA): A DMA controller
handles data transfers directly between memory and
peripheral devices, freeing the CPU to perform other tasks
and significantly improving data transfer rates and system

performance.

4. What is a priority interrupt, and why is it important?

Answer: A priority interrupt system allows the CPU to handle
multiple interrupt requests by assigning different priorities to each
request. Higher-priority interrupts are serviced before lower-
priority ones, ensuring that critical tasks receive prompt attention.
This mechanism prevents lower-priority tasks from delaying the
processing of urgent requests and maintains system

responsiveness.

Computer Organization & Architecture -342

5. Describe the function of an Input-Output Processor (I0OP)
and its advantages.

Answer: An Input-Output Processor (IOP) is a specialized
processor designed to manage I/O operations independently of the
main CPU. It handles data transfers between peripherals and
memory, performs I/O control tasks, and often manages multiple
I/O channels simultaneously. The advantages include reduced CPU
load, improved overall system performance, and the ability to

handle complex I/O operations more efficiently.

Computer Organization & Architecture -343

10.10 REFERENCES

Floyd, Thomas L. Digital Fundamentals. Pearson
Education, 2015.

Taub, Herbert, and Donald L. Schilling. Digital Integrated
Electronics. McGraw-Hill Education, 1994.

Mano, M. Morris, and Michael D. Ciletti. Digital Design:
With an Introduction to the Verilog HDL. Pearson
Education, 2017.

Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals
of Logic Design. Cengage Learning, 2013.

Streetman, Ben G., and Sanjay Banerjee. Solid State
Electronic Devices. Prentice Hall, 2005.

Hayes, John P. Introduction to Digital Logic Design.
Addison-Wesley, 1993.

Computer Organization & Architecture -344

UNIT - 11: DATA TRANSFER, STROBE
CONTROL, AND HANDSHAKING

Structure

11.0 Introduction

11.1 Objectives

11.2 Serial Communication

11.3 I/O Controllers

11.4 Asynchronous Data Transfer

11.5 Strobe Control

11.6 Handshaking

11.7 Conclusion

11.8 Unit Based Questions & Answers

11.9 References

11.0 INTRODUCTION

In modern computer systems, the efficient management of data
transfer between the central processing unit (CPU) and peripheral
devices is essential for optimal performance and functionality. This
communication is facilitated through a variety of methods and
components designed to handle different aspects of input-output
(I/O) operations. Serial communication, I/O controllers, and data
transfer techniques such as asynchronous data transfer, strobe
control, and handshaking are crucial elements in this process.
Understanding these concepts provides a foundation for
comprehending how data is managed and transferred in computing

systems.

Computer Organization & Architecture -345

Serial communication is a fundamental method for transmitting
data sequentially over a single channel, making it particularly
effective for long-distance and low-speed applications. This
approach contrasts with parallel communication, which transfers
multiple bits simultaneously, and is essential in many everyday
devices and systems. The principles of serial communication,
including data framing and baud rates, are key to ensuring accurate

and efficient data transfer.

I/O controllers play a pivotal role in managing interactions
between the CPU and peripheral devices, handling tasks such as
data transfer, device initialization, and error management. By
abstracting the complexity of these operations, controllers improve
system performance and simplify device communication.
Additionally, methods like asynchronous data transfer, strobe
control, and handshaking further enhance data integrity and
synchronization, ensuring reliable and efficient communication
between devices. This section explores these topics in detail,
offering insights into their functions and impact on computer

system design.

11.1 OBJECTIVES

After completing this unit, you will be able to understand;

e Serial Communication: Learn the basics of serial data
transmission, including framing, baud rates, and its use in
connecting devices.

e /0O Controllers: Understand the role of I/O controllers in

facilitating communication between the CPU and

Computer Organization & Architecture -346

peripheral devices, including their functions and
management.

e Asynchronous Data Transfer: Explore how asynchronous
data transfer operates without a synchronous clock signal,
enabling flexible data communication.

e Strobe Control: Study how strobe signals manage timing
and synchronization in data transfer processes to ensure
accurate communication.

e Handshaking: Learn about handshaking protocols that
coordinate data transfer between devices, ensuring

reliability and error management.

11.2 SERIAL COMMUNICATION

Serial communication is a method of transmitting data one bit at a
time over a single communication line or channel. Unlike parallel
communication, which sends multiple bits simultaneously across
multiple channels, serial communication sends data sequentially.
This method is widely used due to its simplicity and efficiency,
particularly for long-distance data transmission where parallel

communication would be cumbersome and less reliable.

Types of Serial Communication
e Synchronous Serial Communication
o Description: Data is transmitted in sync with a
clock signal that both the sender and receiver share.
This allows for the precise timing of data bits,
leading to faster and more reliable data transfers.
o Protocols: Common synchronous protocols include

Serial Peripheral Interface (SPI) and Inter-

Computer Organization & Architecture -347

Integrated Circuit (I2C). SPI uses a master-slave
architecture with a dedicated clock line, while 12C
allows multiple devices to communicate over a
shared bus with a clock signal.

o Applications: Used in high-speed data transfer
applications such as memory devices and

communication between microcontrollers.

CLOCK P CLOCK
DATA o DATA

crocr |fI{LFLLILALILE
EXERXEE

e Asynchronous Serial Communication

o Description: Data is transmitted without a clock
signal. Instead, it uses start and stop bits to frame
the data bits, which allows the receiver to identify
the beginning and end of each byte.

o Protocols: Examples include Universal
Asynchronous Receiver-Transmitter (UART) and
RS-232. UART is commonly used for serial ports
on computers, while RS-232 is a standard for serial
communication that defines the electrical
characteristics and connector types.

o Applications: Suitable for devices where precise
timing is less critical, such as serial ports for
peripherals and communication between

microcontrollers.

Computer Organization & Architecture -348

R¥ RX

TX TX
LIART 1 l

GMND GHD

3. Baud Rate
e Definition: The baud rate is the rate at which data is
transmitted in a communication channel, measured in bits
per second (bps). It determines the speed of data transfer
and must be set equally on both communicating devices.
e Common Baud Rates: Examples include 9600 bps, 19200
bps, 115200 bps. Higher baud rates allow for faster data

transfer but may require better signal integrity to prevent

€ITors.
0o o 0 o 00 00 [0]0)
[1 01
1sec
10 10 10 1sec

J o I L ‘ 11 11 11
Baud =10 Baud =10
Bit rate =10 bps Bit rate = 20 bps

4. Advantages and Disadvantages
e Advantages:

o Reduced Wiring: Serial communication requires
fewer wires compared to parallel communication,
simplifying connections and reducing costs.

o Long-Distance Transmission: More suitable for
long-distance ~ communication ~ where signal
degradation and timing issues affect parallel

transmission.

Computer Organization & Architecture -349

o

Simplicity: The protocol and hardware required for
serial communication are generally simpler and less

expensive.

o Disadvantages:

o

Lower Data Transfer Rate: Generally slower
compared to parallel communication, making it less
ideal for applications requiring very high data rates.
Error Detection: Error detection and correction are
more complex due to the lack of synchronization

provided by a clock signal.

5. Common Protocols

e UART (Universal Asynchronous Receiver-Transmitter)

o

Description: A hardware communication protocol
that manages asynchronous serial communication. It
handles the framing of data, including start and stop
bits, and often includes error-checking features such
as parity bits.

Usage: Commonly used for serial ports and

communication between microcontrollers.

o RS-232

o

Description: A standard for serial communication
that defines the electrical characteristics and
connector types for serial ports. It supports both
synchronous and asynchronous communication.

Usage: Frequently used for connecting peripherals
like modems, printers, and older computer

hardware.

Computer Organization & Architecture -350

SPI (Serial Peripheral Interface)

o

Description: A synchronous serial communication
protocol used for high-speed data transfer. It uses
separate lines for data, clock, and select signals.

Usage: Commonly used in communication between
microcontrollers and peripheral devices like sensors

and memory chips.

12C (Inter-Integrated Circuit)

o

Description: A synchronous serial communication
protocol that allows multiple devices to
communicate over a two-wire bus (SDA for data
and SCL for clock). It uses addressing to
differentiate between multiple devices on the same
bus.

Usage: Often used for communication between low-
speed peripherals, such as sensors and EEPROMs,

within embedded systems.

6. Applications

Serial communication is used in various applications including:

Computer Serial Ports: For connecting peripherals such

as mice, keyboards, and modems.

Embedded Systems: For communication between

microcontrollers and sensors or other modules.

Data Acquisition: For transferring data from sensors or

instruments to a central processing unit.

Computer Organization & Architecture -351

11.3 /O CONTROLLERS

An I/O (Input/Output) controller is a crucial component in

computer systems that manages the communication between the

CPU (Central Processing Unit) and peripheral devices such as

keyboards, mice, printers, and storage devices. Its primary purpose

is to handle data transfers to and from these peripherals and to

ensure that the data is processed correctly. The I/O controller

abstracts the complexities of interfacing with different types of

hardware and provides a standard interface for the CPU to interact

with these devices.

2. Types of I/0 Controllers

o Peripheral Interface Controllers (PICs)

o

o

o

Description: These controllers manage the
communication between the CPU and peripheral
devices. They handle tasks such as data buffering,
signal conversion, and protocol management.
Examples: Programmable Peripheral Interface
(PPI), and Advanced Programmable Interrupt
Controller (APIC).

Usage: Used in various types of peripherals

including serial and parallel ports.

e Direct Memory Access (DMA) Controllers

o

Description: DMA controllers facilitate direct data
transfer between memory and peripheral devices

without involving the CPU in the data transfer

Computer Organization & Architecture -352

process. This reduces CPU overhead and improves
system performance.
o Types: Single-channel DMA, Multi-channel DMA.
o Usage: Commonly used for high-speed data
transfers such as disk I/O operations and

multimedia processing.

e Storage Controllers

o Description: Storage controllers manage data
transfer between storage devices (like hard drives
and SSDs) and the system memory. They handle
tasks such as data read/write operations, error
checking, and data buffering.

o Examples: SATA controllers, RAID controllers.

o Usage: Used to interface with hard drives, SSDs,
and other storage devices to manage data storage

and retrieval.

e Network Interface Controllers (NICs)

o Description: NICs manage network communication
between the computer and network devices. They
handle data packet transmission, reception, and
protocol management.

o Examples: Ethernet controllers, Wi-Fi adapters.

o Usage: Used for connecting computers to local area

networks (LANSs) or the internet.

3. Functions of I/O Controllers
e Data Buffering
o Description: I/O controllers often use buffers to

temporarily store data while it is being transferred
Computer Organization & Architecture -353

between the CPU and peripheral devices. This helps
to smooth out data transfers and manage differences
in data transfer rates.

Benefit: Reduces the risk of data loss or corruption
during transfer and improves overall system

efficiency.

o Signal Conversion

o

Description: Converts signals between different
formats used by the CPU and peripherals. For
instance, converting parallel data from a peripheral
to serial data for transmission to the CPU.

Benefit: Ensures compatibility between devices

with different signaling methods.

o Interrupt Handling

o

Description: Manages interrupts generated by
peripheral devices to notify the CPU of events that
need attention, such as data availability or errors.

Benefit: Allows for efficient handling of multiple
I/O operations by prioritizing and managing

interrupt requests.

o Protocol Management

o

Description: Implements communication protocols
specific to each peripheral device. This includes
managing the timing, data format, and error
checking.

Benefit: Ensures that data is transmitted and
received correctly according to the requirements of

each device.
Computer Organization & Architecture -354

4. Design Considerations
e Performance

o Description: The performance of an I/O controller
can affect overall system performance. High-speed
data transfer capabilities and efficient interrupt
handling are crucial.

o Consideration: Controllers should be designed to
handle the data rates and workload requirements of

the system.

o Compatibility
o Description: /O controllers must be compatible
with various peripheral devices and system
architectures. They should support standard
communication protocols and interfaces.
o Consideration: Ensures that the controller can

interface with a wide range of devices and systems.

e Scalability
o Description: Controllers should be able to handle
an increasing number of peripherals and higher data
transfer rates as system requirements grow.
o Consideration: Design should accommodate future

expansion and upgrades.

5. Applications
I/O controllers are integral to many aspects of modern computing,
including:

e Computer Systems: Managing communication between

the CPU and various peripheral devices.

Computer Organization & Architecture -355

e Embedded Systems: Handling I/O operations in devices
like printers, medical equipment, and industrial machines.
e Networking: Managing data transfers in networked

environments through NICs.

11.4 ASYNCHRONOUS DATA
TRANSFER

Asynchronous data transfer is a communication method where data
is transmitted between devices without the need for a shared clock
signal to synchronize the transmission. Unlike synchronous data
transfer, which relies on a common clock signal to coordinate the
timing of data transfers, asynchronous transfer uses start and stop
signals to manage the timing of data exchanges. This allows for
flexible and independent operation of the transmitting and

receiving devices.

2. Characteristics
o Start and Stop Bits

o Description: In asynchronous data transfer, each
data frame is enclosed between start and stop bits.
The start bit signals the beginning of data
transmission, while the stop bit indicates the end of
the transmission.

o Usage: This method helps in identifying the
boundaries of data frames and ensuring that the

receiver knows when to start and stop reading data.

Computer Organization & Architecture -356

e Variable Timing

o

Description: Unlike synchronous transfer, which
requires precise timing synchronization,
asynchronous transfer allows for variable timing
between data bits. The receiver determines when to
sample the data based on the start and stop bits.

Benefit: Provides flexibility in communication, as
devices do not need to operate at the same clock

speed.

e Error Detection

o

o

Description: Asynchronous transfer typically
includes mechanisms for error detection, such as
parity bits, to ensure the integrity of transmitted
data.

Usage: Parity bits can detect errors in data

transmission and trigger retransmission if necessary.

3. Modes of Asynchronous Data Transfer

e Simplex

o

Description: Data transfer occurs in only one
direction, from the transmitter to the receiver, with
no feedback from the receiver to the transmitter.

Example: Keyboard data sent to a computer.

e Half-Duplex

o

Description: Data can flow in both directions, but
not simultaneously. The communication device
must switch between sending and receiving modes.

Example: Walkie-talkies where one person speaks

while the other listens, and vice versa.
Computer Organization & Architecture -357

4. Advantages

Full-Duplex

o

Description: Data can flow in both directions
simultaneously, allowing for simultaneous sending
and receiving of data.

Example: Telephones where both parties can talk

and listen at the same time.

Simplified Hardware

o

Description: Asynchronous transfer does not
require complex synchronization circuits,
simplifying the design of communication systems.

Benefit: Reduces the cost and complexity of

hardware.

Flexibility

o

Description: Devices do not need to operate at the
same clock speed or maintain precise timing,
allowing for greater flexibility in communication.

Benefit: Facilitates communication between devices

with different clock speeds and operating rates.

Error Detection

o

Description: Includes mechanisms such as parity
bits to detect errors in transmission and ensure data
integrity.

Benefit: Improves reliability of data transfer.

5. Disadvantages

Overhead

Computer Organization & Architecture -358

o Description: The inclusion of start and stop bits
increases the amount of data transmitted, leading to
overhead.

o Impact: Reduces the effective data transfer rate.

e Limited Speed
o Description: Asynchronous transfer may be slower
compared to synchronous transfer due to the lack of
continuous synchronization.
o Impact: Less suitable for high-speed data transfer

requirements.

6. Applications
Asynchronous data transfer is widely used in various
communication systems, including:
e Serial Communication: Commonly used in serial ports for
computer peripherals such as keyboards and mice.
e Modems: Used for data transmission over telephone lines.
e UARTs (Universal Asynchronous Receiver-
Transmitter): Used in microcontrollers for serial

communication with other devices.

11.5 STROBE CONTROL

Strobe control refers to a mechanism used in digital
communication systems to manage the timing of data transfer
between devices. A strobe signal is a timing pulse that is used to
indicate when data should be read or written, ensuring that both the
sender and receiver are synchronized. It acts as a "trigger" that tells

the receiving device when to sample or process the incoming data.

Computer Organization & Architecture -359

Characteristics of Strobe Control
o Strobe Signal

o Description: A strobe signal is a timing pulse that is
generated by the sender to indicate that data on the
bus is valid and ready to be read by the receiver. It
typically accompanies data signals and is used to
synchronize data transfer.

o Usage: Helps in ensuring that the data is captured
correctly by signaling the exact time when the data

should be sampled.

e Timing Control
o Description: Strobe control provides precise timing
for data transfer, ensuring that data is valid when it
is sampled by the receiving device. The timing of
the strobe signal is crucial for accurate data
transmission.
o Benefit: Reduces the chances of data corruption and

synchronization issues.

o Data Validity
o Description: The strobe signal indicates when data
is stable and valid, allowing the receiver to read the
data accurately. The data is only considered valid
when the strobe signal is active.
o Benefit: Ensures reliable data transfer by avoiding

sampling of unstable or incorrect data.

Modes of Strobe Control

e Active High Strobe
Computer Organization & Architecture -360

o

Description: The strobe signal is active (high)
when data is valid. The receiver reads the data when
the strobe signal is high.

Example: Used in many parallel communication
systems where the strobe pulse is used to latch data

into the receiver.

e Active Low Strobe

o

Applications

Description: The strobe signal is active (low) when
data is valid. The receiver reads the data when the
strobe signal is low.

Example: Commonly used in some digital systems

where the low level indicates the readiness of data.

o Parallel Communication

o

Description: In parallel data transfer systems,
strobe control is used to coordinate the transfer of
multiple bits of data simultaneously. The strobe
signal ensures that all data lines are read at the same
time.

Example: Used in interfacing with peripheral

devices such as printers and memory modules.

e Memory Systems

o

Description: In memory systems, strobe signals are
used to control the timing of data read and write
operations. The strobe pulse ensures that memory
operations occur at the correct times.

Example: In DRAM (Dynamic Random Access
Memory) systems, strobe signals help in

synchronizing memory access.
Computer Organization & Architecture -361

e Microprocessor Buses
o Description: Strobe control is used in
microprocessor buses to manage the timing of data
transfers between the processor and other
components.
o Example: Used in the control signals for data

transfer between the CPU and peripheral devices.

Advantages
o Improved Synchronization
o Description: Strobe control provides precise timing
for data transfer, improving the synchronization
between sender and receiver.
o Benefit: Ensures accurate data transmission and

reduces the likelihood of timing-related errors.

o Enhanced Data Integrity
o Description: By indicating when data is valid,
strobe control helps in maintaining data integrity
and reliability.
o Benefit: Reduces the chances of data corruption and

CITOT1S.

Disadvantages
o Increased Complexity
o Description: Implementing strobe control adds
complexity to the communication system, requiring

additional timing circuits and control signals.
Computer Organization & Architecture -362

o Impact: Increases the design and implementation

efforts.

e Timing Issues
o Description: Precise timing of the strobe signal is
crucial. Any delays or timing mismatches can lead
to data transfer issues.
o Impact: Requires careful design and calibration to

ensure reliable operation.

11.6 HANDSHAKING

Handshaking is a communication protocol used to synchronize the
data transfer between two devices or systems. It involves a series
of signal exchanges to establish, control, and terminate a
communication session. Handshaking ensures that both sender and
receiver are ready for data transmission and can handle the data

correctly, thereby preventing data loss or corruption.

Types of Handshaking
e Manual Handshaking
o Description: Involves manual intervention to
coordinate the start and stop of data transmission.
Typically used in simpler or less automated
systems.
o Example: Manual switch or lever activation to start

data transfer in older systems.

e Automatic Handshaking

Computer Organization & Architecture -363

o Description: Utilizes automated signals and
protocols to manage the synchronization and
transfer of data without human intervention.

o Example: Automatic handshaking protocols used in
modern communication systems like UART

(Universal Asynchronous Receiver/Transmitter) and

Ethernet.
Data Bus
Soumne Unkt Data Valid Destination
uc Data Accepted Unit

a) Block Diagram

Data bus <+—— Valid Data —.‘—
I
\
Data valid TN —7\
\\ -
Data Accepted i ~

b) Timing Diagram
Source Unit Destination Unit
Placedataonbus. | ——_
Enable data valid. ~*1 Accept data from bus.
|| Enable data Accepted
Disable data valid. |.—

Invalidate dataonbus. |— Disable data accepied.
| Ready to accept data.

- (Initial State)

c) Seqguence Diagram(Sequence of events)

Handshaking Protocols
o Handshake Protocol
o Description: A specific sequence of signals
exchanged between devices to establish a
communication link and ensure that both parties are
ready for data transfer.
o Process: Often includes phases like request,

acknowledgment, and data transfer.

e Three-Way Handshake

Computer Organization & Architecture -364

o

Description: A common handshaking protocol used
in TCP/IP networks to establish a connection
between two devices.

Process: Involves three steps—SYN (synchronize)
request, SYN-ACK (synchronize-acknowledge)
response, and ACK (acknowledge) to finalize the

connection.

Handshaking Mechanisms

e Start-Stop Handshaking

o

Description: Involves a start signal to initiate data
transfer and a stop signal to end the transfer. Often
used in serial communication.

Example: RS-232 serial communication uses start

and stop bits to frame data.

e Flow Control Handshaking

o

Description: Ensures that the sender does not
overwhelm the receiver with data. It involves
signals to control the rate of data transfer and
prevent buffer overflow.

Example: XON/XOFF (software flow control) and
RTS/CTS (Request to Send/Clear to Send) are flow

control mechanisms.

5. Handshaking Process

e Request for Data Transfer

o

Description: The sender requests permission to
transmit data. This request is often signaled by a
specific line or signal in the communication

protocol.
Computer Organization & Architecture -365

o

Example: A request signal in a UART

communication system.

e Acknowledgment

o

Description: The receiver acknowledges the
request, signaling that it is ready to accept data.
This acknowledgment confirms that both devices
are synchronized.

Example: An ACK (acknowledgment) signal in
TCP/IP.

o Data Transfer

o

Description: The actual data is transmitted between
the sender and receiver following successful
handshaking. Data transfer occurs only after
acknowledgment of readiness.

Example: Data packets in a network protocol are

transferred after the three-way handshake.

e Termination

o

o

Description: After data transfer, a termination
signal or sequence is used to end the
communication session. This ensures that resources
are released and no further data is transmitted.

Example: FIN (finish) signal in TCP/IP protocol.

Computer Organization & Architecture -366

Applications
e Serial Communication
o Description: Handshaking is used in serial
communication to ensure proper synchronization
and error-free data transfer.
o Example: UART handshaking for serial ports in

computers.

e Networking

o Description: Handshaking protocols are
fundamental in establishing and maintaining
network connections.

o Example: TCP three-way handshake for
establishing a reliable connection between network
devices.

o Peripheral Devices

o Description: Used to manage communication
between a computer and peripheral devices such as
printers, disk drives, and modems.

o Example: Handshaking in printer communication

protocols.

Advantages
e Reliable Data Transfer
o Description: Ensures that data is transmitted
accurately by confirming readiness and
synchronization between devices.

o Benefit: Reduces errors and data loss.

Computer Organization & Architecture -367

e Flow Control

o

Description: Manages the rate of data transfer,
preventing buffer overflow and ensuring smooth
communication.

Benefit: Prevents data loss due to overwhelming the

receiver.

Disadvantages

e Increased Overhead

o

Description: The handshaking process introduces
additional overhead due to the exchange of control
signals.

Impact: May reduce the efficiency of data transfer.

o Complexity

o

Description: Implementing and managing
handshaking protocols adds complexity to
communication systems.

Impact: Requires careful design and

implementation to ensure reliable operation.

11.7 CONCLUSION

In this unit, we delved into essential concepts of serial

communication, I/O controllers, and data transfer mechanisms

critical for computer system operations. Serial communication, a

method of transmitting data one bit at a time, plays a pivotal role in

connecting and managing peripheral devices with efficiency and

simplicity. Understanding I/O controllers' functions highlights their

crucial role in managing data exchange between the CPU and

Computer Organization & Architecture -368

external devices, ensuring smooth and orderly operations within a

computer system.

Asynchronous data transfer, which operates without a
synchronized clock signal, provides flexibility in communication
but requires effective management to ensure data integrity.
Techniques such as strobe control and handshaking protocols are
essential in coordinating data transfers, enhancing synchronization,
and minimizing errors. These mechanisms ensure that data is
transmitted and received accurately, reflecting their importance in
maintaining reliable communication between different system
components.

Overall, mastering these concepts equips one with the knowledge
needed to effectively manage and troubleshoot data
communication and device interfacing in modern computer
systems. Understanding these fundamental principles is crucial for

designing efficient and reliable computer systems and interfaces.

11.8 UNIT BASED QUESTIONS &
ANSWERS

1. What is serial communication, and how does it differ from
parallel communication?

Answer: Serial communication transmits data one bit at a time
over a single channel or wire, which makes it more suitable for
long-distance transmission due to reduced signal degradation and
interference. In contrast, parallel communication sends multiple
bits simultaneously across multiple channels or wires, which
allows for faster data transfer but is limited by issues such as signal

skew and crosstalk over longer distances.

Computer Organization & Architecture -369

2. What are 1/0 controllers, and what is their role in computer
systems?

Answer: /O controllers are specialized hardware components that
manage the communication between the CPU and peripheral
devices. They handle the data transfer operations, control signals,
and protocol conversions necessary for interfacing with devices
such as keyboards, printers, and storage drives. Their role is crucial
in ensuring efficient data exchange and processing between the

system’s central components and external peripherals.

3. Explain asynchronous data transfer and its advantages.

Answer: Asynchronous data transfer involves transmitting data
without a synchronized clock signal, meaning that data can be sent
at irregular intervals. This method allows for greater flexibility and
efficiency as it does not require a constant clock signal, which can
simplify design and reduce hardware requirements. However, it
requires additional mechanisms like handshaking to ensure proper

synchronization and error-free data transmission.

4. What is strobe control, and how does it facilitate data
transfer?

Answer: Strobe control is a technique used in data transfer where
a strobe signal is sent alongside the data to indicate the timing of
the data being transmitted. The strobe pulse informs the receiving
device that data is present on the data lines and should be read.
This method ensures that data is correctly captured and processed

at the right moment, preventing miscommunication and data loss.

Computer Organization & Architecture -370

5. Describe the concept of handshaking in data
communication.

Answer: Handshaking is a process used to establish a
communication protocol between two devices to ensure that data is
transferred reliably. It involves a series of signals or messages
exchanged between the sender and receiver to agree on parameters
such as data format, timing, and error-checking methods.
Handshaking ensures that both devices are synchronized and ready
to send or receive data, minimizing the risk of data loss or

corruption.

11.9 REFERENCES

e Floyd, Thomas L. Digital Fundamentals. Pearson
Education, 2015.

e Taub, Herbert, and Donald L. Schilling. Digital Integrated
Electronics. McGraw-Hill Education, 1994.

e Mano, M. Morris, and Michael D. Ciletti. Digital Design:
With an Introduction to the Verilog HDL. Pearson
Education, 2017.

e Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals
of Logic Design. Cengage Learning, 2013.

e Streetman, Ben G., and Sanjay Banerjee. Solid State
Electronic Devices. Prentice Hall, 2005.

e Hayes, John P. Introduction to Digital Logic Design.
Addison-Wesley, 1993.

Computer Organization & Architecture -371

BLOCK IV: PROCESS
ORGANIZATION

UNIT - 12: INTRODUCTION TO 8 BIT
AND 16 BIT INTEL
MICROPROCESSOR
ARCHITECTURE AND REGISTER
SET

Structure

12.0 Introduction

12.1 Objectives

12.2 Overview of Microcomputer Structure and Operation
12.3 8085 Microprocessor Introduction

12.4 8085 Architecture

12.5 Pin Diagram of 8085

12.6 Timing Diagrams

12.7 Summary

12.8 Questions

12.9 References

12.0 INTRODUCTION

Microcomputer: A personal computer or a computer that runs on a
microprocessor is referred to as a microcomputer. Microcomputers,
whether they be in the form of PCs, workstations, or laptop
computers, are intended for individual use. A microcomputer is
composed of a microprocessor, which is a CPU on a microchip, a
bus system, an I/O port array, and a memory system, which is

usually housed in a motherboard.
Computer Organization & Architecture -372

What is a Microprocessor?

* The word comes from the combination micro and processor.

— Processor means a device that processes numbers,
specifically binary numbers, 0’s and 1’s.

— Micro is a new addition.

— In the late 1960’s, processors were built using discrete
elements.

— These devices performed the required operation, but
were too large and too slow.

— In the early 1970°s the microchip was invented. All of
the components that made up the processor were now
placed on a single piece of silicon. The size became
several thousand times smaller and the speed became
several hundred times faster.

— The “Micro” Processor was born.

12.1 OBJECTIVE

In this unit, you will understand

Overview of Microcomputer Structure and Operation

To understand the fundamental concepts of microcomputer
structure and operation.

To gain insight into the 8085 microprocessor, including its
architecture and operational features.

To analyze the pin configuration and timing diagrams of
the 8085 microprocessor.

To appreciate the role of the 8085 microprocessor in the

context of modern computing.

Computer Organization & Architecture -373

12.2 OVERVIEW OF
MICROCOMPUTER STRUCTURE
AND OPERATION

Evolution of Microprocessors:

Intel released the 4004 and 8008 microprocessors, its first 4-bit and

8-bit microprocessors, respectively, in 1971 and 1972. These

microprocessors' performance and design restrictions prevented
them from being successful as general-purpose microprocessors.
1. Launched in 1974, the first general-purpose 8-bit
microprocessor, the 8080, was later modified and given
further functionality in 1977, making it a functionally
complete microprocessor. This was known as the 8085
MiCroprocessor.

2. The primary drawbacks of 8-bit microprocessors were their
poor speed, restricted amount of general purpose registers,
low memory addressing capacity, and weaker instruction
set.

3. The first member of the 16-bit microprocessor family to be

released in 1978 was Intel's 8086.

4004 8008 8080 8085 8086
Year 1971 1972 1974 1977 1978
No. of Bits 4 8 8 8 16
Technology PMOS |PMOS |[NMOS |NMOS | HMOS
MEMORY 4 KB 16 KB 64 KB IMB
INSTRUCTIO | 45 48 246
N SET
SPEED 50 KIPS

Computer Organization & Architecture -374

NO.

TRANSISTORS

OF | 2300 3500 4500 6500 29000

MICROPROCESSOR INTRODUCTION

Microprocessor: A CPU-containing silicon chip. Within the context

of personal computers, microprocessor and CPU are synonymous

concepts.

A microprocessor, frequently shortened to pP, is a single
semiconductor integrated circuit (IC) that contains
miniature transistors.

A computer system or portable device's central processing
unit (CPU) is usually one or more microprocessors.

The development of the microcomputer was made possible
by microprocessors.

A microprocessor is the central component of most
workstations and desktop computers. Almost all digital
devices, including clock radios and car fuel injection
systems, use microprocessors that manage their logic.
Microprocessors differ in three fundamental ways:

A microprocessor's instruction set is the collection of
commands it is capable of carrying out.

The amount of bits processed in a single instruction is
known as bandwidth.

Clock speed: The clock speed, expressed in megahertz
(MHz), dictates the number of instructions the CPU can
process in a second.

The CPU's power increases with the value in both
scenarios. A 32-bit CPU operating at S0OMHz, for instance,
has greater power than a 16-bit microprocessor operating at

25MHz.

Computer Organization & Architecture -375

12.3 8085 MICROPROCESSOR
INTRODUCTION

Intel intoduced the Intel 8085, an 8-bit microprocessor, in 1977.
Because it needed less auxiliary hardware and was binary
compatible with the more well-known Intel 8080, simpler and less
expensive microcomputer systems could be constructed. The
model number "5" was derived from the fact that the 8085 only
needed a +5-Volt (V) power supply, as opposed to the +5 V, =5V,
and +12 V supplies that the 8080 required. Key characteristics of
8085 uP are:
e It's a microprocessor with eight bits.
e Itis produced utilizing N-MOS technology.
e Because of its 16-bit address bus, it can access memory
locations through AO—A15, or 216 = 65536 bytes (64KB).
e ADO0-AD7 is the multiplex of the first eight address bus
lines and the first eight data bus lines.
e Data bus consists of 8 lines, DO through D7.
e External interrupt requests are supported.
e A 16-bit stack pointer (SP) with a 16-bit program counter
(PC)
e Six general purpose registers with eight bits each, paired
off as BC, DE, and HL.
e It runs at 3.2 MHZ single phase clock and needs a signal
+5V power supply.
e It has 40 DIP (Dual in line package) pins enclosed.

Computer Organization & Architecture -376

12.4 8085 ARCHITECTURE

As seen in Fig. 1, 8085 is made up of several units, each of which
carries out a specific duty. The following is a list of a
microprocessor's different units.

e Program counter

e Stack pointer

¢ Timing and Control unit

e Interrupt control

e Temporary register

e Accumulator

e Arithmetic and logic Unit

e Address buffer and Address-Data buffer

e Address bus and Data bus

e General purpose register

e Flags

e Instruction register and Decoder

Figure: 8085 Architecture

e Accumulator: A register that can store 8-bit data is all an

Accumulator is.
Computer Organization & Architecture -377

Accumulator makes it easier to store two quantities
simultaneously. An accumulator stores the data that will be
pjrocessed by an arithmetic and logic unit. The outcome of the
operation performed by the Arithmetic and Logic unit is likewise
stored there. An 8-bit register is another name for the accumulator.
The ALU (arithmetic and logic unit) and Internal Data Bus are
connected to the accumulator. The Internal Data Bus can be

utilized to transmit and receive data through the accumulator.

e Arithmetic and Logic Unit
Arithmetic operations such as +, -, *, and /, as well as logical
operations such as AND, OR, NOT, and so forth, are always
required. Thus, the creation of a distinct unit capable of carrying
out these kinds of tasks is required. The Arithmetic and Logic Unit
(ALU) handles these functions. These procedures are carried out
via ALU on 8-bit data. However, without an input (or) set of data
on which to perform the intended operation, these operations
cannot be carried out. Where do these inputs come from then to get
to the ALU? An accumulator is utilized in this situation. The
accumulator and temporary register provide the input for the ALU.
Once the required processes have been completed, the outcome is

returned to the accumulator.

e General Purpose Registers
Six unique register types known as General Purpose Registers
make up 8085, aside from the accumulator. As with other registers,
data is stored in these general-purpose registers. The 8085
processors have the following general-purpose registers: B, C, D,

E, H, and L. A register can store up to 8 bits of data. These

Computer Organization & Architecture -378

registers can be used in pairs to store 16-bit data in addition to the
previously mentioned function.

To hold 16-bit data, they can function in pairs like B-C, D-E, and
H-L. As a memory pointer, the H-L pair is functional. An
individual memory location's address is stored in a memory

pointer. In their pairwork, they are able to store 16-bit addresses.

e Program Counter and Stack Pointer
Program counter is a special purpose register. Consider that an
instruction is being executed by processor. As soon as the ALU
finished executing the instruction, the processor looks for the next
instruction to be executed. So, there is a necessity for holding the
address of the next instruction to be executed in order to save time.
This is taken care by the program counter. A program counter
stores the address of the next instruction to be executed. In other
words, the program counter keeps track of the memory address of
the instructions that are being executed by the microprocessor and
the memory address of the next instruction that is going to be
executed. Microprocessor increments the program whenever an
instruction is being executed, so that the program counter points to
the memory address of the next instruction that is going to be
executed. Program counter is a 16-bit register. Stack pointer is also
a 16-bit register which is used as a memory pointer. A stack is
nothing but the portion of RAM (Random access memory). So,

does that mean the stack pointer points to portion of RAM?

Yes. The address of the most recent byte added to the stack is kept
track of by the stack pointer. The stack pointer is decreased each
time data is added to the stack. On the other hand, when data is

taken out of the stack, it is increased.

Computer Organization & Architecture -379

Temporary Register During arithmetic and logical processes, this
register serves as a temporary memory, as its name implies. This
temporary register is totally inaccessible to programmers and is
solely accessible by the microprocessor, in contrast to other

registers. An 8-bit register is a temporary register.

Flags All that Flags are is a collection of single Flip-flops. The
flags are mostly connected to operations in logic and arithmetic.
Depending on the data conditions in the accumulator and other
registers, the flags will display a logical (0 or 1), or a set or reset.
In reality, a flag is just a latch that can store data. It notifies the

processor that an event has occurred.

D7 | De | Ds | Da | D3 | D2 | D1 | Do
S Z e P (¢

Figure: Flag Register
Intel processors have a set of 5 flags.
1. Carry flag
2. Parity flag
3. Auxiliary carry flag
4. Zero flag
5. Sign flag

Consider two binary numbers.

For example

1100 0000

1000 0000

The most significant bit generates a carry when the two values
above are added. The most significant bit is the number on the
extreme left, and the least significant bit is the number on the

Computer Organization & Architecture -380

extreme right. Thus, the carry results in the generation of a ninth

bit. Then, how can the ninth bit be used in an eight-bit register?

This is the use of the Carry flag. Every time a carry is generated,
the carry flag is set; it is reset when there isn't a carry. However, is
there a backup carry flag? What distinguishes an auxiliary carry

flag from a carry flag?

Let's use an illustration to explain. Take a look at the two numbers
below.

0000 1100

0000 1001

The fourth bit from the least significant bit generates a carry when
we add the two values. Auxiliary carry flag is set as a result. The
secondary carry flag is reset in the event that there is no carry. The
carry flag is thus set whenever there is a carry in the most
important bit. Conversely, a carry that is created in bits other than
the most significant bit only results in the setting of an auxiliary

carry flag.

Parity adds parity or tests to see if it's even. In the event of odd
parity, this flag returns a 0, while in the event of even parity, it
returns a 1. They are also known by the name parity bit, which is

sometimes used to detect faults in data transfer.

The zero flag indicates if the operation's output is zero or not. The
outcome of the operation is not zero if the Zero flag's value is 0.
The flag returns value 1 if it is zero.

A positive or negative sign is indicated by the sign flag in the

operation's output. When a sign is positive, 0 is returned, and when
Computer Organization & Architecture -381

it is negative, 1 is returned.

e Instruction Register and Decoder
Like all other microprocessor registers, the instruction register is
an 8-bit register. Think of a directive. The instructions could be
anything from copying a data to moving a data or adding two data,
among other things. An instruction of this type is sent to the
instruction register when it is retrieved from memory. Thus, the
purpose of the instruction registers is to hold the instructions that
are retrieved from memory. The data contained in the instruction
register is decoded by an instruction decoder so that it can be

processed further.

e Timing and Control Unit

Because it synchronizes the registers and data flow through many
registers and other units, the timing and control unit is a crucial
component of the system. This unit transmits control signals
required for both internal and external control of data and other
units. It is composed of an oscillator and a controller sequencer.
The oscillator produces two-phase clock impulses that help the
8085 microprocessor's registers all synchronize.

The following signals are connected to the timing and control unit:
Signals of Control: RD', WR', ALE

ALE serves as a control signal to synchronize the microprocessor's

components and timing for instructions.

e Carry out the procedure.
To show whether an operation is reading data from memory or
writing data into memory, two indicators are used: RD (Active

low) and WR (Active low).

Computer Organization & Architecture -382

Status Signals: S0, S1, IO/M’
IO/M (Active low) is used to indicate whether the operation

belongs to the memory or peripherals.

10/M’ (Active Low) | S1 | S2 | Data Bus Status (Output)
0 0 | 0 | Halt
0 0 | 1 | Memory WRITE
0 1 0 | Memory READ
1 0 | 1 | IOWRITE
i 1 | 0 | 10 READ
0 1 1 | Op code fetch
1 1 1 | Interrupt acknowledge

Figure: Table — Status signals and the status of data bus

e DMA Signals: HOLD, HLDA, READY
HOLD: Denotes a request for address and data bus usage from
another master. The CPU will give up bus usage as soon as the
current bus transfer is finished after receiving the hold request.
Internal processing is now complete. The CPU can only recover
the bus once the HOLD is released. The Address, Data RD, WR,
and IO/M' lines are tri-stated when the HOLD is acknowledged.

Hold Acknowledgment (HLDA): This indicates that the CPU has
received the HOLD request and will release the bus in the
subsequent clock cycle. After the Hold request is withdrawn,
HLDA decreases. After the HLDA drops low, the CPU takes the

bus for one half-clock cycle.

READY: This signal brings the slow peripherals and fast CPU into
sync. The memory or peripheral is prepared to send or receive data
if READY is high during a read or write cycle. Before finishing the

read or write cycle, the CPU will wait an integral number of clock
Computer Organization & Architecture -383

cycles for READY to reach high if it is low. READY has to follow
the setup and hold times given.

e Reset Signals: Reset in, Reset out

RESET IN: This pin's low point;
e Zeroes out the program counter (0000H).
e Resets the HLDA flip-flops and interrupt enables.
e The data bus, address bus, and control bus are tri-stated.
e Randomly modifies the contents of the internal registers of
the CPU.
The 8085 executes the first instruction from address 0000H when

the Program counter is set to 0000h upon reset.

RESET OUT: The processor is being reset, as indicated by this
active high signal. This signal can be used to reset other system-

connected devices and is synced with the processor clock.

e Interrupt control
This control stops a process, as its name implies. The main
program is being run by a microprocessor, consider. Currently, the
microprocessor switches over to handle incoming requests when
the interrupt signal is activated or requested. Once the request is
processed, the microprocessor returns control to the main program.
To indicate that the data is prepared for entry, an input/output

device can, for instance, emit an interrupt signal.

The microprocessor gives the I/O device control while
momentarily stopping the main program's execution. The control is

returned to the main program once the input data has been

Computer Organization & Architecture -384

collected. The following interrupt signals are found in 8085: INTR,
RST 7.5, RST 6.5, and RST 5.5.

o Mask able 8080A compatible interrupt, or TRAP INTR.
When an interrupt happens, the CPU retrieves one
instruction—typically one of the following instructions—
from the bus: One of the eight RST commands (RSTO-
RST7). The CPU branches to memory address N * 8, where
N is a 3-bit number between 0 and 7 that is given with the
RST instruction, and saves the current program counter into
the stack.

o Call instruction (3-byte instruction). Calling the subroutine
from the processor where the instruction's second and third
bytes specify the address of.

o Mask able interrupts are like RSTS.5. Upon receiving this
interruption, the Hexadecimal address 2CH is where the
processor branches after saving the contents of the PC
register into a stack.

o Mask able interrupts are like RST6.5. Upon receiving this
interrupt, the CPU branches to the 34H (hexadecimal)
address and stores the contents of the PC register in the
stack.

o Mask able interrupts are like RST7.5. Upon receiving this
interrupt, the CPU branches to the 3CH (hexadecimal)
address and stores the contents of the PC register in the
stack.

o Non-mask able interrupts are like TRAP. Upon receiving
this interrupt, the CPU branches to the 24H (hexadecimal)
address and stores the contents of the PC register in the

stack.

Computer Organization & Architecture -385

o With the use of EI and DI commands, all maskable
interrupts can be activated or disabled. SIM instructions
can be used to independently enable or disable RSTS.5,
RST6.5, and RST7.5 interrupts.

Serial Input/output control
The input and output of serial data can be carried out using 2
instructions in 8085.

e SID-Serial Input Data

e SOD-Serial Output Data

Two more instructions are used to perform serial-parallel
conversion needed for serial I/O devices.

e SIM

e RIM

Address buffer and Address-Data buffer

The address buffer and address-data buffer are filled with the
contents of the program counter and stack pointer. The address-
data bus and external address bus are then driven by these buffers.
The CPU may exchange desired data with the memory and 1/O

chips since they are connected to these busses.

The internal data bus, which has eight bits, and the external data
bus are both connected to the address-data buffer. Data from the

internal data bus can be sent and received via the address data

buffer.

Computer Organization & Architecture -386

Data bus and the Address Bus

It is known that the 8085 microprocessor has eight bits.
Consequently, the microprocessor's data bus has an 8-bit width.
Thus, eight bits of data can be sent. Either to or from the CPU.
However, because memory addresses are 16 bits wide, the 8085
CPU needs a 16-bit address bus. The eight most important
components of the address bus is used to communicate addresses,
while the multiplexed address/data bus is used to transmit the eight
least significant bits. The eight least significant bits of the address
bus are multiplexed with the eight-bit data bus.

The data bus and address bus are time multiplexed. This indicates
that the data is created by the same pin for a few seconds after the
eight least significant bits of the address are generated for a few
microseconds. We refer to this as time multiplexing. However,
there are instances in which it's necessary to send data and an
address at the same time. The signal known as ALE (address latch
enables) is utilized for this purpose. The address is also available at
the output latch when the CPU sends the data again because the
ALE signal retains the received address in its latch until the data is

obtained. We refer to this method as Address/Data demultiplexing.

12.5 PIN DIAGRAM OF 8085

The signals can be grouped as follows
Power supply and clock signals
Address bus

Data bus

Control and status signals

Interrupts and externally initiated signals

AR e

Serial I/O ports

Computer Organization & Architecture -387

8085 Microprocessor PIN Diagi

+5V GND

1] 2 o |20

X, —e={1 } Vee Serial [SD s | x1 x2 .
Xy —w{]2 ja— HOLD Vo< sog 4| A15 fiigha
Reset out <a—{|3 }—s HLDA Part | 1ghg
SOD -a—{]4 }—a CLK (out) Add
SID —={]5 j«a Resetin TRAP, £ H
Trap -a—{|6 j-a Ready ‘ RSTZ5 7]
RST75 -7 o 1O/ Externally) rsT6s &l
RST 6.5 -—{|8 33 s, '::;':Zf,a\ RSTEE O,
RSTSS -0 < 32| - Vpp _ INTR 19
INTR —s={j10 B 31— RD 8085A =
INTA --—{]11 § 30(1—» WR READY 33 AD7|
AD, - wi]12 29(1—» Sg HOLD, 33
AD, -aw{]13 281 Aqs RESET_IN 38| apg],
AD, -w{]14 27— A
AD, --»{]15 26[—» Ay a
AD, w»{]16 25(1—= A2 I2a

Power supply and Clock frequency signals

e Vcc + 5-volt power supply

e Vss Ground

e X1, X2: Crystal or R/C network or LC network connections
to set the frequency of internal clock generator. The
frequency is internally divided by two. Since the basic
operating timing frequency is 3 MHz, a 6 MHz crystal is
connected externally.

e CLK (output) — Clock Output is used as the system clock
for peripheral and devices interfaced with the

MiCroprocessor.

Address Bus and Data Bus

ADO-AD7: These are data bus and address multiplexed. Therefore,
in addition to carrying data, it can also carry a lower order 8-bit
address. Usually, the Latch is used to demultiplex these lines. The
lines deliver the lower order address bus A0-A7 in the first clock
cycle of the opcode fetch operation. It serves as data bus D0-D7 in

the IO/M read or write that follows. Data can be read or written by

Computer Organization & Architecture -388

the CPU over these lines. Address buses A8 through A15 are used

to address memory locations.

Instruction Set

The following five functional headings apply to the 8085

instruction set.

Data Transfer Instructions: Instructions for moving
(copying) data between registers or between memory
locations and registers are included in the Data Transfer
Instructions. Not a single data transfer transaction modifies
the contents of the source register. As a result, data
transport is a copying process.

Arithmetic Instructions: Contains instructions for
performing operations such as addition, subtraction,
increment, and decrement. Following the execution of an
instruction in this group, the flag conditions are changed.
Logical Instructions: This category includes instructions
that carry out logical operations such as AND, OR,
EXCLUSIVE-OR, complement, compare, and rotate.
Following the execution of an instruction in this group, the
flag conditions are changed.

Branching Instructions: This category includes
instructions used to move the program's control from one
memory region to another.

Machine Control Instructions: Contains instructions for

stopping program execution and for handling interruptions.

Data Transfer Instructions

These instructions transfer information from memory to

registers or between registers and memory.

Computer Organization & Architecture -389

MOV
MVI

LDA
LDAX
LXI
STA
STAX
XCHG

These instructions replicate information from one location
to another.
The contents of the source are not altered throughout the

copying process.

I])01

Rd, Rs

Copy from source to destination.
M, Rs
Rd, M
Rd, Data Move immediate 8-bit
M, Data
16-bit address Load Accumulator
B/D Register Pair Load accumulator indirect
Reg. pair, 16-bit data Load register pair immediate
16-bit address Store accumulator direct
Reg. pair Store accumulator indirect
None Exchange H-L with D-E

Arithmetic Instructions

These instructions perform arithmetic operations such as addition,

subtraction, increment, and decrement.

Opcode | Operand Description
ADD :; Add register or memory to accumulator
ADC II; Add register or memory to accumulator with carry
ADI 8-bit data | Add immediate to accumulator
ACI 8-bit data | Add immediate to accumulator with carry
SUB :1 Subtract register or memory from accumulator
Sul 8-bit data | Subtract immediate from accumulator
INR :; Increment register or memory by 1
INX R Increment register pair by 1
DCR Il:; Decrement register or memory by 1
DCX R Decrement register pair by 1

Logical Instructions

These instructions perform various logical operations with the

contents of the accumulator.

Computer Organization & Architecture -390

Opcode Operand Description
R

CMP M Compare register or memory with accumulator
CMP 5[Compare register or memory with accumulator
CPI 8-bit data = Compare immediate with accumulator
ANA 5[Logical AND register or memory with accumulator
ANI 8-bit data Logical AND immediate with accumulator
XRA 5[Exclusive OR register or memory with accumulator
ORA 3 Logical OR register or memory with accumulator
ORI 8-bit data Logical OR immediate with accumulator
XRA 5[Logical XOR register or memory with accumulator
XRI 8-bitdata XOR immediate with accumulator

Branching Instructions
This group of instructions alters the sequence of program

execution either conditionally or unconditionally.

Opcode Operand Description
JMP 16-bit address Jump unconditionally
Jx 16-bit address = Jump conditionally

Machine Control Instructions

These instructions control machine functions such as Halt,

Interrupt, or do nothing.

Opcode Operand Description
HLT None Halt
NOP None No operation

The interrupt enable flip-flop is set and all interrupts are

- IS enabled. No flags are affected.
DI None The interrupt enable flip-flop is reset and all the interrupts
except the TRAP are disabled. No flags are affected.
SIM — This is a multipurpose instruction and used to implement the
8085 interrupts 7.5, 6.5, 5.5, and serial data output.
This is a multipurpose instruction used to read the status of
RIM None

interrupts 7.5, 6.5, 5.5 and read serial data input bit.

Computer Organization & Architecture -391

D, Di Ds D, D; D, D, Dy
[SID[17 [16 [I5 [IE [7.5]6.5]|5.5]

[
Serial input J Interrupt
data bit masked if
bit = 1
Interrupts Interrupt enable
pending if flip-flop is set
bit = 1 if bit = 1

Figure: SIM Instruction
D, Dy Ds D, D, D, I

[SOD | SDE | XXX [R7.5 [MSE [M7.5| M
.
Serial output data Reset R7.5 Masks |
if Dy = 1 if bits =
Serial data enable Mask set
e B S annkla f

Figure: RIM Instruction

Addressing Modes
A program's instructions must all function with data. The process
of defining the data that an instruction is to operate on is known as
addressing. The 8085 is equipped with five distinct addressing
types.

e IMMEDIATE ADDRESSING

e Direct Addressing Method

e Register Addressing -

e Register Indirect Addressing.

e Implied Addressing

Immediate Addressing
The data is given in the instruction itself when using immediate
addressing mode. The information will be included in the

program's instructions.

Computer Organization & Architecture -392

Move the data indicated in the instruction, 3EH, to the B register
(EX. MVI B, 3EH); LXI SP, 2700H.

Direct Addressing

The instruction contains the address of the data in direct addressing
mode. It will be stored in memory. Data and program instructions
can be kept in separate memory locations when using this
addressing technique.

For example, LDA 1050H loads the data into the accumulator at
memory address 1050H; SHLD 3000H.

Register Addressing.

When using register addressing mode, the instruction identifies the
register that contains the data.

For example, SPHL; ADD C; MOV A, B - Transfer the contents of

B register to A register.

Register Indirect Addressing
In this style of instruction, the address of the data is available in a
register named after the instruction. In this case, the address will be

in the register pair while the data will be in memory.

MOV A, M - This moves the memory data addressed by the H L
pair to register A. LDAX B.

Implied Addressing
When using implied addressing mode, the data to be operated is
specified right in the instruction itself. For example, CMA -

Enhance the accumulator's content; RAL

Computer Organization & Architecture -393

12.6 TIMING DIAGRAMS

A timing diagram shows when read/write and transfer of data
operations begin, with three status signals—IO/M', S1, and SO—
controlling the process. Numerous clock cycles make up each
machine cycle. Since both the data and the instructions are kept in
memory, the P uses a fetch operation to read the data and then the
instruction before executing it. The IO / M', S1 and SO status

signals are generated at the start of every machine cycle.

These three distinct status signals work together to uniquely
identify read or write operations, and they are valid for the entire
cycle. Therefore, the clock period is used to determine how long it
takes any uP to complete a single instruction. To transport data to
or from the uP, memory, or I/O devices, read and write operations
are always necessary for the execution of an instruction. Each
read/write operation results in one cycle of the machine. T-states,

or several clock periods/cycles, make up each machine cycle.

Leading edge Lagging edge

4— State-1 —b-q- State-2 -b-1- State-3 -D-1- State-4 -b-1- State-5 +-1— State-6 -b-1

4 CLK Period F
Figure: Machine cycle showing clock periods

The clock cycle governs every single process that takes place
inside the microprocessor. The clock signal controls how long it
takes the CPU to complete an instruction. The difference in time
between the clock's two leading or trailing edges is known as the
state. The amount of time needed to move data to and from

memory or I/O devices is called a machine cycle.
Computer Organization & Architecture -394

Five basic machine cycles make up the 8085 microprocessor.
They're

e Opcode fetch cycle (47)

e Memory read cycle (3 T)

e Memory write cycle (3 T)

e [/Oreadcycle (3T)

e [/O write cycle (3 T)

Processor Cycle

The fetch and execute cycles of each program instruction make up
the microprocessor's function. All that a program consists of is a
sequence of instructions kept in memory. The microprocessor
normally fetches, receives, or reads instructions and then proceeds
to execute each one sequentially until it reaches the halt (HLT)

command.

The time needed to retrieve and execute an instruction is therefore
defined as an instruction cycle. With the use of clocks, any
program is essentially executed in two steps at a time.

e Fetch

e Execute.

The term "fetch and execute cycle" refers to how long it takes the
uP to complete the fetch and execute activities. As seen in Fig., the

instruction cycle is thus the total of the fetch and execute cycles.

Instruction Cycle (IC) = Fetch cycle (FC) + Execute Cycle (EC)

T e T, e Ty, e T, —— T, —h— T, —ie

4— Fetch cycle (FC) e Execute cycle

Computer Organization & Architecture -395

Figure: Processor cycle
Every instruction starts with an Opcode fetch cycle, during which
the processor determines what kind of instruction it is. It has a

minimum of four states. It might reach six states.

The processor learns the type of instruction to be performed during
the opcode fetch cycle. During the first cycle (M1), the processor
loads the contents of the program counter into the address bus and
uses the read process to read the instruction's opcode. The basic
memory read operation uses the T1, T2, and T3 clock cycles; the
opcode is interpreted starting with the T4 clock and up. These
interpretations let the uP determine what kind of further data or
information is required to carry out the instruction, and it then
moves on to read and write memory for one or two machine

cycles.

Instruction Fetch (FC): During the fetch, a single, double, or
triple-byte instruction is taken out of the memory locations and

placed in the instruction register of the P

Instruction Execute (EC): During the execution stage, the

instruction is decoded and translated into particular actions.

Opcode Retrieve Reading data from memory is the first stage in a
communication process between the microprocessor and memory.
We refer to this reading procedure as "opcode fetch." Opcode fetch
operation is the first machine cycle (M1) of each instruction and
requires a minimum of four clock cycles, T1, T2, T3, and T4. The
machine cycle uses the status signals 10/ M, S1, and SO to

distinguish between the data byte related to an address and an
Computer Organization & Architecture -396

opcode. Opcode fetch action is indicated by S1 = SO = 1, while
memory operation is indicated by I0/M = 0.

There are four states in the opcode fetch machine cycle M1 (T1,
T2, T3, and T4).
The byte is fetched (transferred) from memory using the first three

states, and it is decoded using the fourth state.

Example
Fetch the 41H byte that is kept at memory address 2105H.
The CPU has to locate the byte's storage location in memory
before it can be fetched. Next, establish a condition (control) for
the data transfer between the microprocessor and memory. Figs.
5.3(a), (b), and (c) depict the fetch operation's timing diagram and
data flow mechanism. The following sequence describes how the
uP retrieves the instruction's opcode from memory.
e A low IO/M' indicates that the CPU is trying to talk to
memory.
e To indicate a fetch operation, the uP delivers a high on
status signals SO and S1.
e The pP transmits a 16-bit address. The address for the AD
bus is T1, the first clock of the first machine cycle.
e When ALE = 1, the AD7to ADO address is latched in the
external latch.
e Data can now be carried by AD bus.
e To allow read operation of the memory, the RD control
signal drops in T2.
e Opcode is placed on the AD bus by the memory.
e After being entered into the data register (DR), the data is

moved to the information register (IR).

Computer Organization & Architecture -397

e During T3, memory is disabled and the RD signal rises.

e The opcode is submitted for decoding during T4 and is
decoded in T4.

e If the instruction consists of a single byte, the execution is
also finished in T4.

e For instructions with two or three bytes, more machine
cycles are required. The purpose of machine cycle M1 is to
retrieve the opcode. The M2 and M3 machine cycles are
necessary for reading and writing data, as well as for

addressing memory and I/O devices.

Memory and I/0 Read Cycle

The CPU uses the memory read machine cycle to read a data byte
from memory. For the CPU to complete this cycle, 3T states are
needed. Following the opcode fetch machine cycle, instructions

with word sizes larger than one byte will utilize the machine cycle.

«— T —>e— T; —p¢— T3 —>e¢— Ty —>e

x| LI I LI

10/ M —
>< IO/ M=0,S,=1,8g*

S1rSO_'
At1s —

>< PCh=A15 < Ag >< Unspeci
Ay —|

AD; —
PCL D? = Dg
ADU AD;<>AD, Data P
— \

Computer Organization & Architecture -398

Figure: Memory Read Cycle

“«— T —>e—T; —pt— T3 —pt— Ty —>e—

woim_" | :

Figure: I/0 Read Cycle

On the first low going transition of the clock pulse, the low order
address (AD7 < ADO0) and high order address (415 < A8) are
asserted. Fig. displays the IO/M read timing diagram. For the
remainder of the bus cycle, or T1, T2, and T3, the 415 < A8 are
still valid, but AD7 < ADQ are only valid in T1. It needs to be
stored for usage in the T2 and T3 since it needs to be valid for the
entire bus cycle. Every bus cycle's T1 begins with the assertion of
ALE and ends with its negation. ALE is utilized as the clock pulse
to latch the address (AD7<ADO0) during T1 and is only active
during T1. Near the start of T2, the RD is declared. It concludes at
T3's end. Upon activation, the RD compels the memory or I/O port
to assert data. As T3 comes to a conclusion, RD' becomes inactive,

which causes the port or memory to stop the data.

Memory and I/0O Write Cycle

The processor asserts data on the address/data bus at the start of the
T2, right after the low order address terminates.

WR' control is turned on close to the beginning of T2 and turns off

at the conclusion of T3. The processor keeps up current data till

Computer Organization & Architecture -399

AA: :>< F;CH =Ais= AB Unspecified><

T O Y . .

N N T
Vo : ;

WR's termination. This guarantees that when WR' is active, the
memory or port contains valid data. Figures show that in the case
of the READ bus cycle, data appears on the bus as a result of RD's
activation, and in the case of the WR' bus cycle, valid data is on the

bus for a longer period of time than WR' is active.

«— T —>et—T; —pet— T3 —pe—

e | L[L[1
2;:>< S1=0,S0=1
10/ M _\

AA: :>< PCh = A5 <= Asg
237 — AD; <> ADg < D; < Do Data >
0 _. :
— T N

Figure: Memory Write Cycle

«— Ty —pete—T; —pat— T3 —p=

N I
z;:>< S;1=0,S0=1

10/ M __
Aqs
PCH =A15<= A
s _>< H 15 8
AD7
7 ><AD7«>ADc>....< D7 <> Dg Data >
ADn | PC, Data
()

Figure: I/0 Write Cycle

Computer Organization & Architecture -400

— My (Opcode fetch) _—

— Ti—pe— T, —pt— T3 —pt— Ty —pt— T —p— T —p4+— T; —»
ST/ [S S
10/M— —— T T
10/M=0,81=1=S;
$1,So
Ats ¥
i PCy=21H ! Unspecifed
As
ALE — ¥
AD7
PCy = 05H
ADgy / \

Figure: Opcode Fetch

12.7 SUMMARY

The 8085 Microprocessor, introduced in the early 1970s, is a prime
example of the 8 Bit and 16 Bit Intel Microprocessor Architecture
and Register set. This architecture allows for faster and smaller
processors, with key characteristics including a 16-bit address bus,
16-bit stack pointer, 16-bit program counter, six general-purpose

registers, and 3.2 MHZ single-phase clock.

The 8085 processors consist of several units, including a program
counter, stack pointer, timing and control unit, interrupt control,
temporary register, accumulator, arithmetic and logic unit, address
buffer, address-data buffer, address bus and data bus, general-
purpose register, flags, instruction register, and decoder. The
instruction register holds instructions retrieved from memory and

is decoded by an instruction decoder for further processing.

Interrupt control is crucial for the microprocessor, allowing it to
stop a process and return control once the main program has been
executed. In the 8085 microprocessor, two instructions are used:

SID-Serial Input Data and SOD-Serial Output Data. The address

Computer Organization & Architecture -401

buffer and address-data buffer are filled with the contents of the
program counter and stack pointer, allowing the CPU to exchange

desired data with memory and I/O chips.

The 8085 instruction set consists of five functional headings: Data
Transfer Instructions, Arithmetic Instructions, Logical Instructions,
Branching Instructions, and Machine Control Instructions. These
instructions transfer information from memory to registers or
between registers and memory, perform operations like addition,
subtraction, increment, decrement, and branching instructions, and

control machine functions like Halt, Interrupt, or do nothing.

The 8085 microprocessor has five addressing modes: Immediate
Addressing, Direct Addressing, Register Addressing, Register
Indirect Addressing, and Implied Addressing. It uses data in
instructions, stores it in memory, identifies the register containing
data, and specifies the data to be operated. The microprocessor
consists of five basic machine cycles: opcode fetch cycle (4T),
memory read cycle (3 T), memory write cycle (3 T), I/O read cycle
(3 T), and I/O write cycle (3 T). Each instruction is a sequence of
instructions stored in memory, executed sequentially until the halt
(HLT) command is reached. The opcode fetch cycle determines the
type of instruction and uses the read process to read the

instruction's opcode.

Computer Organization & Architecture -402

12.8 QUESTIONS

1. What are the key components of the 8085 microprocessor
architecture?

Answer: The key components of the 8085 microprocessor
architecture include the Arithmetic Logic Unit (ALU), register
array, instruction decoder, and control unit. The ALU performs
arithmetic and logical operations, the register array stores data and
instructions, the instruction decoder interprets instructions, and the

control unit manages the execution of instructions.

2. How many pins does the 8085 microprocessor have and what
are the key pins?

Answer: The 8085 microprocessor has 40 pins. Key pins include
Vee (power supply), GND (ground), address/data buses, control
signals such as RD (Read), WR (Write), and IRQ (Interrupt
Request), and the clock pin.

3. What is the purpose of the address/data bus in the 8085
microprocessor?

Answer: The address/data bus in the 8085 microprocessor is used
for both addressing memory and transferring data. The bus is
multiplexed, meaning that it functions as both an address bus and a

data bus at different times during the microprocessor’s operation.

Computer Organization & Architecture -403

4. What is the significance of timing diagrams in the context of
the 8085 microprocessor?

Answer: Timing diagrams are significant as they illustrate the
relationships between various control signals and operations of the
8085 microprocessor. They help in understanding the timing
requirements for instruction fetch, memory read/write, and /O

operations, ensuring correct synchronization and operation.

5. Explain the function of the Arithmetic Logic Unit (ALU) in
the 8085 microprocessor.

Answer: The Arithmetic Logic Unit (ALU) in the 8085
microprocessor is responsible for performing arithmetic operations
(such as addition and subtraction) and logical operations (such as
AND, OR, and XOR). It is a crucial component that enables the
microprocessor to carry out computations and decision-making

processes.

Computer Organization & Architecture -404

12.9 REFERENCES

e "The 8085 Microprocessor: Architecture,
Programming, and Interfacing" by K. Udayakumar and
M. R. S. Srinivas: This book offers a comprehensive guide
to the 8085 microprocessor, including architecture,
programming, and interfacing techniques.

e "Microprocessor Architecture, Programming, and
Applications with the 8085" by Ramesh S. Gaonkar: This
book provides detailed explanations of the 8085
microprocessor architecture and programming, with
practical examples and applications.

e "Computer Organization and Design: The
Hardware/Software Interface" by David Patterson and
John Hennessy: This book covers fundamental concepts in
computer organization and architecture, including memory
hierarchy and I/O systems.

e "Computer Architecture: A Quantitative Approach" by
John L. Hennessy and David A. Patterson: A
comprehensive text on computer architecture that includes
detailed discussions on memory systems, cache
architecture, and performance metrics.

e "Structured Computer Organization" by Andrew S.
Tanenbaum: This book provides an introduction to
computer architecture and organization, including

discussions on memory, I/O systems, and processors.

Computer Organization & Architecture -405

UNIT-13: ASSEMBLY LANGUAGE
PROGRAMMING BASED ON INTEL
8085; INSTRUCTIONS: DATA
TRANSFER, ARITHMETIC, LOGIC

13.1 Introduction

13.2 Objectives

13.3 Simple Assembly Programs

13.4 Memory Interfacing

13.5 Overview: 8085 Programming model
13.6 Instruction set of 8085

13.7 Writing Assembly Language Program
13.8 Summary

13.9 Questions

13.10 References

13.1 INTRODUCTION

After covering directives, program development tools, and
Input/Output in assembly language programming, let's delve
deeper into assembly language programs. This unit will begin by
exploring simple assembly programs, which handle basic tasks
such as data transfer, arithmetic operations, and shifts. A
fundamental example includes determining the larger of two
numbers. Subsequently, we'll progress to more intricate programs
demonstrating the use of loops and various comparisons to
accomplish tasks such as code conversion, character coding, and
finding the largest value in an array. Additionally, this unit delves

into more advanced arithmetic and string operations, as well as
Computer Organization & Architecture -406

modular programming. For further details on these programming

concepts, additional readings are recommended.

13.2 OBJECTIVES

After going through this unit, you should be able to:
e create assembly programs that include shift, logical, and
basic arithmetic operations;
e implement loops;
e build different comparison functions using comparisons;
e create basic assembly programs to convert codes;
e create basic assembly programs to use arrays;
e describe how to use a stack when passing parameters; and

e Employ assembly language for modular programming

13.3 SIMPLE ASSEMBLY PROGRAMS

The 0—1 combinations that the computer decodes directly make up
machine language code. However, the following issues with the
machine language exist:
e Writing in 0-1 forms is challenging for most individuals
and heavily relies on the computer.
e Debugging is challenging.
e The machine code is incredibly hard to decipher. As a

result, it will be difficult to understand program logic.

Computer manufacturers have created English-like terms to
describe a machine's binary instruction in order to get around these
problems. A mnemonic is a symbolic code that corresponds to each

instruction. A specific instruction's mnemonic is made up of letters

Computer Organization & Architecture -407

that allude to the task that the instruction is supposed to complete.

The ADD mnemonic, for instance, is used to add two numbers.

Machine language instructions can be written in symbolic form

using

these mnemonics, with one corresponding symbolic

instruction for each machine instruction. We refer to this as an

assembly language.

Advantages and disadvantages of using assembly language:

Advantages:

1)

2)

3)

4)

Assembly language provides extensive control over
specific hardware and software components, enabling in-
depth exploration of instruction sets, addressing modes,
interrupts, and more.

Programs written in assembly generate smaller, more
compact executable modules due to their close proximity to
the machine. This proximity allows for the creation of
highly optimized programs, resulting in faster execution.
Assembly language programs tend to be at least 30%
denser than equivalent programs written in high-level
languages. This density arises from the fact that compilers
often produce lengthy code sequences for each instruction,
whereas assembly language typically employs a single line
of code for each instruction, particularly noticeable in
string-related programs.

Assembly language offers programmers significant
freedom, as it imposes few restrictions or rules, allowing

for flexible system construction.

Disadvantages:

1)

Assembly language is inherently machine-dependent, with

each microprocessor featuring its own unique set of
Computer Organization & Architecture -408

instructions. Consequently, assembly programs lack
portability.

2) Programming in assembly requires a deep understanding of
underlying hardware architecture, making it more complex
and time-consuming compared to high-level languages.

3) Debugging and maintaining assembly code can be
challenging due to its intricate and less readable nature
compared to code written in higher-level languages.

4) Development in assembly language often demands more
effort and expertise, potentially increasing development

time and costs, and making it less accessible to beginners.

What the Assembler Does
A source program is required before using the assembler.
Instructions written in assembly language by the programmer make
up the source program. These instructions have been written with
mnemonic labels and opcodes. Programs written in assembly
language and sent to the assembler must be machine-readable. You
can keep source programs as paper tape or diskette files with the
help of the text editor included in the Intellect development
system. After that, you can give the assembler the generated source
program file. The 8080 and 8085 microprocessors can run object
code thanks to the assembler program, which handles the tedious
operation of converting symbolic code. The output of the
assembler can be found in three different files: the object file,
which is your program translated into object code; the list file,
which is a printout of your source code, the object code produced
by the assembler, and the symbol table; and the symbol-cross

reference file, which is a list of such records.

Computer Organization & Architecture -409

OBJECT
FILE
)

SOURCE ASSEMBLER PROGRAM
PROGRAM |—
FILE PROGRAM LISTING

CROSS
REFERENCE
LISTING

Figure: Function of an Assembler

Example Programs
1. Statement: Store the data byte 32H into memory location
4000H.

Program 1

MVIA, 32H : Store 32H in the accumulator

STA4000H : Copy accumulator contents at address
4000H

HLT : Terminate program execution

Program 2

LXITH : Load HL with 4000H

MVIM : Store 32H in memory location pointed by
HL register pair (4000H)

HLT : Terminate program execution

Statement: Exchange the contents of memory locations 2000H
and 4000H

Program 1

LDA2000H : Get the contents of memory location 2000H

into accumulator

MOV B,A : Save the contents into B register

Computer Organization & Architecture -410

LDA 4000H Get the contents of memory location 4000H
into accumulator

STA 2000H Store the contents of accumulator at address
2000H

MOV A, B Get the saved contents back into A register
STA 4000H Store the contents of accumulator at address
4000H

Program 2

LXI H 2000H : Initialize HL register pair as a pointer to
memory location

LXI D 4000H : Initialize DE register pair as a pointer to
memory location 4000H.

MOV B,M Get the contents of memory location 2000H
into B register.

LDAX D Get the contents of memory location 4000H
into A register.

MOV M, A Store the contents of A register into memory
location 2000H.

MOV A, B Copy the contents of B register into
accumulator.

STAX D Store the contents of A register into memory
location 4000H.

HLT Terminate program execution.

Sample problem
(4000H) = 14H
(4001H) = 89H

Result = 14H + 89H = 9DH

Source program
LXI H 4000H :
MOV A,M

HL points 4000H

Get first operand
Computer Organization & Architecture -411

INXH : HL points 4001H

ADD M : Add second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution

Statement: Subtract the contents of memory location 4001H from
the memory location 2000H and place the result in memory
location 4002H.

Program - 4: Subtract two 8-bit numbers

Sample problem

(4000H) =51H

(4001H) = 19H
Result=51H - 19H = 38H

Source program

LXI H, 4000H : HL points 4000H

Sample problem

MOV A, M : Get first operand

INXH : HL points 4001H

SUBM : Subtract second operand
INX H : HL points 4002H

MOV M, A : Store result at 4002H.

HLT : Terminate program execution

13.4 MEMORY INTERFACING

A crucial component of computer design is memory interfacing,

which makes it easier for different kinds of memory modules and a

Computer Organization & Architecture -412

computer's central processing unit (CPU) to communicate. In order
to allow the CPU to read from and write to memory effectively,
hardware and protocols must be designed and put into place. Static
random-access memory (SRAM), dynamic random-access memory
(DRAM), and non-volatile memory, including flash memory, are

commonly used in memory interfaces in contemporary computers.

Ensuring smooth data communication between the CPU and
memory while maximizing speed, dependability, and affordability
is the main objective of memory interfacing. Memory controllers
and bus interfaces are examples of specialized integrated circuits
that are frequently needed for this. Memory controllers handle
operations including addressing, data transmission, and error
detection and correction as well as the flow of data between the

CPU and memory modules.

Addressing mechanisms to access certain memory locations and
data transmission protocols, such as synchronous and
asynchronous communication techniques, are also included in the
process of integrating. Memory interfacing design also takes into
account factors like bus designs, memory hierarchy, and caching
techniques, all of which contribute to improved system

performance.

The seamless functioning of computer systems depends on
effective memory interfacing, which affects things like program
performance, multitasking ability, and user experience in general.
Memory interface strategies must change to provide larger
capacities, quicker speeds, and new kinds of memory modules as
memory technology grow, guaranteeing continuous improvements

in computing power.

Computer Organization & Architecture -413

Typical EPROM and Static RAM

e There are typically "n" address pins and "m" data pins (also
known as output pins) on a semiconductor memory IC.

e Possessing two power supply pins, one for ground and the
other for attaching the necessary supply voltage (V).

e Chip select (chip enable), read control (output enable), and
write control (write enable) are the control signals required
for static RAM.

e Read control (output enable) and chip select (chip enable)
are the control signals required for EPROM read

operations.
n l‘l‘l.
i >
Addressbus| - . Data bus
Static
RAM P~ CS/CE
Vee i b~ OE / RD
GND + : WE/WR

CS/ICE - Chipselect(or Chipenable) ; OE/RD- Output enable (or Read control)

WE/WR - Write enable (or Write control)

Memory IC C "p acity Number of Number of
_EPROM/RAM address pins data pins
2708/6208 1kb 10 8
2716/6216 2kb 1 8
2732/6232 4kb 12 8
2764/6264 8kb 13 8
27256/62256 32kb 15 8
27512/62512 64kb 16 8
27010/62128 128kb 17 8
27020/62138 256kb 18 8
27040/62148 512kb 19 8

Computer Organization & Architecture -414

Assembly language program to add two numbers
MVI A, 2H ; Copy value 2H in register A
MVI B, 4H ; Copy value 4H in register B
ADD B ; A=A+B
Note:
e Assembly language is specific to a given processor
e For e.g. assembly language of 8085 is different than that of
Motorola 6800 microprocessor
Microprocessor understands Machine Language only!
Microprocessor cannot understand a program written in Assembly
language
e A program known as Assembler is used to convert a

Assembly language program to machine language

Programming model of 8085

16-bit

‘ Accumulator ‘
Address Bus

‘ Register Array

‘ ALU ‘
Memory Pointer m
‘ Flags ‘ Reg);sters 8-bit Data
Bus
Instruction
Decoder

Timing and Control Unit Control Bus

Computer Organization & Architecture -415

Accumulator (8-bit) Flag Register (8-bit)
S | Z P CY
‘B (8-bit) C|(8-t
D (8-bit) E |(8-1
'H (8-bit) L |(8-
Stack Pointer (SP) (
Program Counter (PC
16- Lines

8- Lines
Bidirectional =

Unidirectional

13.5 OVERVIEW: 8085
PROGRAMMING MODEL

The 8085 programming model is an assembly language program
written specifically for the Intel 8085 CPU. Fundamental parts
include the accumulator (A), which is primarily used for arithmetic
and logical operations, and the six general-purpose registers (B, C,
D, E, H, and L), which are critical for data manipulation and
storage. While the stack pointer (SP) handles subroutine calls and
returns by showing the top of the stack, the program counter (PC)
tracks the address of the next instruction to be executed. Status
indications that represent the results of arithmetic and logical
operations, such as Sign (S), Zero (Z), and Carry (CY), are kept in
the flags register. To this are added a variety of instructions
covering data transfer, branching, and arithmetic, logic, and control
transfer functions. Programming design is made more flexible and
efficient by addressing modes, which control how operands are
accessed during instruction execution. The 8085 also has
input/output connections that allow it to communicate with other

devices. This allows for a variety of applications, from simple
Computer Organization & Architecture -416

control programs to complex data processing and communication

jobs. Comprehending this programming approach is essential to

effectively utilizing the microprocessor's capabilities and creating

assembly language programs.

A

Six general-purpose Registers
Accumulator Register

Flag Register

Program Counter Register

Stack Pointer Register

Details:

Six general-purpose Registers — B, C, D, E, H, L

— Can be combined as register pairs to

Perform 16-bit operations (BC, DE, HL)The Intel 8085
microprocessor features six general-purpose registers,
which are used for storing and manipulating data during
program execution. These registers are as follows:

B Register: The B register is an 8-bit register used for
temporary storage of data and as an operand in arithmetic
and logical operations.

C Register: The C register is another 8-bit register that
works in conjunction with the B register as a pair (BC
register pair). It is commonly used for storing data and as
an operand in various instructions.

D Register: The D register is an 8-bit general-purpose
register used for storing intermediate data and as an
operand in arithmetic and logical operations.

E Register: The E register is another 8-bit register that

forms a pair (DE register pair) with the D register. It serves

Computer Organization & Architecture -417

similar functions to the D register, providing additional
storage for data.

e H Register: The H register is an 8-bit general-purpose
register used for storing data and as an operand in
arithmetic and logical operations. It often works in
conjunction with the L register.

e L Register: The L register is the sixth 8-bit general-purpose
register in the 8085 microprocessor. Like the H register, it
is used for data storage and manipulation, often forming a
pair (HL register pair) with the H register for 16-bit

operations.

Accumulator Register

An essential part of the programming model for the Intel 8085
microprocessor is the Accumulator Register, sometimes known as
the "A" register. It temporarily stores data during arithmetic, logic,
and data transfer operations as an 8-bit register. The accumulator
functions as the main working register and is essential to the

majority of the microprocessor's arithmetic and logical operations.

The accumulator stores the outcomes of data transfer operations
between memory and other registers in addition to its use in
arithmetic operations. When data is transported into or out of the
microprocessor's memory or other registers, it serves as the
destination register. The accumulator is frequently listed as one of
the operands in instructions involving arithmetic, logic, or data

transfer operations.

The accumulator register is essential to the execution of
instructions and numerous computations carried out by assembly

language programs developed for the 8085 microprocessor, owing
Computer Organization & Architecture -418

to its fundamental role in data management and processing.
Efficient programming and utilization of the microprocessor's

capabilities require an understanding of its usage and capabilities.

— This register is a part of ALU
— 8-bit data storage
— Performs arithmetic and logical operations

— Result of an operation is stored in accumulator

Flag Register

An essential part of the Intel 8085 microprocessor's programming
model is the Flag Register, which holds a variety of condition code
flags representing the results of logical and arithmetic operations.
The outcomes of the most recent arithmetic or logical command
that the processor carried out are indicated by these flags. The Flag
Register is made up of multiple flags, each of which stands for a

distinct condition:

e Sign Flag (S): When an operation has a negative result,
this flag is set, meaning that the most important bit of the
result is 1.

e Zero Flag (Z): When an operation yields a zero result, the
Zero Flag is set. The Zero Flag is set when the result is
00000000, meaning that no bits are set in the result.

e The Auxiliary Carry Flag (AC) is utilized in arithmetic
procedures involving Binary Coded Decimal (BCD). In
order to enable BCD correction, it is set if there is a carry
from bit 3 to bit 4 during an arithmetic operation.

e Parity Flag (P): When an operation yields an even number

of set bits, which indicates even parity, the Parity Flag (P)

Computer Organization & Architecture -419

is set. The Parity Flag is removed in the event that the
result has an odd number of set bits.

e Carry Flag (CY): During an arithmetic operation, if the
most significant bit (bit 7) is carried out, the Carry Flag is
set. Additionally, it is employed in subtraction procedures

to detect borrow.

Program Counter (PC)

An essential part of the architecture of the Intel 8085
microprocessor is the Program Counter (PC), a 16-bit register that
stores the memory address of the subsequent instruction to be
retrieved and performed. The Program Counter, which points to the
memory address of the next instruction as it is executed
sequentially by the CPU, automatically increases after each

Instruction execution.

The microprocessor retrieves the instruction stored at the memory
address that the Program Counter points to during the fetch-
execute cycle. After an instruction is fetched, the PC automatically
increments to point to the memory address of the next instruction,
readying it for the next fetch operation. The CPU can then carry
out instructions sequentially until a branch or jump instruction
modifies the value of the Program Counter. This process is

repeated iteratively.

The Program Counter is altered by branching and jumping
instructions, which reroute the execution flow to alternative
sections of the program or subroutine. For example, conditional
branch instructions allow the execution of different instruction
sequences dependent on the result of previous operations by

altering the PC's value based on predetermined criteria.
Computer Organization & Architecture -420

The microprocessor's ability to execute instructions sequentially
from memory is made possible by the Program Counter, whose
function in managing the instruction sequence is essential to its
functioning. For the purpose of creating successful assembly
language programs and guaranteeing proper program flow inside
the 8085 microprocessor architecture, it is imperative to

comprehend and efficiently manage the Program Counter.

The Stack Pointer (SP)

An essential component of the Intel 8085 microprocessor's
architecture, the Stack Pointer (SP) Register is in charge of
overseeing the stack memory region. The memory address of the

top of the stack at any given time is stored in this 16-bit register.

The stack of the 8085 microprocessor functions according to the
Last-of-First-Out (LIFO) principle, which states that the last data
item added to the stack will be the first one removed. Typically, the
stack is utilized for interrupts and subroutine calls, where it is used

to temporarily store data and return addresses.

The Program Counter (PC) is pushed onto the stack when a
subroutine is called, enabling the CPU to return to the proper place
in the main program once the subroutine has finished executing.
Furthermore, during the execution of a procedure, additional
registers or temporary data may be pushed into the stack for

storage.

In contrast, the CPU can resume running the main program when a
subroutine is completed by popping the previously saved return

address off the stack and loading it into the Program Counter.
Computer Organization & Architecture -421

As data is added to or removed from the stack, the Stack Pointer
automatically increases or decreases to preserve the accurate
memory location of the stack's top. It is essential for effectively
controlling the stack and guaranteeing the accuracy of the data kept

therein.

13.6 INSTRUCTION SET OF 8085

The instruction set of the Intel 8085 microprocessor comprises a
wide range of instructions categorized into various groups,
including data transfer, arithmetic, logical, branching, and control

transfer instructions. Here's an overview of the instruction set:

Data Transfer Instructions:

— MOV: Move data from one register/memory location to
another.

- MVI: Move immediate data into a register/memory
location.

— LXI: Load immediate 16-bit data into a register pair.

— LDA: Load accumulator with data from a memory address.

— STA: Store accumulator data into a memory address.

— LHLD and SHLD: Load and store HL register pair data
from/to memory.

Data Transfer (Copy) Operations
= Load a 8-bit number in a Register
= Copy from Register to Register
= Copy between Register and Memory
= Copy between Input/Output Port and Accumulator

Computer Organization & Architecture -422

Load a 16-bit number in a Register pair

Copy between Register pair and Stack memory

Example Data Transfer (Copy) Operations / Instructions

1. Load a 8-bit number 4F in MVI
register B

2. Copy from Register B to MOV
Register A

3. Load a 16-bit number LXI }
2050 in Register pair HL

4. Copy from Register B to MOV
Memory Address 2050

5. Cobpv between P

Arithmetic Instructions:

ADD: Add the contents of a register/memory location to
the accumulator.

ADC: Add the contents of a register/memory location to the
accumulator with carry.

SUB: Subtract the contents of a register/memory location
from the accumulator.

SBB: Subtract the contents of a register/memory location
from the accumulator with borrow.

INR: Increment the contents of a register/memory location.
DCR: Decrement the contents of a register/memory

location.

Arithmetic Operations

Addition of two &-bit numbers
Subtraction of two 8-bit numbers

Increment/ Decrement a 8-bit number

Example Arithmetic Operations / Instructions

Computer Organization & Architecture -423

Add a 8-bit number 32H to
Accumulator

Add contents of Register B to
Accumulator

Subtract a 8-bit number 32H
from Accumulator

Subtract contents of Register
C from Accumulator

Increment the contents of
Reaister D bv 1

Logical Instructions:

ANA: Perform a logical AND operation between the
accumulator and a register/memory location.
XRA: Perform a logical XOR operation between the
accumulator and a register/memory location.
ORA: Perform a logical OR operation between the
accumulator and a register/memory location.
CMP: Compare the accumulator with a register/memory

location.

Logical & Bit Manipulation Operations

AND two 8-bit numbers

OR two 8-bit numbers
Exclusive-OR two 8-bit numbers
Compare two 8-bit numbers
Complement

Rotate Left/Right Accumulator bits

Example Logical & Bit Manipulation Operations / Instructions

Computer Organization & Architecture -424

1. Logically AND Register H
with Accumulator

2. Logically OR Register L with
Accumulator

3. Logically XOR Register B
with Accumulator

4. Compare contents of
Register C with Accumulator

5. Comnlement Acciimiailator

Branching Instructions:
— JMP: Unconditional jump to a specified memory address.
- JC, INC, JP, JM, JZ, JNZ, JPE, JPO: Conditional jumps
based on various flag conditions.
— CALL: Call a subroutine at a specified memory address.

— RET: Return from a subroutine.

Example Branching Operations / Instructions

1. Jump to a 16-bit Address Jc
2080H if Carry flag is SET

2. Unconditional Jump JN

3. Call a subroutine with its 16-bit C/
Address

4. Return back from the Call RE

5. Call a subroutine with its 16-bit ChM
Address if Carrv flaa is RESET

Control Transfer Instructions:
— NOP: No operation (Do nothing).
— HLT: Halt the microprocessor.

— DI and EI: Disable and enable interrupts, respectively.

Computer Organization & Architecture -425

Stack Manipulation Instructions:
— PUSH: Push register pairs onto the stack.
— POP: Pop register pairs from the stack.

Input/Output Instructions:
— IN: Read data from an input port.
— OUT: Write data to an output port.

13.7 WRITING A ASSEMBLY
LANGUAGE PROGRAM

Steps to write a program

e Analyze the problem

e Develop program Logic

e Write an Algorithm

e Make a Flowchart

e Write program Instructions using Assembly language of

8085

Program 8085 in Assembly language to add two 8-bit numbers and
store 8-bit result in register C.

Algorithm for writing this problem:

1. Get two numbers e Load Istno. in register D

e Load 2nd no. in register E

2. Add them e Copy register D to A
e Add register E to A

3. Store result e Copy Ato register C

4. Stop e Stop processing

Try to Make a Flowchart

Computer Organization & Architecture -426

(_start)

Load Registers D, E

1

| Copy D to A |

| Add A and E |

1

| Copy A to C I

b

Assembly Language Program

MVI D, 2H
MVI E, 3H

Addressing Modes of 8085

The Intel 8085 microprocessor supports several addressing modes
that determine how operands are accessed during instruction
execution. These addressing modes offer flexibility in
programming and allow efficient use of memory and register

resources. Here are the main addressing modes of the 8085:
[Label:] Mnemonic [Operands] [;comments]

HLT

MVIA, 20H

MOV M, A ; Copy A to memory location whose address is

stored in register pair HL

Computer Organization & Architecture -427

LOAD: LDA 2050H ; Load A with contents of memory location
with address 2050H
READ: IN 07H; Read data from Input port with address 07H

1. Immediate Addressing: In immediate addressing, the operand
is specified directly within the instruction itself. For example:

MVIA, 05H ; Load immediate data O5H into the accumulator

2. Direct Addressing: In direct addressing, the operand's memory
address is directly specified within the instruction. For example:
MOV A, M ; Move the data from memory location addressed by

HL into the accumulator

3. Register Addressing: In register addressing, the operand is
located in one of the microprocessor's registers. For example:

MOV B, C ; Move the contents of register C into register B

4. Indirect Addressing: In indirect addressing, the operand's
address is stored in a register or memory location, and the data is
accessed indirectly. For example:

MOV A, (HL) ; Move the data from the memory location
addressed by the contents of HL into the accumulator

5. Register Indirect Addressing: This is a specific form of
indirect addressing where the operand's address is stored in a
register. For example:

MOV A, (B) ; Move the data from the memory location addressed

by the contents of register B into the accumulator

6. Indexed Addressing: In indexed addressing, the operand's
address is calculated by adding an index value to a base address.

This mode is often used for accessing elements of arrays or data
Computer Organization & Architecture -428

structures. The 8085 doesn't have built-in support for indexed
addressing, but it can be simulated using other addressing modes.

These addressing modes provide versatility in accessing operands
and data, allowing programmers to write efficient and compact
code for various tasks. Mastery of addressing modes is essential
for effective programming on the Intel 8085 microprocessor,

enabling the utilization of its capabilities to their fullest extent.

Instruction & Data Formats

In the Intel 8085 microprocessor architecture, instructions and data
are structured according to specific formats to facilitate their
interpretation and execution. The instruction format typically
consists of an operation code (opcode) and, in some cases,

additional operands.

Instructions are encoded using a variable-length format, with
opcodes representing different operations such as data transfer,
arithmetic, logical, branching, and control transfer instructions.
Each opcode is associated with a specific operation that the
microprocessor performs when executing the instruction.
Additionally, some instructions may require additional data, which
can be specified as immediate values, memory addresses, or

register operands, depending on the addressing mode used.

Data in the 8085 architecture can be represented in various
formats, including binary, hexadecimal, and ASCII. Binary data
consists of sequences of 1s and Os, which are interpreted by the
microprocessor as numerical values or instructions. Hexadecimal
notation is commonly used to represent binary data in a more
compact and readable format, with each hexadecimal digit

representing four bits of binary data. ASCII encoding is used for
Computer Organization & Architecture -429

representing alphanumeric characters and symbols, with each

character assigned a unique binary code.

Both instructions and data are stored in the memory of the 8085
microprocessor, with instructions typically residing in program
memory and data stored in either program memory or data memory
locations. The microprocessor fetches instructions from memory
using the program counter (PC) and executes them sequentially,
interpreting each opcode and its associated operands according to

the instruction set architecture.

8085 Instruction set can be classified according to size (in bytes)
as

1. 1-byte Instructions

2. 2-byte Instructions

3. 3-byte Instructions

1. One-byte Instructions

One-byte instructions in the Intel 8085 microprocessor architecture
are compact instructions that occupy only one byte of memory.
These instructions typically represent simple operations that can be

executed quickly by the microprocessor.

One-byte instructions are often used for basic arithmetic, logical
operations, data transfer between registers, and control transfer
instructions such as NOP (no operation) and HLT (halt). Since they
are encoded in only one byte, they are easy to decode and execute,
contributing to faster program execution and efficient memory

utilization.

Examples of one-byte instructions in the 8085 architecture include:
Computer Organization & Architecture -430

MOV rl, r2: Move the contents of register r2 into register
rl.

ADD r: Add the contents of register r to the accumulator.
SUB r: Subtract the contents of register r from the
accumulator.

INR r: Increment the contents of register r.

JMP addr: Unconditionally jump to the memory address
specified by addr.

NOP: Perform no operation.

HLT: Halt the microprocessor.

Opcode Operand Binary Code
MOV C,A 0100 1111
ADD B 1000 0000
LIl T N111 N11nN

2-byte Instructions

Two-byte instructions in the Intel 8085 microprocessor architecture

are instructions that require two bytes of memory to represent.

These instructions are typically more complex than one-byte

instructions and may involve additional operands or data. Two-byte

instructions provide more functionality and flexibility, allowing for

a wider range of operations to be performed by the microprocessor.

Some examples of two-byte instructions in the 8085 architecture

include:

1.

MVI Rd, data: Move immediate data (data) into the
specified register (Rd).
o Example: MVI A, 0AH (Move immediate value

0AH into the accumulator).

Computer Organization & Architecture -431

2. LXI Rp, data: Load immediate data (data) into the
specified register pair (Rp).
o Example: LXI H, 2050H (Load immediate value
2050H into the HL register pair).

3. STA address: Store the contents of the accumulator into
the memory location specified by the 16-bit address.
o Example: STA 3000H (Store the contents of the
accumulator into memory location 3000H).
4. LDA address: Load the accumulator with the contents of
the memory location specified by the 16-bit address.
o Example: LDA 4000H (Load the accumulator with

the contents of memory location 4000H).

5. JMP address: Unconditionally jump to the memory
address specified by the 16-bit address.
e Example: JMP 5000H (Jump to the memory
address S000H).

6. CALL address: Call a subroutine located at the memory
address specified by the 16-bit address.
e Example: CALL 6000H (Call subroutine at

memory address 6000H).
Opcode Operand _ Binary Code| H
MVI A, 32H 0011 1110
0011 0010
MVi B, F2H 0000 0110

3-byte Instructions
Computer Organization & Architecture -432

In the Intel 8085 microprocessor architecture, three-byte
instructions are instructions that require three bytes of memory to
represent. These instructions are typically more complex and
involve additional operands or data compared to one-byte or two-
byte instructions. Three-byte instructions provide even greater
functionality and flexibility, enabling a wider range of operations

to be performed.

Some examples of three-byte instructions in the 8085 architecture

include:

1. LHLD address: Load the HL register pair with the
contents of the memory location specified by the 16-bit
address.

o Example: LHLD 2000H (Load the HL register pair
with the contents of memory location 2000H).

2. SHLD address: Store the contents of the HL register pair
into the memory location specified by the 16-bit address.
o Example: SHLD 3000H (Store the contents of the
HL register pair into memory location 3000H).

3. LXI Rp, address: Load immediate 16-bit data (address)
into the specified register pair (Rp).
o Example: LXI SP, 4000H (Load immediate value
4000H into the stack pointer register pair).

4. STA address: Store the contents of the accumulator into
the memory location specified by the 16-bit address.
o Example: STA 4000H (Store the contents of the

accumulator into memory location 4000H).
Computer Organization & Architecture -433

LDA address: Load the accumulator with the contents of
the memory location specified by the 16-bit address.
o Example: LDA 5000H (Load the accumulator with
the contents of memory location S000H).

CALL address: Call a subroutine located at the memory
address specified by the 16-bit address.
e Example: CALL 6000H (Call subroutine at
memory address 6000H).

Opcode Operand Binary Code

LXI H, 2050H | 0010 0001
0101 0000
0010 0000

LDA 3070H 0011 1010
0111 0000

Block data transfer

MVI C, 0AH ; Initialize counter i.e no. of bytes Store the
count in Register C, ie ten

LXI H, 2200H ; Initialize source memory pointer Data
Starts from 2200 location

LXI D, 2300H ; Initialize destination memory pointer
MOV A, M ; Get byte from source memory block i.e 2200
to accumulator.

STAX D ; Store byte in the destination memory block i.e
2300 as stored in D-E pair

INX H ; Increment source memory pointer

INX D ; Increment destination memory pointer

DCR C ; Decrement counter to keep track of bytes moved
JNZ BK ; If counter O repeat steps

HLT ; Terminate program

Computer Organization & Architecture -434

13.8 SUMMARY

This unit explores assembly language programming based on Intel
8085, focusing on basic tasks like data transfer, arithmetic
operations, and shifts. It progresses to more intricate programs,
demonstrating the use of loops and comparisons for code
conversion, character coding, and finding the largest value in an
array. Assembly language programs are machine-dependent and
require a deep understanding of underlying hardware architecture.
Development in assembly language often demands more effort and

expertise, potentially increasing development time and costs.

The assembler is a crucial component of computer design, enabling
smooth communication between memory modules and the central
processing unit (CPU). It handles the tedious operation of
converting symbolic code into object code, which can be stored as
paper tape or diskette files using the Intellect development system's
text editor. Memory interfacing is essential for ensuring smooth
data communication between the CPU and memory, and memory
interface strategies must change to provide larger capacities,
quicker speeds, and new memory modules as memory technology

Srows.

In summary, understanding the programming model and its
functions is crucial for effectively using the microprocessor's

capabilities and creating assembly language programs.

The Intel 8085 microprocessor architecture consists of the Program

Counter (PC), a 16-bit register that stores the memory address of

Computer Organization & Architecture -435

subsequent instructions. It automatically increases after each
instruction execution, allowing the CPU to execute instructions
sequentially until a branch or jump instruction modifies the value.
The Stack Pointer (SP) Register oversees the stack memory region,
following the Last-of-First-Out (LIFO) principle. The instruction
set of the 8085 microprocessor includes data transfer, arithmetic,
logical, branching, and control transfer instructions. The 8085
assembly language allows for problem analysis, program logic
development, algorithm creation, and program instruction writing.
The microprocessor supports several addressing modes, allowing
for flexibility in programming and efficient use of memory and
register resources. Instructions and data are structured according to
specific formats, with instructions encoding in variable-length
format and data represented in binary, hexadecimal, and ASCII
formats. The 8085 instruction set can be classified as 1-byte
Instructions, 2-byte Instructions, and 3-byte Instructions. Assembly
language defines instructions, while memory interfacing is used for

efficient memory utilization.

13.9 QUESTIONS

1. What is the significance of understanding assembly language
programming in the context of microprocessors?

Answer: Understanding assembly language programming is
crucial for developing efficient and optimized code for
microprocessors. It allows programmers to write low-level code
that interacts directly with the hardware, giving them control over

the system’s resources and performance.

Computer Organization & Architecture -436

2. What are the primary objectives of learning 8085 assembly
language programming?

Answer: The primary objectives include understanding the 8085
microprocessor's architecture and instruction set, learning how to
write and debug assembly language programs, and interfacing

memory and I/O devices with the 8085 microprocessor.

3. Write a simple 8085 assembly language program to add two
numbers stored in memory locations 2000H and 2001H and store
the result in 2002H.

Answer:

; Clear the accumulator
5 Load the value at memory location 2800H into the accumulator

5 Add the value at memory location 28@1H to the accumulator

; Store the result in memory location 2862H

5 Halt the program

4. Explain how memory interfacing is done with the 8085
Microprocessor.

Answer: Memory interfacing with the 8085 involves connecting
memory chips to the microprocessor using address and data buses.
The 8085 uses address lines to specify the memory location, and
data lines to read from or write to that location. Control signals
such as Memory Read (M/IO) and Memory Write (WR) are used

to manage the read and write operations.

5. Describe the basic programming model of the 8085
MiCroprocessor.

Answer: The 8085 microprocessor programming model includes 5
registers (B, C, D, E, H, L), a 16-bit stack pointer, a 16-bit program

counter, and an accumulator (A). The microprocessor also has a set

Computer Organization & Architecture -437

of flag registers that indicate the status of the accumulator after

arithmetic and logic operations.

6. What are the main categories of instructions in the 8085
instruction set?

Answer: The 8085 instruction set is divided into several
categories: Data Transfer Instructions (e.g., MOV, MVI),
Arithmetic Instructions (e.g., ADD, SUB), Logical Instructions
(e.g., AND, OR), Branch Instructions (e.g., JMP, CALL), and
Control Instructions (e.g., NOP, RLC).

Computer Organization & Architecture -438

13.10 REFERENCES

e "The 8085 Microprocessor: Architecture,
Programming, and Interfacing" by K. Udayakumar and
M. R. S. Srinivas: This book offers a comprehensive guide
to the 8085 microprocessor, including architecture,
programming, and interfacing techniques.

e "Microprocessor Architecture, Programming, and
Applications with the 8085'" by Ramesh S. Gaonkar: This
book provides detailed explanations of the 8085
microprocessor architecture and programming, with
practical examples and applications.

e "Computer Organization and Design: The
Hardware/Software Interface" by David Patterson and
John Hennessy: This book covers fundamental concepts in
computer organization and architecture, including memory
hierarchy and I/O systems.

e "Computer Architecture: A Quantitative Approach" by
John L. Hennessy and David A. Patterson: A
comprehensive text on computer architecture that includes
detailed discussions on memory systems, cache
architecture, and performance metrics.

e '"Structured Computer Organization" by Andrew S.
Tanenbaum: This book provides an introduction to
computer architecture and organization, including
discussions on memory, I/O systems, and processors.

Computer Organization & Architecture -439

UNIT - 14: ARCHITECTURAL
CLASSIFICATION SCHEMES

Structure

14.0 Introduction
14.1 Objectives
14.2 Types of Classification
14.3 Basic types of architectural classification
14.3.1 Instruction Cycle
14.3.2 Instruction Stream and Data Stream
143.3 FLYNN’'S TAXONOMY OF COMPUTER
ARCHITECTURE
14.3.4 FENG’S CLASSIFICATION
14.2.5 Handler Classification
14.4 Structural Classification
14.4.1 Shared Memory System / Tightly Coupled System
14.4.1.1 Uniform Memory Access Model (UMA)
14.4.1.2 Non-Uniform Memory Access Model
(NUMA)
14.4.1.3 Cache-Only Memory Access Model
(COMA)
14.4.2 Loosely Coupled Systems
14.5 CLASSIFICATION BASED ON GRAIN SIZE
14.5.1 Parallelism Conditions
14.5.2 Bernstein Conditions for Detection of Parallelism
14.5.3 Parallelism based on Grain size
14.6 Summary
14.7 Questions

14.8 References

Computer Organization & Architecture -440

14.0 INTRODUCTION

Parallel computing has become an essential technology in modern
computers, driven by the constantly increasing demands for higher
performance, lower costs, and sustained productivity in real
applications. There are concurrent events taking place in today's
high performance computers due to the common practices of
multiprogramming, multiprocessing, or multi-computing.
Parallelism can take the form of look ahead, pipelining,
vectorization, concurrency, simultaneity, data parallelism,
partitioning, interleaving, overlapping, multiplicity, replication,
time sharing, space sharing, multitasking, multiprogramming,
multithreading, and distributed computing at different processing
levels. Parallel computing is a type of computation where many
calculations are performed at the same time, operating under the
principle that large problems can often be divided into smaller

ones, which are then solved together concurrently.

14.1 OBJECTIVES

After reading this unit, you should be able to:

e Clarify the different standards used to categorize
parallel computers;

o Talk about flynn's classification system which is based
on instruction and data flows;

e Characterize the structural classification that is based
on varying computer architectures;

e Elucidate handler's classification which focuses on

three separate computer levels: the processor control

Computer Organization & Architecture -441

unit (pcu), the arithmetic logic unit (alu), and the bit-
level circuit (blc);

e Delineate the sub-tasks or instructions within a program
that can be run concurrently depending on the

granularity.

14.2 TYPES OF CLASSIFICATION

The following classifications of parallel computers have been
identified:
1) Classification based on the instruction and data streams
2) Classification based on the structure of computers
3) Classification based on how the memory is accessed
4) Classification based on grain size
All these classification schemes are discussed in subsequent

sections.

14.3 BASIC TYPES OF
ARCHITECTURAL CLASSIFICATION

This categorization of computers was initially researched and
suggested by Michael Flynn in 19714. Flynn did not take into
account the machine design when classifying parallel computers.
Instead, he presented the ideas of instruction and data flows to
categorize computers. Not all the computers classified by Flynn are
parallel, but to understand parallel computers, it is essential to
comprehend all kinds of Flynn's classification. Because this
classification relies on instruction and data flows, we first need to

grasp how the instruction cycle functions.

Computer Organization & Architecture -442

14.3.1 Instruction Cycle

The instruction cycle consists of a sequence of steps needed for the
execution of an instruction in a program. A typical instruction in a
program is composed of two parts: Opcode and Operand. The
Operand part specifies the data on which the specified operation is
to be done. (See Figure 1). The Operand part is divided into two
parts: addressing mode and the Operand. The addressing mode
specifies the method of determining the addresses of the actual
data on which the operation is to be performed and the operand
part is used as an argument by the method in determining the

actual address.

0 5 6 15

4—— Operand
4—Operation Operand Address
Code Addressing mode

Yvy

Figure: Opcode and Operand (Image Source: IGNOU)

The control unit of the central processing unit (CPU) in the
computer sequentially obtains instructions from the program, one
instruction at a time. The obtained instruction is then interpreted by
the decoder, which is part of the control unit, and the processor
carries out the interpreted instructions. The outcome of the
execution is briefly stored in the Memory Buffer Register (MBR),
also known as the Memory Data Register. The standard execution

process is illustrated in Figure.

Computer Organization & Architecture -443

Caleulate the address of’
instruction 1o be executed

+

Decode the instruciion

Caleulate the operand
address

Feich ihe operands

Execute the instructions

Figure: Instruction Execution steps

14.3.2 Instruction Stream and Data Stream

The term ‘stream’ refers to a sequence or flow of either instructions
or data operated on by the computer. In the complete cycle of
instruction execution, a flow of instructions from main memory to
the CPU is established. This flow of instructions is called
instruction stream. Similarly, there is a flow of operands between
processor and memory bi-directionally. This flow of operands is
called data stream. These two types of streams are shown in Figure
3.

Instruction
stream

CPU

Figure: Instruction and Data stream

14.3.3 FLYNN’S TAXONOMY OF COMPUTER
ARCHITECTURE

Computer Organization & Architecture -444

Parallel computing is a form of computation where tasks are
divided into separate pieces that can be worked on at the same
time. Each part is further split into a sequence of instructions. The
instructions from each part are executed simultaneously on
different CPUs. Parallel systems involve the concurrent use of
multiple computer resources, which can include a single computer
with multiple processors, several computers linked by a network to
create a parallel processing cluster, or a mix of both. Parallel
systems are harder to program than single-processor computers
because the architecture varies based on the parallel computer and
the processes across multiple CPUs need to be coordinated and
synchronized. CPUs are at the core of parallel processing. Based
on the number of instruction and data streams that can be handled
at the same time, computing systems are categorized into four

major types:

Instruction stream
Single Mult

SISD ML

Single

Jata stream

liple

MTR AT TR

Figure: Flynn's taxonomy (1966) (Image courtesy: Research Gate)
According to Flynn’s classification, either of the instruction or data
streams can be single or multiple.
Computer architecture can be classified into the

e Single-Instruction Single-Data Streams (SISD)

e Single-Instruction Multiple-Data Streams (SIMD)

e Multiple-Instruction Single-Data Streams (MISD)

Computer Organization & Architecture -445

e Multiple-Instruction Multiple-Data Streams (MIMD).

SISD (Single Instruction Single Data Stream):

Traditional sequential computers are classified as SISD - [single
instruction stream over single data stream] machines. Instructions
in these computers are carried out one after another, but their

execution phases may overlap (pipelining).

IS

PU
(7]

Fig: SISD Uni-processor Architecture

Captions(abbreviations)

CU = Control Unit

PU = Processing Unit
MU = Memory Unit

IS = Instruction stream
DS = Data Stream

PE = Processing Element

LM = Local Memory

SIMD (Single Instruction Multiple Data Stream)
This represents computers with both vector/array processing
capabilities as well as scalar hardware. There are multiple
processing elements overseen by one control unit. All the
processing elements get the same instruction from the control unit

but work on different data sets from separate data streams.

Computer Organization & Architecture -446

Program loaded

IS

=—n CU

\

from host

Previnstruct

Load A 1)
load B(1)

C(1)=A(1)*B(1)
Store (1)
Nextinstruct

B

Load A (2)
LoadB(2)
C(2)=A(2)*B(2)

Store C[2)
Next instruct

Load A (n)

Load B (n)

C(n) = A{n)*B(n)
Store C(n)

Next instruct

MIMD(multiple instructions over multiple data stream) —

most popular model. parallel computers ters are reserved for

MIMD.
Lis,
10— CUs 571 PY1 [55™
. e Shared |*
L
L ™ MEITIOI'}" °
I’0

IS -]

Fig: MIMD Architecture (with shared memory)

MISD(multiple instruction over single data stream): The same

data stream flows through a linear array of processors executing

Computer Organization & Architecture -447

different instruction streams. This architecture is also known as

systolic arrays For pipelined execution of specific algorithms.

IS el |1s oy [E‘u?' g

Memory IS IS
(program DS DS
and data) PU1 > PUZ —D§Iv- see —1&
I I
DS
110

Figure: MISD Architecture (the systolic array)

Of the four machine models, most parallel computers constructed
in the past were based on the MIMD model for general purpose
computing tasks. The SIMD and MISD models are better suited for
specific computations. As a result, MIMD is the most widely used
model, followed by SIMD, while MISD is the least common model

implemented in commercial machines.

14.3.4 FENG’S CLASSIFICATION
Feng suggested the use of degree of parallelism to classify various
computer architectures. Tse-yun Feng suggested the use of degree
of parallelism to classify various computer architectures.
e The maximum number of binary digits that can be
processed within a unit time by a computer system is called
the maximum parallelism degree P.
e A bit slice is a string of bits one from each of the words at
the same vertical position.
e Under above classification
» Word Serial and Bit Serial (WSBS)
» Word Parallel and Bit Serial (WPBS)

» Word Serial and Bit Parallel(WSBP)
Computer Organization & Architecture -448

» Word Parallel and Bit Parallel (WPBP)

Classification:

» WSBS has been called bit parallel processing because

one bit is processed at a time.

» WPBS has been called bit slice processing because m-

bit slice is processes at a time.

» WSBP is found in most existing computers and has

been called as Word Slice processing because one word

of n bit processed at a time.

» WPBP is known as fully parallel processing in which an

array on n X m bits is processes at one time.

>

Mode Computer Model Degree of
parallelism

WSPS The “MINIMA” (1, 1)

N=1

M=1

WPBS STARAN (1, 256)

N=1 MPP (1, 16384)

M>1 DAP (1, 4096)

WSBP IBM 370/168 UP (64, 1)

N>1 CDC 660 (60, 1)

M =1 (Word Slice | Burrough 7700 (48, 1)

Processing) VAX 11/780 (16/32, 1)

WPBP Mliav IV (64, 64)

N>1

M > 1 (FULLY

Parallel Processing)

Computer Organization & Architecture -449

14.3.5 Handler Classification
In 1977, Wolfgang Handler proposed an elaborate notation for
expressing the pipelining and parallelism of computers. Handler's
classification addresses the computer at three distinct levels:

e Processor control unit (PCU),

e Arithmetic logic unit (ALU),

e Bit-level circuit (BLC).

The PCU corresponds to a processor or CPU, the ALU corresponds
to a functional unit or a processing element and the BLC
corresponds to the logic circuit needed to perform onebit

operations in the ALU.

Handler's classification uses the following three pairs of integers to
describe a computer:

Computer=(p *p',a*a',b *b')

Where p = number of PCUs

Where p'= number of PCUs that can be pipelined

Where a = number of ALUs controlled by each PCU

Where a'= number of ALUs that can be pipelined

Where b = number of bits in ALU or processing element
(PE) word

Where b'= number of pipeline segments on all ALUs or in a

single PE

The following rules and operators are used to show the relationship

between various elements of the computer:

Computer Organization & Architecture -450

The '*' operator is used to indicate that the units are
pipelined or macro-pipelined with a stream of data running
through all the units.

The '+' operator is used to indicate that the units are not
pipelined but work on independent streams of data.

The 'v' operator is used to indicate that the computer
hardware can work in one of several modes.

The '~' symbol is used to indicate a range of values for any
one of the parameters.

Peripheral processors are shown before the main processor
using another three pairs of integers. If the value of the

second element of any pair is 1, it may omitted for brevity.

Handler's system for categorizing computers can be clarified by

demonstrating how the guidelines and operators are utilized to sort

various machines.

The CDC 6600 has a solitary central processor upheld by 10 I/O

processors. One control unit coordinates one ALU with a 60-bit

word length. The ALU has 10 functional units which can be

assembled into a pipeline. The 10 peripheral I/O processors may

work at the same time with one another and with the CPU. Each

I/O processor contains one 12-bit ALU. The portrayal for the 10

I/O processors is:

CDC 66000 = (10, 1, 12)

The description for the main processor is:

CDC 6600main = (1, 1 * 10, 60)

Computer Organization & Architecture -451

The main processor and the I/O processors can be regarded as
forming a macro-pipeline so the "*' operator is used to combine the
two structures:

CDC 6600 = (I/O processors) * (central processor = (10, 1,
12) * (1, 1 * 10, 60)

Texas Instrument's Advanced Scientific Computer (ASC) has one
controller coordinating four arithmetic units. Each arithmetic unit
is an eight stage pipeline with 64-bit words.

Thus we have:

ASC = (1, 4, 64 * 8)

The Cray-1 is a 64-bit single processor computer whose ALU has
twelve functional units, eight of which can be chained together
from a pipeline. Different functional units have from 1 to 14
segments, which can also be pipelined. Handler's description of the
Cray-1 is:

Cray-1=(1,12* 8,64 * (1 ~ 14))

Another sample system is the C.mmp multiprocessor developed by
Carnegie-Mellon University. The C.mmp was designed to facilitate
research into parallel computer architectures, so it can be
extensively reconfigured. The system consists of 16 PDP-11
minicomputers with 16-bit word lengths, interconnected by a
crossbar switching network. Typically, the C.mmp operates in
MIMD mode, where the processors execute asynchronously; this
mode's description is (16, 1, 16). The C.mmp can also run in SIMD
mode, where a single master controller coordinates all processors.
The SIMD mode's description is (1, 16, 16). Additionally, the
C.mmp can be reconfigured to operate in MISD mode, where the

processors are chained together and a single data stream passes
Computer Organization & Architecture -452

through them all. The MISD mode's description is (1 * 16, 1, 16).
Handler describes the complete C.mmp using the 'v' operator to
combine the descriptions of its different operating modes:

C.mmp = (16, 1, 16) v (1, 16, 16) v (1 * 16, 1, 16)

The ' and '+' operators are utilized to bring together multiple
separate hardware components. The 'v' operator differs from the
other two in that it is employed to combine the various operating
modes of a single hardware piece.

While Flynn's categorization 1is straightforward, Handler's
classification is unwieldy. The direct application of numbers in the
nomenclature of Handler's classification makes it much more
abstract and thus difficult. Handler's classification is highly
oriented towards depicting pipelines and chains. Although it can
adequately illustrate the parallelism in a single processor, the
diversity of parallelism in multiprocessor computers is not well

addressed.

14.4 STRUCTURAL CLASSIFICATION

Flynn's taxonomy focuses on the behavioral aspects of parallel
computers and does not consider their structural design. However,
parallel computers can also be classified based on their

architecture, as discussed below and illustrated in Figure 8.

As we have seen, a parallel computer (MIMD) consists of multiple
processors and shared memory modules or local memories
connected via an interconnection network. When the processors in
a multiprocessor system communicate through global shared

memory modules, this organization is called a shared memory

Computer Organization & Architecture -453

computer or tightly coupled system, as depicted in Figure. In
contrast, when each processor has its own local memory and
processors exchange messages between their local memories, this
is called a distributed memory computer or loosely coupled
system, as shown in Figure. Figure provides simplified diagrams of

both architectures.

In both organizations, the processors and memories are linked
through an interconnection network, which can take various forms
like a crossbar switch, multistage network, etc. We will discuss

these in more detail in the next unit.

Structure of Parallel
Computers

Tightly

Figure: Structural Classification

Interconnection
P network
5

Figure: Tightly Coupled System

LM P,

Interce
LM [P2 ne

lom Hoe 1

Computer Organization & Architecture -454

Figure: Loosely Coupled System
14.4.1 Shared Memory System / Tightly Coupled System
Shared memory multiprocessors have the following characteristics:
» Every processor communicates through a shared global
memory.
» For high speed real time processing, these systems are
preferable as their throughput is high as compared to

loosely coupled systems.

In tightly coupled system organization, multiple processors share a
global main memory, which may have many modules as shown in
detailed Figure. The processors have also access to I/O devices.
The inter- communication between processors, memory, and other
devices are implemented through various interconnection

networks, which are discussed below.

Interrupt Signal Interconnection
Network

I 1/0- Processor

Interconnectior
P s . [Pa Network

Processor-Memory
Interconnection Network

I

I e ol
Figure: Tightly Coupled System Organization

i) Processor-Memory Interconnection Network (PMIN):
This switch links up various processors with different
memory units. Connecting each processor directly to
each memory module in one step can make the crossbar
switch very complex. So a multi-step network can be
used instead. There can also be a clash where

processors try to access the same memory modules at

Computer Organization & Architecture -455

the same time. The PMIN system deals with this clash
as well.

ii) Input-Output-Processor Interconnection Network
(IOPIN): This interconnection network is used for
communication between processors and input/output
(I/O) channels. All processors talk to an I/O channel to
interact with an I/O device, but only after getting
permission from the I/O processor interconnection
network (IOPIN).

iii) Interrupt Signal Interconnection Network (ISIN): When
one processor desires to interrupt another processor, the
interruption first travels to the ISIN (Inter-processor
Interrupt Network). The ISIN then passes the
interruption to the destination processor. This allows the
ISIN to synchronize the processors by facilitating their
interruptions. Additionally, if a processor fails, the ISIN
can broadcast a message to the other processors about
the failure.

The ISIN acts as an intermediary for interruptions
between processors. It coordinates and relays the
interruptions while also notifying all processors if any
individual processor malfunctions. This allows for
synchronization and communication between the

Pprocessors.

Since, every reference to the memory in tightly coupled systems is
via interconnection network, there is a delay in executing the
instructions. To reduce this delay, every processor may use cache
memory for the frequent references made by the processor as

shown in Figure.

Computer Organization & Architecture -456

Interconnection network

I

Figure: Tightly coupled systems with cache memory

The shared memory multiprocessor systems can further be divided
into three modes which are based on the manner in which shared
memory is accessed. These modes are shown in Figure and are

discussed below.

Tightly coupled systems

Cacl

men

Non uniform
MEMOry access

Uniform memory
access model

Figure: Modes of Tightly coupled systems

14.4.1.1 Uniform Memory Access Model (UMA)

In this model, main memory is uniformly shared by all processors
in multiprocessor systems and each processor has equal access
time to shared memory. This model is used for time-sharing

applications in a multi user environment.

Computer Organization & Architecture -457

14.4.1.2 Non-Uniform Memory Access Model (NUMA)

In shared memory multiprocessor systems, local memories can be
connected with every processor. The collections of all local
memories form the global memory being shared. In this way,
global memory is distributed to all the processors. In this case, the
access to a local memory is uniform for its corresponding
processor as it is attached to the local memory. But if one reference
is to the local memory of some other remote processor, then the
access 1s not uniform. It depends on the location of the memory.

Thus, all memory words are not accessed uniformly.

14.4.1.3 Cache-Only Memory Access Model (COMA)

As we have discussed earlier, shared memory multiprocessor
systems may use cache memories with every processor for
reducing the execution time of an instruction. Thus in NUMA
model, if we use cache memories instead of local memories, then it
becomes COMA model. The collection of cache memories forms a
global memory space. The remote cache access is also non-

uniform in this model.

14.4.2 Loosely Coupled Systems

In loosely coupled systems, processors do not share global memory
as shared memory leads to memory conflict issues, which slow
down instruction execution. To mitigate this problem, each
processor has a large local memory that is not shared with other
processors. These systems have multiple processors with their own
local memory and I/O devices, forming individual computer
systems. They are connected via a message passing
interconnection network through which processes communicate by
exchanging messages. Since each node has separate memory, they

are called distributed multicomputer systems. They are also known
Computer Organization & Architecture -458

as loosely coupled systems, indicating little interdependence

between nodes.

LM | P,
Node Mess_age
passing
Interconnectic
LM P2 network
Node
LM — p,

Figure: Loosely Coupled System Organization

Since, local memories can only be accessed by their attached
processor, no processor is able to access remote memory. For this
reason, these systems are also referred to as no-remote memory
access (NORMA) systems. The message passing interconnection
network connects every node and communication between nodes
with messages is dependent on the type of interconnection
network. For instance, the interconnection network for a non-

hierarchical system could be a shared bus.

14.5 CLASSIFICATION BASED ON
GRAIN SIZE

This classification is based on recognizing the parallelism in a
program to be executed on a multiprocessor system. The idea is to
identify the sub-tasks or instructions in a program that can be
executed in parallel. For example, there are 3 statements in a

program and statements S1 and S2 can be exchanged. That means,

Computer Organization & Architecture -459

these are not sequential as shown in Figure. Then S1 and S2 can be

executed in parallel.

Program Flow

8

wn

|t L | —

L |«

[s3]

Figure: Parallel Execution for S1 and S2

But it is not sufficient to check for the parallelism between
statements or processes in a program. The decision of parallelism
also depends on the following factors:
e Number and types of processors available, i.e., architectural
features of host computer
e Memory organisation

e Dependency of data, control and resources

14.5.1 Parallelism Conditions

As mentioned earlier, parallel computing necessitates that the
segments to be run concurrently must be autonomous of one
another. Therefore, before implementing parallelism, all the
prerequisites of parallelism between the segments need to be
examined. In this part, we talk about three kinds of dependency

circumstances between the segments.

Computer Organization & Architecture -460

Dependency
conditions

Figure: Dependency relations among the segments for

parallelism

Data Dependency: It refers to the condition where two or more
commands use the same information. The directions in a program
can be organized based on the connection of data reliance; this
means how two directions or parts depend on the same data. The

following kinds of data dependencies are identified:

i) Flow Dependence: If instruction 12 follows I1 and output of
I1 becomes input of 12, then 12 is said to be flow dependent on
I1.

ii) Antidependence: When instruction 12 follows I1 such that
output of 12 overlaps with the input of I1 on the same data.

iii) Output dependence: When output of the two instructions 11
and I2 overlap on the same data, the instructions are said to be
output dependent.

iv) I/0 dependence: When read and write operations by two
instructions are invoked on the same file, it is a situation of I/O
dependence.

Consider the following program instructions:

Ii:a=b
I:c=a+d
Ista=c¢

Computer Organization & Architecture -461

This program segment contains instructions I, I, and I3 that have
various dependencies. I1 and I, are flow dependent because I
generates variable as a output, which is then used by L as input. I
and I5 are anti-dependent since I3 generates variable a but I» uses it,
and I comes before I3 in the sequence. I3 is flow dependent on I>
due to variable c. I3 and I; are output dependent because both

instructions generate variable a.

Control Dependence: Instructions or segments in a program often
contain control structures. As a result, dependency among the
statements can also occur within control structures. However, the
order in which instructions in control structures will execute is not
known until run time. Therefore, when analyzing dependencies
among instructions, any dependencies introduced by control
structures must be examined carefully. For instance, in the
following control structure, the successive iterations are dependent
on one another:

For (i=1; I<=n;i++)

{
if (x[i-1]==0)
x[i] =0
else
x[i] = 1;
}

Resource Dependence: The similarity between the instructions
can also be influenced because of the shared resources. If two
instructions are utilizing the same shared resource then there is a
resource dependency situation. For instance, floating point units or

registers are shared, and this is referred to as ALU dependency.

Computer Organization & Architecture -462

When memory is being shared, then it is called Storage

dependency.

14.5.2 Bernstein Conditions for Detection of Parallelism

For execution of instructions or block of instructions in parallel, it
should be ensured that the instructions are independent of each
other. These instructions can be data dependent / control dependent
/ resource dependent on each other. Here we consider only data
dependency among the statements for taking decisions of parallel
execution. A.J. Bernstein has elaborated the work of data
dependency and derived some conditions based on which we can
decide the parallelism of instructions or processes. Bernstein

conditions are based on the following two sets of variables:

1) The Read set or input set RI that consists of memory
locations read by the statement of instruction I1.
i1) The Write set or output set WI that consists of memory

locations written into by instruction I1.

The sets RI and WI are not disjoint as the same locations are used
for reading and writing by SI.
The following are Bernstein Parallelism conditions which are used

to determine whether statements are parallel or not:

Locations in R1 from which S1 reads and the locations W2 onto
which S2 writes must be mutually exclusive. That means S1 does
not read from any memory location onto which S2 writes. It can be
denoted as:

RINW2=¢

Computer Organization & Architecture -463

2) Similarly, locations in R2 from which S2 reads and the locations
W1 onto which S1 writes must be mutually exclusive. That means
S2 does not read from any memory location onto which S1 writes.

It can be denoted as: R2NW1=¢

3) The memory locations W1 and W2 onto which S1 and S2 write,
should not be read by S1 and S2. That means R1 and R2 should be
independent of W1 and W2. It can be denoted as :

WINW2=¢

To show the operation of Bernstein’s conditions, consider the
following instructions of sequential program:
Il:x=(a+b)/(a*b)
2:y=(b+c)*d

B3:z=x2+(a*e)

Now, the read set and write set of I1, 12 and I3 are as follows:
R1={a, b} W1 = {x}
R2 = {b,c,d} W2 = {y}
R3 = {x,a, e} W3 ={z}

Now let us find out whether I1 and 12 are parallel or not
RINW2=¢
R2NW1=¢
WINW2=¢

That means I1 and 12 are independent of each other.
Similarly for I1 || 13,

RINW3=¢
Computer Organization & Architecture -464

R3INW e
WINW3=¢

Hence I1 and I3 are not independent of each other.
For 12 || I3,

R2NW3=¢

R3NW2=¢

W3NW2=¢
Hence, 12 and I3 are independent of each other.

Thus, 11 and 12, 12 and 13 are parallelizable but 11 and I3 are not.

14.5.3 Parallelism based on Grain size

Grain size: Grain size or Granularity is a measure which
determines how much computation is involved in a process. Grain
size is determined by counting the number of instructions in a
program segment. The following types of grain sizes have been

1dentified

Types of Grain sizes

Fine Grain Medium Coarse
Grain Grain

Figure: Types of Grain sizes

1) Fine Grain: This type contains approximately less than 20
instructions.

2) Medium Grain: This type contains approximately less than 500
instructions.

3) Coarse Grain: This type contains approximately greater than or

equal to one thousand instructions.

Computer Organization & Architecture -465

According to the grain sizes, parallelism in a program can be

categorized into different levels. These parallelism levels make up

a hierarchy where processes become finer-grained at lower levels.

As the level increases, the degree of parallelism decreases. Each

level requires communication and scheduling overhead depending

on its grain size. The parallelism levels are as follows:

Parallelism Levels

Level 1 Instruction Level
Level 2
Loop Level
Level 3
Procedure or SubProgram
Level

Figure: Parallelism Levels

1l

The instruction level is the most basic level and has the
highest degree of parallelism. The grain size here is fine,
with just a few instructions making up each grain. The
exact fine grain size can vary based on the program type -
for scientific applications, the instruction level grain size
may be larger. This level allows for the highest degree of
parallelism, but also requires more overhead for the
programmer.

The loop level involves parallelizing iterative loop
instructions. The grain size at this level is also fine. Simple
program loops are easy to parallelize, while recursive loops
are more difficult. Compilers can achieve this type of

parallelism automatically.
Computer Organization & Architecture -466

iii. The procedure or subprogram level consists of procedures,
subroutines or subprograms. The grain size here is medium,
containing thousands of instructions per procedure.
Multiprogramming is implemented at this level.
Programmers have exploited parallelism here, but
compilers have not achieved parallelism at medium or
coarse grain sizes.

iv. The program level is the highest level, consisting of
independent programs. The grain size here is coarse, with
tens of thousands of instructions per program. Time sharing
achieves parallelism at this level. Parallelism here has been

exploited through the operating system.

The relation between grain sizes and parallelism levels has been
shown in Table 1

Table 1: Relation between grain sizes and parallelism

Grain Size Parallelism Level

Fine Grain Instruction or Loop Level
Medium Grain Procedure or SubProgram Level
Coarse Grain Program Level

Typically, coarse grain parallelism is carried out in tightly coupled
or shared memory multiprocessors such as the Cray Y-MP. Loosely
coupled systems are utilized to execute medium grain program
segments. Fine grain parallelism has been seen in the SIMD

organization of computers.

Computer Organization & Architecture -467

14.6 SUMMARY

In section 2.3.3, we examined Flynn’s Classification of computers.
This classification system was proposed by Michael Flynn in 1972
and is founded on the ideas of data flow and instruction flow. Next,
in section 2.2.5, we discuss Handler’s classification scheme. This
classification system, suggested by Wolfgang Handler in 1977,

categorizes computers at the following three distinct tiers:

e Processor Control Unit (PCU)
e Arithmetic Logic Unit (ALU)
e Bit-Level Circuit (BLC)

In section 2.5, in the context of structural classification of
computers, several new concepts are presented and examined. The
concepts covered include: Tightly Coupled (or shared memory)
systems, loosely coupled (or distributed memory) systems. In the
case of distributed memory systems, different kinds of Processor
Interconnection Networks (PIN) are talked about. Another
classification scheme based on the idea of grain size is examined in

section 2.6.

14.7 QUESTIONS

1. Why is the classification of computer architectures important in
computer science?

Answer: The classification of computer architectures is important
because it helps in understanding the design and operational

principles of various computer systems. It aids in selecting the

Computer Organization & Architecture -468

appropriate architecture for specific tasks and performance
requirements, and in evaluating and comparing different systems

based on their capabilities.

2. What are the main types of classification used in computer
architecture?

Answer: The main types of classification in computer architecture
include structural classification, classification based on grain size,
and instruction set classification. These classifications help in
organizing and analyzing computer systems based on their design,

performance, and operational characteristics.

3. What is the instruction cycle in computer architecture?

Answer: The instruction cycle is the sequence of operations that a
CPU performs to execute an instruction. It typically includes
fetching the instruction from memory, decoding it to determine the
operation, executing the instruction, and storing the result. This

cycle is fundamental to the operation of any computer system.

4. How do instruction streams and data streams differ in computer
architecture?

Answer: Instruction streams refer to the sequence of instructions
that a CPU executes, while data streams refer to the sequence of
data being processed. The differentiation is important for
optimizing performance, as different architectures may handle

instruction and data streams in varying ways to achieve efficiency.

5. What is Flynn’s Taxonomy and how does it classify computer
architectures?
Answer: Flynn's Taxonomy classifies computer architectures

based on their parallel processing capabilities. It includes four
Computer Organization & Architecture -469

categories: Single Instruction stream Single Data stream (SISD),
Single Instruction stream Multiple Data streams (SIMD), Multiple
Instruction streams Single Data stream (MISD), and Multiple
Instruction streams Multiple Data streams (MIMD). Each category

describes how instructions and data are processed in parallel.

Computer Organization & Architecture -470

14.8 REFERENCES

e Hennessy, J. L., & Patterson, D. A. (2022). Computer
architecture: A quantitative approach (6th ed.). Morgan
Kaufmann Publishers.

e Tanenbaum, A. S., & Austin, T. (2021). Structured
computer organization (7th ed.). Pearson Education.

e Patterson, D. A., & Hennessy, J. L. (2022). Computer
organization and design: The hardware/software
interface (7th ed.). Morgan Kaufmann Publishers.

e Silberschatz, A., Korth, H. F., & Sudarshan, S.
(2022). Database system concepts (7Tth ed.). McGraw-
Hill Education.

e Hwang, K., & Briggs, F. A. (2020). Computer
architecture and parallel processing. McGraw-Hill
Education.

e Stallings, W. (2021). Computer organization and
architecture: Designing for performance (11th ed.).
Pearson Education.

e Cox, R. M., & Davis, A. K. (2020). Introduction to
computer systems: From bits and gates to C programs
and operating systems (4th ed.). McGraw-Hill

Education.

Computer Organization & Architecture -471

UNIT - 15: PARALLELISM IN UNI-
PROCESSOR SYSTEMS & PARALLEL
COMPUTER STRUCTURE

Structure

15.0 Introduction
15.1 Objectives
15.2 PARALLELISM IN UNIPROCESSOR SYSTEMS
15.3 PARALLEL COMPUTR STRUCTURES
15.3.1 Pipeline Computer
15.3.2 Array Computers
15.3.3 Multi-Processor Systems
15.4 Serial Versus Parallel Processing
15.4.1 PARALLELISM VERSUS PIPELINING
15.4.2 PARALLEL PROCESSING APPLICATIONS
15.5 Scalability and Load Balancing
15.6 Summary
15.7 Model Questions

15.8 References

15.0 INTRODUCTION

In the realm of modern computing, the pursuit of enhanced
performance and efficiency has led to significant advancements in
parallel processing techniques. Parallelism, a key concept in
computing, involves executing multiple processes or tasks
simultaneously to optimize computational speed and resource

utilization. This approach contrasts with serial processing, where

Computer Organization & Architecture -472

tasks are executed sequentially, one after the other. The transition
from serial to parallel processing has revolutionized the way
complex computations are handled, enabling the development of

more powerful and efficient computing systems.

Parallel processing can be implemented in various forms, ranging
from simple uniprocessor systems with parallel capabilities to
sophisticated multi-processor and multi-core architectures. Each of
these systems employs distinct parallel computing structures, such
as pipeline computers, array computers, and multi-processor
systems, to achieve different performance goals. Understanding
these structures and their operational principles is essential for

designing and utilizing effective parallel computing systems.

The concepts of scalability and load balancing further enhance the
efficiency of parallel systems. Scalability refers to a system's
ability to handle increasing workloads by adding more resources,
while load balancing ensures that these resources are utilized
effectively without overloading any single component. Together,
these principles help optimize parallel processing applications
across various domains, from scientific research and data analysis
to real-time processing and large-scale simulations. This chapter
will explore these aspects in detail, providing a comprehensive

overview of parallel processing in contemporary computing.

15.1 OBJECTIVES

At the end of this unit, you should be able to understand:
e Uni-processor

e Parallelism in uni-processor

Computer Organization & Architecture -473

e Hardware and software approach in parallelism

e Parallel and serial computer architecture

15.2 PARALLELISM IN
UNIPROCESSOR SYSTEMS

The majority of general purpose single processor systems share a
common fundamental design. Advancing parallel processing
capabilities in single processor computers can improve power and
bandwidth of the machine, mechanisms and so on. In this section
we will examine single processor architectures in the following

manner:

Basic Uni-processor Architecture

A usual single processor computer has three major parts: main
memory, a central processing unit, and input/output devices. The
structure of two commercially available single processor
computers illustrates how these three subsystems can interconnect.
The diagram shows the components of the VAX-11/780 super
minicomputer made by Digital Equipment Corporation. The CPU
is the main controller of the VAX system. It has sixteen 32-bit
general purpose registers, with one register as the program counter.
The CPU also contains a special status register with information
about the current state of the processor and the program being
executed. The CPU includes an arithmetic logic unit with optional
floating point accelerator and some local cache memory. The
operator can interface with the CPU through a console connected
to a floppy disk. The CPU, main memory, and I/O devices all
connect to a common bus called the synchronous backplane

interconnect. Through this bus, all /O devices can communicate

Computer Organization & Architecture -474

with each other, the CPU, or memory. Peripheral storage and 1/O

devices can connect directly to the bus through a controller.

|

P
Console
CPuU -
L=
= RO | PC g
=1 -
Floppy | E p= =] B
disk E -] me
= RIS ALU E (232
§ Registers 3. of
= = e
=] [Local memory] .g
i g
].:
< Synchronous backplane |nlercor|--n;Et_

——

| |
Figure 1: The system architecture of the super-mini VAX-11/780
uni-processor system (Courtesy of IGNOU Book)
Parallelism in Uniprocessor
What is Parallelism?
Parallel computing is the method done by computer systems to
execute multiple instructions at the same time by allocating each
task to different processors. This capability is done in a
uniprocessor system through various techniques such as utilizing
multi-core processors or multiple cores within a single processor
chip, separating a job into smaller sub-tasks that can be processed
concurrently, or leveraging specialized hardware or software to

coordinate parallel processing.

Parallelism in Uniprocessor
Uniprocessor has only one processor but still, it is possible to
achieve parallelism by using certain techniques such as pipelining

and multitasking.

Computer Organization & Architecture -475

Pipelining is a technique that allows a processor to execute a set of
instructions simultaneously by dividing the instructions execution
process into several stages.

Uniprocessor contains a single processor, however parallel
processing 1is still achievable through certain methods like
pipelining and multitasking. Pipelining allows a processor to carry
out multiple instructions at the same time by dividing the execution

process into several phases.

Each stage in the pipeline operates on a different instruction
concurrently, allowing one instruction to be fetched from memory
while another is being executed. This parallelism enhances the
throughput of the processor and enhances performance.

Multitasking is a method that permits a single processor to run
multiple tasks at the same time. It works by dividing the
processor's time into short intervals and rapidly changing between
tasks. Each task gets allocated a particular time slot to execute.
Although the processor executes only one task at a time, this rapid

switching creates the illusion of parallel processing.

These methods enhance the performance of a single processor.
However, as the number of tasks or instructions running at the
same time grows, the performance eventually decreases. Therefore,

a multiprocessor is required here to boost performance.

Advantages of Uniprocessor
e Improves performance- Improves the performance of a
uniprocessor by allowing it to execute multiple tasks or
instructions simultaneously. This is achieved by increasing
throughput which reduces the time required to complete a

particular task.
Computer Organization & Architecture -476

e Cost Effective- A Parallelism in uniprocessor is cost-
effective for applications that do not require the
performance of a multiprocessing system. The cost of a
uniprocessor with parallelism is often lower compared to a
multiprocessing system.

e Low power consumption- A uniprocessor consumes less
power than a multiprocessor system which makes it
suitable for mobile and battery powers devices.

e All these advantages make the uniprocessor an attractive

option for some applications.

Disadvantage of Uniprocessor

Limited scalability— Parallelism is achieved in a very limited
way and as the number of tasks or instructions being executed
simultaneously increases the performance decrease. This makes
it unsuitable for applications that require high levels of
parallelism.

Limited processing power— It has limited processing power as
compared to a multiprocessing system hence it is not suitable
for applications that require high computational power like
scientific simulations and large-scale data processing.

Complex design— Implementing parallelism in a uniprocessor
can be complex as it requires careful design and optimization
to ensure that the system operates correctly and efficiently this
increases the development and maintenance costs of the

system.

Computer Organization & Architecture -477

Applications of Parallelism in Uniprocessor

Multimedia applications— In multimedia applications such as
video and audio playback, image processing, and 3D graphics
rendering it helps in increasing performance.

Web servers— Provides assistance to web servers by allowing
them to handle multiple requests simultaneously which makes
it more reliable.

Artificial Intelligence and machine learning— It improves
performance in artificial intelligence and machine learning
applications allowing them to process large amounts of data
more quickly.

Scientific simulations— Parallelism performs scientific
simulations such as weather forecasting, fluid dynamics, and
molecular modeling.

Database management systems— Parallelism in uniprocessors is
used to improve the performance of database management
systems by allowing them to handle large volumes of data

more efficiently.

Increasing the volume of RAW Increasing Complexity and
material to be processed sophisticationin processing

Intelligence
Pracessing

Knowledge Processing

Information Processing

Data Processing

Figure: Trends towards parallel processing

Computer Organization & Architecture -478

Parallel Processing Mechanism

The parallel processing is an effective way of processing
information that focuses on taking advantage of events happening
at the same time in the computing process. Parallelism means
events can take place concurrently using multiple resources during
the same time period. Simultaneity means events can occur at
exactly the same instant. Pipelining allows events to happen in

overlapping time frames.

Acdder-gabinasiar

Integer multiphy

Loggic uniit

Shift unit

Floating-paint add-subtract

Ta Memary --+— Floating-paint multiphy

:

Figure: Shows one possible way of separating the execution unit

Processor
Riesginters

Flaating-paint divide

INNNNNEE
LU

into eight functions specified by the instruction associated with the

operands.

Hardware Approach for Parallelism in Uniprocessor

Multiplicity of Functional Unit

In earlier computers, the central processing unit (CPU) had just
one arithmetic logic unit that could only carry out one function at a
time. This slowed down the execution of long sequences of

arithmetic instructions. To improve this, the number of functional

Computer Organization & Architecture -479

units in the CPU was increased so that parallel and simultaneous
arithmetic operations could be performed.

In reality, many of the tasks performed by the ALU can be spread
out across multiple specialized units that work at the same time.
The CDC-6600 computer has ten different functional units built

into its central processing unit as shown in the diagram.

Peripheral Processor 10 functicnal units
PPO Central Add
Storage

PP1 Multiphy

Multipl
PP2 Rhy

Divide
PR3

Fixed add
PP4

12 24 Increment
Peripheral - |)
- channels FPs * Registers Boolean
PPG& Shift
PET Branch
PPE
L]
RE Instruction
Stack coreboard
1/0 Subsystem

Memory
Central processor

Figure: The system architecture of CDC-6600 computer (Courtesy of

control data corp.).

These ten units work independently and can run at the same time.
A scoreboard keeps track of which functional units and registers
are available. With 10 functional units and 24 registers, the

instruction issue rate can be greatly increased.

Another great example of a multifunction uniprocessor is the IBM
360/91. It has two parallel execution units: one for integer
arithmetic and one for floating point arithmetic. The floating point
unit has two functional units inside it - one for float add/subtract
and one for float multiply/divide. The IBM 360/91 is a highly

pipelined, multifunction scientific processor.

Computer Organization & Architecture -480

Parallelism and Pipelining within CPU

Parallel adders that use methods like carry-lookahead and carry-
save are not integrated into all arithmetic logic units, unlike the bit-
serial adders used in early computers. Techniques like high-speed
multiplier recoding and convergent division allow parallel
processing and sharing of hardware components for multiply and

divide operations.

The execution of instructions is now divided into multiple pipeline
stages, including fetching the instruction, decoding it, fetching
operands, executing the arithmetic logic, and storing the result. To
allow overlapped execution of instructions through the pipeline,
techniques like instruction prefetching and data buffering have

been developed.

Overlapped CPU and I/O Operation

The input/output (I/O) operations can be carried out at the same
time as the CPU computations through the use of separate 1/O
controllers, channels, or I/O processors. A direct memory access
(DMA) channel enables direct transfer of information between the
I/O devices and main memory. DMA operates by cycle stealing,
which is transparent to the CPU. Additionally, /O multiprocessing
such as utilizing I/O processors in the CDC-6600 can accelerate

data transfer between the CPU and external devices.

Use Hierarchical Memory System
The CPU is about 1000 times faster than memory access. A
hierarchical memory system can be used to close up the speed gap.

Computer memory hierarchy is as shown in the diagram.

Computer Organization & Architecture -481

INTRODUCTION TO PARALLEL PROCESSING 13

o
r core)

Fixed-head disks, drum,
charge-coupled devices,
or magnetic bubble memory

H

Moving head disks

f

\ Magnetic tape units

Figure 1.6 The classical memory hierarchy .

The most internal level is the register files that can be directly
accessed by the ALU. The cache memory can function as a buffer
between the CPU and main memory. Block access of main
memory can be accomplished through multiway interleaving

across parallel memory modules.

Balancing of Subsystem Bandwidth

In general, the CPU is the fastest unit in computer with a processor
cycle of tp of tens of nanoseconds. The main memory has a cycle
time tm of hundreds of nanoseconds and I/O devices are the
slowest with an average of access time td of few milliseconds. It is
observed that

td > tm > tp

For example, the IBM 370/168 has td of 8 ms , tm = 360 ns and tp
=90 ns. With these speed gaps between the subsystems, we need to
match their processing bandwidth in order to avoid a system
bottleneck problem.

The bandwidth of the system is defined as number operations

performed per unit time. In the case of main memory system the

Computer Organization & Architecture -482

memory bandwidth is measured by the number of memory words
that can be accessed per unit time. Let W be the number of words
delivered per memory cycle tm . Then the maximum memory
bandwidth Bm is equal to

Bm =W/tm

The bandwidth of the processor is measured as the maximum CPU
computation rate Bp . For example it is 160 megaflops in the Cray-
1 and 12.5 million instructions per second in IBM 370/168.

Also the utilized CPU rate is By < B

Rw

Hence the utilized rate is measured as By = T
Bandwidth balancing between CPU and memory

The performance difference between the CPU and memory can be
reduced by utilizing fast cache memory in between them. The
cache should have an access time similar to the CPU. A block of
memory words is transferred from main memory into the cache so
that subsequent instructions or data are accessible most of the time

from the cache. The cache acts as a data or instruction buffer.

Bandwidth balancing between Memory and 1/0 devices

Communication channels with different speeds can be utilized
between slow input/output devices and main memory. These
input/output channels execute buffering and multiplexing functions
to move data from multiple disks into main memory by taking
cycles from the CPU. Additionally, more advanced disk controllers
or database machines can be used to filter out non-relevant data
directly from the tracks of the data. This filtering will alleviate

input/output channel overloading. The combined buffering,

Computer Organization & Architecture -483

multiplexing, and filtering processes can enable faster, more

productive data transfer rates, aligning with that of the memory.

Multiprogramming and Time Sharing

In a single processor computer system with just one CPU, we can
still accomplish a high level of resource sharing between many
user programs. Multiprogramming and time sharing are software
techniques that allow concurrency in a single processor system. We
use three symbols - 1 for input, ¢ for compute, and o for output - to

represent operations.

Software Approach for Parallelism in Uni-processor
Multiprogramming

Within a given time period, multiple processes may be running
concurrently in a computer system. These processes compete for
memory, input/output, and CPU resources. We know that some
programs are CPU-intensive while others are I/O-intensive. We can
execute a mix of program types to balance usage across different
hardware components. Interleaving program execution is meant to
enable better utilization through overlapping of I/O and CPU
operations.

When a process P1 is occupied with I/O, the scheduler can switch
the CPU to process P2. This allows multiple programs to run
simultaneously. When P2 finishes, the CPU can switch to P3. Note
that interleaving I/O and CPU work and CPU wait times are
greatly reduced. The interleaving of CPU and I/O operations across

multiple programs is called multiprogramming.

Time Sharing
Multiprogramming on a single processor involves the CPU being

shared by many programs. Sometimes, a high priority program
Computer Organization & Architecture -484

may occupy the CPU for a long time which prevents other
programs from sharing it. This issue can be resolved through a
method called timesharing. Timesharing builds on
multiprogramming by assigning fixed or variable time slots to
multiple programs. This provides equal opportunities for all
programs competing to use the CPU.

The timesharing use of the CPU by multiple programs on a single
processor computer creates the concept of virtual processors.
Timesharing is especially effective for computer systems
connected to many interactive terminals. Each user at a terminal
can interact with the computer. Timesharing was first developed
for single processor systems. It has also been extended to multi-

processor systems.

15.3 PARALLEL COMPUTER
STRUCTURES

Parallel computers are those systems that use parallel processing.
The basic features of parallel computers are listed below, they are
(1) Pipeline computers
(i1) Array processors

(ii1))Multiprocessor systems.

A pipeline computer performs overlapped computations to exploit
temporal parallelism. An array processor uses multiple
synchronized arithmetic logic units to active spatial parallelism. A
ultiprocessor system achieves asynchronous parallelism through a

set of interactive processors with shared resources.

Computer Organization & Architecture -485

15.3.1 Pipeline Computers
The execution of an instruction on a digital computer involves four
steps:
(1) Fetching the instruction from main memory,
(i1) Decoding the instruction to identify the operation to
perform,
(ii1)Fetching operands if needed for the execution, and

(iv)Executing the decoded arithmetic/logic operation.

In non-pipelined computers, these four steps must finish before the
next instruction can start. However, in a pipelined computer,
successive instructions are executed concurrently in an overlapped
manner. The diagram illustrates this process.

In the diagram, the four pipeline stages - Instruction Fetch (IF),
Instruction Decode (ID), Operand Fetch (OF), and Execute (EX) -
are arranged in a linear sequence. The two space-time diagrams
demonstrate the difference between overlapped pipelined

execution versus sequential non-pipelined execution.

The instruction cycle is made up of multiple pipeline cycles. A
pipeline cycle can be set to the delay of the slowest stage. Data
flows from stage to stage on each cycle, triggered by a common
pipeline clock. All stages operate synchronously under this clock.
Interface latches between stages hold intermediate results. For a
non-pipelined computer, one instruction takes four pipeline cycles.
Once the pipeline is full, output results emerge from the pipeline

each cycle.

Because of the overlapped instruction fetch/decode and execution,
pipelines are well-suited for repeatedly performing the same

operations. When the operation changes (e.g. from add to
Computer Organization & Architecture -486

multiply), the pipeline must be drained and reconfigured, causing
delays. Thus, pipelines are most attractive for vector processing

with repeated operations.

INTRODUCTION TO PARALLEL PROCESSING

."Cl .S': .“r’_, Sa (Stages)

= 12 ;] T4
———b{ IF }___,1442i47___*4 QF F——i% EX F——t—
|
S | | = N

{a) A pipelined processor

Pipeline
stages
[# o o
EX ' Iy Iy I, fy LY
OF I, Iy £y ' f, - e @
(i 5] f £, I i, I - " %
IF Iy iy Iy A Iy L
- = e - —
1 2 3 = 5 & T B w Fime
(pipcline
cycles)
(&) Space-time diagram for a pipelined processor
(b) Space-time diagram for a pipelined processor
Stages
4
o/p o/p
S

EX l, 1 /

OF /) h h

ID Ir'I II !!

Figure: Basic concepts of pipelined processor and overlapped

instruction execution

Computer Organization & Architecture -487

15.3.2 Array Computers

24 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING
A 1O
fe
M
| CcP :
L Conirol
umnit
(scalar
e) processing)
| s |
y T
Dara
bus L
¢ FE, r PE,
= : { ~ ol
| X - ® @
| ol M {Array
: = pProcessing)

Figure: Functional structure of an SIMD array processor with

concurrent scalar processing

An array processor is a synchronized parallel computer with
multiple arithmetic logic units, referred to as processing elements
(PEs). It can operate simultaneously in a lockstep fashion. By
replicating ALUs, spatial parallelism can be achieved. The PEs are
synchronized to execute the same function concurrently. An

appropriate data routing system must connect the PEs.

A typical array processor is structured as shown in the diagram.
Scalar and vector instructions are directly implemented in the
Control unit. Each PE has an ALU with registers and local
memory. The PEs are interconnected by a data routing network.
The interconnection pattern established for a specific computation
is under program control. Vector instructions are broadcast to the

PEs for distributed execution across different component operands

Computer Organization & Architecture -488

fetched directly from local memory. The PEs are passive devices

with instruction decoding capabilities.

Additionally, associative memory, which is content addressable,
will be examined in the context of parallel processing. Array
processors designed with associative memory are called
associative processors. Parallel algorithms on array processors will
be provided for matrix multiplication, merging, sorting, and

Fourier transforms.

15.3.3 MULTIPROCESSOR SYSTEMS

The goal of researching and developing multiprocessor systems is
to enhance throughput, reliability, flexibility, and availability. The
fundamental multiprocessor design has two or more processors
with similar capabilities. All processors have access to the same
memory modules, I/O channels, and peripherals. Most critically,
the entire system must be controlled by a single integrated
operating system that enables interaction between processors and
their programs. In addition to the shared memories and I/O
devices, each processor has its own local memory and private
devices. Processors can communicate through the shared memories

or the interrupt network.

Multiprocessor hardware system organization is determined by the
interconnection structure to be used between the memories and

processors . The three different interconnections are

e Time-shared common bus
e Crossbar switch network

e Multiport switches

Computer Organization & Architecture -489

154 SERIAL VERSUS PARALLEL
PROCESSING

Parallelism: Parallelism refers to the simultaneous execution of
multiple tasks or processes to achieve faster computation and
efficiency. This is done by dividing a task into smaller subtasks
that can be processed concurrently by multiple processing units.

There are several types of parallelism:

e Data Parallelism: Involves distributing data across
different processors and performing the same operation on
each piece of data simultaneously. This is commonly used
in tasks like image processing or matrix operations.

e Task Parallelism: Involves performing different tasks or
operations at the same time. This type of parallelism is
useful when tasks can be executed independently, such as
in multi-threaded applications where different threads
handle different functions.

o Instruction-Level Parallelism (ILP): Refers to executing
multiple instructions from a single program simultaneously.
Modern CPUs use techniques like out-of-order execution

and speculative execution to exploit ILP.

Pipelining: Pipelining is a technique used in computer architecture
to improve the throughput of a system by overlapping the
execution of different stages of an instruction. It is similar to an
assembly line in manufacturing, where each stage completes a part
of the task. In pipelining, an instruction is divided into several

stages, such as fetch, decode, execute, and write-back. While one

Computer Organization & Architecture -490

instruction is being executed in one stage, other instructions can be

processed in previous or subsequent stages.

Comparison:

Parallelism aims to execute multiple tasks or processes
simultaneously to improve overall performance. It can be
applied at different levels, such as data, tasks, or
instructions.

Pipelining focuses on increasing the efficiency of a single
task by overlapping the stages of instruction execution. It
improves the throughput of a processor by reducing the idle

time between stages.

While both parallelism and pipelining aim to improve

performance, parallelism is more about executing multiple tasks

concurrently, whereas pipelining enhances the efficiency of

sequential task execution.

15.4.2 Parallel Processing Applications

Parallel processing involves the use of multiple processors or cores

to perform computations simultaneously, and it has a wide range of

applications across various fields:

Scientific Computing: Large-scale simulations and
computations in fields such as physics, climate modeling,
and bioinformatics often require parallel processing to
handle complex calculations and large datasets efficiently.

Image and Video Processing: Tasks such as image
filtering, video encoding, and real-time image recognition
benefit from parallel processing. Processing multiple
frames or pixels simultaneously speeds up these operations

significantly.
Computer Organization & Architecture -491

Data Analysis and Machine Learning: Training machine
learning models, especially deep learning networks,
involves processing large amounts of data and performing
complex calculations. Parallel processing helps accelerate
these tasks, allowing for faster model training and
inference.

Computational Fluid Dynamics (CFD): CFD simulations
involve solving complex equations that describe fluid flow.
Parallel processing allows these simulations to be divided
into smaller tasks, each handled by different processors,
resulting in faster computations.

Cryptography: Encryption and decryption algorithms,
which involve complex mathematical operations, can be
parallelized to enhance security and performance. Parallel
processing helps handle large volumes of data and improve
encryption speed.

Database Management: Parallel processing is used to
improve the performance of database queries and
transactions. By distributing queries across multiple
processors, databases can handle more requests and deliver
faster responses.

Rendering: In graphics rendering, such as in computer-
aided design (CAD) or video games, parallel processing
enables the simultaneous rendering of different parts of a
scene, leading to faster image generation and better frame

rates.

Computer Organization & Architecture -492

15,5 SCALABILITY AND LOAD
BALANCING

Scalability refers to the capability of a system to handle increasing
workloads or accommodate growth effectively. It involves
designing systems that can scale up (vertical scalability) by adding
more power to existing machines or scale out (horizontal
scalability) by adding more machines to distribute the load.
Scalable systems can adjust to varying demands without
compromising performance, making them suitable for applications
with fluctuating or growing resource requirements. For example,
cloud computing platforms often utilize horizontal scalability to
manage large amounts of data and user requests by adding more

servers to a network.

Types of Scalability:

e Vertical Scalability: This involves upgrading the existing
hardware or software to increase the capacity of a single
machine. For example, adding more CPUs, memory, or
storage to a server to handle larger workloads is vertical
scaling. While this approach can enhance performance, it is
limited by the maximum capacity of the hardware and often
involves significant investment in high-end equipment.

e Horizontal Scalability: This approach involves adding
more machines or nodes to a system to distribute the load.
For instance, deploying additional servers in a cloud
environment to handle increased traffic or processing
requirements is horizontal scaling. This method is generally

more flexible and cost-effective, allowing for incremental

Computer Organization & Architecture -493

expansion and better handling of high demand or failure

scenarios.

Scalability Challenges:

Bottlenecks: As systems scale, certain components may
become bottlenecks, limiting overall performance. For
instance, a single database server may struggle to keep up
with requests if it becomes overwhelmed, even if other
parts of the system are scaled effectively.

System Limitations: Not all systems or applications are
designed to scale easily. Certain architectural constraints,
such as dependencies on centralized resources or
inadequate distribution mechanisms, can hinder scalability.
Impact on Performance: Scaling can introduce
complexity in managing consistency, synchronization, and
coordination across multiple nodes. Ensuring that all parts
of a distributed system work harmoniously and efficiently
is essential to maintaining performance and avoiding issues

like data inconsistency or increased latency.

Load Balancing is the process of distributing workloads evenly

across multiple resources to ensure optimal performance and

prevent any single resource from becoming a bottleneck. It aims to

improve system efficiency, reliability, and availability by directing

incoming traffic or tasks to the least loaded or most appropriate

server. Techniques such as round-robin, least connections, and least

load algorithms are commonly used to manage this distribution.

Effective load balancing ensures that no single server is

overwhelmed, enhances the responsiveness of applications, and

contributes to overall system resilience.

Computer Organization & Architecture -494

Load Balancing Techniques:

Round-Robin: This simple method distributes incoming
requests or tasks sequentially among available resources.
Each resource is assigned a request in turn, which helps
ensure an even distribution of the load. However, this
technique assumes all resources have similar capabilities
and may not be optimal if resources vary in performance.
Least Connections: This approach directs traffic to the
resource with the fewest active connections. It is
particularly effective in environments where the workload
is unevenly distributed among resources, as it dynamically
adjusts based on current load conditions.

Least Response Time: This technique routes requests to
the resource with the fastest response time. It is useful for
applications requiring minimal latency, as it prioritizes
resources that can handle requests more quickly.

Weighted Distribution: Resources are assigned weights
based on their capacity or performance. The load balancer
then distributes requests according to these weights,
allowing more capable resources to handle a higher share
of the load.

Dynamic Load Balancing: This method involves
continuously monitoring the performance and load on
resources and adjusting the distribution of tasks in real-
time. It adapts to changing conditions and ensures optimal

use of resources based on current demand.

Challenges and Considerations:

Session Persistence: In some applications, it is essential to

maintain a user's session on the same server throughout
Computer Organization & Architecture -495

their interaction. Load balancing must handle session
persistence or sticky sessions to ensure users do not
experience disruptions.

e Scalability: Effective load balancing should support
scalability by accommodating additional resources as
needed. This requires coordination with the system's
scalability mechanisms to ensure that new resources are
integrated smoothly.

e Fault Tolerance: Load balancing must account for
potential failures by redirecting traffic away from failed
resources and ensuring continuous service availability. This
involves implementing health checks and failover

mechanisms to maintain system reliability.

Load Balancing in Distributed Systems:

In distributed systems, load balancing refers to the process of
distributing workloads evenly across multiple servers or nodes in a
network. The goal is to optimize resource utilization, maximize
throughput, minimize response time, and ensure high availability
and fault tolerance. Unlike single systems, distributed systems rely
on multiple interconnected components, making effective load
balancing crucial for maintaining performance and preventing any

single node from becoming a bottleneck.

Techniques and Strategies:
1. Round-Robin Load Balancing:
o Description: Distributes requests or tasks
sequentially across a list of servers or nodes.
o Advantages: Simple to implement and ensures an

even distribution of tasks.
Computer Organization & Architecture -496

o

Challenges: Assumes all nodes have similar
performance capabilities, which may not be true in

heterogeneous environments.

2. Least Connections Load Balancing:

o

Description: Routes new requests to the node with
the fewest active connections.

Advantages: Dynamic adjustment based on current
load, effective in environments with varying
workloads.

Challenges: Requires real-time monitoring of
connection counts and may be complex to

implement in large-scale systems.

3. Least Response Time Load Balancing:

o

Description: Directs requests to the node with the
fastest response time.

Advantages: Reduces latency by prioritizing nodes
that can handle requests more quickly.

Challenges: Requires continuous measurement of
response times and can be affected by network

latency.

4. Weighted Load Balancing:

o

o

Description: Assigns weights to nodes based on
their capacity or performance and distributes
requests proportionally.

Advantages: Allows more powerful nodes to

handle a higher share of the load.

Computer Organization & Architecture -497

o Challenges: Requires accurate weight assignment
and may need adjustments as system capabilities

change.

5. Dynamic Load Balancing:

o Description: Continuously monitors the load and
performance of nodes and adjusts the distribution of
tasks in real-time.

o Advantages: Adapts to changing conditions,
providing optimal performance and resource
utilization.

o Challenges: Complex implementation and may
require sophisticated monitoring and adjustment

mechanisms.

Challenges and Considerations:

Session Persistence (Sticky Sessions): In some
applications, it's essential to keep a user's session on the
same node. Load balancers must manage session
persistence to ensure a consistent user experience.

Fault Tolerance: Load balancing in distributed systems
must handle node failures gracefully. This involves
redirecting traffic away from failed nodes and ensuring that
the system continues to operate smoothly.

Scalability: Effective load balancing should support
horizontal scaling by integrating new nodes into the system
seamlessly. The load balancing strategy must adapt as the
number of nodes increases.

Data Consistency: In distributed systems with shared data,

load balancing must ensure that all nodes have consistent

Computer Organization & Architecture -498

views of the data. This may involve synchronization
mechanisms to prevent data inconsistency.

e Network Latency: Load balancing decisions can be
affected by network latency between nodes. Strategies
should account for the impact of network delays on overall

system performance.

15.6 CONCLUSION

The evolution of parallel processing represents a significant leap in
computing capabilities, addressing the limitations of serial
processing and meeting the demands for higher performance and
efficiency. By leveraging parallelism, modern computing systems
can execute multiple tasks concurrently, drastically reducing
processing time and enhancing overall system throughput. This
advancement is embodied in various parallel computing structures,
such as pipeline computers, array computers, and multi-processor

systems, each offering unique advantages and applications.

Understanding the nuances of scalability and load balancing is
crucial for optimizing parallel systems. Scalability ensures that a
system can adapt to increasing workloads by expanding its
resources, while load balancing distributes tasks evenly across
available resources to prevent bottlenecks and maintain system
efficiency. Together, these principles enable parallel systems to
perform effectively across diverse applications, from complex

simulations to real-time data processing.

In summary, parallel processing, with its diverse architectures and

efficient management techniques, plays a pivotal role in advancing

Computer Organization & Architecture -499

computing technology. The ongoing development in this field
continues to push the boundaries of what is possible, paving the
way for more robust, high-performance computing solutions. As
technology progresses, the understanding and application of these
parallel processing principles will remain integral to achieving
computational excellence and addressing the ever-evolving

demands of modern applications.

15.7 UNIT BASED QUESTIONS AND
ANSWERS

1. What is parallel processing, and how does it differ from
serial processing?

Answer: Parallel processing is a computing paradigm where
multiple processors or cores work simultaneously to perform tasks
or computations. This approach contrasts with serial processing,
where tasks are executed one after the other in a sequential manner.
Parallel processing improves efficiency and performance by
dividing tasks into smaller sub-tasks that can be processed
concurrently, while serial processing can become a bottleneck for

large-scale or complex operations due to its linear execution.

2. Explain the concept of pipelining and its benefits in parallel
processing.

Answer: Pipelining is a technique used in parallel processing
where multiple instruction phases are overlapped to improve the
throughput of a processor. It involves dividing a single instruction
into several stages, with each stage being executed in parallel by
different pipeline stages. This allows multiple instructions to be

processed simultaneously at different stages, increasing the overall

Computer Organization & Architecture -500

processing speed. Benefits of pipelining include improved
execution efficiency and reduced processing time for tasks, as it

maximizes the utilization of processor resources.

3. What are the key differences between SIMD and MIMD
architectures?

Answer: SIMD (Single Instruction, Multiple Data) and MIMD
(Multiple Instruction, Multiple Data) are two types of parallel
architectures. SIMD architecture executes the same instruction on
multiple data points simultaneously, making it well-suited for tasks
requiring repetitive operations on large data sets, such as image
processing. In contrast, MIMD architecture allows different
processors to execute different instructions on different data points
independently, making it more versatile for a wider range of
applications, including complex simulations and multitasking

environments.

4. Describe the role of scalability in parallel computing
systems.

Answer: Scalability refers to a system's ability to handle increased
workloads by expanding its resources, either by adding more
processing units (horizontal scaling) or enhancing the existing ones
(vertical scaling). In parallel computing, scalability is crucial for
maintaining performance as demands grow. Scalable systems can
adapt to larger datasets or more complex computations without a
significant drop in efficiency or performance, ensuring that the

system remains effective and cost-efficient as it scales.

5. What is load balancing, and why is it important in

distributed systems?

Computer Organization & Architecture -501

Answer: Load balancing is the process of distributing workloads
evenly across multiple computing resources to ensure that no
single resource is overwhelmed while others are underutilized. In
distributed systems, load balancing is vital for optimizing resource
use, maximizing throughput, minimizing response time, and
avoiding bottlenecks. Effective load balancing improves system
performance and reliability by ensuring that all components are

used efficiently and that tasks are handled in a timely manner.

15.8 REFERENCES

e Hennessy, J.L., & Patterson, D.A. (2019). Computer
Architecture: A Quantitative Approach (6th ed.). Morgan
Kaufmann.

e Sutter, H., & Larus, J.R. (2005). Software and the
Memory Hierarchy. ACM Computing Surveys (CSUR),
37(3), 223-271.

e Gharachorloo, K., & McKenney, S. (1995). Memory
Consistency Models for Shared-Memory Multiprocessors.
ACM Computing Surveys (CSUR), 27(4), 462-489.

o« Hwang, K., & Briggs, F.A. (2017). Computer Architecture
and Parallel Processing. McGraw-Hill Education.

o Silberschatz, A., Korth, H.F., & Sudarshan, S. (2011).
Database System Concepts (6th ed.). McGraw-Hill

Education.

Computer Organization & Architecture -502

UNIT — 16: SYSTEM-LEVEL
ORGANIZATION

Structure

16.0 Introduction

16.1 Objectives

16.2 System Architectures

16.3 Single-Processor Systems

16.4 Multiprocessor Systems

16.5 Distributed Systems

16.6 Scalability and Reliability

16.7 Conclusion

16.8 Unit Based Questions & Answers

16.9 References

16.0 INTRODUCTION

In the realm of computer science and engineering, system
architecture forms the foundational framework for designing and
implementing computing systems. It encompasses a broad
spectrum of architectures, including single-processor systems,
multiprocessor systems, and distributed systems, each tailored to
specific computational needs and performance criteria.
Understanding these architectures is essential for optimizing

system performance, enhancing scalability, and ensuring reliability.

Single-processor systems, characterized by a single central
processing unit (CPU), provide a straightforward approach to

Computer Organization & Architecture -503

computing tasks but may face limitations in handling complex or
high-demand applications. Multiprocessor systems, which
integrate multiple CPUs, offer improved performance and
redundancy by distributing tasks across processors. Distributed
systems take this further by spreading computations across
multiple machines, often geographically dispersed, to achieve

higher scalability and resilience.

The study of scalability and reliability is crucial in evaluating how
well these architectures handle increased workloads and maintain
consistent performance. Scalability examines a system's capacity
to grow and manage additional load efficiently, while reliability
focuses on the system's ability to operate continuously without
failure. By analyzing these aspects, one can design robust systems
capable of adapting to evolving demands while maintaining high

performance and reliability.

16.1 OBJECTIVES

After completing this unit, you will be able to understands;

¢ Understand System Architectures: Learn the fundamental
types of system architectures, including single-processor,
multiprocessor, and distributed systems.

e Explore Single-Processor Systems: Analyze the structure,
performance, and limitations of systems with a single
central processing unit (CPU).

e Examine Multiprocessor Systems: Investigate how
systems with multiple CPUs manage parallel processing

and enhance performance.

Computer Organization & Architecture -504

e Study Distributed Systems: Understand how tasks are
distributed across multiple machines and networks to
handle complex computing needs.

e [Evaluate Scalability and Reliability: Assess techniques
for ensuring systems can scale efficiently and remain

reliable under varying loads and conditions.

16.2 SYSTEM ARCHITECTURES

System architectures refer to the fundamental structures and
organization of computer systems that define how various
hardware and software components interact to perform computing
tasks. This encompasses the design of the central processing unit
(CPU), memory hierarchy, input/output systems, and
communication pathways. System architectures are crucial for
determining the overall performance, scalability, and efficiency of
a computing system. They provide a blueprint for integrating
different components to meet specific operational requirements and
user needs, impacting everything from system speed and capacity

to energy consumption and reliability.

In practice, system architectures can be categorized into several
types, including single-processor, multiprocessor, and distributed
systems. Single-processor systems feature a single CPU that
handles all processing tasks, which can limit performance due to
its single processing thread. Multiprocessor systems use multiple
CPUs or cores to execute parallel tasks, enhancing performance
and reliability but introducing complexities in communication and
synchronization. Distributed systems spread computational tasks

across multiple interconnected computers or nodes, enabling

Computer Organization & Architecture -505

scalability and fault tolerance but requiring sophisticated
coordination and data consistency mechanisms. Understanding
these architectures helps in designing systems that efficiently
handle various workloads and adapt to evolving technological

demands.

Overview of system architecture types and their applications.

System architecture defines how various components of a
computer system are structured and interact with each other.
Understanding the different types of system architectures is
essential for selecting or designing systems that meet specific
performance, scalability, and reliability requirements. Here’s an

overview of major system architecture types and their applications:

16.3 SINGLE-PROCESSOR SYSTEMS

Single-processor systems, also known as single-core systems, are
computing systems that utilize a single central processing unit
(CPU) to handle all computational tasks. This CPU is responsible
for executing instructions, managing data, and performing

calculations.

Computer Organization & Architecture -506

Processor

Cache

Bus

Characteristics:
1. Architecture:

o Central Processing Unit (CPU): The sole
processor performs all operations and controls the
system.

o Memory: Typically includes both primary memory
(RAM) and secondary storage (like hard drives or
SSDs).

o I/O Devices: Interfaces with peripheral devices
such as keyboards, mice, printers, and displays
through I/O controllers.

2. Performance:

o Simplicity: The architecture is straightforward,
making it easier to design and implement.

o Limited Multitasking: Although modern single-
processor systems can switch between tasks rapidly
(context switching), true parallel processing is not
possible. Performance may degrade with increased
multitasking.

3. Cost and Power Consumption:
o Cost-Efficient: Generally lower cost compared to

systems with multiple processors or cores.
Computer Organization & Architecture -507

o

Power Consumption: Consumes less power than
multi-core systems, making it more suitable for

battery-powered or low-energy applications.

4. Applications:

o

Personal Computers: Many desktops and laptops
with moderate computing needs use single-
processor systems.

Embedded Systems: Devices like microwaves,
digital cameras, and some home appliances often
use single-processor systems due to their simplicity
and cost-effectiveness.

Basic Workstations: Used for tasks that do not
require extensive parallel processing, such as word
processing, web browsing, and light multimedia

tasks.

5. Limitations:

o

Performance Bottlenecks: The single CPU can
become a performance bottleneck when handling
multiple or complex tasks simultaneously.

Scalability: Limited in terms of scalability and
parallel processing capabilities compared to multi-

core or multi-processor systems.

Advantages:

Ease of Design and Implementation: The
architecture is less complex, which simplifies
system design and reduces development time.

Cost-Effectiveness: Fewer components and simpler
design lead to lower manufacturing and

maintenance costs.

Computer Organization & Architecture -508

e Lower Power Consumption: Generally consumes
less power, making it suitable for energy-efficient

applications.

Disadvantages:

e Limited Multitasking: Although capable of
switching between tasks quickly, the system cannot
execute multiple tasks simultaneously as efficiently
as multi-core systems.

e Performance Constraints: May struggle with
performance-intensive applications or tasks that

require significant computational power.

16.4 MULTIPROCESSOR SYSTEMS

Multiprocessor systems, also known as multi-core systems, use
more than one central processing unit (CPU) to handle
computations. Each CPU or core can perform separate tasks or
work together on a single task, improving overall system

performance and efficiency.

SMP - symmetric multiprocessor system

B=- —

Cocha ‘ Cache

Computer Organization & Architecture -509

Characteristics:

1. Architecture:

o

Multiple CPUs/Cores: The system contains two or
more CPUs or cores that work in parallel to execute
instructions. These processors share the system's
resources, such as memory and I/O devices.
Interconnection Network: A communication
network or bus connects the processors and
facilitates data exchange between them. This
network can be a shared bus, crossbar switch, or
other interconnect technologies.

Shared Memory: In many multiprocessor systems,
all processors have access to a common memory
space, which requires synchronization mechanisms

to manage concurrent access.

2. Performance:

o

Parallel Processing: Multiple processors can
execute different instructions simultaneously,
leading to significant performance improvements
for tasks that can be parallelized.

Increased Throughput: The system can handle
more operations per unit time compared to a single-
processor system, enhancing overall throughput.
Load Balancing: Workload can be distributed
among processors, leading to more efficient

utilization of system resources.

3. Cost and Complexity:

o

Higher Cost: More CPUs or cores increase the
system's cost due to additional hardware and

complexity in design and implementation.

Computer Organization & Architecture -510

Complex Design: Multiprocessor systems require
sophisticated design to manage processor
synchronization, communication, and memory

consistency.

4. Applications:

o

5. Types:

Servers and Workstations: Often used in high-
performance computing environments where
parallel processing is crucial, such as web servers,
database servers, and scientific computing.
Enterprise Systems: Utilized in environments
requiring high reliability and availability, including
financial systems and large-scale enterprise
applications.

High-Performance Computing (HPC): Employed
in supercomputers and data centers to handle
complex simulations, data analysis, and large-scale

computations.

Symmetric = Multiprocessing (SMP): All
processors have equal access to the memory and 1/0
devices, and each processor runs a copy of the
operating system.

Asymmetric Multiprocessing (AMP): One
processor, called the master, controls the system,
while the other processors, called slaves, perform
specific tasks as directed by the master.

Cluster Computing: Multiple computers (or nodes)
work together as a single system, often connected
by a network, to provide high-performance

computing capabilities.

Computer Organization & Architecture -511

Advantages:

Enhanced Performance: Capable of handling
multiple tasks simultaneously, leading to improved
performance for multi-threaded and parallel
applications.

Scalability: Systems can be scaled by adding more
processors or cores, allowing for increased
computational power and capacity.

Improved Reliability: Redundancy and fault
tolerance can be built into multiprocessor systems,

increasing system reliability and availability.

Disadvantages:

Increased Complexity: Design and management of
multiprocessor systems are more complex due to
issues related to synchronization, communication,
and consistency.

Higher Cost: Additional hardware and the need for
sophisticated software and management tools
contribute to higher costs.

Software Compatibility: Not all software is
designed to take advantage of multiple processors,

which can limit the benefits of the system.

16.5 DISTRIBUTED SYSTEMS

A distributed system is a network of independent computers that
appears to its users as a single coherent system. These computers
communicate and coordinate their actions by passing messages,

working together to achieve a common goal. Distributed systems

Computer Organization & Architecture -512

are designed to share resources, manage tasks, and ensure
reliability across multiple machines, often spread over a wide
geographical area.

A DISTRIBUTED SYSTEM

Workstations Personal
Computers

S c—D
Local Area
Network -_—
| |
=D
Wide Area iiii =l _1F_1F1_ = - -
Network ;|;| L EIENCIBEICIE @ —
Gateway -
File Server Login, Print and Other
Services
Characteristics:

1. Geographical Distribution:

o Location Independence: Components of a
distributed system can be located in different
physical locations, ranging from different rooms in
a building to different cities or countries.

o Networked Communication: These systems rely
on networks (e.g., local area networks (LANS),
wide area networks (WANSs), or the internet) to
enable communication between distributed nodes.

2. Resource Sharing:

o Shared Resources: Resources such as files,
databases, and computing power are shared among
the nodes in the system. This enables efficient use

of hardware and software resources.

Computer Organization & Architecture -513

o Scalability: Distributed systems can scale
horizontally by adding more nodes to the network,
accommodating increased loads and demands.

3. Fault Tolerance and Reliability:

o Redundancy: Redundant components and data
replication are used to enhance reliability and
ensure continuous operation even if some nodes
fail.

o Fault Detection and Recovery: The system must
detect failures and recover from them to maintain its
operations, often through mechanisms like
checkpointing and failover.

4. Concurrency and Coordination:

o Parallel Processing: Multiple nodes can process
tasks simultaneously, improving performance and
throughput.

o Synchronization: Coordinating actions between
distributed nodes requires synchronization
mechanisms to ensure consistency and avoid
conflicts.

5. Transparency:

o Access Transparency: Users interact with the
system as if it were a single entity, without being
aware of the underlying distribution of resources.

o Location Transparency: Users do not need to
know the physical location of resources or services

they are accessing.

Types of Distributed Systems:
1. Distributed Computing:

Computer Organization & Architecture -514

Grid Computing: Utilizes a network of dispersed
computers to work on a shared task, often used for
scientific research and large-scale computations.

Cloud Computing: Provides on-demand access to
computing resources and services over the internet,
allowing users to scale resources up or down as

needed.

2. Distributed Databases:

o

Replication: Copies of data are maintained on
multiple nodes to ensure availability and reliability.

Partitioning: Data is divided and distributed across
different nodes to improve performance and

manageability.

3. Distributed File Systems:

o

Network File Systems (NFS): Allows files to be
shared and accessed over a network as if they were
on a local disk.

Distributed File Systems: Spreads files across
multiple servers and provides a unified interface for

file access.

4. Distributed Applications:

o

Service-Oriented Architecture (SOA):
Applications are built as a collection of services that
communicate over a network, promoting modularity
and reusability.

Microservices: A variant of SOA, where
applications are decomposed into smaller, loosely-
coupled services that interact over well-defined

interfaces.

Computer Organization & Architecture -515

Advantages:
e Scalability: Easily scales by adding more nodes to
handle increased loads and demands.
e Resource Utilization: Efficiently uses resources by
leveraging distributed nodes.
e Fault Tolerance: Redundant components and data

replication increase reliability and availability.

Disadvantages:

e Complexity: Designing and managing distributed
systems is more complex due to issues like
communication, synchronization, and fault
tolerance.

o Latency: Network communication can introduce
latency, affecting performance.

e Security: Distributing resources across multiple
locations can create security challenges that need to

be addressed.

16.6 SCALABILITY AND
RELIABILITY

Scalability refers to a system’s ability to handle increasing
workloads or accommodate growth without compromising
performance. It ensures that as demand grows, a system can
expand its capacity either by adding more resources (scaling up) or
by adding more nodes or instances (scaling out). Scalability is
crucial for maintaining efficient performance and ensuring that

systems can grow alongside business needs or user demands.

Computer Organization & Architecture -516

Types of Scalability:
Vertical Scalability (Scaling Up):

1.

o

Involves adding more power (CPU, RAM, storage)
to an existing server or node.

Suitable for applications that require high
performance from a single node or where the

application does not support distributed processing.

2. Horizontal Scalability (Scaling Out):

o

Involves adding more nodes or instances to
distribute the workload across multiple machines.

Common in cloud computing environments and
distributed systems where tasks can be parallelized

and distributed across different servers.

Scalability Challenges:

Bottlenecks: As a system scales, certain components may

load.

become bottlenecks if they cannot handle the increased

System Limitations: Physical and architectural limitations

may impact the effectiveness of scaling strategies.

Performance Impact: Ensuring that performance remains

optimal as the system grows requires careful planning and

architecture.

Reliability:

Definition and Importance: Reliability refers to a system’s ability

to continuously operate correctly and consistently over time. A

reliable system minimizes downtime and ensures that it performs

its intended functions accurately. Reliability is essential for

maintaining trust and meeting user expectations, particularly in

Computer Organization & Architecture -517

critical applications such as financial systems, healthcare, and
infrastructure.
Key Concepts in Reliability:

1. Fault Tolerance:

o The ability of a system to continue operating
properly in the event of a failure of some of its
components.

o Implemented through redundancy (e.g., backup
systems, failover mechanisms) and error detection
and correction techniques.

2. Redundancy:

o Involves having multiple instances of critical
components or systems to ensure that a failure in
one does not disrupt overall functionality.

o Types include hardware redundancy (e.g., redundant
power supplies, RAID storage) and software
redundancy (e.g., duplicated services, load
balancing).

3. Error Detection and Recovery:

o Techniques to identify and correct errors that occur
during operation.

o Includes mechanisms such as error codes,
checksums, and automatic failover processes.

Reliability Challenges:

e Single Points of Failure: Identifying and mitigating
potential points where a failure could impact the entire
system.

o Complexity: As systems grow in complexity, ensuring

reliability becomes more challenging.

Computer Organization & Architecture -518

e Maintenance and Updates: Balancing reliability with the
need for regular maintenance and updates to address issues

and improve functionality.

Evaluating System-Level Scalability and Reliability

Evaluating system-level scalability and reliability involves
assessing various aspects of a computing system to ensure it can
grow with increasing demands and maintain consistent
performance and operation. This process includes understanding
and testing how well a system scales, identifying potential
bottlenecks, and ensuring that the system remains reliable under

different conditions.

Evaluating System-Level Scalability
1. Performance Testing:

e Load Testing: Measure how the system performs under
different levels of load, from normal to peak usage. This
helps identify the system's capacity limits and performance
characteristics.

e Stress Testing: Push the system beyond its normal
operational limits to observe how it behaves under extreme
conditions. This helps identify potential points of failure
and bottlenecks.

2. Scalability Metrics:

e Throughput: Measure the amount of work the system can
handle over a given period. Higher throughput indicates
better scalability.

o Latency: Assess the time it takes for the system to respond
to requests. Lower latency with increased load indicates

effective scaling.

Computer Organization & Architecture -519

e Resource Utilization: Monitor how system resources
(CPU, memory, network bandwidth) are used as the system
scales. Efficient resource utilization is a sign of good
scalability.

3. Capacity Planning:

e Predictive Modeling: Use historical data and trends to
predict future growth and resource needs. This helps in
planning for future expansions.

e Scalability Testing: Test various scaling strategies (e.g.,
vertical vs. horizontal scaling) to determine the most
effective approach for your system's needs.

4. Bottleneck Identification:

o Profiling Tools: Use performance profiling tools to identify
bottlenecks in the system. This includes detecting slow
components or resource constraints.

e Optimization: Implement optimization techniques to
address identified bottlenecks and improve overall
scalability.

5. Architectural Considerations:

e Scalable Design Patterns: Evaluate if the system
architecture employs scalable design patterns (e.g.,
microservices, distributed databases).

o Elasticity: Assess the system's ability to dynamically
allocate and deallocate resources based on current demand.

Evaluating System-Level Reliability
1. Fault Tolerance Testing:

e Redundancy Testing: Verify the effectiveness of redundant

components (e.g., backup systems, failover mechanisms) in

maintaining system operation during failures.

Computer Organization & Architecture -520

Failure Injection: Simulate failures to test how the system
responds and recovers. This helps identify weaknesses in

the fault tolerance design.

2. Reliability Metrics:

Mean Time Between Failures (MTBF): Measure the
average time between system failures. Higher MTBF
indicates better reliability.

Mean Time to Repair (MTTR): Measure the average time
required to repair and restore the system after a failure.
Lower MTTR indicates more efficient recovery processes.
Uptime: Track the percentage of time the system is
operational and available. Higher uptime indicates greater

reliability.

3. Error Handling:

Error Detection and Correction: Evaluate the
mechanisms in place for detecting and correcting errors.
This includes error codes, checksums, and automated
recovery processes.

Logging and Monitoring: Assess the effectiveness of
system logging and monitoring in detecting and diagnosing
issues. Comprehensive logging helps in identifying root

causes of failures.

4. Redundancy and Backup:

Backup Testing: Ensure that backup systems and processes
are reliable and can be quickly restored in case of failure.

Failover = Mechanisms: Test automatic failover
mechanisms to ensure seamless transitions to backup

systems without disrupting operations.

5. Maintenance and Updates:

Scheduled Maintenance: Evaluate the impact of scheduled

maintenance on system reliability. Regular maintenance
Computer Organization & Architecture -521

should minimize disruptions and improve overall system
health.

o Patch Management: Assess the process for applying
patches and updates to address security vulnerabilities and

improve system stability.

16.7 CONCLUSION

The study of system architectures provides crucial insights into the
various approaches used to design and optimize computing
systems, addressing different needs and challenges. Single-
processor systems represent the foundational architecture, focusing
on a single CPU to perform all computing tasks. These systems are
simpler and cost-effective but can struggle with performance
limitations when faced with high workloads or complex
applications. As computing demands grow, single-processor
systems often reach their capacity, necessitating the exploration of

more advanced architectures.

Multiprocessor systems, which utilize multiple CPUs, offer a
significant advancement by allowing parallel processing. This
design improves performance and efficiency by distributing tasks
across several processors, enabling better handling of intensive
computations and multitasking. On a broader scale, distributed
systems extend the principles of multiprocessing by connecting
multiple machines over a network, each contributing to the overall
computational power. This approach enhances both scalability and
fault tolerance, making it suitable for large-scale and

geographically dispersed applications.

Computer Organization & Architecture -522

Scalability and reliability are critical aspects of evaluating system
architectures. Scalability ensures that a system can expand its
resources to accommodate increasing workloads, whether by
adding more power to existing machines (vertical scaling) or
integrating additional machines into the network (horizontal
scaling). Reliability focuses on maintaining consistent performance
and availability, crucial for minimizing downtime and ensuring
uninterrupted service. Together, these considerations are vital for
building robust and adaptable computing environments capable of

meeting the evolving demands of modern technology.

16.8 UNIT BASED QUESTIONS &
ANSWERS

1. What are the main types of system architectures, and how do
they differ?

Answer: The main types of system architectures include single-
processor systems, multiprocessor systems, and distributed
systems.

o Single-Processor Systems: These have a single central
processing unit (CPU) that handles all tasks. They are
straightforward and cost-effective but may face
performance bottlenecks with increasing workloads.

e Multiprocessor Systems: These systems use multiple
CPUs to handle tasks in parallel, which improves
performance and efficiency by distributing the
computational load.

o Distributed Systems: These involve a network of
interconnected computers that work together to perform

tasks. They offer scalability and fault tolerance by

Computer Organization & Architecture -523

leveraging the resources of multiple machines across

various locations.

2. What is the significance of scalability in system architecture?
Answer: Scalability refers to a system's ability to handle
increasing workloads by adding resources without significantly
compromising performance. It is crucial for adapting to growing
demands and ensuring that systems can expand efficiently.
Scalability can be achieved through vertical scaling (adding more
power to existing machines) or horizontal scaling (adding more
machines to the network). Effective scalability ensures that
systems remain functional and efficient as user demands and data

volumes grow.

3. Describe the concept of reliability in system architectures.

Answer: Reliability in system architectures pertains to a system's
ability to perform consistently and maintain operational stability
over time. It involves minimizing downtime, preventing system
failures, and ensuring that the system can recover from issues
quickly. Reliable systems incorporate features such as fault
tolerance, redundancy, and error correction mechanisms to
maintain performance and availability even in the face of hardware

or software failures.

4. What are the key differences between single-processor
systems and multiprocessor systems?
Answer:
o Single-Processor Systems: These systems are
characterized by a single CPU that manages all processing
tasks. They are simpler and less expensive but may

experience performance limitations under heavy loads.
Computer Organization & Architecture -524

e Multiprocessor Systems: These use multiple CPUs to
process tasks simultaneously, which improves performance
and allows for better handling of complex computations.
Multiprocessor systems can execute multiple instructions in
parallel, enhancing overall system efficiency and

responsiveness.

5. How do distributed systems enhance scalability and
reliability?

Answer: Distributed systems enhance scalability by distributing
tasks across multiple machines, which can be added or removed as
needed to handle varying workloads. This horizontal scaling
approach allows for a flexible and scalable system that can grow
with demand. Reliability is improved through redundancy and fault
tolerance, as the failure of one machine does not necessarily lead to
system failure. Distributed systems often incorporate backup and
failover mechanisms to ensure continuous operation and minimize

the impact of any single point of failure.

Computer Organization & Architecture -525

16.9 REFERENCES

Hennessy, J. L., & Patterson, D. A. (2019). Computer
Architecture: A Quantitative Approach (6th ed.). Morgan
Kaufmann.

Tanenbaum, A. S. (2014). Structured Computer
Organization (6th ed.). Pearson.

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2019).
Database System Concepts (7th ed.). McGraw-Hill.
Hwang, K., & Briggs, F. A. (2017). Computer Architecture
and Parallel Processing. McGraw-Hill.

Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008).
Database System Implementation. Prentice Hall.

Stallings, W. (2017). Computer Organization and
Architecture: Designing for Performance (10th ed.).
Pearson.

Patterson, D. A., & Hennessy, J. L. (2017). Computer
Organization and Design: The Hardware/Software
Interface (5th ed.). Morgan Kaufmann.

Computer Organization & Architecture -526

