
Computer Organization & Architecture -1

Course Code:- CSM-6112
Course Name:- Computer

Organization &
Architecture

Computer Organization & Architecture -2

MASTER OF COMPUTER
APPLICATIONS (MCA)

PROGRAMME DESIGN COMMITTEE

Prof. Masood Parveez
Vice Chancellor – Chairman
MTSOU, Tripura

Prof. Abdul Wadood Siddiqui
Dean Academics
MTSOU, Tripura

Prof. C.R.K. Murty
Professor of Distance Education
IGNOU, New Delhi

Prof. Mohd. Nafees Ahmad Ansari
Director of Distance Education
Aligarh Muslim University, Aligarh

Prof. P.V. Suresh
Professor of Computer Science
IGNOU, New Delhi

Prof. V.V. Subrahmanyam
Professor of Computer Science

COURSE WRITER

Dr. Md. Amir Khusru Akhtar
Associate Professor of Computer
Science
MTSOU, Tripura
CSM-6111 Data Communication &
Computer Networks

Dr. Ankur Kumar
Assistant Professor
MTSOU, Tripura
CSM-6112 Computer Organization
& Architecture

Dr. Manish Saxena
Assistant Professor of Computer
Science
MTSOU, Tripura
CSM-6113 Discrete Mathematics

Dr. Duvvuri B. K. Kamesh
Assistant Professor of Computer
Science
MTSOU, Tripura
CSM-6114 Accountancy and
Financial Management

Mr. Pankaj Kumar
Assistant Professor of Computer
Science
Mangalayatan University, Aligarh
CSM-6151 Programming with 'C' &
Lab

Ms. Vanshika Singh
Assistant Professor of English
MTSOU, Tripura
ENM-6101 Professional
Communication

COURSE EDITORS

Prof. S. Nagakishore Bhavanam
Professor of Computer Science
Mangalayatan University, Jabalpur

Prof. Jawed Wasim
Professor of Computer Science
Mangalayatan University, Aligarh

Dr. Manoj Varshney
Associate Professor of Computer
Science
MTSOU, Tripura

Dr. M. P. Mishra

Associate Professor of Computer
Science
IGNOU, New Delhi

Dr. Akshay Kumar
Associate Professor of Computer
Science
IGNOU, New Delhi

FORMAT EDITORS

Dr. Nitendra Singh
Associate Professor of English
MTSOU, Tripura

Ms. Angela Fatima Mirza

Assistant Professor of English
MTSOU, Tripura

Dr. Faizan
Assistant Professor of English

MTSOU, Tripura

Ms. Vanshika Singh
Assistant Professor of English
MTSOU, Tripura

MATERIAL PRODUCTION

1. Mr. Himanshu Saxena
2. Ms. Rainu Verma

3. Mr. Jeetendra Kumar
4. Mr. Khiresh Sharma

5. Mr. Ankur Kumar Sharma
6. Mr. Pankaj Kumar

Computer Organization & Architecture -3

CONTENT

Page No.

Block 1 ; Represetation of Information and Basic Building Blocks 05-146

Unit 1: Introduction to Computer, Computer hardware generation, Number System: Binary, Octal,
Hexadecimal, Character Codes (BCD, ASCII, EBCDIC).
Unit 2: Logic gates, Boolean Algebra, K-map simplification, Half Adder, Full Adder, Subtract or,
Decoder, Encoders, Multiplexer, Demultiplexer.
Unit 3: Carry look ahead adder, Combinational logic Design, Flip-Flops, Registers, Counters
(synchronous & asynchronous).
Unit 4: ALU, Micro-Operation. ALU- chip, Faster Algorithm and Implementation (multiplication &
Division).

Block II: Basic Organization 147-243

Unit 5: Von Neumann Machine (IAS Computer), Operational flow chart (Fetch, Execute), Instruction
Cycle, Organization of Central Processing Unit.
Unit 6: Hardwired & micro programmed control unit, Single Organization, General Register
Organization, Stack Organization.
Unit 7: Addressing modes, Instruction formats, data transfer & Manipulation, I/O Organization, Bus
Architecture, Programming Registers.

Block III: Memory Organization & I/O Organization 244-370

Unit 8: Memory Hierarchy, Main memory (RAM/ROM chips), Auxiliary memory, Associative
memory, Cache memory, Virtual Memory.
Unit 9: Memory Management Hardware, hit/miss ratio, magnetic disk and its performance, magnetic
Tape etc.
Unit 10: Peripheral devices, I/O interface, Modes of Transfer, Priority Interrupt, Direct Memory
Access, Input-Output Processor.
Unit 11: Serial Communication. I/O Controllers, Asynchronous data transfer, Strobe Control,
Handshaking.

Block IV: Process Organization 371-525

Unit 12: Basic Concept of 8-bit micro Processor (8085) and 16-bit Micro Processor (8086), Assembly
Instruction Set.

Unit 13: Assembly language program of (8085): Addition of two numbers, Subtraction, Block
Transfer, find greatest number.
Unit 14: Table search, Numeric Manipulation, Introductory Concept of pipeline, Flynn’s and Feng’s
Classification, Parallel Architectural classification.
Unit 15: Parallel Processing Concepts: Understanding parallel processing concepts including
parallelism types (task-level, data-level, instruction-level) and parallel architectures (SIMD, MIMD),
Multiprocessing Systems, Scalability and Load Balancing.
Unit 16: System-Level Organization: System Architectures, Analyzing system architectures
including single-processor systems, multiprocessor systems, and distributed systems.
Scalability and Reliability: Evaluating system-level scalability and reliability considerations
in large-scale computing environments.

Computer Organization & Architecture -4

Computer Organization & Architecture -5

BLOCK I: REPRESENTATION OF
INFORMATION AND BASIC
BUILDING BLOCKS
UNIT – 1: BASICS OF COMPUTERS
Structure

1.0 Introduction

1.1 Objectives

1.2 Introduction to Computer

1.2.1 Computer Applications

1.3 Computer Generations

1.4 Number System

1.5 Conversion Techniques

1.6 Character Codes

1.7 Conclusion

1.8 Unit Based Questions & Answers

1.9 References

1.0 INTRODUCTION

In today's digital age, computers have become an integral part of

our daily lives. From simple calculations to complex simulations,

computers have revolutionized the way we work, communicate,

and entertain ourselves. Understanding the basics of computers and

their underlying technology is essential for anyone seeking to

navigate this digital landscape.

This unit aims to provide a comprehensive introduction to the

fundamentals of computers, covering topics such as computer

applications, generations, number systems, conversion techniques,

Computer Organization & Architecture -6

and character codes. By the end of this unit, students will have a

solid understanding of the principles that underlie computer

systems and be able to apply this knowledge in practical ways.

In this introduction, we will set the stage for the topics that will be

covered in this unit. We will explore the various applications of

computers, the different generations of computer technology, and

the basic concepts of number systems and character codes. This

foundation will provide a solid base for understanding the more

advanced topics that will be covered in subsequent units.

1.1 OBJECTIVES

By the end of this unit, students will be able to understand,

 Understand the basic components and applications of

computers

 Identify and describe the different generations of

computer technology

 Explain the concept of number systems and perform

conversions between different number systems (binary,

decimal, hexadecimal)

 Understand the importance of character codes and their

uses

 Apply knowledge of computer fundamentals to real-

world scenarios

 Analyze and solve problems related to computer

systems and technology

 Develop critical thinking skills in understanding

computer concepts and terminology

Computer Organization & Architecture -7

1.2 INTRODUCTION TO COMPUTER

A computer is an electronic device that manipulates information or

data. It has the ability to store, retrieve, and process data.

Computers can be used to type documents, send emails, play

games, and browse the Web. They are also used to handle

spreadsheets, accounting, database management, presentations, and

more.

Basic Functions of a Computer

Computers perform four primary functions:

1. Input: The process of entering data and instructions into a

computer system. Input devices include keyboards, mice,

scanners, and microphones.

2. Processing: The manipulation of data by the computer's

central processing unit (CPU) to convert data into

information. This includes performing calculations, making

decisions, and executing programs.

3. Storage: Saving data and instructions in the computer's

memory for future use. There are two main types of

storage:

o Primary Storage (RAM - Random Access

Memory): Temporary storage used while the

computer is running.

o Secondary Storage (HDD, SSD, USB drives):

Permanent storage used to save data and programs.

4. Output: The process of displaying or producing

information from the computer. Output devices include

monitors, printers, speakers, and projectors.

Computer Organization & Architecture -8

The block diagram of a computer is composed of

numerous important parts.

The Arithmetical and Logical Unit is in charge of using

arithmetical and logical expressions to do calculations and make

judgments.

 Control Unit (CU): This part of the computer system is

responsible for monitoring and controlling the overall

processes to make sure they are planned and executed

properly.

 Registers: Integrated into the CPU, registers are little, fast

memory modules. They are in charge of keeping track of

the information and commands that the CPU is currently

processing.

 Memory Unit: The memory unit functions as the computer

system's storage component, holding data and program

statements for both short- and long-term storage.

 Input and Output Unit: The input and output unit is in

charge of transmitting and receiving data, enabling

communication between the computer and external devices,

and displaying information to the user, usually via a

display.

Types of Computers

Computer Organization & Architecture -9

A variety of computers are offered in different weights, sizes, and

designs. They can do a variety of jobs because of their size and

shape. They fit into a variety of categories. The computers are

designed by qualified computer architects who fulfill certain

specifications. Different sizes and forms are utilized by computers

in households and hospitals. The many categories of computers

will be discussed in the sections that follow. An advanced

computer's capacity is based on how well it can process data or

manage tasks.

The following standards are applied in order to evaluate their

performance:

1. The amount of information which can be stored in memory.

2. The computer's internal operations are at a fast pace

3. The quantity and variety of peripheral devices.

4. The computer has various software alternatives from which

to pick

In the past, a computer's capacity was mostly determined by its

physical size: the larger the machine, the higher the volume.

Dimensions, pace of operation, and ratio in computer language are

now proportionate. Smaller machines are now produced thanks to

recent technological advancements, enabling packaging of

comparable speed and versatility in a smaller footprint.

 Micro Computers: A revolutionary age in technology

began in 1971 with the introduction of mass-produced

silicon chips, which made it possible to incorporate

computational capabilities into a wide range of equipment.

Large-scale integration of silicon chip-powered

Computer Organization & Architecture -10

microcomputers transformed their capabilities. These chips

remarkably reduced the amount of processing power

available to tiny sizes; a microprocessor small enough to fit

through the eye of a needle serves as evidence of this

progress. The creation of semiconductor-based silicon chips

was essential to the advancement of microcomputer

memories. These microcomputers coordinated stored

program control in digital computer systems using a

combination of microprocessors, programmable ROM, and

RAM. These microcomputers, sometimes referred to as

personal computers or PCs, are now widely available and

provide compact, affordable solutions for both personal and

business use in homes and businesses.

 Mini Computers: Thanks to advancements in technology

throughout the 1960s, producers were able to meet the

growing need for independent devices such as

minicomputers, which filled the gap left by larger

computers being unfeasible to complete.

Often referred to as mini mainframe computers, these

systems offered faster operating speeds and larger storage

capacities than their microcomputer equivalents.

Minicomputers combined many desktop drives and were

capable of supporting a large number of high-speed

input/output devices, which allowed for the direct

processing of large data files.

Operating systems designed specifically for minicomputers

supported virtual storage and multiprogramming, allowing

several applications to run simultaneously. These systems

were able to adjust and meet a variety of user needs

Computer Organization & Architecture -11

because of their inherent flexibility. Although they couldn't

match the raw power of larger or medium-sized computers,

minicomputers were nonetheless useful because they struck

a good balance between size and capabilities, making them

a flexible option.

 Medium-sized Computers: Compared to smaller

computer systems, medium-sized computers provide faster

operating speeds and larger storage capacities. Medium-

sized computer systems outperform their smaller

counterparts in terms of storage capacity and operating

performance. The expansion of a computer's data

processing capacity by adding extra components, such as

memory and peripherals, is what defines its expandability.

 Large Computers: These machines represent the pinnacle

of speed and adaptability, frequently with minimal user

intervention required for control systems. Large computer

systems come in a wide range of configurations, from lone

processing units to massive national computer networks

that integrate massive devices. Large computers' internal

operating speeds are expressed in nanoseconds, which

highlights their rapidity, while the speeds of smaller

computers are expressed in microseconds, which shows a

relative difference in processing velocity.

 Mainframe Computers: Computers known as mainframes

are enormous, multi-user computers designed to process

millions of instructions per second and have the capacity to

access enormous amounts of data. Because of their skill at

handling huge data volumes, they are preferred by big

Computer Organization & Architecture -12

businesses, airline reservation systems, and hospitals. A

mainframe allows users to centrally store vast volumes of

data, facilitating processing and access from several

computers spread across various locations.

But many find it financially impracticable and prohibitively

expensive to purchase a mainframe for personal usage.

These systems are usually too expensive and large for

individual purchasers to afford. Mainframes are the second

largest computers in terms of size and capability among all

computer families.

 Supercomputers: Supercomputers are the modern

equivalent of the ultimate computer power, needed to

process massive amounts of data and decipher intricate

patterns across many scientific fields. These devices are

essential to vital applications like the creation of nuclear

weapons and accurate weather forecasting. Their strength is

in handling enormous volumes of scientific data, which

makes it possible to perform complex physical simulations,

quantum physics, weather forecasting, molecular modeling,

and climate research.

Supercomputers, which can process hundreds of millions to

trillions of instructions per second, are greatly sought after,

especially by governments due to their extensive

computational capabilities across various domains. They

are essential resources for many businesses, helping with

everything from product design to animation.

One of the most prominent instances is the PARAM

supercomputer series, which was developed by India's

Computer Organization & Architecture -13

Center for Development of Advanced Computing (CDAC)

and boasts astounding processing rates of up to 1 trillion

instructions per second. These supercomputers represent

the pinnacle of computing technology, facilitating

breakthroughs in a variety of fields and advancing scientific

and industrial innovation as well as computational intensity.

1.2.1 Computer Applications

Scientific Research

Computers play a crucial role in scientific research by providing

the computational power needed for complex simulations, data

analysis, and modeling.

 Simulations and Modeling: Used in fields like physics,

chemistry, and biology to simulate real-world phenomena,

such as climate models, molecular modeling, and

astrophysical simulations.

 Data Analysis: Processing large datasets from experiments

and observations, such as genomic data in bioinformatics or

particle collision data in physics.

 Artificial Intelligence (AI) and Machine Learning (ML):

Applied to identify patterns and make predictions in

various scientific disciplines.

Business Applications

Computers enhance business operations by improving efficiency,

accuracy, and decision-making.

 Office Productivity: Applications like word processors,

spreadsheets, and presentation software help with day-to-

day tasks.

Computer Organization & Architecture -14

 Enterprise Resource Planning (ERP): Integrates various

business processes like accounting, HR, and supply chain

management.

 Customer Relationship Management (CRM): Manages

interactions with customers, improves customer service,

and drives sales growth.

 Data Analysis and Business Intelligence: Analyzes

business data to support strategic decision-making and

identify market trends.

Education

Computers revolutionize education by providing new learning

methods, resources, and tools.

 E-Learning Platforms: Online courses, virtual classrooms,

and educational software enable remote learning and self-

paced education.

 Multimedia Resources: Interactive videos, animations,

and simulations enhance understanding of complex

subjects.

 Research and Collaboration: Access to online journals,

libraries, and collaborative tools facilitate research and

group projects.

 Administrative Systems: Manage student information,

scheduling, and communication within educational

institutions.

Computer Organization & Architecture -15

Entertainment

Computers offer a wide range of entertainment options,

transforming how people consume media and engage in leisure

activities.

 Gaming: High-performance computers and gaming

consoles support advanced video games with realistic

graphics and complex gameplay.

 Streaming Services: Platforms like Netflix, YouTube, and

Spotify provide on-demand access to movies, TV shows,

and music.

 Social Media: Websites and applications like Facebook,

Instagram, and Twitter connect people and allow for

content sharing and communication.

 Virtual Reality (VR) and Augmented Reality (AR):

Offer immersive experiences in gaming, education, and

virtual tours.

Healthcare

Computers improve patient care, streamline operations, and

advance medical research.

 Electronic Health Records (EHR): Digitally store patient

information, making it easily accessible to healthcare

providers.

 Medical Imaging: Advanced imaging techniques like MRI,

CT scans, and ultrasound rely on computer processing for

accurate results.

 Telemedicine: Enables remote consultations and

monitoring, expanding access to healthcare services.

Computer Organization & Architecture -16

 Medical Research: Analyzes clinical data, supports drug

discovery, and helps in understanding diseases through

computational biology and bioinformatics.

1.3 COMPUTER GENERATIONS

The development of computers, which started in the sixteenth

century, led to the creation of modern technology. The computer

that we use now has likewise changed rapidly throughout time.

Computers underwent five major stages known as "Generations of

Computers" throughout this time. A new generation of computers

has different designs and sizes from their predecessors, but they

also have better processing and capabilities. Phase differentiation

is determined by the application of switching circuits. These

generations include:

 The first generation of computers, which ran from 1940 to

1956.

 The Second Computer Generation ran from 1956 to 1963.

 The Third Generation of Computers, produced between

1964 and 1971.

 Systems that have been around since 1971.

 Computers from the fifth generation forward and beyond.

First Generation (1940s-1956s)

Vacuum tubes are a defining characteristic of early computers.

Filaments were used as an electronic source in the delicate glass

apparatus known as a vacuum tube. It is possible through the

Computer Organization & Architecture -17

manipulation and amplification of electronic impulses. These

vacuum tubes were used for control, storage, and calculation. J.

created the Electronic Numerical Integrator and Computer

(ENIAC), the first electronic computer with a general-purpose

programming. John V. Mauchly attends the University of

Pennsylvania, as does Presper Eckert. The ENIAC was a 30-foot-

long, 30-ton device that required 150,000 watts of electricity to

operate. It also had 10,000 capacitors, 70,000 registers, and 18,000

vacuum tubes. Air conditioning was necessary for first-generation

computers to function properly since they were too big and

unwieldy to install, requiring a huge room. They also used to

release a lot of heat. Programs produced in high-level

programming languages must be translated into assembly or

machine language by a compiler. A program that translates

assembly language programs into machine language is called an

assembler, also referred to as an assembly language compiler.

Before the ENIAC was finished, Von Neumann created the

Electronic Discrete Variable Automatic Computer (EDVAC),

which had the ability to store data and programs. The computer

operated significantly more swiftly as a result of its immediate

access to both data and commands. Another benefit of instruction

storage was that it made it possible for computers to reason

internally. The 1952 Universal Automatic Computer (UNIVAC),

created by Eckert and Mauchly, was thought to be the world's first

extremely lucrative computer.

Example: UNIVAC-1, EDVAC, and ENIAC

Computer Organization & Architecture -18

Second Generation (1956s-1963s)

The underlying technology of the second generation of computers

was magnetic core memory combined with solid-state components

(transistors and diodes). The transistor may open or close an

integrated circuit and magnify signals. It is made of materials

known as semiconductors. Transistors are a product of Bell Labs

and are utilized in all digital circuits, particularly those in

computers. In the initial generation of computers, transistors

replaced the heavy electric tubes. Vacuum tubes and transistors are

similar in that both use solid materials to transfer electrons instead

of a vacuum. Semiconducting material transistors controlled the

flow of electricity via the circuit. Simultaneously, they might make

computers faster, more powerful, and smaller. They use less

electricity, generate less heat, and are less expensive than vacuum

tubes. Minimal production costs were also maintained.

The second generation of computers saw the development of the

central processor unit (CPU), memory, programming grammar, and

input and output devices. Developers were able to define

commands in words by switching from the mysterious binary

machine syntax to figurative, or assembly, languages in gadgets of

the second generation. These were the first systems to use

magnetic core architecture instead of magnetic drum technology,

and they were also the first to store programs in memory. High-

level programming languages like FORTRAN (1956), ALGOL

(1958), and COBOL (1959) were created during the second

generation.

PDP-8, IBM 1400 series, IBM 1620, IBM 7090, and CDC 3600

are a few examples.

Computer Organization & Architecture -19

Third Generation (1964s-1971s)

Third-generation computers were first released in 1964. The

efficiency and productivity of computers were significantly

increased by the placement and shrinking of transistors on silicon

chips, commonly known as semiconductors. Integrated Circuits

were used by them (ICs).

A turning point in the development of computers and technology

was the discovery of integrated circuits. Chips is the term used to

describe these integrated circuits.

Due to its atomic structure, silicon is a great semiconductor

element that is utilized as a building block for the production of

semiconductors, computer chips, silicon diodes, and other

electrical circuits and switching devices. It is possible to introduce

or mix silicon with other elements—like phosphorous, arsenic, or

boron—to alter its conductive properties. A typical chip, which is

smaller than 14 square inches, can have millions of transistors and

other electrical components on it. Printed circuit boards, which are

electronic panels, are used in computers to hold a large number of

chips. There are numerous varieties of chips. Microprocessors, or

CPU chips, are capable of processing an entire system, whereas

memory chips are limited to storing blank memory.

Many transistors, records, and resistors assembled on a single thin

silicon sheet make form an integrated circuit (IC). Two methods

for creating integrated circuits are medium-scale insertion (MSI)

and small-scale inclusion (SSI). The advent of multilayer printed

circuitry and the replacement of slower core memory with faster

solid-state memories superseded core memory. Because it can

Computer Organization & Architecture -20

integrate multiple circuits into a single chip, IC technology was

also known as microelectronics technology.

This generation of machines has very fast processing speeds, a big

amount of memory, low cost, and small size. During this time,

more sophisticated languages were developed, such as Basic

(Beginners All-purpose Symbolic Instruction Code).

This generation's main advantages included new input/output

devices, improved secondary storage devices, and solid-state

circuitry. The speed of the computer increased with the extra

circuitry. During this era, minicomputers were also developed.

A few examples are IBM 360,370, B6500, and NCR 395. These

days, arithmetic and logical operations could be finished in

nanoseconds or microseconds.

Fourth Generation (1970s-Present)

In 1971, fourth-generation computers were introduced as a result

of the creation of computing components using large scale

integration (LSI). Microprocessors are silicon devices used to

generate LSI circuits. The circuitry needed to carry out arithmetic,

logic, and control functions on a single chip is found in a

microprocessor. The fourth generation of computers can calculate

more than equivalent-sized third-generation computers because of

microprocessors. The ability to fit a computer's central processing

unit (CPU) on a single semiconductor is made possible by

advancements in microprocessor technology. We refer to these

devices as microcomputers. In the past, VLSI circuits mostly

replaced LSI circuits.

Computer Organization & Architecture -21

In the first generation, something might have required a full room,

but it might now fit in your palm. When the Intel 4004

microprocessor was created in 1971, it included every component

of a computer, including the input/output controllers, storage, and

main processing unit.

Microelectronics and other computer technologies, such as

multiprocessing, multiprogramming, time-sharing, quick operation,

and cloud storage, were the main innovations of this generation.

High-speed vector processors at this period changed the paradigm

for high-performance computing. Most time-shared mainframe

systems were equipped with workstations and microcomputers.

Consequently, the computer that was once somewhat large may

now be set up on a table. It is a fourth-generation computer, the

personal computer.

Throughout this time, computer networks developed.

Examples are Alter 8800 and Apple II.

Fifth Generation (Present and Beyond)

Artificial intelligence-powered fifth-generation computers are still

in the development stages, although they have already been used

for various tasks, like speech recognition. Artificial Intelligence

(AI) is a subfield of computer science that focuses on teaching

machines to think and behave like people. Computers are now

unable to fully exhibit artificial intelligence, or to mimic human

behavior. The most advancements have been made in the gaming

sector. Right now, the best computer chess programs are able to

defeat human players. The fastest-growing area of computational

intelligence is artificial neural networks, which have shown

Computer Organization & Architecture -22

promise in a number of applications including speech recognition

and natural language processing.

AI languages are frequently referred to as programming languages

because they are typically utilized for AI applications. The two

most popular ones are LISP and Prolog. The fifth generation of

computers is incredibly fast. Developers turned their primary

attention to parallel processing in their research and development

of fifth-generation computers. Up until recently, vector

computations and pipeline construction were the only tasks that

could be done in parallel. Machines with hundreds of processors

were introduced in this age, enabling them to work on different

portions of a same program. The development of ever-more-

powerful computing devices is still ongoing. This kind of computer

is expected to be able to converse with its user in plain language,

retain enormous knowledge bases, search through them rapidly,

make deft decisions, and come to logical conclusions.

1.4 NUMBER SYSTEM

Words and characters make up the language that we speak to one

another. Words, letters, and numbers make sense to us. Computers

are not meant to handle this kind of data, though. Only numbers

are understood by computers.

Thus, data is turned into electronic pulses when entered. Every

pulse is recognized as a code, which ASCII then converts into a

numeric format. It assigns a numerical value (number) that a

computer can comprehend to each number, character, and symbol.

Computer Organization & Architecture -23

Therefore, one needs to be knowledgeable with number systems in

order to grasp the language of computers.

Computers employ one of the following number systems:

 Binary number system

 Octal number system

 Decimal number system

 Hexadecimal number system

1. Binary System (Base 2)

The binary system uses only two digits, 0 and 1, to represent

numbers. It is the foundation of all modern computing systems

because computers operate using binary logic.

Its base is two because it only has the numbers "0" and "1." As a

result, there are only two kinds of electronic pulses in this number

system: those that indicate "0" and "1," respectively, and those that

do not. A bit is a single digit. A byte (11001010) is a group of eight

bits, whereas a nibble is a group of four bits (1101). Each binary

number's place corresponds to a certain power of the number

system's base (2).

 Advantages: Direct correspondence with digital logic and

electronic devices.

 Disadvantages: Lengthy illustration for massive numbers,

limited expressiveness for decimal fractions.

Computer Organization & Architecture -24

2. Octal System (Base 8)

The octal system uses eight digits, from 0 to 7, to represent

numbers. It is often used as a shorthand representation of binary

numbers since 8 is a power of 2.

Its base is eight since it consists of eight digits (0, 1, 2, 3, 4, 5, 6,

7). An octal number's digits each correspond to a certain power of

its base (8). Any octal number may be converted into a binary

number using the three bits (23 = 8) of the binary number system,

since there are only eight digits. Long binary numbers can also be

shortened using this number method. A single octal digit can

represent all three binary digits.

 Advantages: Consolidated example of binary values,

readability, especially contexts.

 Disadvantages: Less usually used, more intuitive than

hexadecimal.

3. Decimal System (Base 10)

This number system's base is ten since it has ten digits: 0, 1, 2, 3,

4, 5, 6, 7, 8, 9. The highest value of a digit in this number system is

nine, while the lowest value is zero. Each digit in a decimal

number indicates a certain power of the number system's base (10)

at that point. We frequently utilize this number system in our daily

lives. It can be used to represent any number.

 Advantages: Easily understable, modern for vast

arithmetic.

Computer Organization & Architecture -25

 Disadvantages: Inadequate for binary data, constrained

expressiveness for non-decimal fractions.

4. Hexadecimal System (Base 16)

The hexadecimal system uses sixteen digits, from 0 to 9 and A to F

(where A=10, B=11, F=15), to represent numbers. It is commonly

used in computing as a more human-friendly representation of

binary-coded values.

There are 16 digits in this numeral system, ranging from 0 to 9 and

A to F. Thus, sixteen is its basis. 10 to 15 decimal places are

represented by the alphabets A through F. A hexadecimal integer's

location corresponds to a certain power of base (16) in the number

system. Any hexadecimal number may be converted into a binary

number using the four bits (24=16) of the binary number system,

since there are only sixteen digits. Because it employs both

alphabets and numeric digits, it is often referred to as the

alphanumeric number system.

 Advantages: Compact representation of binary, widely

utilized in programming.

 Disadvantages: Intimidating for beginners, decimal is

more user-friendly than hexadecimal.

Importance of Number Systems in Computer Science

In computer technology, it is crucial to comprehend specific range

structures for a number of reasons.

Computer Organization & Architecture -26

 Memory Management: Binary systems are used by

computers to manage their memory. Being able to convert

between binary, octal, decimal, and hexadecimal allows one

to work with memory and storage in an efficient manner.

 Programming: Hexadecimal is frequently used in

programming to represent binary-coded numbers and

memory addresses. For bitwise operations, octal and binary

representations are essential.

 Data Transmission: In computer architecture, binary is

crucial for record transmission. Miles are often converted

to binary for processing efficiency when records are saved

or sent.

 Debugging: Hexadecimal is a low-level programming

language that is typically used in debugging. Hexadecimal

format is often used for memory dumps and machine code.

 Digital electronics: Since circuits in this field are mostly

based on binary signals, it is necessary to understand

binary.

 Representation of Colors: Hexadecimal is widely used in

graphics and web development to represent colorations. A

set of hexadecimal digits is used to represent each RGB

coloration element.

 Hashing and Encryption: Binary models are necessary in

cybersecurity since many hash tables and encryption

methods process binary data.

1.5 CONVERSION TECHNIQUES

 Binary to Octal: Group binary digits in sets of three,

starting from the right.

Computer Organization & Architecture -27

Example: Convert binary 1011 to decimal.

Solution:

 Decimal to Binary

Example: Convert decimal 13 to binary.

Solution:

 Divide 13 by 2: quotient = 6, remainder = 1

 Divide 6 by 2: quotient = 3, remainder = 0

 Divide 3 by 2: quotient = 1, remainder = 1

 Divide 1 by 2: quotient = 0, remainder = 1

Read remainders in reverse order: 1101

So, 1310 = (1101)2

 Octal to Decimal

Example: Convert octal 21 to decimal.

Solution:

 Decimal to Octal

Example: Convert decimal 29 to octal.

Solution:

 Divide 29 by 8: quotient = 3, remainder = 5

 Divide 3 by 8: quotient = 0, remainder = 3

Read remainders in reverse order: 35

Computer Organization & Architecture -28

So, 2910 = 358

 Hexadecimal to Decimal

Example: Convert hexadecimal 1F to decimal.

Solution:

 Decimal to Hexadecimal

Example: Convert decimal 47 to hexadecimal.

Solution:

 Divide 47 by 16: quotient = 2, remainder = 15 (F in

hexadecimal)

 Divide 2 by 16: quotient = 0, remainder = 2

Read remainders in reverse order: 2F

So, 4710 = 2F16

 Binary to Octal

Example: Convert binary 110110 to octal.

Solution:

 Group binary digits in sets of three, starting from

the right: 110 110

 Convert each group to its octal equivalent:

 Octal to Binary

Example: Convert octal 73 to binary.

Computer Organization & Architecture -29

Solution:

 Convert each octal digit to its three-digit binary

equivalent:

 Binary to Hexadecimal

Example: Convert binary 101101 to hexadecimal.

Solution:

 Group binary digits in sets of four, starting from the

right: 0010 1101

 Convert each group to its hexadecimal equivalent:

 Hexadecimal to Binary

Example: Convert hexadecimal 3A to binary.

Solution:

1. Convert each hexadecimal digit to its four-digit binary

equivalent:

Number System Relationship

Computer Organization & Architecture -30

The following table depicts the relationship between decimal,

binary, octal and hexadecimal number systems.

HEXADECIMAL DECIMAL OCTAL BINARY

0 0 0 0000

1 1 1 0001

2 2 2 0010

3 3 3 0011

4 4 4 0100

5 5 5 0101

6 6 6 0110

7 7 7 0111

8 8 10 1000

9 9 11 1001

A 10 12 1010

B 11 13 1011

C 12 14 1100

D 13 15 1101

E 14 16 1110

F 15 17 1111

1.6 CHARACTER CODES

Character codes are a way to represent characters, such as letters,

digits, and symbols, using numerical codes. These codes are used

by computers to store, process, and communicate text data. Each

character is assigned a unique numerical value, known as a code

Computer Organization & Architecture -31

point, which is used to represent that character in computer

systems.

Why are Character Codes used?

Character codes are essential in computing because they enable:

1. Text Storage: Computers can store text data efficiently

using numerical codes, which take up less space than the

actual characters.

2. Text Processing: Character codes allow computers to

perform operations on text data, such as sorting, searching,

and manipulating text.

3. Communication: Character codes enable different

computer systems to communicate with each other, by

providing a standard way to represent text data.

4. Encoding: Character codes are used to encode text data

into a format that can be transmitted over networks, stored

on devices, and displayed on screens.

5. Decoding: Character codes are used to decode encoded text

data back into its original form, allowing computers to

interpret and display text correctly.

There are some character code given below:

BCD (Binary-Coded Decimal)

BCD is a way to represent decimal numbers using binary code. It

uses 4 bits to represent each decimal digit, with each bit

corresponding to a decimal value.

Representation:

Computer Organization & Architecture -32

Decimal Digit BCD Representation

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Example: The decimal number 123 would be represented in BCD

as:

0001 0010 0011

Usage: BCD is commonly used in financial and commercial

applications, such as accounting and inventory management.

Limitations: BCD is less efficient than binary representation, as it

requires more bits to represent the same number.

ASCII (American Standard Code for Information

Interchange)

ASCII is a character encoding standard that represents text data

using binary code. It assigns a unique binary code to each

character, including letters, digits, and special characters.

Computer Organization & Architecture -33

ASCII Table:

Character ASCII Code

A 65

B 66

C 67

... ...

a 97

b 98

c 99

... ...

0 48

1 49

2 50

... ...

! 33

@ 64

35

Significance: ASCII is widely used in computers and devices to

represent text data. It is the basis for many other character

encoding standards.

Example: The string "Hello" would be represented in ASCII as:

H - 72

e - 101

l - 108

l - 108

o - 111

EBCDIC (Extended Binary Coded Decimal Interchange Code)

Computer Organization & Architecture -34

EBCDIC is a character encoding standard developed by IBM for

their mainframe computers. It is an extension of the BCD code,

with additional characters and symbols.

Representation: EBCDIC uses 8 bits to represent each character,

with the first 4 bits representing the zone (category) and the last 4

bits representing the digit or character.

Comparison with ASCII:

 EBCDIC is specific to IBM mainframes, while ASCII is

widely used across different platforms.

 EBCDIC has a larger character set than ASCII, including

additional symbols and graphics.

 EBCDIC is less efficient than ASCII, requiring more bits to

represent the same character.

Example: The string "Hello" would be represented in EBCDIC as:

H - 200

e - 109

l - 121

l - 121

o - 147

1.7 CONCLUSION

As we conclude this unit, we reflect on the significant journey

we've undertaken to explore the fundamental concepts of

computers. From the basic components that make up a computer

system to the various applications that have transformed the way

Computer Organization & Architecture -35

we live, work, and communicate, we've gained a deeper

understanding of the technology that drives our modern world.

We've traced the evolution of computers through the generations,

from the early mainframes to the sleek, portable devices of today,

and examined the number systems and character codes that enable

computers to process and store information. We've seen how

computers have revolutionized industries, transformed businesses,

and connected people across the globe.

Through this unit, we've developed a solid foundation in computer

fundamentals, which will serve as a springboard for further

learning and exploration in the field of computer science. We've

acquired a vocabulary of key terms and concepts, a understanding

of the underlying principles, and a appreciation for the impact of

computers on our daily lives.

As we move forward in this rapidly changing digital landscape,

we're equipped with the knowledge and skills to navigate the

exciting world of computers and technology. We're prepared to

embrace new technologies, to innovate, and to shape the future of

computing. The journey ahead promises to be thrilling, and we're

ready to take on the challenges and opportunities that come our

way.

1.8 UNIT BASED QUESTIONS &
ANSWERS

1. What is the basic component of a computer system that performs

calculations and executes instructions?

Computer Organization & Architecture -36

Answer: The Central Processing Unit (CPU) is the brain of the

computer and performs calculations, executes instructions, and

controls the other components. It takes in instructions, decodes

them, and carries out the necessary actions.

2. Which generation of computers introduced the use of

transistors?

Answer: The second generation of computers (1956-1963)

introduced the use of transistors, which replaced vacuum tubes.

Transistors were smaller, faster, and more reliable, leading to

significant improvements in computer performance.

3. What is the binary number system based on?

Answer: The binary number system is based on two digits: 0 and 1.

This system uses bits (binary digits) to represent information, with

each bit having a value of either 0 or 1. Binary is the fundamental

language of computers.

4. What is the purpose of character codes in computing?

Answer: Character codes are used to represent characters, such as

letters, symbols, and digits, using numerical codes. This allows

computers to store, process, and communicate text data efficiently.

5. What is the most common character code used in computing?

Answer: ASCII (American Standard Code for Information

Interchange) is the most widely used character code in computing.

It assigns a unique numerical value to each character, making it

possible for computers to understand and exchange text data.

6. What is the process of converting data from one number system

to another called?

Computer Organization & Architecture -37

Answer: The process of converting data from one number system

to another is called data conversion or numerical conversion. This

is necessary when working with different computer systems or

programming languages that use different number systems.

1.9 REFERENCES

 "Advanced Computer Architecture: Parallelism, Scalability,

Programmability" by Hwang, Kai

 "Computer Applications In Management" Dahiya, U/

Nagpal, S.

 "Computer Applications With C & C++: With Programs &

Numerical Problems" Abhyankar, A. K.

 "Computer Architecture & Organization" Hayes, J. P.

 "Computer Data-base Organization" Martin, James

 "Computer Graphics" Hearn, D/ Baker, M.

Computer Organization & Architecture -38

UNIT – 2: BASICS OF CIRCUITS
Structure

2.0 Introduction

2.1 Objectives

2.2 Logic Gates

2.3 Boolean Algebra

2.4 K-map Simplification

 2.4.1 2-Variable K-map

 2.4.2 3-variable K-map

 2.4.3 The 4-Variable Karnaugh Map

 2.4.4 Don't Care Conditions

2.5 Half Adder

2.6 Full Adder

2.7 Multiplexer

2.8 Demultiplexer

2.9 Decoder

2.10 Encoders

2.11 Conclusion

2.12 Unit Based Questions & Answers

2.13 References

2.0 INTRODUCTION

In digital electronics and computer engineering, understanding

fundamental concepts such as logic gates, Boolean algebra, and

combinational circuits is essential. These concepts form the

backbone of modern computing systems, enabling the design and

implementation of complex circuits that perform various tasks

efficiently and reliably.

Computer Organization & Architecture -39

This unit delves into several key components and techniques

within digital electronics. Starting with an exploration of logic

gates, which are the basic building blocks of digital circuits, we

move on to Boolean algebra—a mathematical framework used to

analyze and design these circuits. The unit further covers Karnaugh

map (K-map) simplification techniques, which offer systematic

methods for minimizing Boolean expressions.

Combinational circuits like half adders and full adders are

introduced, illustrating how simple logic elements can perform

arithmetic operations crucial for computing. Multiplexers and

demultiplexers are then explored, demonstrating their roles in data

selection and distribution within digital systems. Decoders and

encoders are discussed next, highlighting their applications in tasks

such as memory addressing and data conversion.

Through a structured approach, this unit aims to provide a

comprehensive understanding of these foundational concepts and

their practical applications in digital electronics. Unit-based

questions and answers are included to reinforce learning and

assessment, ensuring a thorough grasp of the material covered.

2.1 OBJECTIVES

After completing this unit, students will able to understand,

 Understand Logic Gates: Explore the fundamental types

of logic gates (AND, OR, NOT, NAND, NOR, XOR,

XNOR) and their truth tables.

Computer Organization & Architecture -40

 Apply Boolean Algebra: Apply Boolean laws and

theorems (commutative, associative, distributive, De

Morgan's) to simplify Boolean expressions.

 Master K-map Simplification: Learn the concept of

Karnaugh maps (K-maps) and their importance in

simplifying Boolean expressions.

 Study Half Adder and Full Adder: Understand the

structure and operation of half adders and full adders.

 Explore Multiplexers (MUX) and Demultiplexers

(DEMUX): Define the function and operation of

multiplexers in selecting one of several input signals based

on a control signal.

2.2 LOGIC GATES

Logic gates are the building blocks of digital electronics and

computer systems. They are electronic circuits that perform logical

operations on one or more input signals to produce an output

signal. There are seven basic types of logic gates: AND, OR, NOT,

NAND, NOR, XOR, and XNOR.

1. AND Gate

The AND gate produces an output of 1 only if all the input signals

are 1.

Truth Table:

Computer Organization & Architecture -41

A B Output

0 0 0

0 1 0

1 0 0

1 1 1

2. OR Gate

The OR gate produces an output of 1 if any of the input signals are

1.

Truth Table:

A B Output

0 0 0

0 1 1

1 0 1

Computer Organization & Architecture -42

A B Output

1 1 1

3. NOT Gate (Inverter)

The NOT gate produces an output that is the opposite of the input

signal.

Truth Table:

A Output

0 1

1 0

4. NAND Gate

The NAND gate produces an output of 1 only if none of the input

signals are 1.

Computer Organization & Architecture -43

Truth Table:

A B Output

0 0 1

0 1 1

1 0 1

1 1 0

5. NOR Gate

The NOR gate produces an output of 1 if all the input signals are 0.

Truth Table:

A B Output

0 0 1

0 1 0

1 0 0

1 1 0

Computer Organization & Architecture -44

6. XOR Gate

The XOR gate produces an output of 1 if the input signals are

different.

Truth Table:

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

7. XNOR Gate

The XNOR gate produces an output of 1 if the input signals are the

same.

Truth Table:

A B Output

0 0 1

0 1 0

Computer Organization & Architecture -45

A B Output

1 0 0

1 1 1

Gate-Level Minimization

Gate-Level Minimization (GLM) is a technique used to simplify

digital circuits by reducing the number of logic gates required to

implement a particular function. The goal is to minimize the

complexity of the circuit while maintaining its functionality.

GLM involves:

1. Simplifying Boolean expressions: Using laws and

theorems of Boolean algebra to simplify the Boolean

expression representing the digital circuit.

2. Removing redundant gates: Identifying and removing

gates that don't affect the output of the circuit.

3. Combining gates: Merging multiple gates into a single

gate or a smaller number of gates.

4. Optimizing gate configuration: Reconfiguring the gates to

reduce the overall number of gates and improve

performance.

Computer Organization & Architecture -46

Some common techniques used in GLM include:

1. Karnaugh Maps (K-maps): A graphical method for

simplifying Boolean expressions and identifying prime

implicants.

2. Quine-McCluskey Algorithm: A tabular method for

minimizing Boolean expressions.

3. Espresso Algorithm: A computer-aided design (CAD) tool

for minimizing digital circuits.

GLM is important because it:

1. Reduces circuit complexity: Fewer gates mean less power

consumption, reduced area, and increased performance.

2. Improves reliability: Less complex circuits are less prone

to errors and faults.

3. Reduces cost: Fewer gates and reduced complexity lead to

lower manufacturing costs.

Gate-level minimization is the process of simplifying a digital

circuit to reduce the number of gates and improve performance.

This can be done using various techniques such as:

 Karnaugh maps (K-maps)

 Quine-McCluskey algorithm

 Espresso algorithm

These techniques help to minimize the number of gates required to

implement a digital circuit, reducing the overall cost and

improving performance.

Computer Organization & Architecture -47

2.3 BOOLEAN ALGEBRA

Boolean algebra is a branch of mathematics that deals with logical

operations and their representations. It is named after George

Boole, who introduced this concept in the mid-19th century.

Boolean algebra is used to analyze and simplify digital circuits,

computer networks, and logical statements. It consists of logical

operators, variables, and constants that follow specific rules and

laws.

Boolean Laws and Theorems

Boolean laws and theorems are fundamental properties that govern

Boolean algebra. These laws and theorems help in simplifying and

manipulating Boolean expressions. Here are some of the key

Boolean laws and theorems:

Here are all the Boolean laws:

1. Commutative Laws

 OR: A + B = B + A

 AND: AB = BA

2. Associative Laws

 OR: (A + B) + C = A + (B + C)

 AND: (AB)C = A(BC)

3. Distributive Laws

 OR: A(B + C) = AB + AC

 AND: A + BC = (A + B)(A + C)

4. Identity Laws

 OR: A + 0 = A

 AND: A1 = A

 OR: A + 1 = 1

Computer Organization & Architecture -48

 AND: A0 = 0

5. Complement Laws

 !A = A'

 !!A = A

6. Involution Law

 (A')' = A

7. De Morgan's Laws

 !(A + B) = !A!B

 !(AB) = !A + !B

8. Absorption Laws

 A(A + B) = A

 A + AB = A

9. Simplification Laws

 A + !A = 1

 A!A = 0

10. Consensus Laws

 AB + !AC = AB + C

 A + BC = A + !AB + C

11. Boolean Algebra Theorems

 (A + B)(A' + B') = AA' + BB'

 (A + B)(A + B') = A

Boolean Expressions and Equation Simplification

Boolean expressions are formed using logical operators, variables,

and constants. Simplifying Boolean expressions involves applying

Boolean laws and theorems to reduce the complexity of the

expression.

Computer Organization & Architecture -49

 Simplification: Simplifying a Boolean expression means

reducing it to its simplest form without changing its

original meaning.

 Equation: A Boolean equation is a statement that two

Boolean expressions are equal.

Simplification techniques include:

 Removing redundant parentheses

 Applying De Morgan's theorem

 Using distributive law

 Combining like terms

Example for the simplification:

Simplifying Boolean expressions and equations involves applying

Boolean laws and theorems to reduce the complexity of the

expression. Here are some examples:

Example 1: Simplifying a Boolean Expression

Expression: (A + B) (A + C)

Step 1: Apply the distributive law

(A + B) (A + C) = A (A + C) + B (A + C)

Step 2: Simplify

A (A + C) + B (A + C) = A^2 + AC + AB + BC

Step 3: Remove redundant terms (A^2 = A)

A^2 + AC + AB + BC = A + AC + AB + BC

Simplified Expression: A + AC + AB + BC

Example 2: Simplifying a Boolean Equation

Equation: AB + AC = A(B + C)

Step 1: Apply the distributive law

A(B + C) = AB + AC

Step 2: Equate the two expressions

Computer Organization & Architecture -50

AB + AC = AB + AC

Simplified Equation: True (the equation is always true)

Example 3: Simplifying a Boolean Expression with De Morgan's

Theorem

Expression: !(A + B)

Step 1: Apply De Morgan's theorem

!(A + B) = !A!B

Simplified Expression: !A!B

Example 4: Simplifying a Boolean Equation with Redundant

Parentheses

Equation: (A + B) + C = A + (B + C)

Step 1: Remove redundant parentheses

(A + B) + C = A + B + C

Step 2: Equate the two expressions

A + B + C = A + B + C

Simplified Equation: True (the equation is always true)

These examples demonstrate how to simplify Boolean expressions

and equations using Boolean laws and theorems. By applying these

techniques, we can reduce the complexity of Boolean expressions

and equations, making them easier to analyze and understand.

2.4 K- MAP SIMPLIFICATION

Boolean expressions can be systematically made simpler with the

K-map. The minimal expression, which is the simplest POS and

SOP expression, can be found with the aid of the K-map approach.

A simplified cookbook is offered by the K-map.

Computer Organization & Architecture -51

A K-map, like a truth table, lists every possible combination of

input variable values and matching output values. In K-map, on the

other hand, the values are kept in the array's cells. Every input

variable has a binary value that is kept in each cell.

When creating expressions with 2, 3, 4, and 5 variables, the K-map

approach is employed. The Quine-McClusky approach is another

technique for simplification that is utilized for bigger numbers of

variables. The total number of variable input combinations is

comparable to the number of cells in a K-map. For instance, if

there are three variables, there are 23=8 cells, and if there are four

variables, there are 24 cells. K-map accepts both the POS and SOP

versions. The 0s and 1s are used to fill the K-map grid. Creating

groups is the solution to the K-map.

The expressions are solved using K-map in the following steps:

 Initially, we determine the K-map based on the quantity of

variables.

 Determine the expression's maxterm and minterm.

 Put 1 in each of the K-map's SOP cells corresponding to the

minterms.

 Put 0 in the block's POS cells corresponding to the

maxterm.

 Next, we aim to cover as many elements as we can in a

single group by forming rectangular groups with total terms

in the power of two, such as 2, 4, 8,...

 We locate the product words and compile them into the

SOP form with the aid of these groupings.

Computer Organization & Architecture -52

2.4.1 2-Variable K-map

There is a total of 4 variables in a 2-variable K-map. There are two

variables in the 2-variable K-map. The following figure shows the

structure of the 2-variable K-map:

 There is only one way to arrange four neighboring

minterms in the above image.

 Grouping two adjacent minterms can take the following

forms: {(m0, m1), (m2, m3), (m0, m2), and (m1, m3)}.

2.4.2 3-variable K-map

An array with eight cells represents the three-variable K-map. In

this instance, the variables were A, B, and C. Any letter can be

used to represent a variable in its name. Variables A and B's binary

values are on the left, whereas variable C's values are across the

top. The binary values of A and B at the left side of the same row

paired with the value of C at the top of the same column make up

the value of the given cell. For instance, the binary values of the

cells in the bottom right corner and upper left corners, respectively,

are 101 and 000, respectively.

Computer Organization & Architecture -53

2.4.3 The 4-Variable Karnaugh Map

An array of 16 cells represents the 4-variable K-map. The binary

values of C and D are across the top, and A and B are down the

left. The binary values of A and B at the left side of the same row

paired with the binary values of C and D at the top of the same

column represent the value of the given cell. For instance, the

binary values of the cells in the lower right corner (1010) and

upper right corner (0010) are respectively.

Computer Organization & Architecture -54

Simplification of Boolean expressions using Karnaugh Map

K-map accepts both SOP and POS versions, as is well known.

Thus, the minterm and maxterm solutions are the two potential

solutions for the K-map. Now let's get started by learning how to

determine the K-map's minterm and maxterm solutions.

Karnaugh Maps (K-maps) provide a visual method for simplifying

Boolean expressions. They help identify patterns and groups of 1s

or 0s in the truth table, making it easier to minimize the expression.

Steps to Simplify Boolean Expressions Using K-maps

1. Create the K-map: Draw a grid for the K-map

corresponding to the number of variables in the expression.

2. Fill the K-map: Place the 1s and 0s in the K-map

according to the truth table.

3. Group the 1s (for SOP) or 0s (for POS): Form groups of

1, 2, 4, 8, etc. Each group should be as large as possible.

4. Write the simplified expression: Write the Boolean

expression for each group and combine them using OR (for

SOP) or AND (for POS).

Example: 3-Variable K-map Simplification

Truth Table

Computer Organization & Architecture -55

Step 1: Create the K-map

For 3 variables (A, B, C), the K-map is a 2x4 grid:

Step 2: Fill the K-map

Step 3: Group the 1s

Group the adjacent 1s in rectangles. Remember, groups must be

powers of two (1, 2, 4, 8, etc.) and can wrap around edges.

We can form the following groups:

 Group 1: (0,1), (1,1), (1,0), (0,0)

 Group 2: (1,1), (1,0)

Step 4: Write the simplified expression

For Group 1:

 Variable B changes (0,1,0), so B is eliminated.

 Expression for Group 1: A

For Group 2:

 Variable A changes (0,1), so A is eliminated.

 Expression for Group 2:

Final simplified expression:

Computer Organization & Architecture -56

Y = A +

2.4.4 Don't Care Conditions

In some Boolean functions, certain input combinations never occur

or the output doesn't matter. These are known as "don't care"

conditions, represented by an 'X' in the truth table. Don't care

conditions can be used in Karnaugh Maps (K-maps) to simplify

expressions further by allowing flexibility in grouping 1s.

Example: Simplifying with Don't Care Conditions

Truth Table

Step 1: Create the K-map

For 3 variables (A, B, C), the K-map is a 2x4 grid:

Step 2: Fill the K-map

Step 3: Group the 1s and Xs

Computer Organization & Architecture -57

We can form groups using 1s and Xs to simplify the expression. Xs

can be treated as either 0 or 1 to form the largest groups.

 Group 1: (0,0), (0,1), (1,0), (1,1)

 Group 2: (1,0), (1,1)

Step 4: Write the simplified expression

For Group 1:

 A = 0

 Variable C changes (0,1), so C is eliminated.

 Expression for Group 1:

For Group 2:

 Variable A changes (0,1), so A is eliminated.

 Expression for Group 2:

Final simplified expression:

Essential Prime Implicants

Essential prime implicants are the groups in a K-map that cover at

least one '1' that no other group covers. These are necessary for the

simplified expression.

Example: Finding Essential Prime Implicants

Truth Table

Computer Organization & Architecture -58

Step 1: Create the K-map

For 3 variables (A, B, C), the K-map is a 2x4 grid:

Step 2: Fill the K-map

Step 3: Group the 1s

We can form the following groups:

Step 4: Identify Essential Prime Implicants

 Group 1: (0,0), (0,1)

 Group 2: (0,0), (1,1)

 Group 3: (0,0), (0,1), (0,10)

Here, Group 1 and Group 2 are essential prime implicants because

they cover unique 1s that no other group covers.

Final Simplified Expression:

Combining the essential prime implicants, the final simplified

expression is:

Computer Organization & Architecture -59

2.5 HALF ADDER

A fundamental building component for adding two numbers as

inputs and producing two outputs is the half-adder. The OR

operation of two single-bit binary values is carried out by the

adder. The half adder has two output states, "carry" and "sum," and

two input states, the augent and addent bits.

Block Diagram:

Truth table:

In the table above,

 The input states are "A" and "B," while the output states are

"sum" and "carry."

 When none of the inputs is 1, the carry output is 0.

 The'sum' bit defines the least important part of the sum.

 The sum and carry have the following SOP form:

Sum = x'y + xy'

Carry = xy

Computer Organization & Architecture -60

Design of Half Adder Circuit:

As can be seen, the block diagram has two inputs and two outputs.

The half adder's input states are represented by the augent and

addent bits, while its output states are carry and sum. The two logic

gates listed below are used in the design of the half adder:

 2-gate AND input.

 2-input Exclusive-OR Gate or Ex-OR Gate 2.

The Half Adder is designed by combining the 'XOR' and 'AND'

gates and provide the sum and carry.

There is the following Boolean expression of Half Adder circuit:

 Sum= A XOR B (A+B)

 Carry= A AND B (A.B)

Half Adder Applications:

Half adders are fundamental components in various digital systems

and arithmetic circuits. Here are some key applications:

1. Binary Addition: Half adders are used to perform basic

binary addition of single-bit numbers.

Computer Organization & Architecture -61

2. Building Full Adders: Multiple half adders can be

combined to create full adders, which can add multi-bit

binary numbers.

3. Arithmetic Logic Units (ALUs): ALUs in processors use

half adders and full adders to perform arithmetic

operations.

4. Digital Counters: Half adders are used in the design of

digital counters and registers.

2.6 FULL ADDER

Only two numbers can be added using the half adder. In order to

solve this issue, the full adder was created. The three 1-bit binary

values A, B, and carry C are added using the whole adder. There

are two output stages—sum and carry—and three input states in

the entire adder.

Block diagram:

Truth Table

Computer Organization & Architecture -62

In the above truth table,

 These are the input variables: "A" and "B." These variables

stand for the two important bits that will be added.

 The third input, "Cin," stands for the carry. The carry bit is

obtained from the preceding lower significant place.

 The output variables that define the output values are 'Sum'

and 'Carry'.

 All conceivable combinations of 0 and 1 that can occur in

these variables are indicated by the eight rows under the

input variable.

Design of Full Adder:

The building of the whole adder circuit is shown in the block

diagram above. The OR gate is used to merge the two half-adder

circuits in the circuit above. A and B are the two single-bit binary

inputs of the first half adder. As is well known, the half adder

generates the outputs sum and carry. In the second half adder, the

'Carry' output of the first adder will be the second input, and the

'Sum' output of the first adder will be the first input.

Computer Organization & Architecture -63

 'Sum' and 'Carry' will once more be provided by the second half

adder. The 'Sum' bit is the result of the complete adder circuit. We

feed the "Carry" outputs from the first and second adders into the

OR gate in order to determine the final output of the "Carry." The

final execution of the entire adder circuit will result from the OR

gate.

 The last 'Carry' bit is to represent the MSB.

 The 'AND' and 'XOR' gates combined with an OR gate can

be used to build the entire adder logic circuit.

The diagram above depicts the entire adder's actual logic circuit. A

Boolean statement can also be used to express the complete adder

circuit architecture.

Sum:

 Perform the XOR operation of input A and B.

 Perform the XOR operation of the outcome with carry. So,

the sum is (A XOR B) XOR Cin which is also represented

as: (A ⊕ B) ⊕ Cin

Carry:

 Perform the 'AND' operation of input A and B.

Computer Organization & Architecture -64

 Perform the 'XOR' operation of input A and B.

 Perform the 'OR' operations of both the outputs that come

from the previous two steps. So the 'Carry' can be

represented as: A.B + (A ⊕ B)

Full Adder Applications

Full adders are crucial components in various digital systems and

arithmetic circuits. Here are some key applications:

1. Multi-bit Binary Addition: Full adders can be connected

in series to add multi-bit binary numbers.

2. Arithmetic Logic Units (ALUs): ALUs in processors use

full adders to perform arithmetic operations.

3. Digital Counters: Full adders are used in the design of

digital counters and registers.

4. Binary Multipliers: Full adders are used in binary

multipliers for performing addition of partial products.

5. Subtraction Circuits: Full adders can be modified to

perform binary subtraction.

2.7 MULTIPLEXER

A combinational circuit with twon input lines and one output line

is called a multiplexer. A combinational circuit with numerous

inputs and one output is what a multiplexer is, put simply.

The input lines provide the binary data, which is then sent to the

output line.

One of these data inputs will be connected to the output based on

the values of the selection lines.

Computer Organization & Architecture -65

There are n selection lines and 2n input lines, as opposed to an

encoder and a decoder. Thus, there are 2N potential combinations

of inputs in total. Another term for a multiplexer is Mux.

The multiplexer comes in different varieties, which include the

following:

2×1 Multiplexer:

There are just two inputs (A0 and A1), one selection line (S0), and

one output (Y) in a 2x1 multiplexer. One of these two inputs will

be connected to the output based on the combination of inputs that

are present at selection line S0. Below are the 2x1 multiplexer's

block diagram and truth table.

Block diagram:

Truth Table:

The logical expression of the term Y is as follows:

Computer Organization & Architecture -66

Y = S0'. A0 + S0. A1

Logical circuit of the above expression is given below:

MUX Applications

Multiplexers have various applications in digital systems,

including:

1. Data Routing:

o Multiplexers are used to select one of several data

sources and route it to a single output line. This is

common in communication systems and digital

signal processing.

2. Memory Addressing:

o In memory systems, multiplexers are used to select

specific memory locations based on address lines,

allowing data read and write operations.

3. Control Signal Selection:

o Multiplexers can be used to select control signals in

microprocessor design, enabling different

operations based on the instruction set.

4. Analog-to-Digital Conversion:

o Multiplexers are used in analog-to-digital

converters (ADCs) to select different analog input

signals for conversion to digital form.

Computer Organization & Architecture -67

5. Data Compression:

o In data compression techniques, multiplexers can be

used to combine multiple data streams into a single

stream, reducing bandwidth requirements.

2.8 DEMULTIPLEXER

One input line and two or more output lines make up a

combinational circuit known as a demultiplexer. A single-input,

multi-output combinational circuit is all that the multiplexer is. The

single input lines provide the information, which is then sent to the

output line. One of these outputs will be connected to the input

based on the values of the selection lines. The de-multiplexer is the

other multiplexer.

There are two n outputs and n selection lines, in contrast to an

encoder and a decoder. Thus, the available combinations of inputs

are 2n in total. De-multiplexer is handled similarly to De-mux.

The following are some of the different types of demultiplexers:

1×2 De-multiplexer:

There are just two outputs (Y0 and Y1), one selection line (S0),

and one input (A) in the 1 to 2 De-multiplexer. The input will be

connected to one of the outputs based on the selected value.

Below are the 1x2 multiplexer's block diagram and truth table.

Block Diagram:

Computer Organization & Architecture -68

Truth Table:

The logical expression of the term Y is as follows:

Y0=S0'.A

Y1=S0.A

Logical circuit of the above expressions is given below:

Computer Organization & Architecture -69

DEMUX Applications

Demultiplexers have various applications in digital systems,

including:

1. Data Routing:

o Demultiplexers are used to take a single input and

distribute it to multiple output lines based on control

signals. This is essential for data distribution in

communication systems and digital signal

processing.

Computer Organization & Architecture -70

2. Memory Decoding:

o In memory systems, demultiplexers are used to

decode memory address lines and select specific

memory locations for read or write operations.

3. Display Drivers:

o Demultiplexers can be used in display systems to

select individual segments or rows in a multi-

segment display.

4. Analog Multiplexing:

o In analog systems, demultiplexers are used to select

different analog signals for processing or routing.

2.9 DECODER

Decoders are combinational circuits that convert binary data into

two or more output lines. N input lines are used to transmit the

binary data. The binary information's 2N-bit coding is defined by

the output lines. To put it simply, the Decoder reverses the actions

of the Encoder. For simplicity, only one input line is active at a

time. The binary data is equivalent to the generated 2N-bit output

code.

There are various types of decoders which are as follows:

2 to 4-line decoder:

Computer Organization & Architecture -71

There are three inputs (A0, A1, and E) and four outputs (Y0, Y1,

Y2, and Y3) in the 2 to 4 line decoder. When the enable 'E' is set to

1, one of these four outputs will be 1 for each combination of

inputs. Below are the 2 to 4 line decoder's block diagram and truth

table.

Block Diagram:

Truth Table:

The logical expression of the term Y0, Y0, Y2, and Y3 is as

follows:

Computer Organization & Architecture -72

Logical circuit of the above expressions is given below:

Decoder Applications

Decoders have numerous applications in digital systems, some of

which include:

1. Memory Address Decoding:

o Decoders are used to select specific memory

locations based on the address lines. This is crucial

in memory management and access.

o Example: In a 16x4 memory chip, a 4-to-16 decoder

can select one of the 16 memory locations based on

the 4-bit address input.

2. Demultiplexing: Decoders are used to route a single input

signal to one of many output lines, functioning as a

demultiplexer.

3. Instruction Decoding: In microprocessors, decoders are

used to decode instruction codes into control signals,

enabling specific operations based on the instruction set.

Computer Organization & Architecture -73

4. Digital Display Systems: Decoders are used in digital

displays to convert binary input codes to corresponding

display outputs, such as in seven-segment displays.

5. Data Routing: In communication systems, decoders help

route data signals to the correct destination based on

encoded address information.

2.10 ENCODERS

Encoders are combinational circuits that convert binary

information into N output lines. 2N input lines are used to transmit

the binary data. The binary information's N-bit coding is defined in

the output lines. To put it simply, the Encoder reverses the actions

of the Decoder. For simplicity, only one input line is active at a

time. The binary data is equivalent to the generated N-bit output

code.

There are various types of encoders which are as follows:

4 to 2-line Encoder:

An encoder with a 4 to 2 line has two outputs (A0 and A1) and

four inputs (Y0, Y1, Y2, and Y3). To obtain the corresponding

binary code on the output side, one input line at a time in four

Computer Organization & Architecture -74

input lines is set to true. The 4 to 2 line encoder's truth table and

block schematic are shown below.

Block Diagram:

Truth Table:

The logical expression of the term A0 and A1 is as follows:

A1=Y3+Y2

A0=Y3+Y1

Logical circuit of the above expressions is given below:

Computer Organization & Architecture -75

Encoder Applications

Encoders have numerous applications in digital systems, some of

which include:

1. Data Compression: Encoders can be used to compress

data by reducing the number of bits required to represent

information. This is useful in digital communication and

storage.

2. Keyboard Encoding: Keyboards use encoders to convert

key presses into binary codes that represent each key. These

binary codes are then processed by the computer to

determine which key was pressed.

3. Multiplexing: Encoders can be used in multiplexing

systems to encode multiple input signals into a smaller

number of output lines, enabling efficient data

transmission.

4. Priority Encoders: Priority encoders assign priority to

inputs, encoding the highest-priority input that is active.

These are used in interrupt systems to handle multiple

interrupt signals.

2.11 CONCLUSION

In this unit on digital electronics, we have explored foundational

concepts that are crucial for understanding and designing digital

circuits. We began by examining logic gates, which form the basic

building blocks of digital systems. Understanding their operations

and truth tables provided insights into how logical decisions are

made within electronic circuits.

Computer Organization & Architecture -76

Moving forward, we delved into Boolean algebra, which serves as

a formal method for simplifying and analyzing Boolean

expressions. By applying Boolean laws and theorems such as De

Morgan's and the distributive law, we learned systematic

approaches to optimize circuit designs, ensuring efficient use of

resources.

A significant portion of our study focused on combinational

circuits, including half adders and full adders, which are essential

for performing basic arithmetic operations in digital computing.

These circuits not only showcased the application of logic gates

and Boolean algebra but also illustrated how complex tasks can be

broken down into simpler components within digital systems.

Lastly, we explored multiplexers, demultiplexers, decoders, and

encoders—devices that enable data selection, distribution, and

conversion in digital systems. Understanding their functionalities

and applications highlighted their role in enhancing the efficiency

and versatility of modern electronic devices.

By mastering these concepts and tools, learners are equipped to

analyze, design, and optimize digital circuits effectively. This unit

has laid a solid foundation for further exploration in digital

electronics, providing practical skills that are essential for both

academic study and professional practice in the field.

2.12 UNIT BASED QUESTIONS &
ANSWERS

1. Explain the function of an XOR gate and provide its truth table.

Computer Organization & Architecture -77

Answer: An XOR gate outputs true (1) when the number of true

inputs differs (exactly one is true), and outputs false (0) when both

inputs are the same (both true or both false). The truth table is:

2. Simplify the Boolean expression: A′B + AB′ + AB.

Answer: Apply Boolean algebra laws step-by-step:

3. Explain the function of a half adder and provide its truth table.

Answer: A half adder adds two single-bit binary numbers (A and

B) and produces a sum (S) and carry-out (C). Truth table:

4. What are logic gates? Explain the function of each of the

following gates: AND, OR, NOT, NAND, NOR, XOR, and

XNOR.

Answer: Logic gates are fundamental building blocks of digital

circuits that perform Boolean operations on one or more binary

Computer Organization & Architecture -78

inputs to produce a single binary output. Here are the functions of

each gate:

 AND Gate: Outputs true (1) only if all inputs are true.

 OR Gate: Outputs true (1) if at least one input is true.

 NOT Gate: Inverts the input; outputs true (1) if the input is

false (0), and vice versa.

 NAND Gate: Inverts the output of an AND gate; outputs

false (0) only if all inputs are true.

 NOR Gate: Inverts the output of an OR gate; outputs true

(1) only if all inputs are false.

 XOR Gate: Outputs true (1) if exactly one input is true.

 XNOR Gate: Outputs true (1) if all inputs are the same

(either all true or all false).

5. Define Boolean algebra. How is Boolean algebra used in digital

circuit design? Provide examples of Boolean expressions and their

simplification using Boolean laws.

Answer: Boolean algebra is a mathematical system used to

analyze and simplify Boolean expressions. It consists of basic

operations (AND, OR, NOT) and laws (commutative, associative,

distributive, De Morgan's) that govern these operations. In digital

circuit design, Boolean algebra helps in optimizing circuits by

reducing the number of gates and improving efficiency. Example:

Computer Organization & Architecture -79

2.13 REFERENCES

 Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

 Taub, Herbert, and Donald L. Schilling. Digital Integrated

Electronics. McGraw-Hill Education, 1994.

 Mano, M. Morris, and Michael D. Ciletti. Digital Design:

With an Introduction to the Verilog HDL. Pearson

Education, 2017.

 Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals

of Logic Design. Cengage Learning, 2013.

 Streetman, Ben G., and Sanjay Banerjee. Solid State

Electronic Devices. Prentice Hall, 2005.

 Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -80

UNIT – 3: COMBINATIONAL AND
SEQUENTIAL CIRCUITS
Structure

3.0 Introduction

3.1 Objectives

3.2 Combinational Logic Circuit Design

3.3 Flip-Flops

 3.3.1 SR Flip Flop:

 3.3.2 JK Flip Flop

 3.3.3 D Flip Flop

 3.3.4 T Flip Flop

3.4 Registers

3.5 Counters (Synchronous & Asynchronous)

3.6 Conclusion

3.7 Unit Based Questions & Answers

3.8 References

3.0 INTRODUCTION

Digital electronics form the backbone of modern technology,

enabling the creation and operation of computers, communication

systems, and a myriad of electronic devices. Central to these

systems are logic circuits, which process binary information using

various components such as combinational logic circuits, flip-

flops, registers, and counters. Understanding these components and

their design principles is crucial for anyone involved in the design

and implementation of digital systems.

Computer Organization & Architecture -81

This unit delves into the core elements of digital electronics,

starting with combinational logic circuit design, which involves

creating circuits that generate outputs based solely on current

inputs.

We then explore flip-flops, which are essential for storing binary

data and forming the building blocks of sequential circuits. The

discussion extends to registers, which store multiple bits of data

and facilitate data manipulation and transfer within digital systems.

Finally, we examine counters, which play a critical role in timing,

sequencing, and frequency division in digital circuits.

By the end of this unit, you will have a comprehensive

understanding of these fundamental components, their operations,

and their applications in various digital systems. This knowledge

will equip you with the skills necessary to design and analyze

complex digital circuits effectively.

3.1 OBJECTIVES

 Understand Combinational Logic Circuit Design:

Comprehend the principles of combinational logic circuits

and their design methodologies.

 Master Flip-Flops: Explain the operation and

characteristics of various types of flip-flops, including SR,

JK, D, and T flip-flops.

 Gain Proficiency in Registers: Understand the

applications of registers in data storage and manipulation,

including SISO, SIPO, PISO, and PIPO configurations.

Computer Organization & Architecture -82

 Understand and Design Counters: Understand the

concept of modulo-N counting and create state diagrams

for counters.

 Apply Knowledge in Practical Applications: Identify the

applications of combinational circuits, flip-flops, registers,

and counters in real-world digital systems.

3.2 COMBINATIONAL LOGIC
CIRCUIT DESIGN

A combinational circuit in digital electronics is a type of logic

circuit where the output at any instant of time is determined solely

by the present combination of input signals. In other words, the

output depends only on the current state of its inputs, with no

memory or feedback involved. Combinational circuits are

fundamental building blocks used extensively in digital systems for

various tasks such as data processing, arithmetic operations, and

logical decisions.

Characteristics of Combinational Circuits:

1. No Feedback: Combinational circuits do not have any

form of feedback; hence, their outputs depend strictly on

the current input values.

2. Deterministic Output: For a given set of input values, a

combinational circuit will always produce the same output

values. There are no timing dependencies or sequential

states affecting the output.

3. Logic Gates and Boolean Algebra: Combinational circuits

are constructed using basic logic gates (AND, OR, NOT,

etc.) and are governed by principles of Boolean algebra.

Computer Organization & Architecture -83

Boolean expressions are used to describe and simplify the

logic implemented by these circuits.

Examples of Combinational Circuits:

1. Multiplexer (MUX):

o A multiplexer selects one of several input lines and

forwards it to a single output line based on a control

signal. It is designed using logic gates to enable data

routing in digital systems. For example, a 4-to-1

MUX selects one of four data inputs based on a 2-

bit control signal.

Decoder:

o A decoder takes a binary-coded input and activates

one of several output lines based on the input code.

It is typically used for memory address decoding,

where different memory locations are accessed

based on the binary address input.

Adder (Half Adder and Full Adder):

o Adders are combinational circuits used for

arithmetic operations. A half adder adds two single-

bit binary numbers, producing a sum and a carry-

out. A full adder adds two binary numbers along

with a carry-in, producing a sum and a carry-out.

Encoder:

Computer Organization & Architecture -84

o An encoder performs the opposite function of a

decoder. It converts multiple input signals into a

coded output, typically used in data compression

and error detection applications.

Advantages and Applications:

 Speed: Combinational circuits operate at high speeds since

the output is determined instantly by the inputs.

 Simplicity: They are relatively simple to design and

understand compared to sequential circuits.

 Versatility: Used in various applications such as arithmetic

operations, data routing, address decoding, and logical

decision-making in digital systems.

3.3 FLIP-FLOPS

A flip flop is a circuit that has two stable states. These stable states

are utilized to hold binary data, which is modifiable by the

application of different inputs. The basic components of the digital

system are the flip flops.

Examples of data storage components are latches and flip flops.

The flip flop is the fundamental storage element of a sequential

logical circuit. Although they function differently, latches and flip

flops are the fundamental components of storage.

The following categories of flip flops exist:

Computer Organization & Architecture -85

3.3.1 SR Flip Flop:

The SR flip flop is a bistable device with one bit of memory that

accepts two inputs: SET and RESET. The device is set or an output

of 1 is produced by the SET input 'S', and the device is reset or an

output of 0 is produced by the RESET input 'R'. The labels S and R

designate the inputs for SET and RESET, respectively.

"Set-Reset" flip flops are known as SR flip flops. Resetting the flip

flop to its initial state from its current state with an output of 'Q' is

accomplished using the reset input. The logic levels "0" and "1"

determine the set and reset conditions that determine this output.

A simple flip flop that feeds feedback back to its opposing input

from both of its outputs is the NAND gate SR flip flop. The single

data bit in the memory circuit is stored in this circuit. Thus, the SR

flip flop has three inputs in total—"S," "R," and "Q," as well as the

current output. The present history or state is relevant to this

output, 'Q'. Since the device can be "flipped" to a logic set state or

"flopped" back to the opposing logic reset state, the term "flip-

flop" refers to how the gadget actually operates.

The NAND Gate SR Flip-Flop

By connecting two cross-coupled 2-input NAND gates, we may

create a set-reset flip flop. Feedback is supplied in the SR flip flop

circuit from each output to one of the other NAND gate inputs.

The gadget thus has two inputs, Set ('S') and Reset ('R'), and two

outputs, Q and Q', correspondingly. The S-R flip flop's circuit and

block diagrams are shown below.

Block diagram:

Computer Organization & Architecture -86

Circuit Diagram:

The Set State

The NAND gate Y in the preceding diagram has an input of 0,

which will result in the output Q' 1, when the input R is set to false

or 0 and the input S is set to true or 1. When the value of Q' is

passed to the NAND gate 'X' as input 'A', both of the gate's inputs

are now 1(S=A=1), resulting in the output 'Q' 0.

At this point, the inputs of NAND gate 'Y' are R=1 and B=0 if the

input R is changed to 1 and 'S' stays at 1. Since one of the inputs in

this case is also 0, Q's output is 1. Thus, Q=0 and Q'=1 are used to

set or latch the flip flop circuit.

Reset State

In the second stable condition, the output Q is 1, and the output Q'

is 0. It is determined by S = 0 and R = 1. The NAND gate 'X' has a

zero input and a one output, Q. As input B, output Q is faded to

Computer Organization & Architecture -87

NAND gate Y. Since NAND gate Y's two inputs are both set to 1,

Q' = 0.

Hence, if the input S is modified to 0 but 'R' stays at 1, the result Q'

will also be 0 and the state will remain unchanged. Thus, the flip

flop circuit's reset state has been created, and the set/reset actions

are specified in the truth table that follows:

The S-R flip flop is the simplest and easiest circuit to understand.

Truth Table:

3.3.2 JK Flip Flop

The Set-Reset flip flop, also known as the SR flip flop, offers

many benefits. However, it has the following issues when

switching:

 This circumstance is never encountered when the inputs for

Set 'S' and Reset 'R' are both set to 0.

 Incorrect latching happens when the enable input is set to 1,

and the Set or Reset inputs alter their state.

These two issues with the SR Flip Flop are eliminated by the JK

Flip Flop.

One of the most popular flip flips in digital circuits is the JK flip

flop. The JK flip flop, which has two inputs named "J" and "K," is

a universal flip flop. The 'S' and 'R' of an SR flip flop stand for Set

and Reset, respectively, although J and K do not. The independent

Computer Organization & Architecture -88

letters J and K were selected to set the flip flop design apart from

other varieties.

The JK flip flop functions similarly to the SR flip flop. Instead of

"S" and "R," the JK flip flop has "J" and "K" flip flops. The

primary distinction between an SR flip flop and a JK flip flop is

that an SR flip flop generates invalid states as outputs when both of

its inputs are set to 1, whereas a JK flip flop does not produce any

invalid states when either of its inputs is set to 1.

The JK Flip Flop is an SR flip-flop that is gated and has a clock

input circuit added to it. When both inputs are set to 1, an invalid

or illegal output state arises, which can be avoided by including a

clock input circuit. Thus, there are four possible input

combinations for the JK flip-flop: 1, 0, "no change," and "toggle."

With the addition of a clock input, the JK flip flop symbol is

identical to the SR Bistable Latch symbol.

Block Diagram:

Computer Organization & Architecture -89

Circuit Diagram:

The inputs 'S' and 'R' of an SR flip flop are swapped out for two

inputs, J and K. This indicates that S and R are equivalent to J and

K, respectively.

We swap out the two 2-input AND gates for two 3-input NAND

gates. Each gate's third input is linked to the outputs at Q and Q'.

Since the two inputs of the SR flip-flop are now interlocked, the

previously invalid condition of (S = "1", R = "1") can be exploited

to generate the "toggle action" due to cross-coupling.

The J input is cut off from Q's "0" position through the lower

NAND gate if the circuit is "set". K input is cut off from Q's 0

locations through the higher NAND gate if the circuit is in the

"RESET" state. We can utilize Q and Q' to manipulate the input

because they are always different. According to the provided truth

table, the JK toggles the flip flop when both inputs "J" and "K" are

set to 1.

Truth Table:

Computer Organization & Architecture -90

The circuit will toggle between the SET and RESET states when

the JK flip flop's two inputs are both set to 1 and the clock input is

pulsating "High." When both of the JK flip flop's inputs are set to

1, it functions as a T-type toggle flip flop.

An enhanced timed SR flip flop is the JK flip flop. However, the

issue of "race" persists. When the output Q is altered before the

timing pulse of the clock input has a chance to turn "Off," an issue

arises. To prevent this time, we must maintain short timing plus

period (T).

3.3.3 D Flip Flop

In digital systems, the D flip flop is a commonly used flip flop.

Input synchronization, counters, and shift registers are the main

applications for the D flip flop.

Computer Organization & Architecture -91

Truth Table:

3.3.4 T Flip Flop

T flip flops are utilized similarly to JK flip flops. In contrast to JK

flip flops, T flip flops have a single clock input. The JK flip flop's

two inputs are connected as a single input to create the T flip flop.

The T flip flop is also known as Toggle flip-flop. These T flip-

flops are able to find the complement of its state.

Computer Organization & Architecture -92

Truth Table:

Flip-Flop Applications

Flip-flops are versatile components in digital electronics, crucial

for storing binary data and implementing various sequential

circuits. Here are some common applications of flip-flops:

1. Registers:

o Description: Registers are sequential circuits

composed of flip-flops used for temporary storage

of data within a processor or digital system.

o Types: Parallel-in-Parallel-out (PIPO), Serial-in-

Parallel-out (SIPO), Parallel-in-Serial-out (PISO),

Serial-in-Serial-out (SISO).

o Applications: Used in microprocessors, CPUs, and

arithmetic logic units (ALUs) for data buffering,

temporary storage, and data transfer operations.

2. Counters:

o Description: Counters are sequential circuits that

generate a sequence of binary numbers in response

to clock pulses.

o Types: Up counters, Down counters, Up/Down

counters.

Computer Organization & Architecture -93

o Applications: Used in digital clocks, frequency

dividers, digital signal processing (DSP), and event

counting in digital systems.

3. Memory Elements:

o Description: Flip-flops form the basic storage

elements of memory units in digital systems.

o Types: SRAM (Static Random Access Memory),

registers, cache memory.

o Applications: Primary storage in computers,

buffering data between different speed devices, and

temporary data storage in embedded systems.

Edge-Triggered vs. Level-Triggered Flip-Flops

1. Edge-Triggered Flip-Flops:

o Operation: Respond to transitions (edges) of the

clock signal (rising or falling edge).

o Advantages: Ensures stable operation with precise

timing control, minimizing timing hazards.

o Applications: Used in synchronous digital systems

where data changes state at specific points in the

clock cycle.

2. Level-Triggered Flip-Flops:

o Operation: Respond to the continuous level of the

clock signal (HIGH or LOW).

o Behavior: Output changes state whenever the clock

signal is at a specific logic level.

o Applications: Less common in digital designs due

to potential for timing hazards and less precise

synchronization.

Computer Organization & Architecture -94

Comparison and Selection

 Selection Criteria:

o Timing Requirements: Edge-triggered flip-flops

are preferred for synchronous designs requiring

precise timing and synchronization.

o Complexity: Level-triggered flip-flops may be

simpler but are less commonly used due to their

limitations in timing control.

o Application Specific: The choice between edge-

triggered and level-triggered flip-flops depends on

the specific requirements of the digital system and

the design goals for timing, synchronization, and

performance.

3.4 REGISTERS

Registers are essential components in digital electronics used for

temporary data storage and manipulation. They are composed of

flip-flops and enable various operations such as data buffering,

arithmetic operations, and data transfer. Here’s an in-depth

exploration of registers:

Types of Registers

1. Shift Registers: A flip-flop is a type of one-bit memory

cell that can be used to store digital information. We must

utilize a set of flip-flops to improve the storage capacity in

terms of bits. A register is a collection of flip-flops like this

one. An n-bit word can be stored in the n-bit register, which

is made up of n flip-flops.

Computer Organization & Architecture -95

It is possible to transfer the binary data between flip-flops

inside a register. Shift registers are the registers that permit

these kinds of data transfers. A shift register can operate in

four different ways.

Shift registers are sequential circuits that shift data bit-by-

bit either left or right based on clock pulses.

Types:

 Serial-in, Serial-out (SISO): Data is shifted

in and out serially.

 Serial-in, Parallel-out (SIPO): Data is

shifted in serially and outputted in parallel.

 Parallel-in, Serial-out (PISO): Data is

loaded in parallel and outputted serially.

 Parallel-in, Parallel-out (PIPO): Data is

loaded and outputted in parallel.

Let’s discuss one by one:

 Serial-in, Serial-out (SISO):

Assume that every flip-flop started out in the reset state,

with Q3 = Q2 = Q1 = Q0 = 0. When a four-bit binary

number, such as 1 1 1 1, is entered into the register, it

should be applied to the Din bit first, using the LSB bit.

Din, the serial data input, is coupled to FF-3's D input, or

D3. The input of the flip-flop after it, D2, is connected to

the output of FF-3, or Q3.

Computer Organization & Architecture -96

Serial Input Parallel Output

 These kinds of processes involve the serial entry

and parallel extraction of data.

 Piece by piece, data is loaded. As long as the data is

loading, the outputs are disabled.

 The outputs are turned on so that all of the loaded

data is simultaneously available across all of the

output lines as soon as the data loading process is

finished and all of the flip-flops have the necessary

data.

 A four-bit word can only be loaded with four clock

cycles. As a result, SIPO mode operates at the same

speed as SISO mode.

Parallel Input Serial Output (PISO)

o Bits of data are entered in parallel.

o A four bit parallel input serial output register is

depicted in the circuit below.

Computer Organization & Architecture -97

o A combinational circuit connects the input of the

subsequent Flip Flop to the output of the preceding

one.

o The identical combinational circuit is used to apply

the binary input words B0, B1, B2, and B3.

o This circuit can function in either the load mode or

the shift mode.

Load Mode

The AND gates 2, 4, and 6 become active when the

shift/load bar line is low (0). They then pass the bits B1,

B2, and B3 to the appropriate flip-flops. The binary inputs

B0, B1, B2, and B3 will be loaded into the appropriate flip-

flops on the clock's low-going edge. Parallel loading occurs

as a result.

Shift Mode

The AND gates 2, 4, and 6 are rendered inactive when the

shift/load bar line is low (1). Thus, it is no longer possible

to load the data in parallel. However, the 1, 3, and 5 AND

gates open. As a result, when clock pulses are applied, data

is bit by bit shifted from left to right. As a result, the

parallel in serial out operation occurs.

Computer Organization & Architecture -98

Block Diagram:

Parallel Input Parallel Output (PIPO)

In this mode, the data inputs D0, D1, D2, and D3 of the

four flip-flops, respectively, receive the four-bit binary

input B0, B1, B2, and B3. Upon application of a negative

clock edge, the input binary bits will be simultaneously fed

into the flip-flops. On the output side, the loaded bits will

show up simultaneously. To load every bit, a clock pulse is

the only requirement.

Block Diagram:

2. Parallel Registers:

Computer Organization & Architecture -99

o Description: Parallel registers store data in parallel

form, allowing simultaneous input and output of

data.

o Types: Includes general-purpose registers in CPUs,

memory registers in microcontrollers, and special-

purpose registers for control and status handling.

o Operation: Input and output occur simultaneously

in parallel, suitable for high-speed data processing.

Design and Operation of Shift Registers

 Design: Shift registers are constructed using interconnected

flip-flops and control logic for shifting data.

 Operation:

o Serial-in, Serial-out (SISO): Data is shifted in and

out serially, bit-by-bit.

o Serial-in, Parallel-out (SIPO): Data is shifted in

serially and outputted in parallel.

o Parallel-in, Serial-out (PISO): Data is loaded in

parallel and outputted serially.

o Parallel-in, Parallel-out (PIPO): Data is loaded

and outputted in parallel.

Applications of Registers in Data Storage and Manipulation

 Data Storage: Registers hold operands and results in

arithmetic operations within CPUs.

 Data Manipulation: Used for data transfer between

memory and peripherals, buffering data in communication

systems, and managing control signals in digital systems.

Register Transfer Level (RTL) Description and

Implementation

Computer Organization & Architecture -100

 RTL Description: RTL is a low-level hardware description

language describing the flow of data between registers in a

digital circuit.

 Implementation: RTL is used to model and simulate

digital systems at a register transfer level, aiding in design

verification and synthesis into physical hardware.

Example Application: Shift Register in Serial-to-Parallel

Conversion

A 4-bit SIPO shift register converts serial data input (SI) into

parallel data output (PO):

 Operation: Serial input data (1011) is clocked into the shift

register bit-by-bit. After complete input, the parallel data

output (1011) is available simultaneously at the output.

 Diagram:

Registers:

 Types of registers (Shift registers, Parallel registers)

 Design and operation of shift registers

 Applications of registers in data storage and manipulation

 Serial-in, serial-out (SISO), serial-in, parallel-out (SIPO),

parallel-in, serial-out (PISO), parallel-in, parallel-out

(PIPO) registers

 Register transfer level (RTL) description and

implementation

Computer Organization & Architecture -101

3.5 COUNTERS (SYNCHRONOUS &
ASYNCHRONOUS)

A counter is a specific kind of sequential circuit that counts pulses;

counters are collections of flip flops that receive a clock signal.

One of the most common uses for the flip flop is as a counter. The

output of the counter has a predetermined state based on the clock

pulse. With the counter's output, one may count the number of

pulses.

Truth table:

Types of Counters

 Asynchronous Counters

 Synchronous Counters

Asynchronous or ripple counters

The ripple counter is another name for the asynchronous counter.

The 2-bit Asynchronous counter schematic, which made use of two

T flip-flops, is shown below. By permanently setting both inputs to

Computer Organization & Architecture -102

1, we can use the JK flip flop in addition to the T flip flop. The

external clock is applied to the clock input of flip flop number one,

FF-A, and its output, FF-B, is applied to the clock input of flip flop

number two.

Block Diagram:

Signal Diagram:

Operation:

 Condition 1: When both flip flops are in the reset state is

the first condition.

Computer Organization & Architecture -103

Operation: Both flip flops' outputs, QA and QB, will be 0.

 Condition 2: When the first clock edge is negative is the

second condition.

Operation: The output of the first flip flop will switch

from 0 to 1. It will toggle. The clock input of the

subsequent flip flop will receive the output of this one. The

second flip flop will interpret this output as a clock with a

positive edge. Since it is a negative edge triggered flip flop,

this input will not alter the state of the flip flop's output.

Thus, QB = 0 and QA = 1.

 Condition 3: Upon application of the second negative

clock edge.

Operation: The initial flip flop will toggle once more,

changing its output from 1 to 0. The second flip flop will

interpret this output as a clock with a negative edge. Since

it is a negative edge triggered flip flop, this input will alter

the second flip flop's output state.

Hence, QB = 1 and QA = 0.

 Condition 4: Upon application of the third negative clock

edge.

Operation: The initial flip flop will toggle once more,

changing its output from 0 to 1. The second flip flop will

interpret this output as a clock with a positive edge. Since it

is a negative edge triggered flip flop, this input will not

alter the state of the flip flop's output.

QA = 1, then, and QB = 1.

 Condition 5: Upon application of the fourth negative clock

edge.

Operation: The initial flip flop will toggle once more,

changing its output from 1 to 0. The second flip flop will

Computer Organization & Architecture -104

interpret this output as a clock with a negative edge. The

second flip flop's output state will be altered by this input.

Thus, QB = 0 and QA = 0.

Synchronous counters

The output of the current counter feeds into the input of the

subsequent counter in an asynchronous counter. As a result, the

counters are chained together. This system's disadvantage is that it

causes the propagation delay during the counting stage in addition

to the counting delay itself. This disadvantage is meant to be

eliminated by the synchronous counter.

The clock input of each flip flop in the synchronous counter

receives the identical clock pulse. Each and every flip flop

generates an identical clock signal. The schematic of a 2-bit

synchronous counter with the inputs of the first flip flop, or FF-A,

set to 1, is shown below. The initial flip-flop will therefore function

as a toggle flip-flop. Both of the next JK flip flop's inputs receive

the output of the first flip flop.

Logical Diagram

Computer Organization & Architecture -105

Signal Diagram

Operation:

 Condition 1: When both flip flops are in the reset state is

the first condition.

Operation: Both flip flops' outputs, QA and QB, will be 0.

Thus, QB = 0 and QA = 0.

 Condition 2: When the first clock edge is negative is the

second condition.

Operation: The output of the first flip flop will be

switched from 0 to 1 by toggling it. The first flip flop's

output will be zero after the first negative clock edge is

passed. The first flip flop's clock input and both of its

inputs will be set to 0. The second flip flop will continue to

be in the same state in this manner.

Thus, QB = 0 and QA = 1.

 Condition 2: When the second negative clock edge is

passed is the second condition.

Computer Organization & Architecture -106

Operation: The first flip flop will be toggled once more,

changing its output from 1 to 0. Upon passing the second

negative clock edge, the first flip flop's output will be 1.

The first flip flop's clock input and both of its inputs will be

set to 1. The second flip flop's state will go from 0 to 1 in

this fashion.

Thus, QB = 1 and QA = 0.

 Condition 2: When the third clock edge is negative,

condition two is met.

Operation: The inputs and the clock input are both set to 0

in this case, therefore the initial flip flop will toggle

between 0 and 1. As a result, the results will not change.

QA = 1, then, and QB = 1.

 Condition 2: Second condition: Upon the passage of the

fourth negative clock edge.

Operation: The initial flip-flop will alternate between 1

and 0. The second flip flop's inputs and clock input are

currently set to 1. The outputs will therefore shift from 1 to

0.

Thus, QB = 0 and QA = 0.

3.6 CONCLUSION

In this unit, we have explored the fundamental components and

design principles that underpin digital electronics. Starting with

combinational logic circuits, we examined how these circuits

generate outputs based on current inputs and the importance of

Boolean algebra and Karnaugh Maps in optimizing their design.

Understanding these concepts is crucial for creating efficient and

effective digital systems.

Computer Organization & Architecture -107

We delved into flip-flops, the building blocks of sequential circuits,

and discussed their various types, including SR, JK, D, and T flip-

flops. By analyzing their timing diagrams and truth tables, we

gained insights into how flip-flops store and transfer data. This

knowledge is vital for designing complex digital circuits that

require precise timing and synchronization.

Registers and counters were also covered extensively. Registers,

essential for data storage and manipulation, come in various forms

such as shift registers and parallel registers. We explored their

design, operation, and applications. Counters, both synchronous

and asynchronous, play a critical role in timing, sequencing, and

frequency division. Understanding their design and

implementation enables the creation of digital systems that can

count, divide frequencies, and generate specific sequences.

Overall, this unit has provided a comprehensive understanding of

combinational and sequential logic circuits, equipping you with the

skills to design and analyze digital systems. These foundational

concepts are integral to the advancement in digital electronics and

will be instrumental in your future endeavors in the field.

3.7 UNIT BASED QUESTIONS &
ANSWERS

1. What is a combinational logic circuit?

Answer: A combinational logic circuit is a type of digital circuit

where the output is determined solely by the current inputs,

Computer Organization & Architecture -108

without any memory or feedback elements. Examples include

adders, multiplexers, and decoders.

2. How can Boolean algebra be used in the design of

combinational circuits?

Answer: Boolean algebra provides a mathematical framework to

simplify and optimize logic expressions, which can then be

implemented using logic gates in combinational circuits.

3. What is the purpose of using Karnaugh Maps (K-maps)?

Answer: K-maps are used to simplify Boolean expressions by

minimizing the number of terms and variables, resulting in a

simpler and more efficient combinational circuit design.

4. What is the primary function of a flip-flop?

Answer: A flip-flop is a digital memory element used to store one

bit of data. It is a fundamental building block in sequential circuits.

5. How does a D flip-flop differ from a JK flip-flop?

Answer: A D flip-flop has a single data input (D) and stores the

value of the input at the rising or falling edge of the clock signal. A

JK flip-flop has two inputs (J and K) and can toggle its state, set, or

reset based on the inputs and clock signal.

6. Explain the concept of edge-triggered vs. level-triggered flip-

flops.

Answer: Edge-triggered flip-flops change their state only at

specific moments of the clock signal's rising or falling edge, while

level-triggered flip-flops respond to the level (high or low) of the

Computer Organization & Architecture -109

clock signal, changing their state as long as the clock is at the

triggering level.

7. What are shift registers, and how are they used?

Answer: Shift registers are sequential logic circuits that shift the

data stored in them by one position on each clock pulse. They are

used in data manipulation, storage, and transfer applications, such

as serial-to-parallel and parallel-to-serial data conversion.

3.8 REFERENCES

 Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

 Taub, Herbert, and Donald L. Schilling. Digital Integrated

Electronics. McGraw-Hill Education, 1994.

 Mano, M. Morris, and Michael D. Ciletti. Digital Design:

With an Introduction to the Verilog HDL. Pearson

Education, 2017.

 Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals

of Logic Design. Cengage Learning, 2013.

 Streetman, Ben G., and Sanjay Banerjee. Solid State

Electronic Devices. Prentice Hall, 2005.

 Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -110

UNIT – 4: ALU DESIGN
Structure

4.0 Introduction

4.1 Objectives

4.2 Introduction to ALU

4.3 ALU Design

4.4 ALU Micro-Operations

4.5 ALU-Chip

4.6 Introduction to Faster Algorithms

4.7 Multiplication Algorithms

4.8 Division Algorithms

4.9 Conclusion

4.10 Unit Based Questions & Answers

4.11 References

4.0 INTRODUCTION

In this chapter, we will explore the fundamental concepts and

techniques used in the design and implementation of Arithmetic

Logic Units (ALUs) and faster algorithms for multiplication and

division. An ALU is a critical component of a computer's central

processing unit (CPU), responsible for performing arithmetic and

logical operations. The efficiency and speed of an ALU have a

direct impact on the overall performance of a computer system.

We will begin by outlining the objectives of this chapter and

providing an introduction to ALU, including its definition,

functions, and importance in computer systems. We will then delve

Computer Organization & Architecture -111

into the design of ALUs, including the different types of ALUs,

their components, and how they operate.

Next, we will explore the micro-operations that take place within

an ALU, including arithmetic and logical operations, and how they

are executed. We will also discuss the ALU-chip, which is a

hardware implementation of an ALU.

In the second part of this chapter, we will introduce faster

algorithms for multiplication and division, including the Karatsuba

multiplication algorithm and the SRT division algorithm. These

algorithms are designed to optimize the performance of ALUs and

improve the overall efficiency of computer systems.

Finally, we will conclude this chapter by summarizing the key

concepts and techniques discussed, and provide unit-based

questions and answers to reinforce your understanding. We will

also provide references for further reading and exploration.

4.1 OBJECTIVES

After completion of this unit, you will be able to understand:

 Understand the definition and functions of an ALU

 Learn about the design and operation of ALUs

 Explore micro-operations within an ALU

 Study the ALU-chip and its components

 Introduce faster algorithms for multiplication and

division

 Understand the importance of ALUs in computer

systems

Computer Organization & Architecture -112

4.2 INTRODUCTION TO ALU

The Arithmetic Logic Unit (ALU) is a critical component of a

computer's central processing unit (CPU). It is responsible for

performing arithmetic and logic operations, which are the

fundamental tasks required for processing data in computers.

Function:

 Arithmetic Operations: The ALU performs basic

arithmetic operations such as addition, subtraction,

multiplication, and division.

 Logic Operations: It also carries out logical operations

including AND, OR, NOT, XOR, and bitwise shifts.

 Data Transfer: Some ALUs support data transfer

operations like loading data from memory and storing data

to memory.

The ALU receives input data from the CPU registers, processes the

data according to the operation specified by the control unit, and

then sends the result back to the registers or memory.

Figure 1: Basic ALU Block Diagram

Computer Organization & Architecture -113

(Image Source: Spiceworks)

Basic Operations (Arithmetic and Logic Operations)

Arithmetic Operations:

 Addition: Adds two binary numbers. Example: 0101 +

0011 =1000.

 Subtraction: Subtracts one binary number from another.

Example: 0101 – 0011 = 0010.

 Multiplication: Multiplies two binary numbers. Example:

0011 × 0010 = 0110.

 Division: Divides one binary number by another. Example:

0110 ÷ 0010 = 0011.

Figure 2: Arithmetic Operations in ALU

Image Source: Study.com

Computer Organization & Architecture -114

Logic Operations:

 AND: Performs a bitwise AND operation. Example:

0101 AND 0011 = 0001.

 OR: Performs a bitwise OR operation. Example:

0101 OR 0011 = 0111.

 NOT: Performs a bitwise NOT operation (inversion).

Example: NOT 0101 = 1010.

 XOR: Performs a bitwise XOR operation. Example:

0101 XOR 0011 = 0110.

Figure 3: Logic Operations in ALU

Importance of ALU in CPUs and Digital Systems

Role in CPUs: The ALU is integral to the operation of the CPU,

performing the essential calculations and logic decisions needed

for processing instructions. It allows the CPU to:

 Execute complex mathematical computations.

 Perform logical comparisons for decision-making.

 Process data quickly and efficiently.

Impact on Performance:

 Speed: The efficiency and speed of the ALU directly affect

the overall performance of the CPU. Faster ALUs enable

quicker data processing and better performance in

applications requiring intensive calculations.

 Versatility: Modern ALUs are designed to handle a wide

range of operations, making CPUs versatile for various

applications, from scientific computations to everyday

computing tasks.

Figure 4: ALU within a CPU Block Diagram

Computer Organization & Architecture -115

Importance of ALU in CPUs and Digital Systems

The ALU is indispensable in CPUs and digital systems for several

reasons:

1. Core Processing Element: The ALU is the heart of the

CPU, handling all arithmetic and logic operations. Without

it, the CPU cannot perform essential computations.

2. Performance and Efficiency: The efficiency of an ALU

directly impacts the performance of a CPU. Optimized

ALU designs lead to faster computation speeds and

improved overall system performance.

3. Versatility: The ALU supports a wide range of operations,

making it versatile for various computational tasks, from

simple arithmetic to complex logical decision-making

processes.

4. Integration in Complex Operations: ALUs are integrated

into larger processing units such as Floating Point Units

(FPUs) for advanced mathematical computations and

Graphics Processing Units (GPUs) for rendering graphics,

highlighting their critical role in both general-purpose and

specialized computing tasks.

Computer Organization & Architecture -116

5. Role in System Stability and Reliability: The precision

and accuracy of the ALU are vital for the stability and

reliability of a digital system. Errors in ALU operations can

propagate through the system, causing malfunctions.

4.3 ALU DESIGN

Components of an ALU

The Arithmetic Logic Unit (ALU) is a crucial component of a CPU

(Central Processing Unit) responsible for performing arithmetic

and logic operations on data. Here are the main components that

typically make up an ALU:

Computer Organization & Architecture -117

1. Registers:

o Operand Registers (A and B): These registers

hold the operands (input data) on which the ALU

will perform operations such as addition,

subtraction, etc.

o Result Register (R): This register stores the result

of the operation performed by the ALU.

2. Arithmetic Unit:

o Adder: The adder circuit within the ALU performs

addition operations. It can handle adding two

operands and a carry-in bit for multi-bit addition.

o Subtractor: In some ALUs, a subtractor circuit is

also included to perform subtraction operations.

Subtraction often utilizes two's complement

arithmetic to handle negative numbers.

3. Logic Unit:

o Logic Gates (AND, OR, XOR, NOT): These gates

perform various logical operations:

 AND Gate: Outputs true (1) only if both

inputs are true.

 OR Gate: Outputs true (1) if at least one

input is true.

 XOR Gate: Outputs true (1) if inputs are

different.

 NOT Gate: Inverts the input.

4. Multiplexers (MUX):

o Selector MUX: This component selects which

operation (arithmetic or logic) to perform based on

control signals received from the CPU's control

unit.

Computer Organization & Architecture -118

5. Control Unit:

o Control Lines: These lines carry signals from the

CPU's control unit to the ALU, specifying the

operation to be performed (addition, subtraction,

AND, OR, etc.).

o Status Flags: Flags are set based on the result of

operations (e.g., zero flag, carry flag, overflow flag)

and are used by the CPU for decision-making.

6. Timing and Control Circuits:

o Clock Signals: These synchronize the timing of

operations within the ALU and with other parts of

the CPU.

o Control Logic: Decodes instructions and generates

control signals to coordinate the operations of the

ALU.

7. Data Paths:

o Internal Data Paths: These pathways allow data to

flow between the registers, arithmetic unit, logic

unit, and multiplexers within the ALU.

Block Diagram of ALU

Computer Organization & Architecture -119

4.4 ALU MICRO-OPERATIONS

Micro-operations are fundamental operations performed at the

register transfer level within a CPU. They involve manipulating

data at the bit level and are essential for executing higher-level

instructions and tasks. These operations are atomic, meaning they

cannot be further broken down into smaller operations.

Types of Micro-Operations

1. Register Transfer Micro-Operations:

o Transfer: Moves data from one register to another.

o Load: Loads data from memory into a register.

o Store: Writes data from a register back to memory.

2. Arithmetic Micro-Operations:

o Addition: Adds two operands to produce a sum.

o Subtraction: Subtracts one operand from another to

produce a difference.

o Increment: Adds 1 to a register's value.

o Decrement: Subtracts 1 from a register's value.

3. Logical Micro-Operations:

o ND: Performs a bitwise AND operation on

corresponding bits of two operands.

o OR: Performs a bitwise OR operation on

corresponding bits of two operands.

o XOR: Performs a bitwise XOR operation on

corresponding bits of two operands.

o NOT: Inverts each bit of an operand.

4. Shift Micro-Operations:

o Logical Shift: Shifts bits left or right, filling empty

bit positions with zeros.

Computer Organization & Architecture -120

o Arithmetic Shift: Shifts bits left or right,

preserving the sign bit for signed numbers.

o Rotate: Circularly shifts bits left or right, with bits

shifted out re-entering at the opposite end.

Execution of Micro-Operations within an ALU

The execution of micro-operations within an Arithmetic Logic Unit

(ALU) involves several steps:

 Fetching Data: Input operands (typically stored in

registers) are fetched into the ALU's operand registers (A

and B).

 Selecting Operation: The control unit of the CPU sends

control signals to the ALU, specifying which micro-

operation (arithmetic, logical, shift) to perform.

 Operation Execution: The ALU executes the specified

operation on the operands:

o For arithmetic operations (addition, subtraction), the

ALU uses adder circuits.

o Logical operations (AND, OR, XOR) are performed

using corresponding logic gates.

o Shift operations are executed using shift registers or

dedicated shift circuits within the ALU.

 Result Storage: After performing the operation, the result

is stored in the ALU's result register (R) or transferred back

to registers or memory, depending on the instruction and

subsequent micro-operations.

Control Unit and Micro-Operation Sequencing

The Control Unit coordinates the sequencing of micro-operations

within the CPU:

 Instruction Decoding: It decodes instructions fetched from

memory to determine the sequence of micro-operations

required to execute the instruction.

Computer Organization & Architecture -121

 Control Signal Generation: Based on the decoded

instruction, the control unit generates control signals that

specify which micro-operations to execute and in what

sequence.

 Timing and Synchronization: It ensures that micro-

operations occur in the correct order and at the appropriate

clock cycles to synchronize with other components of the

CPU.

 Feedback and Error Handling: The control unit monitors

the execution of micro-operations, handling errors or

exceptional conditions that may arise during execution,

such as overflow or underflow conditions in arithmetic

operations.

4.5 ALU-CHIP

An Arithmetic Logic Unit (ALU) Chip is a critical component of

microprocessors and central processing units (CPUs). It is

responsible for performing arithmetic and logic operations.

Modern ALU chips are highly integrated and optimized for speed

Computer Organization & Architecture -122

and efficiency, capable of handling complex instructions within a

microprocessor.

Intel and AMD are two leading manufacturers of microprocessors,

and their ALU designs are integral to the performance of their

CPUs:

 Intel ALU Chips: Known for their integration in Intel’s

microprocessors, such as the Core i7 and Xeon series.

These chips are designed for high performance in both

general computing and specialized tasks.

 AMD ALU Chips: Integrated into AMD’s Ryzen and

EPYC series, these ALU chips focus on providing high-

performance computing and efficient power consumption.

Architecture and Features of ALU Chips

The architecture of an ALU chip typically includes several key

components:

1. Arithmetic Unit: Handles basic arithmetic operations like

addition, subtraction, multiplication, and division.

2. Logic Unit: Performs logical operations such as AND, OR,

XOR, and NOT.

3. Shifter: Responsible for bitwise shifting operations.

4. Registers: Temporary storage for operands and results.

5. Control Unit: Manages the operation of the ALU by

interpreting control signals from the CPU.

Features of Modern ALU Chips:

 Pipelining: Allows multiple instructions to be processed

simultaneously at different stages of execution.

 Parallelism: Supports parallel execution of operations to

enhance performance.

Computer Organization & Architecture -123

 Power Efficiency: Optimized for low power consumption,

critical for mobile and portable devices.

 Integrated Floating-Point Unit (FPU): Handles complex

arithmetic operations involving floating-point numbers.

Figure: Simplified Architecture of an ALU Chip

Integration of ALU Chips in Microprocessors

The ALU chip is integrated into microprocessors as part of the

CPU’s core architecture. It interacts closely with other

components, such as:

 Instruction Fetch Unit: Retrieves instructions from

memory and sends them to the ALU for execution.

 Register File: A collection of registers that store

intermediate data and operands for the ALU.

 Cache Memory: Provides high-speed data access for

frequently used data and instructions, reducing the latency

of ALU operations.

 Control Unit: Directs the operation of the ALU, ensuring

correct execution order and handling control signals.

Computer Organization & Architecture -124

Figure: ALU Integration in a Microprocessor

Performance Metrics of ALU Chips

The performance of ALU chips is evaluated using several key

metrics:

1. Clock Speed: Measured in GHz, indicating how many

cycles per second the ALU can execute.

2. Instructions Per Cycle (IPC): Indicates the number of

instructions the ALU can process in a single clock cycle.

3. Latency: The time it takes to complete a single instruction,

measured in clock cycles.

4. Throughput: The rate at which the ALU can process

instructions over a given period.

Computer Organization & Architecture -125

5. Power Consumption: Measured in watts, indicating the

energy efficiency of the ALU chip.

6. Heat Dissipation: The amount of heat generated by the

ALU during operation, which impacts cooling requirements

and overall system design.

4.6 INTRODUCTION TO FASTER
ALGORITHMS

Faster algorithms are computational procedures designed to

achieve optimal performance in terms of time complexity, space

complexity, or both, compared to their counterparts. These

algorithms are crucial in computer science and engineering for

solving complex problems efficiently. Here’s a detailed exploration

of faster algorithms:

Definition and Importance

Faster algorithms refer to algorithms that achieve improved

efficiency, typically measured by their computational complexity.

Efficiency can be in terms of:

 Time Complexity: How fast the algorithm runs as a

function of the size of its input.

 Space Complexity: How much memory the algorithm

requires to run as a function of the size of its input.

The importance of faster algorithms lies in their ability to handle

larger datasets or more complex computations within feasible time

and resource constraints. This is critical in modern computing

Computer Organization & Architecture -126

applications such as data analysis, machine learning, cryptography,

and real-time systems.

Types of Faster Algorithms

1. Divide and Conquer Algorithms:

o Definition: Divide the problem into smaller

subproblems, solve them recursively, and combine

the results.

o Example: Merge Sort, Quick Sort, Strassen's

Matrix Multiplication.

2. Greedy Algorithms:

o Definition: Make locally optimal choices at each

stage with the hope of finding a global optimum.

o Example: Dijkstra's Algorithm for shortest path,

Prim's Algorithm for minimum spanning tree.

3. Dynamic Programming:

o Definition: Break down complex problems into

simpler overlapping subproblems and store the

results to avoid redundant computations.

o Example: Fibonacci series computation using

dynamic programming.

4. Randomized Algorithms:

o Definition: Introduce randomness in the algorithm

to achieve faster average-case performance.

o Example: Quick Sort with randomized pivot

selection.

5. Approximation Algorithms:

o Definition: Provide solutions that are close to

optimal for hard problems where finding exact

solutions is computationally expensive.

Computer Organization & Architecture -127

o Example: Approximation algorithms for NP-hard

problems like Traveling Salesman Problem.

Advantages of Faster Algorithms

 Scalability: Faster algorithms enable scaling of

computations to larger inputs or higher complexities

without significant increases in computation time.

 Resource Efficiency: They optimize the use of

computational resources such as CPU time, memory, and

energy consumption.

 Real-Time Processing: Essential for applications requiring

quick responses and real-time data processing, such as

robotics, financial trading systems, and online services.

Challenges and Considerations

 Complexity Analysis: Understanding and analyzing the

time and space complexity of algorithms is crucial to

implementing faster solutions.

 Implementation: Efficient implementation requires careful

consideration of algorithmic techniques, data structures,

and optimization strategies.

 Trade-offs: Faster algorithms may sacrifice precision or

exactness in favor of speed, necessitating trade-offs in

certain applications.

Overview of Faster Algorithms for Multiplication and Division

Faster Algorithms for Multiplication

Multiplication is a fundamental arithmetic operation with several

algorithms optimized for efficiency:

Computer Organization & Architecture -128

1. Binary Multiplication:

o Description: Involves multiplying binary numbers

using bit-wise operations.

o Advantages: Simple and widely used in digital

circuits and computer systems.

o Example: Booth's Algorithm optimizes binary

multiplication by reducing the number of addition

operations.

2. Karatsuba Algorithm:

o Description: A fast multiplication algorithm that

uses a divide-and-conquer approach.

o Advantages: Reduces the number of required

multiplications compared to traditional methods.

o Example: Breaks down multiplication into smaller

multiplications, reducing time complexity.

3. Toom-Cook Multiplication:

o Description: Extends Karatsuba algorithm by using

interpolation and evaluation at specific points.

o Advantages: Efficient for large operands, reducing

complexity further than Karatsuba.

o Example: Used in cryptographic algorithms and

digital signal processing.

4. Fast Fourier Transform (FFT)-based Multiplication:

o Description: Uses FFT to perform multiplication in

O(n log n) time complexity.

o Advantages: Highly efficient for very large

integers or polynomials.

o Example: Common in signal processing and digital

communication systems.

Computer Organization & Architecture -129

Faster Algorithms for Division

Division algorithms focus on efficiently dividing one number by

another:

1. Binary Division:

o Description: Divides binary numbers using bit-

wise operations.

o Advantages: Simple and fundamental in digital

systems.

o Example: Non-Restoring Division Algorithm

optimizes binary division by avoiding restoration

steps.

2. Restoring Division:

o Description: Divides numbers by repeatedly

subtracting the divisor from the dividend.

o Advantages: Guarantees exact division results.

o Example: Used in microprocessor design and

arithmetic logic units (ALUs).

3. SRT Division (Sweeney, Robertson, and Tocher):

o Description: Advanced division algorithm

combining digit selection and iterative refinement.

o Advantages: Faster than traditional division

algorithms for large operands.

o Example: Common in high-performance

computing and numerical analysis.

4. Newton-Raphson Division:

o Description: Uses iterative approximation to find

reciprocal and multiply to achieve division.

o Advantages: Provides fast convergence for division

of real numbers.

Computer Organization & Architecture -130

o Example: Used in mathematical software libraries

and numerical simulations.

Applications and Advancements

 Cryptographic Algorithms: Faster multiplication and

division algorithms are crucial for encryption and

decryption processes in secure communication protocols.

 Digital Signal Processing: FFT-based multiplication

supports efficient signal analysis and synthesis in audio and

video processing applications.

 High-Performance Computing: SRT division and

advanced multiplication algorithms enable faster numerical

simulations and scientific computing tasks.

4.7 MULTIPLICATION ALGORITHMS

Multiplication algorithms are methods used to perform

multiplication of two numbers, either binary or decimal. These

algorithms are essential in digital electronics and computer

arithmetic, as they enable efficient and accurate multiplication of

numbers. Various multiplication algorithms exist, each with its

own strengths and weaknesses.

Some common multiplication algorithms include Binary

Multiplication, Booth's Algorithm, Modified Booth's Algorithm,

Array Multiplier, and Wallace Tree Multiplier. Each algorithm uses

a different approach to perform multiplication, such as shifting and

adding, or using lookup tables.

Computer Organization & Architecture -131

The choice of multiplication algorithm depends on factors such as

the size of the numbers, the desired speed, and the available

hardware resources. For example, Booth's Algorithm is suitable for

multiplying large numbers, while the Array Multiplier is better

suited for smaller numbers.

Understanding multiplication algorithms is crucial in designing

and optimizing digital systems, such as computers, smartphones,

and other electronic devices. By selecting the appropriate

multiplication algorithm, developers can improve the performance,

power efficiency, and accuracy of these systems. Additionally,

multiplication algorithms have applications in various fields,

including cryptography, signal processing, and scientific

simulations.

Binary Multiplication Basics

Binary multiplication is the process of multiplying two binary

numbers. It is similar to decimal multiplication but uses only the

digits 0 and 1. The basic steps are:

1. Partial Products: Each bit of one number is multiplied by

each bit of the other number, similar to multiplying by each

digit in decimal multiplication.

2. Shifting: Each partial product is shifted left based on its

position.

3. Summation: The shifted partial products are summed to

get the final product.

Computer Organization & Architecture -132

Example:

Booth’s Algorithm for Multiplication

Booth's Algorithm is an efficient way to perform binary

multiplication, particularly for numbers with both positive and

negative values. It reduces the number of additions required by

encoding the multiplicand in a specific way.

Steps:

1. Initialization: Load the multiplicand and multiplier.

2. Examine Bits: Look at two bits of the multiplier at a time.

3. Decision Making: Depending on the bit pairs (00, 01, 10,

11), add or subtract the multiplicand and shift.

4. Shift: Right-shift the accumulator and multiplier as a unit.

Example:

Computer Organization & Architecture -133

Modified Booth’s Algorithm

Modified Booth's Algorithm extends Booth's algorithm by

encoding three bits at a time, improving performance for large bit-

width multiplications.

Steps:

1. Group Bits: Divide the multiplier into overlapping groups

of three bits.

2. Recoding: Encode each group into a single digit.

3. Multiply and Accumulate: Use the recoded digits to

multiply and accumulate partial products.

Computer Organization & Architecture -134

Figure: Modified Booth's Algorithm

Array Multiplier

An Array Multiplier is a combinational circuit that uses an array of

AND gates and adders to perform binary multiplication. Each row

represents a partial product, and all partial products are summed in

parallel.

Example:

For 4-bit multiplication:

Multiplicand (M) = 1101

Multiplier (Q) = 1011

Each bit of the multiplier multiplies the entire multiplicand,

generating partial products which are then added.

Computer Organization & Architecture -135

Wallace Tree Multiplier

A Wallace Tree Multiplier uses a tree of adders to sum partial

products more efficiently than a linear array. It reduces the number

of sequential addition steps by summing multiple partial products

simultaneously.

Steps:

1. Partial Product Generation: Generate all partial products.

2. Reduction: Use a tree structure to reduce the partial

products to two rows.

3. Final Addition: Add the two rows to get the final product.

Figure: Wallace Tree Multiplier

Computer Organization & Architecture -136

Implementation and Hardware Design

Implementing these multiplication algorithms in hardware involves

designing circuits that can efficiently perform the required

operations.

1. Booth’s and Modified Booth’s Multipliers:

o Control Logic: For examining bits and deciding

operations.

o Add/Subtract Units: For performing addition and

subtraction based on control signals.

o Shift Registers: For shifting operations.

2. Array Multiplier:

o AND Gates: For generating partial products.

o Full Adders: For summing partial products.

3. Wallace Tree Multiplier:

o Compressor Circuits: For reducing multiple partial

products in parallel.

o Final Adder: For summing the reduced partial

products.

Computer Organization & Architecture -137

Figure: Hardware Design of Multipliers

4.8 DIVISION ALGORITHMS

A division algorithm is a method for dividing one number by

another and obtaining the quotient and remainder. There are

several types of division algorithms, including:

1. Binary Division: This algorithm is used for dividing binary

numbers. It is based on the concept of shifting and

subtracting the divisor from the dividend.

2. Restoring Division: This algorithm is used for dividing

signed numbers. It is based on the concept of restoring the

dividend to its original value after each subtraction.

3. Non-Restoring Division: This algorithm is used for

dividing signed numbers. It is based on the concept of not

restoring the dividend to its original value after each

subtraction.

Computer Organization & Architecture -138

4. SRT Division: This algorithm is used for dividing binary

numbers. It is based on the concept of using a lookup table

to determine the quotient and remainder.

5. Goldschmidt Division: This algorithm is used for dividing

binary numbers. It is based on the concept of using a series

of shifts and adds to determine the quotient and remainder.

Division Algorithm Steps

The steps for a division algorithm typically include:

1. Initialization: Initialize the dividend, divisor, quotient, and

remainder.

2. Shift: Shift the dividend and divisor to align the most

significant bits.

3. Subtract: Subtract the divisor from the dividend.

4. Test: Test the result of the subtraction to determine if the

dividend is greater than or equal to the divisor.

5. Quotient: Update the quotient based on the result of the

test.

6. Remainder: Update the remainder based on the result of

the test.

7. Repeat: Repeat steps 2-6 until the dividend is less than the

divisor.

Division Algorithm Example

Suppose we want to divide 16 by 4 using the binary division

algorithm.

1. Initialization: Dividend = 16, Divisor = 4, Quotient = 0,

Remainder = 0

2. Shift: Shift the dividend and divisor to align the most

significant bits.

Computer Organization & Architecture -139

3. Subtract: Subtract the divisor from the dividend. 16 - 4 =

12

4. Test: Test the result of the subtraction. 12 >= 4, so we

update the quotient and remainder.

5. Quotient: Quotient = 1, Remainder = 12

6. Repeat: Repeat steps 2-5 until the dividend is less than the

divisor.

Binary Division Basics

Binary division is the process of dividing one binary number by

another, similar to long division in the decimal system. The steps

involve repeated subtraction and shifting.

1. Initialization: Set up the dividend and divisor.

2. Comparison: Compare the dividend (or part of it) with the

divisor.

3. Subtraction and Shift: If the divisor is less than or equal

to the dividend, subtract the divisor from the dividend and

record a '1' in the quotient. If not, record a '0'.

4. Shift: Shift the remainder and bring down the next bit of

the dividend.

5. Repeat: Continue until all bits of the dividend have been

processed.

Example:

Computer Organization & Architecture -140

Restoring Division Algorithm

The Restoring Division Algorithm is a method for binary division

that involves restoring the original value of the dividend if the

subtraction results in a negative value.

Steps:

1. Initialize: Load the dividend and divisor.

2. Align: Place the divisor aligned with the leftmost bit of the

dividend.

3. Subtract: Subtract the divisor from the current portion of

the dividend.

4. Check: If the result is positive, set the corresponding

quotient bit to '1'. If negative, restore the original value by

adding the divisor back and set the quotient bit to '0'.

5. Shift: Shift the remainder and bring down the next bit of

the dividend.

6. Repeat: Continue until all bits have been processed.

Computer Organization & Architecture -141

Figure: Restoring Division Algorithm

Non-Restoring Division Algorithm

The Non-Restoring Division Algorithm improves efficiency by

avoiding the restoration step. It adjusts the quotient and remainder

based on the result of the subtraction.

Steps:

1. Initialize: Load the dividend and divisor.

2. Align: Place the divisor aligned with the leftmost bit of the

dividend.

3. Subtract: Subtract the divisor from the current portion of

the dividend.

4. Check: If the result is positive, set the corresponding

quotient bit to '1' and shift left. If negative, set the quotient

bit to '0' and shift left.

Computer Organization & Architecture -142

5. Correction: If the remainder is negative after the final step,

add the divisor back.

6. Repeat: Continue until all bits have been processed.

Figure: Non-Restoring Division Algorithm

SRT Division Algorithm

The SRT Division Algorithm is a method for dividing binary

numbers using a combination of shifts, adds, and subtracts. It was

developed by Sweeney, Robertson, and Tocher in the 1950s.

Implementation

The SRT Division Algorithm is implemented using the following

steps:

1. Initialization: Initialize the dividend, divisor, quotient, and

remainder.

Computer Organization & Architecture -143

2. Shift: Shift the dividend and divisor to align the most

significant bits.

3. Add/Subtract: Add or subtract the divisor from the

dividend, depending on the sign of the dividend.

4. Test: Test the result of the add/subtract operation to

determine if the dividend is greater than or equal to the

divisor.

5. Quotient: Update the quotient based on the result of the

test.

6. Remainder: Update the remainder based on the result of

the test.

7. Repeat: Repeat steps 2-6 until the dividend is less than the

divisor.

4.9 CONCLUSION

In this chapter, we explored the fundamental concepts and

techniques used in the design and implementation of Arithmetic

Computer Organization & Architecture -144

Logic Units (ALUs) and faster algorithms for multiplication and

division. We learned about the definition and functions of an ALU,

the different types of ALUs, and their components. We also delved

into the micro-operations that take place within an ALU, including

arithmetic and logical operations.

The importance of ALUs in computer systems cannot be

overstated. They are responsible for performing arithmetic and

logical operations, which are essential for data processing and

decision-making. The design and operation of ALUs are crucial for

optimizing the performance of computer systems. Furthermore,

faster algorithms for multiplication and division can significantly

improve the performance of ALUs, leading to faster and more

efficient processing of arithmetic and logical operations.

In conclusion, this chapter provided a comprehensive overview of

ALUs and faster algorithms for multiplication and division. We

hope that this information will be useful for students, researchers,

and practitioners in the field of computer science and engineering.

By understanding the concepts and techniques discussed in this

chapter, we can appreciate the importance of ALUs in computer

systems and the need for faster algorithms to optimize their

performance. This knowledge can be applied to improve the design

and implementation of computer systems, leading to faster and

more efficient processing of arithmetic and logical operations.

Computer Organization & Architecture -145

4.10 UNIT BASED QUESTIONS &
ANSWERS

1. Define micro-operations within an ALU. Give examples.

Answer: Micro-operations are elementary operations performed

by an ALU on data stored in registers. Examples include register

transfer operations (move, load, store), arithmetic operations (add,

subtract), logic operations (AND, OR, XOR), and shift operations

(left shift, right shift).

2. How does the control unit manage micro-operation

sequencing in an ALU?

Answer: The control unit decodes instructions and generates

control signals that coordinate the execution of micro-operations

within the ALU, ensuring operations are performed in the correct

sequence.

3. Compare and contrast the architecture of ALU chips from

different manufacturers like Intel and AMD.

Answer: While specifics vary, both Intel and AMD ALU chips

typically feature high-speed arithmetic and logic circuits optimized

for performance and power efficiency, integrated into their

respective microprocessor designs.

4. Describe the Karatsuba algorithm for multiplication. What

are its advantages?

Answer: The Karatsuba algorithm uses a divide-and-conquer

approach to multiply numbers efficiently by reducing the number

Computer Organization & Architecture -146

of required multiplications. It's advantageous for large number

multiplications, reducing computational complexity.

5. Explain the restoring division algorithm. How does it ensure

accurate division results?

Answer: Restoring division involves repeatedly subtracting the

divisor from the dividend, restoring the dividend if necessary. It

ensures accurate results by maintaining consistency and handling

remainders effectively.

6. Why are faster algorithms for multiplication and division

important in modern computing?

Answer: Faster algorithms improve computational efficiency by

reducing processing time and resource consumption, making them

crucial for handling large-scale data, real-time applications, and

complex computations.

Computer Organization & Architecture -147

4.11 REFERENCES

 Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

 Taub, Herbert, and Donald L. Schilling. Digital Integrated

Electronics. McGraw-Hill Education, 1994.

 Mano, M. Morris, and Michael D. Ciletti. Digital Design:

With an Introduction to the Verilog HDL. Pearson

Education, 2017.

 Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals

of Logic Design. Cengage Learning, 2013.

 Streetman, Ben G., and Sanjay Banerjee. Solid State

Electronic Devices. Prentice Hall, 2005.

 Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -148

BLOCK II: BASIC ORGANIZATION

UNIT – 5: CENTRAL PROCESSING
UNIT

5.0 Introduction

5.1 Objectives

5.2 Von Neumann Architecture

5.3 IAS Computer (Institute for Advanced Study Computer)

5.4 Operational Flow Chart

5.5 Organization of Central Processing Unit (CPU)

5.6 CPU Architecture and Design

5.7 Memory Hierarchy

5.8 Conclusion

5.9 Unit Based Questions & Answers

5.10 References

5.0 INTRODUCTION

The evolution of computer architecture has laid the foundation for

modern computing systems, with one of the most significant

milestones being the development of the Von Neumann

architecture. Proposed by John von Neumann in the mid-20th

century, this architecture introduced the concept of storing both

instructions and data in the same memory, a principle that greatly

simplified computer design and paved the way for more versatile

and powerful computing machines. Understanding the principles

and components of this architecture is crucial for grasping how

contemporary computers function and process information.

Computer Organization & Architecture -149

The IAS computer, developed at the Institute for Advanced Study

under von Neumann's guidance, was one of the first practical

implementations of this architecture. It played a pivotal role in

demonstrating the feasibility and efficiency of the stored-program

concept.

This unit delves into the historical background and technical

details of the IAS computer, highlighting its contributions to early

computing and its lasting impact on modern computer architecture.

By examining the operational flow chart, including the fetch and

execute cycles, students will gain insight into the fundamental

processes that underpin CPU operations.

Furthermore, this unit explores the organization and design of the

Central Processing Unit (CPU), the core component of any

computer system. Detailed discussions on CPU architecture,

including pipelining, superscalar architecture, and branch

prediction, will elucidate how modern CPUs achieve high

performance and efficiency. Additionally, the concept of memory

hierarchy, which includes registers, cache memory, main memory,

and secondary storage, will be covered to illustrate how data is

managed and accessed at different levels within a computer.

By the end of this unit, students will have a comprehensive

understanding of these critical aspects of computer architecture and

their significance in the development of advanced computing

systems.

Computer Organization & Architecture -150

5.1 OBJECTIVES

After completing this unit, you will be able to understand;

 To understand the principles and components of the Von

Neumann architecture.

 To explore the historical development and significance of

the IAS computer.

 To comprehend the operational flow chart, including the

fetch and execute cycles.

 To learn about the organization and architecture of the

Central Processing Unit (CPU).

 To examine the concept and importance of memory

hierarchy in computer systems.

 To understand how these elements integrate to enhance

computing performance.

5.2 VON NEUMANN ARCHITECTURE

The Von Neumann architecture, named after mathematician and

physicist John von Neumann, is a foundational design for

computing systems. It describes a theoretical framework that

outlines the basic structure of a computer and how it operates. Key

principles include:

 Stored Program Concept: Programs and data are stored in

the same memory unit, allowing instructions to be fetched

and executed sequentially.

 Sequential Execution: Instructions are executed one after

another, following the Fetch-Decode-Execute cycle.

Computer Organization & Architecture -151

 Central Processing Unit (CPU) Control: The CPU

interprets and executes instructions fetched from memory,

controlling the flow of data within the system.

Components

1. CPU (Central Processing Unit):

o Function: Executes instructions by performing

arithmetic, logic, and control operations.

o Components: ALU (Arithmetic Logic Unit)

performs arithmetic and logic operations, CU

(Control Unit) directs operations based on

instructions fetched, and registers temporarily hold

data and instructions.

2. Memory:

o Function: Stores both data and instructions that the

CPU accesses during execution.

o Types: Main memory (RAM) for fast access by the

CPU and secondary storage (like hard drives) for

long-term storage.

3. Input/Output (I/O) Devices:

o Function: Facilitate communication between the

computer and external entities (e.g., keyboards,

monitors, printers).

o Interface: Uses buses to transfer data between I/O

devices and memory/CPU.

4. Bus System:

o Function: Provides pathways for data and control

signals to travel between components (CPU,

memory, I/O devices).

o Types: Data bus (for data transfer), address bus (for

memory address), control bus (for control signals).

Computer Organization & Architecture -152

Advantages

 Flexibility: The ability to store programs and data in the

same memory allows for easier programming and

reprogramming of computers.

 Efficiency: Sequential execution simplifies control and

coordination within the CPU, enhancing overall system

efficiency.

 Standardization: Von Neumann architecture has become a

standard for general-purpose computing, facilitating

compatibility and interoperability across different systems.

Limitations

 Bottleneck: The single bus structure can create a

bottleneck as all components must share the same pathway

for data transfer.

 Vulnerability: Centralized control through the CPU and

single bus system can lead to performance limitations and

potential system failures.

 Scalability: Scaling the architecture to support parallel

processing and real-time computing tasks can be

challenging due to its sequential nature.

Comparison with Other Architectures

 Harvard Architecture: Separates data and instruction

memory, allowing simultaneous access to both, which can

enhance performance in specific applications but requires

more complex hardware.

 Parallel Architectures: Designed for simultaneous

execution of multiple instructions or tasks, offering

Computer Organization & Architecture -153

superior performance in parallel computing tasks but

requiring specialized programming and hardware.

5.3 IAS COMPUTER (INSTITUTE FOR
ADVANCED STUDY COMPUTER)

Historical Background and Development

he IAS Computer project emerged in the aftermath of World War

II, during a period marked by rapid advancements in electronic

computing technology and theoretical computer science. Key

figures involved in its inception included John von Neumann, a

prominent mathematician and physicist renowned for his

contributions to mathematics, quantum mechanics, and computing

theory.

Computer Organization & Architecture -154

Development Timeline

1. 1946-1948: Early Conceptualization

o The idea for the IAS Computer took shape in the

mid-1940s at the Institute for Advanced Study

(IAS) in Princeton, New Jersey. John von Neumann,

along with a team of engineers and scientists, began

conceptualizing a new type of computing machine

that could store and manipulate both data and

instructions electronically.

2. 1948-1951: Construction and Implementation

o Construction of the IAS Computer commenced in

1948, with the primary goal of creating a practical

implementation of von Neumann’s stored-program

computer architecture. The project faced numerous

technical challenges, including the development of

electronic circuits capable of handling complex

mathematical computations.

3. 1951: Operational Phase

o By 1951, the IAS Computer became operational,

marking a significant milestone in the history of

computing. It represented one of the earliest

examples of a fully functional stored-program

computer, where programs and data were stored in

the same memory unit and processed sequentially

by a central processing unit (CPU).

Computer Organization & Architecture -155

Significance and Impact

The development of the IAS Computer had profound implications

for both theoretical computer science and practical computing

applications:

 Stored-Program Concept: The IAS Computer

demonstrated the feasibility and advantages of von

Neumann’s stored-program concept, which became the

basis for most subsequent computer architectures. This

concept revolutionized the way computers processed

information, enabling more efficient program execution

and flexibility in software development.

 Computational Power: As one of the first electronic

computers capable of executing stored programs, the IAS

Computer facilitated advanced scientific computations and

mathematical simulations that were previously impractical.

Its computational power accelerated research in fields such

as physics, engineering, and mathematics.

 Architectural Influence: The design principles of the IAS

Computer influenced the development of subsequent

computing systems, including commercial mainframes and

early academic research computers. Its architecture served

as a blueprint for future generations of computers, shaping

the evolution of modern computing technology.

Architecture and Components

The architecture of the IAS Computer reflected the foundational

principles of the Von Neumann architecture:

 Central Processing Unit (CPU): The IAS Computer

featured a single CPU responsible for executing

instructions fetched from memory. It consisted of:

Computer Organization & Architecture -156

o Arithmetic Unit: Responsible for performing

arithmetic operations.

o Control Unit: Managed the execution of

instructions and coordination of data flow.

 Memory System: It utilized a shared memory design

where both data and instructions were stored in a single

memory unit. This architecture facilitated the sequential

execution of instructions, a hallmark of the Von Neumann

architecture.

 Input/Output (I/O) System: The IAS Computer was

equipped with basic I/O devices such as punched card

readers and printers, enabling interaction with external data

sources and output devices.

Contribution to Early Computing and Modern Computer

Architecture

The IAS Computer made several significant contributions to the

field of computing:

 Stored-Program Concept: It demonstrated the feasibility

and advantages of the stored-program concept, where

instructions and data reside in the same memory. This

concept became foundational for subsequent computer

designs and architectures.

 Architectural Influence: The design principles of the IAS

Computer heavily influenced the development of early

computing systems and architectures. It served as a model

for subsequent computers, including commercial machines

and academic research projects.

 Computational Advancements: By providing a platform

for scientific computation and research, the IAS Computer

contributed to advancements in mathematics, physics, and

Computer Organization & Architecture -157

engineering. It facilitated complex calculations and

simulations that were previously impractical or impossible.

 Legacy: The legacy of the IAS Computer extends to

modern computer architecture, where principles such as the

Von Neumann architecture and the stored-program concept

remain integral. Its influence can be seen in the design of

CPUs, memory systems, and I/O devices used in

contemporary computing devices.

5.4 OPERATIONAL FLOW CHART

The IAS Computer follows a structured sequence of operations for

executing instructions stored in its memory. This sequence, known

as the instruction cycle, can be represented by an operational flow

chart. The instruction cycle primarily consists of two main phases:

the Fetch phase and the Execute phase. Below is a detailed

explanation and a visual representation of the operational flow

chart.

Steps in the Instruction Cycle

1. Fetch Phase:

o Step 1: The Control Unit (CU) sends a signal to

fetch the instruction stored at the memory location

pointed to by the Program Counter (PC).

o Step 2: The instruction is fetched from memory and

placed into the Instruction Register (IR).

o Step 3: The Program Counter (PC) is incremented

to point to the next instruction in sequence.

Computer Organization & Architecture -158

2. Decode Phase:

o Step 4: The instruction in the Instruction Register

(IR) is decoded to determine the operation to be

performed and the operands involved.

3. Execute Phase:

o Step 5: The appropriate signals are sent to the

Arithmetic Logic Unit (ALU) and other components

to perform the required operation (e.g., addition,

subtraction, logical operations).

o Step 6: The result of the operation is stored in the

appropriate register or memory location.

o Step 7: If the instruction involves branching

(conditional or unconditional jump), the Program

Counter (PC) is updated accordingly.

4. Repeat Cycle:

o Step 8: The cycle repeats, starting again from the

fetch phase, until all instructions are executed or a

halt instruction is encountered.

Visual Representation of the Operational Flow Chart

Below is a simplified visual representation of the operational flow

chart for the IAS Computer:

Computer Organization & Architecture -159

Explanation of the Flow Chart

 Start Instruction Cycle (Fetch): This marks the beginning

of the instruction cycle. The CPU prepares to fetch the next

instruction from memory.

 Fetch Instruction from Memory: The instruction is

fetched from the memory location specified by the Program

Counter (PC) and placed into the Instruction Register (IR).

 Increment Program Counter (PC): The Program Counter

is incremented to point to the next instruction in sequence.

 Decode Instruction: The Control Unit decodes the

instruction in the Instruction Register to determine what

operation to perform.

 Execute Instruction: The ALU and other components

execute the decoded instruction. This may involve

arithmetic or logical operations, data transfer, etc.

Computer Organization & Architecture -160

 Store Result: The result of the executed instruction is

stored in the appropriate register or memory location.

 Check for Branching or Halt: The Control Unit checks if

the instruction involves branching (jumping to another

memory address) or if it is a halt instruction (to stop

execution).

 Update Program Counter for Jump: If branching is

required, the Program Counter is updated to the target

address.

 Continue to Next Instruction Cycle: The CPU prepares

for the next instruction cycle if there are more instructions

to execute.

 Halt Execution: If a halt instruction is encountered, the

CPU stops executing further instructions.

5.5 ORGANIZATION OF CENTRAL
PROCESSING UNIT (CPU)

The Central Processing Unit (CPU) is the core component of a

computer system responsible for executing instructions and

processing data. The organization of the CPU involves various

components and subsystems that work together to perform these

tasks efficiently. Below is a detailed explanation of the

organization of the CPU, including its main components and their

functions.

Main Components of the CPU

1. Arithmetic Logic Unit (ALU):

o The ALU performs arithmetic and logical

operations on the data.

Computer Organization & Architecture -161

o It handles operations such as addition, subtraction,

multiplication, division, and logical operations like

AND, OR, XOR, and NOT.

o The ALU is a critical component for executing

mathematical computations and making logical

decisions.

2. Control Unit (CU):

o The Control Unit directs the operation of the CPU

by generating control signals.

o It interprets instructions fetched from memory,

decodes them, and controls the execution process by

coordinating with the ALU, registers, and other

components.

o The CU manages the flow of data between the CPU

and other parts of the computer.

3. Registers:

o Registers are small, fast storage locations within the

CPU used to hold data temporarily.

o Common registers include the Accumulator (ACC),

Program Counter (PC), Instruction Register (IR),

Memory Address Register (MAR), Memory Data

Register (MDR), and General Purpose Registers

(GPRs).

o Registers facilitate quick access to data and

instructions during execution.

4. Cache Memory:

o Cache memory is a high-speed memory located

close to the CPU that stores frequently accessed

data and instructions.

Computer Organization & Architecture -162

o It reduces the time needed to access data from the

main memory (RAM), enhancing overall

performance.

o The CPU typically has multiple levels of cache (L1,

L2, L3) to improve efficiency.

5. Buses:

o Buses are communication pathways that connect the

CPU with other components, such as memory and

input/output devices.

o The main types of buses are the Data Bus (transfers

data), Address Bus (transfers memory addresses),

and Control Bus (transfers control signals).

o Buses enable the transfer of data, instructions, and

control signals between different parts of the

computer.

6. Clock:

o The clock generates timing signals that synchronize

the operations of the CPU and other components.

o The clock speed, measured in Hertz (Hz),

determines the rate at which instructions are

executed.

o Higher clock speeds generally result in faster

processing.

Organization and Interaction of CPU Components

The organization of the CPU involves the interaction and

coordination of its components to execute instructions and process

data efficiently. Below is a diagram and explanation of how these

components interact:

Computer Organization & Architecture -163

1. Control Unit (CU):

o Fetches instructions from the main memory (RAM)

via the buses.

o Decodes the instructions and generates control

signals to direct the operation of the ALU and

registers.

2. Registers:

o Temporarily hold data, instructions, and addresses

needed for execution.

o Interface with the ALU for performing operations

and with the CU for fetching and decoding

instructions.

3. ALU:

o Performs arithmetic and logical operations on data

from the registers.

o Sends the results back to the registers or main

memory as directed by the CU.

Computer Organization & Architecture -164

4. Cache Memory:

o Provides fast access to frequently used data and

instructions, reducing the need to access slower

main memory.

o Interfaces directly with the registers and the CU to

enhance performance.

5. Buses:

o Facilitate the transfer of data, instructions, and

control signals between the CPU, main memory,

and other components.

o Ensure that data and instructions are available when

needed by the CPU.

Functions of the CPU Components

 ALU: Executes arithmetic and logical operations, which

are fundamental for processing data.

 CU: Manages the instruction cycle (fetch, decode, execute,

store) and ensures proper coordination among CPU

components.

 Registers: Provide fast access storage for intermediate data

and instructions during processing.

 Cache Memory: Enhances processing speed by reducing

access time to frequently used data and instructions.

 Buses: Enable efficient communication and data transfer

between the CPU and other system components.

 Clock: Synchronizes the operations of the CPU, ensuring

that all components work in harmony.

Computer Organization & Architecture -165

5.6 CPU ARCHITECTURE AND
DESIGN

1. Instruction Set Architecture (ISA): The ISA defines the

set of instructions that the CPU can execute, the data types,

the registers, the addressing modes, and the memory

architecture. Common ISAs include RISC (Reduced

Instruction Set Computing) and CISC (Complex Instruction

Set Computing).

2. Microarchitecture: Microarchitecture is the detailed

implementation of the ISA. It includes the design of the

ALU, CU, cache, pipeline stages, and other components to

achieve efficient instruction execution.

3. Pipeline Design: Pipelining allows multiple instructions to

be processed simultaneously by dividing the instruction

execution process into several stages, such as fetch, decode,

execute, and write-back. This improves CPU throughput.

4. Superscalar Architecture: Superscalar architecture allows

the CPU to execute more than one instruction per clock

cycle by using multiple execution units, which significantly

increases processing speed.

5. Branch Prediction: Branch prediction is a technique to

improve the flow in the instruction pipeline. It attempts to

guess whether a conditional branch will be taken or not,

thus allowing the pipeline to be filled more efficiently.

6. Out-of-Order Execution: This technique allows

instructions to be executed out of order for optimal use of

CPU resources, reducing idle times and increasing overall

efficiency.

Computer Organization & Architecture -166

Detailed Design Examples

1. Arithmetic and Logic Unit (ALU):

o The ALU is designed to handle arithmetic

operations like addition and subtraction, as well as

logic operations like AND, OR, XOR, and NOT.

Below is an example of an ALU design for a simple

4-bit processor:

Components:

o Adder/Subtractor Circuit: Performs addition and

subtraction.

o Logic Circuit: Performs logical operations.

o Multiplexer: Selects between different operations

based on control signals.

2. Control Unit (CU):

o The CU manages the execution of instructions by

generating appropriate control signals. Here is a

simplified diagram of a control unit:

 Components:

o Instruction Decoder: Decodes the fetched

instruction.

o Control Signal Generator: Produces signals to

control the ALU, registers, and other components.

o Timing and Control Logic: Ensures instructions are

executed in correct sequence and timing.

3. Pipeline Architecture:

o Pipelining breaks down the execution of

instructions into several stages, with each stage

being processed in parallel. Here is a simple 5-stage

pipeline diagram:

Computer Organization & Architecture -167

 Stages:

o Fetch (F): Instruction is fetched from memory.

o Decode (D): Instruction is decoded to understand

the operation.

o Execute (E): Operation is performed by the ALU.

o Memory (M): Data is read from or written to

memory.

o Write-back (W): Results are written back to the

register file.

CPU Architecture Types

1. Von Neumann Architecture:

o A single memory space stores both instructions and

data, with a single bus for accessing memory.

2. Harvard Architecture:

o Separate memory spaces and buses for instructions

and data, allowing simultaneous access to both.

5.7 MEMORY HIERARCHY

Memory hierarchy in computer architecture refers to the structured

arrangement of different types of storage technologies to balance

cost, capacity, and access speed. This organization allows a

computer system to achieve efficient performance and manage the

storage of data and instructions in a way that maximizes processing

speed while minimizing cost.

Levels of Memory Hierarchy

Registers

Computer Organization & Architecture -168

 Small, built-in memory within the CPU (typically 8-64

registers)

 Store temporary results, data, and instructions

 Fastest access time (typically 1-2 clock cycles)

 Volatile memory (loses data when power is turned off)

Cache Memory

 Small, fast memory that stores frequently accessed data

 Divided into levels (L1, L2, L3, etc.) with increasing size

and access time

 L1 cache is smallest and fastest (typically 8-64 KB)

 L2 cache is larger and slower (typically 256 KB-1 MB)

 L3 cache is shared among multiple CPU cores (typically 1-

10 MB)

 Reduces access times and improves cache hit rates

Main Memory (RAM)

 Larger, volatile memory that stores programs and data

 Typically 4-64 GB in size

 Access time is slower than cache (typically 50-100 clock

cycles)

 Data is lost when power is turned off

Secondary Storage (Hard Drives, SSDs)

 Non-volatile storage for long-term data retention

 Hard disk drives (HDDs) use spinning disks and

mechanical heads

 Solid-state drives (SSDs) use flash memory and are faster

 Access times are slower than main memory (typically 1-10

ms)

 Data is retained even when power is turned off

Computer Organization & Architecture -169

The memory hierarchy is designed to optimize data access and

processing efficiency by:

 Storing frequently accessed data in faster memory levels

 Reducing access times and transfers between memory

levels

 Improving cache hit rates and minimizing cache misses

 Providing a large storage capacity for programs and data

5.8 CONCLUSION

In summary, the Von Neumann architecture has been instrumental

in shaping the landscape of modern computing. Its core principles,

including the stored program concept and the integration of data

and instructions within a single memory, have set a standard for

computer design that persists to this day. The exploration of the

IAS computer provided a historical context, showcasing an early

implementation that validated these principles and significantly

influenced subsequent computer architectures.

Computer Organization & Architecture -170

The detailed examination of the operational flow within a CPU,

particularly the fetch and execute cycles, offered insights into the

fundamental processes that enable computers to perform complex

tasks. Understanding the organization and architectural design of

the CPU, along with advanced techniques such as pipelining,

superscalar execution, and branch prediction, highlighted the

advancements that have been made to enhance processing speed

and efficiency. Additionally, the concept of memory hierarchy

underscored the importance of efficiently managing data storage

and retrieval to optimize overall system performance.

By delving into these topics, students have gained a comprehensive

understanding of the foundational elements of computer

architecture. This knowledge not only provides a solid grounding

in the principles and history of computer design but also equips

students with the insights needed to appreciate the ongoing

advancements in technology. As computing continues to evolve,

these foundational concepts will remain crucial, guiding future

innovations and developments in the field.

5.9 UNIT BASED QUESTIONS &
ANSWERS

1. What are the main principles of the Von Neumann

architecture?

Answer: The main principles include the use of a single memory to

store both instructions and data, sequential execution of

instructions, and the concept of the stored-program where

instructions are fetched from memory and executed by the CPU.

Computer Organization & Architecture -171

2. Describe the components of a Von Neumann machine.

Answer: The main components are the Central Processing Unit

(CPU), memory, input/output devices, and a bus system for data

transfer. The CPU is further divided into the Arithmetic Logic Unit

(ALU) and the control unit.

3. What was the significance of the IAS computer in the

development of computer architecture?

Answer: The IAS computer, developed under the guidance of John

von Neumann, was one of the first practical implementations of the

stored-program concept. It demonstrated the feasibility and

efficiency of this architecture, influencing future computer designs.

4. Explain the fetch and execute cycle in a CPU's operational

flow chart.

Answer: The fetch and execute cycle involves fetching an

instruction from memory, decoding it to understand the required

operation, executing the operation by the ALU or other CPU

components, and then storing the result back in memory or a

register.

5. How does the CPU architecture differ between single-core

and multi-core processors?

Answer: A single-core processor has one processing unit that

handles all tasks, while a multi-core processor has multiple

processing units (cores) that can execute instructions concurrently,

improving performance and multitasking capabilities.

Computer Organization & Architecture -172

6. What are the advantages of pipelining in CPU design?

Answer: Pipelining allows multiple instructions to be processed

simultaneously at different stages of execution, increasing

instruction throughput and overall CPU performance by making

more efficient use of the CPU's resources.

5.10 REFERENCES

 Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

 Taub, Herbert, and Donald L. Schilling. Digital Integrated

Electronics. McGraw-Hill Education, 1994.

 Mano, M. Morris, and Michael D. Ciletti. Digital Design:

With an Introduction to the Verilog HDL. Pearson

Education, 2017.

 Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals

of Logic Design. Cengage Learning, 2013.

 Streetman, Ben G., and Sanjay Banerjee. Solid State

Electronic Devices. Prentice Hall, 2005.

 Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -173

UNIT – 6: HARDWIRED &
MICROPROGRAMMED CONTROL
UNIT

6.0 Introduction

6.1 Objectives

6.2 Introduction to Control Units

6.3 Hardwired Control Unit

6.4 Microprogrammed Control Unit

6.5 Single Organization

6.6 Data Path and Control Path

6.7 Instruction Set Architecture (ISA)

6.8 General Register Organization

6.9 Stack Organization

6.10 Conclusion

6.11 Unit Based Questions & Answers

6.12 References

6.0 INTRODUCTION

To effectively manage and execute instructions within a central

processing unit (CPU), the design and functionality of its control

units play a pivotal role. Control units serve as the "brain" of the

CPU, orchestrating the fetching, decoding, and execution of

instructions. They are integral to ensuring that operations within a

computer system are performed accurately and efficiently. This

section delves into the intricacies of control units, exploring both

hardwired and microprogrammed approaches, as well as the

Computer Organization & Architecture -174

organizational aspects of CPU architecture and instruction set

design.

Understanding these components is essential for comprehending

how computers process instructions and manage data flow. This

section will explore the fundamental principles behind control unit

design, the trade-offs between hardwired and microprogrammed

implementations, and how these units interact with other critical

elements like data paths, registers, and memory structures.

Moreover, it will delve into the organizational strategies that CPUs

employ to streamline operations, such as single organization

models and the organization of data paths and control paths.

By examining these topics, readers will gain insights into the

foundational elements that underpin CPU operation, paving the

way for a deeper understanding of computer architecture and its

practical applications in both hardware and software engineering.

6.1 OBJECTIVES

 Understand the Role of Control Units: Define the role

and significance of control units within a CPU and digital

systems.

 Differentiate Between Hardwired and

Microprogrammed Control Units: Explore the

differences in design, implementation, and operation

between hardwired and microprogrammed control units.

 Examine Single Organization Models: Investigate

organizational strategies within CPU architecture, focusing

Computer Organization & Architecture -175

on single organization models and their impact on

performance and efficiency.

 Analyze Data Path and Control Path Interactions:

Understand how data paths and control paths interact

within a CPU, influencing the execution of instructions and

overall system performance.

 Explore Instruction Set Architecture (ISA): Introduce the

concept of ISA and its role in defining the set of

instructions that a CPU can execute, including instruction

formats and addressing modes.

6.2 INTRODUCTION TO CONTROL
UNITS

A control unit (CU) is a critical component of a computer's central

processing unit (CPU). Its primary role is to manage and

coordinate the operations of the CPU by directing the flow of data

between the CPU and other components of the computer system.

The control unit interprets the instructions from the computer's

memory and generates the necessary control signals to execute

these instructions.

Functions of the Control Unit:

1. Instruction Fetching: Retrieving instructions from

memory.

2. Instruction Decoding: Interpreting the instructions to

determine the required actions.

3. Generating Control Signals: Producing signals that

control the operations of the other CPU components.

Computer Organization & Architecture -176

4. Execution Coordination: Managing the execution of

instructions by coordinating the ALU, registers, and other

components.

5. Data Flow Control: Ensuring that data moves to and from

the correct locations at the right times.

The control unit essentially acts as the brain of the CPU, ensuring

that all parts of the computer work together smoothly and

efficiently.

Differences between Hardwired and Microprogrammed

Control Units

Hardwired Control Unit:

 Design: Utilizes fixed logic circuits to control signals based

on combinational logic. The control signals are generated

using hardware components such as gates, flip-flops,

decoders, and multiplexers.

 Speed: Generally faster because it directly translates

instructions into control signals without intermediary steps.

 Flexibility: Less flexible as changes to the control logic

require physical alterations to the hardware.

 Complexity: Can become very complex and difficult to

design, especially for CPUs with large instruction sets.

 Example: Often used in simple, high-speed processors and

in applications where performance is critical.

Computer Organization & Architecture -177

Microprogrammed Control Unit:

 Design: Uses a sequence of microinstructions stored in

control memory to generate control signals. Each

instruction is broken down into a series of simpler steps

called micro-operations.

 Speed: Generally slower than hardwired control units

because microinstructions must be fetched and executed

from control memory.

 Flexibility: More flexible as changes can be made by

updating the microprogram in control memory, without

altering the physical hardware.

 Complexity: Simplifies the design process and is easier to

implement and modify, especially for complex CPUs with

extensive instruction sets.

 Example: Commonly used in complex CPUs,

microcontrollers, and systems where the ease of updates

and maintenance is essential.

Computer Organization & Architecture -178

Comparison Summary:

6.3 HARDWIRED CONTROL UNIT

A hardwired control unit is a fundamental component of a

computer's central processing unit (CPU) responsible for

generating control signals that direct the operation of other CPU

components based on the instructions fetched from memory. Here's

a detailed explanation of the hardwired control unit:

Definition and Function

The hardwired control unit operates using fixed logic circuits

composed of gates (AND, OR, NOT), flip-flops, decoders,

multiplexers, and other digital components. Its primary function is

to decode the instructions fetched from memory into a series of

control signals that coordinate the operation of the CPU.

Design and Operation

 Instruction Decoding: Upon fetching an instruction from

memory, the control unit decodes it using dedicated logic

circuits. Each instruction opcode (operation code) is

mapped to specific control signals that instruct the CPU's

components, such as the arithmetic logic unit (ALU),

registers, and memory, on what actions to perform.

Computer Organization & Architecture -179

 Direct Control Signal Generation: Unlike

microprogrammed control units that use microinstructions

stored in memory, the hardwired control unit directly

generates control signals based on the instruction's opcode.

This direct approach makes it faster in terms of execution

compared to microprogrammed control units.

 Combinational Logic: It employs combinational logic

circuits to interpret the instruction's opcode and generate

appropriate outputs based solely on the current inputs

(instruction opcode and possibly some status bits).

Advantages

 Speed: Hardwired control units are generally faster than

microprogrammed control units because they execute

instructions directly without the need to fetch

microinstructions from memory.

 Simplicity: The design is straightforward and relies on

fixed circuits, making it easier to understand, implement,

and verify.

Disadvantages

 Flexibility: Changes or updates to the instruction set

architecture (ISA) may require physical changes to the

hardware, which can be complex and costly.

 Complexity for Large ISAs: Designing a hardwired

control unit for CPUs with large instruction sets can

become challenging and may lead to intricate and extensive

circuitry.

Computer Organization & Architecture -180

Example of Hardwired Control Unit

Consider a simplified example of a hardwired control unit for a

CPU that supports basic arithmetic (add, subtract), logic (AND,

OR), and data movement instructions (load, store):

1. Instruction Fetch: Fetch an instruction from memory.

2. Instruction Decode: Decode the instruction opcode using

combinational logic circuits to determine the required

control signals:

o For an arithmetic operation (e.g., ADD): Set control

lines to activate the ALU and select addition mode.

o For a data movement operation (e.g., LOAD):

Activate memory read lines and set address lines.

3. Control Signal Generation: Generate control signals

based on the decoded instruction, directing the CPU's

components to execute the instruction effectively.

Implementation with combinational logic circuits

Implementing a hardwired control unit involves using

combinational logic circuits to decode instruction opcodes and

generate control signals. Here’s how it is typically implemented:

1. Instruction Fetch

 Fetch Cycle: The CPU fetches an instruction from

memory. This instruction is typically stored in the

instruction register (IR).

2. Instruction Decode

 Opcode Decoding: The opcode of the fetched instruction is

decoded using combinational logic circuits. Each opcode

corresponds to a unique set of control signals that will

direct the CPU’s components.

Computer Organization & Architecture -181

3. Control Signal Generation

 Control Logic: Combinational logic circuits such as AND

gates, OR gates, NOT gates, and multiplexers are used to

interpret the opcode and generate specific control signals.

 Example: Suppose the CPU supports basic operations like

ADD, SUBTRACT, LOAD, and STORE. Each operation

has a unique opcode. The control unit’s combinational logic

will decode these opcodes and set appropriate control lines:

o ADD Operation: Opcode 0001

 Control Signals: ALU control lines set to

perform addition.

o SUBTRACT Operation: Opcode 0010

 Control Signals: ALU control lines set to

perform subtraction.

o LOAD Operation: Opcode 0100

 Control Signals: Memory control lines set to

perform data read from memory.

o STORE Operation: Opcode 0101

 Control Signals: Memory control lines set to

perform data write to memory.

4. Output Control Signals

 Signal Lines: The generated control signals are sent to

various components of the CPU:

o ALU (Arithmetic Logic Unit): Directs arithmetic

and logic operations.

o Memory Interface: Controls data transfer to and

from memory.

o Register File: Manages data movement between

registers and ALU.

Computer Organization & Architecture -182

Example Circuit

Here’s a simplified example of how combinational logic circuits

might decode and generate control signals for basic operations:

In this diagram:

 Opcode Decoder: Combinational logic circuits decode the

opcode stored in the IR.

 Control Signal Generator: Based on the decoded opcode,

specific control lines (ALU control, memory control) are

activated.

6.4 MICROPROGRAMMED CONTROL
UNIT

A microprogrammed control unit is a type of control unit in a CPU

that uses microinstructions stored in memory to execute

instructions. Unlike a hardwired control unit, which uses fixed

logic circuits to generate control signals directly from instruction

opcodes, a microprogrammed control unit fetches

microinstructions from memory. Here’s a detailed explanation of a

microprogrammed control unit:

Definition and Function

 Microinstructions: Microprogrammed control units

operate using microinstructions, which are stored in a

control memory (often referred to as a control store or

microstore). Each microinstruction corresponds to a set of

control signals that direct the operation of the CPU during

the execution of an instruction.

Computer Organization & Architecture -183

 Instruction Execution: When an instruction is fetched

from memory, its opcode is decoded to determine the

address of the corresponding microinstruction in the control

memory.

 Control Memory: The microinstruction fetched from the

control memory specifies control signals for various

components of the CPU, including the ALU (Arithmetic

Logic Unit), registers, and memory interface.

Components and Operation

1. Control Memory (Microstore):

o Stores microinstructions, each containing control

signals.

o Addresses are typically generated by the opcode of

the fetched instruction, directing which

microinstruction to fetch.

2. Microinstruction Format:

o Includes fields for control signals that activate

various operations in the CPU.

o Fields may include ALU control, memory control,

register transfer operations, and status flag updates.

3. Control Unit Sequencer:

o Decodes the fetched instruction's opcode to

determine the address of the microinstruction in the

control memory.

o Controls the sequencing of microinstructions during

the execution of an instruction.

Advantages

 Flexibility: Easily accommodates changes to the

instruction set architecture (ISA) by modifying

Computer Organization & Architecture -184

microinstructions in the control memory without altering

hardware.

 Complexity Management: Suitable for CPUs with large

and complex instruction sets, as it simplifies the design of

control logic.

Disadvantages

 Speed: Slower execution compared to hardwired control

units due to the need to fetch and execute multiple

microinstructions per instruction.

 Complexity: Designing and managing microinstructions

and control memory can be more complex and require

careful planning.

Example Circuit

Here’s a simplified example illustrating the operation of a

microprogrammed control unit:

In this diagram:

 Control Memory: Stores microinstructions.

 Control Sequencer: Decodes the fetched instruction's

opcode to address the control memory.

 Microinstruction Format: Specifies control signals for

ALU operations, memory access, and register transfers.

Applications

 Widely used in modern CPUs to efficiently manage and

execute complex instruction sets.

 Allows for easier debugging and modification of control

logic without hardware changes.

Computer Organization & Architecture -185

6.5 SINGLE ORGANIZATION

In computer architecture, "single organization" typically refers to a

specific type of organization of the CPU and its components.

Here’s a detailed explanation of what it entails:

Single Organization in CPU Design

1. Definition:

o Single organization refers to a CPU architecture

where the CPU components such as registers, ALU

(Arithmetic Logic Unit), control unit, and internal

buses are designed to process and execute a single

instruction at a time.

o This contrasts with multiple organization (or

pipelined organization), where the CPU can process

multiple instructions simultaneously in different

stages of execution.

2. Components:

o Control Unit: Manages the operation of the CPU

and directs data flow between components based on

the instruction being executed.

o Registers: Store operands, instructions, and

intermediate results during computation.

o ALU: Performs arithmetic and logic operations

specified by the instructions.

o Memory Interface: Handles communication

between the CPU and memory, fetching instructions

and storing data.

Computer Organization & Architecture -186

3. Operation:

o Instruction Cycle: The CPU fetches an instruction

from memory, decodes it, executes the operation

specified, and stores or transfers the result.

o Sequential Execution: Instructions are executed

one after another in a sequential manner, with each

instruction completing before the next one begins.

4. Advantages:

o Simplicity: Easier to design and implement

compared to pipelined or superscalar architectures.

o Control: Clear control flow and easier to debug and

verify.

o Resource Allocation: Resources such as registers

and ALU are dedicated to executing one instruction

at a time, minimizing complexity in resource

management.

5. Disadvantages:

o Efficiency: May not fully utilize CPU resources,

leading to lower throughput compared to pipelined

architectures.

o Performance: Slower execution for tasks that

benefit from parallelism or simultaneous instruction

execution.

o Scalability: Limited scalability for applications

requiring high-performance computing due to

sequential nature.

Computer Organization & Architecture -187

Example and Application

 Example CPU: Early microprocessors like the Intel 8080

or Motorola 6800 were designed with single organization.

They executed instructions one at a time, making them

suitable for simpler computing tasks and early personal

computers.

 Application: Single organization CPUs are still used in

embedded systems, simple controllers, and devices where

power efficiency and simplicity are prioritized over high

throughput and parallel processing capabilities.

Simple processor architecture

A simple processor architecture typically refers to a basic design of

a central processing unit (CPU) that focuses on essential

functionalities while minimizing complexity. Here’s an overview

of what constitutes a simple processor architecture:

Components of Simple Processor Architecture

1. Instruction Fetch and Decode Unit:

o Instruction Fetch: Retrieves instructions from

memory.

o Instruction Decode: Decodes fetched instructions

to determine the operation to be performed.

2. Execution Unit:

o Arithmetic Logic Unit (ALU): Performs arithmetic

(addition, subtraction, etc.) and logic (AND, OR,

NOT) operations on data.

Computer Organization & Architecture -188

o Control Unit: Coordinates the operation of the

CPU, directing data flow and controlling the

execution of instructions.

3. Registers:

o Program Counter (PC): Keeps track of the

memory address of the next instruction to be

fetched.

o Instruction Register (IR): Stores the current

instruction being executed.

o General-Purpose Registers: Hold data operands

and intermediate results during computations.

4. Memory Interface:

o Data Bus: Transfers data between the CPU and

memory.

o Address Bus: Specifies the memory address for

read or write operations.

Operation of Simple Processor Architecture

 Instruction Cycle:

o Fetch: The CPU fetches the next instruction from

memory using the address stored in the PC.

Computer Organization & Architecture -189

o Decode: The fetched instruction is decoded to

determine its operation and operands.

o Execute: The ALU performs the operation specified

by the instruction, utilizing data from registers or

memory.

o Store: Results are stored back in registers or

memory, depending on the instruction.

Advantages of Simple Processor Architecture

 Ease of Design: Simplified design makes it easier to

implement and understand.

 Low Cost: Requires fewer components, making it cost-

effective for basic computing tasks.

 Low Power Consumption: Minimal circuitry leads to

lower power consumption, suitable for battery-operated

devices and embedded systems.

Limitations of Simple Processor Architecture

 Limited Performance: Sequential execution limits

throughput compared to more advanced architectures like

pipelined or superscalar processors.

 Instruction Set Limitations: Basic instruction set may not

support complex operations or optimizations.

 Scalability: Limited scalability for applications requiring

high computational power or parallel processing.

Example Applications

 Embedded Systems: Used in microcontrollers for simple

control and monitoring tasks.

 Basic Computing Devices: Found in early personal

computers and calculators.

Computer Organization & Architecture -190

 Education: Often used in academic settings to teach

fundamental CPU operation and architecture.

6.6 DATA PATH AND CONTROL PATH

In computer architecture, the terms "data path" and "control path"

refer to essential components of a processor's design that

collectively enable the execution of instructions. Let's delve into

each concept in detail:

Data Path

The data path in a processor is responsible for the actual

manipulation and processing of data. It consists of hardware

components that perform arithmetic and logical operations on data

as directed by instructions. Key elements of the data path include:

1. Registers: These are storage locations within the CPU that

hold data temporarily during processing. They include:

o General-Purpose Registers: Used for storing

operands, intermediate results, and data for

calculations.

o Special Purpose Registers: Include program

counter (PC), instruction register (IR), and

condition code registers (CCR) used for control

flow and status information.

2. Arithmetic Logic Unit (ALU): The ALU performs

arithmetic operations (addition, subtraction, multiplication,

division) and logical operations (AND, OR, NOT, XOR) on

data fetched from registers or memory.

Computer Organization & Architecture -191

3. Data Paths: These are the physical connections (buses)

that allow data to flow between registers, ALU, and

memory. They include:

o Data Bus: Transfers data between the CPU and

memory or between CPU components.

o Address Bus: Specifies memory addresses for read

or write operations.

o Control Bus: Carries control signals that coordinate

the operation of various CPU components.

Control Path

The control path manages the operation and sequencing of the data

path. It interprets instructions fetched from memory and generates

the necessary control signals to coordinate the activities of the data

path components. Key elements of the control path include:

1. Control Unit: The control unit decodes instructions fetched

from memory and generates control signals that direct the

operation of the data path. It includes:

o Instruction Decoder: Decodes the instruction

opcode to determine the type of operation to be

performed.

o Control Signals: These signals activate specific

paths within the data path to execute the instruction.

2. Clock Signals: These signals synchronize the activities of

the data path and control path, ensuring that operations

proceed in a coordinated manner.

Interaction Between Data Path and Control Path

 Instruction Execution: During the execution of an

instruction, the control unit fetches the instruction, decodes

Computer Organization & Architecture -192

it to determine the operation, and generates control signals.

The data path then executes the operation using the ALU

and registers.

 Cycle Execution: The fetch-decode-execute cycle involves

the control path fetching an instruction, decoding it to

generate control signals, and directing the data path to

perform the specified operation.

Example

In a simple processor architecture, the data path includes registers

for storing operands and results, an ALU for arithmetic and logical

operations, and buses for data transfer. The control path consists of

a control unit that fetches instructions, decodes them, and

generates control signals to coordinate the activities of the data

path components.

6.7 INSTRUCTION SET
ARCHITECTURE (ISA)

Instruction Set Architecture (ISA) refers to the set of instructions

that a computer's CPU (Central Processing Unit) can understand

and execute. It serves as an interface between the hardware (the

Computer Organization & Architecture -193

CPU and its components) and the software (the programs and

applications that run on the computer). Here's a detailed overview

of ISA:

Components of Instruction Set Architecture (ISA)

1. Instruction Set: The ISA defines a set of instructions that

the CPU can execute. These instructions are typically

categorized into several types:

o Data Transfer: Move data between memory and

registers.

o Arithmetic: Perform basic arithmetic operations

like addition, subtraction, multiplication, and

division.

o Logical: Perform logical operations such as AND,

OR, XOR, and NOT.

o Control Transfer: Change the sequence of

execution (branching, jumping).

o Input/Output: Transfer data between the CPU and

peripheral devices.

2. Registers: ISA specifies the number of registers and their

roles in storing operands, addresses, and intermediate

results during computation. Registers are critical for

efficient instruction execution.

3. Memory Addressing Modes: Different modes for

accessing memory locations (e.g., direct addressing,

indirect addressing, indexed addressing) are defined by

ISA.

4. Data Types: Specifies the data types supported by the CPU

(e.g., integer, floating-point, character).

Computer Organization & Architecture -194

Importance of ISA

 Compatibility: ISA provides compatibility between

software and hardware. Programs written for a particular

ISA can run on any CPU that implements that ISA.

 Performance: ISA influences the efficiency and speed of

executing programs. Optimizations in ISA can lead to faster

execution of instructions.

 Portability: Software developed for one CPU architecture

(ISA) can be ported to another compatible architecture with

minimal changes.

Examples of ISA

 x86: Used in most PCs and laptops, known for its complex

instruction set architecture (CISC).

 ARM: Dominates mobile devices and embedded systems,

known for its reduced instruction set architecture (RISC).

 MIPS: Commonly used in educational settings and

embedded systems, also a RISC architecture.

ISA Design Considerations

 Complexity vs. Simplicity: CISC architectures have more

complex instructions, while RISC architectures focus on

simpler, more efficient instructions.

 Instruction Encoding: Efficient encoding of instructions

to minimize memory usage and maximize performance.

 Support for Parallelism: ISA may include instructions

that support parallel execution (e.g., SIMD instructions for

vector processing).

Computer Organization & Architecture -195

Evolution of ISA

 Advances in Technology: ISA evolves with advancements

in CPU architecture, addressing new challenges such as

power efficiency, multi-core processing, and specialized

computing tasks (e.g., AI, machine learning).

 Standardization: Industry standards bodies (e.g., IEEE,

ISO) often define ISA standards to ensure compatibility and

interoperability across different hardware platforms.

6.8 GENERAL REGISTER
ORGANIZATION

General register organization refers to the structure and

management of registers within a central processing unit (CPU).

Registers are small, fast storage locations within the CPU that hold

data temporarily during processing. Here’s a detailed overview of

general register organization:

Components of General Register Organization

1. Types of Registers:

o Data Registers: Hold data operands and

intermediate results during arithmetic and logical

operations.

o Address Registers: Store memory addresses for

data access.

o Control Registers: Manage control and status

information within the CPU.

Computer Organization & Architecture -196

2. Role of Registers:

o Operand Storage: Data registers hold operands

that are currently being processed by the arithmetic

logic unit (ALU).

o Address Calculation: Address registers compute

memory addresses for fetching or storing data.

o Program Control: Control registers manage

program flow and execution status (e.g., program

counter, status registers).

3. Register File:

o Registers are typically organized into a register file,

a set of storage locations directly accessible by the

CPU.

o The size and organization of the register file vary

based on the CPU architecture and design goals.

4. Register Transfer Operations:

o Load (L): Transfer data from memory to a register.

o Store (S): Transfer data from a register to memory.

o Move (M): Transfer data between registers.

o Arithmetic and Logic Operations: Registers are

operands for arithmetic (addition, subtraction, etc.)

and logical (AND, OR, XOR) operations.

Importance of General Register Organization

 Speed: Registers are the fastest form of memory within the

CPU, enabling rapid access and manipulation of data.

 Efficiency: Minimizes memory access times by storing

frequently accessed data and operands.

Computer Organization & Architecture -197

 Program Execution: Facilitates efficient execution of

instructions by providing storage for operands and results.

 Context Management: Registers store critical information

during context switches between different tasks or

processes.

Examples of Register Usage

 Data Processing: Arithmetic and logical operations utilize

data registers for storing operands and results.

 Address Calculation: Address registers compute memory

addresses for load and store operations.

 Control and Status Management: Control registers

manage program flow and execution status, such as flags

indicating arithmetic overflow or comparison results.

Design Considerations

 Register Size: Determines the range and precision of

numeric data that can be processed.

 Number of Registers: Balances the need for fast access

with the complexity and cost of CPU design.

 Special Purpose Registers: Includes program counters,

stack pointers, and status registers tailored for specific

functions.

Evolution and Optimization

 Multi-Core Processors: Each core typically has its own set

of registers, enhancing parallel execution.

 Vector Processing: Special registers (vector registers)

support SIMD (Single Instruction, Multiple Data)

operations for efficient parallel processing.

Computer Organization & Architecture -198

 Cache Coherency: Registers play a role in maintaining

cache coherency across multi-level memory hierarchies.

Types of Registers

Registers in a CPU serve various purposes, categorized into

general-purpose registers and special-purpose registers. Here's an

overview of each type:

General-Purpose Registers

1. Data Registers:

o Purpose: Used to hold operands and intermediate

results during arithmetic and logical operations.

o Role: Facilitate data manipulation and computation

within the CPU.

o Examples: Accumulator (ACC), data registers in

the ALU (Arithmetic Logic Unit).

2. Address Registers:

o Purpose: Store memory addresses for data access.

o Role: Compute effective addresses during load and

store operations.

o Examples: Index registers, base registers.

3. Index Registers:

o Purpose: Assist in indexed addressing modes for

accessing elements in arrays or data structures.

o Role: Store offsets or indices used in memory

operations.

o Examples: Index Register (IX), Index Register 1

(IX1), Index Register 2 (IX2).

Computer Organization & Architecture -199

4. Stack Pointer (SP):

o Purpose: Manage the stack in memory, used in

stack-based operations like subroutine calls and

returns.

o Role: Points to the top of the stack or the next

available location.

o Examples: Stack Pointer (SP), Stack Pointer 1

(SP1), Stack Pointer 2 (SP2).

Special-Purpose Registers

1. Program Counter (PC):

o Purpose: Holds the memory address of the next

instruction to be fetched and executed.

o Role: Controls the sequence of program execution.

o Examples: Program Counter (PC), Instruction

Pointer (IP).

2. Status Registers (Flags):

o Purpose: Hold status information about the result

of the last operation performed by the CPU.

o Role: Flag conditions such as zero, carry, overflow,

and negative results.

o Examples: Condition Code Register (CCR), Flag

Register (FL), Status Register (SR).

3. Instruction Register (IR):

o Purpose: Temporarily holds the current instruction

being executed.

o Role: Facilitates decoding and execution of the

instruction.

Computer Organization & Architecture -200

o Examples: Instruction Register (IR), Current

Instruction Register (CIR).

4. Memory Address Register (MAR):

o Purpose: Holds the memory address of data that

needs to be fetched or stored.

o Role: Interfaces with the memory unit to fetch or

store data.

o Examples: Memory Address Register (MAR),

Memory Buffer Register (MBR).

Usage and Optimization

 Efficiency: Registers are the fastest form of memory in the

CPU, optimizing data access and computation.

 Context Switching: Special-purpose registers assist in

managing process and task states during context switches.

 Instruction Execution: General-purpose registers support

efficient arithmetic and logical operations, while special-

purpose registers manage control flow and status

monitoring.

Design Considerations

 Register Size: Determines the range and precision of data

that can be processed.

 Number of Registers: Balances hardware complexity with

performance requirements.

 Specialization: Tailors registers for specific functions like

addressing, control, and status monitoring.

Computer Organization & Architecture -201

6.9 STACK ORGANIZATION

Stack organization refers to the structure and management of the

stack memory within a computer system. The stack is a special

area of memory used for temporary storage of data, particularly

during subroutine calls and returns, as well as for storing local

variables and preserving execution context. Here’s a detailed

explanation of stack organization:

Components of Stack Organization

1. Stack Memory:

o Purpose: Reserved region of memory used for

storing data temporarily.

o Implementation: Typically organized as a Last-In-

First-Out (LIFO) structure, where the last item

pushed onto the stack is the first item popped off.

o Usage: Primarily used for subroutine calls, local

variable storage, parameter passing, and managing

program execution flow.

2. Stack Pointer (SP):

o Purpose: Special-purpose register that points to the

top of the stack.

o Role: Tracks the current position in the stack where

the next push or pop operation will occur.

o Usage: Adjusts dynamically as items are pushed

(added) or popped (removed) from the stack.

Computer Organization & Architecture -202

3. Frame Pointer (FP):

o Purpose: Optional register used in some

architectures to point to the base of the current stack

frame.

o Role: Facilitates efficient access to local variables

and parameters within a subroutine.

o Usage: Helps maintain the stack frame structure

during subroutine execution and aids in debugging

and optimization.

Operations in Stack Organization

1. Push Operation:

o Function: Adds a new item (data or address) onto

the top of the stack.

o Implementation: Decreases the stack pointer (SP)

to reserve space for the new item and stores the item

at the new top of the stack.

2. Pop Operation:

o Function: Removes the top item from the stack.

o Implementation: Retrieves the item at the current

top of the stack, increments the stack pointer (SP) to

release the space, and returns the item for further

processing.

Usage in Program Execution

 Subroutine Calls: Before calling a subroutine, parameters

and return addresses are typically pushed onto the stack.

During subroutine execution, local variables and the frame

pointer (if used) help manage data within the subroutine.

Computer Organization & Architecture -203

 Context Switching: Stack organization aids in saving and

restoring the execution context of processes or tasks during

context switches, ensuring seamless task management in

multitasking environments.

 Memory Management: Efficient use of stack memory

helps conserve overall memory resources and supports

nested subroutine calls and recursive function execution.

Design Considerations

 Stack Size: Determined by hardware constraints and the

needs of the software being executed.

 Stack Frame Structure: Defines how data is organized

within each subroutine call, including parameters, return

addresses, and local variables.

 Stack Management: Requires careful handling to avoid

stack overflow (exceeding available stack space) or

underflow (attempting to pop from an empty stack).

Benefits of Stack Organization

 Simplicity: Provides a straightforward method for

managing temporary data storage within a program.

 Efficiency: Facilitates rapid access and manipulation of

data, crucial for subroutine execution and parameter

passing.

 Reliability: Ensures data integrity and orderly execution

flow through well-defined push and pop operations.

Instruction Set for Stack Organization

The instruction set for stack organization typically involves a set of

operations that allow manipulation of the stack memory. These

operations enable programs to push data onto the stack, pop data

Computer Organization & Architecture -204

off the stack, and manage the stack pointer effectively. Here’s an

outline of the typical instruction set for stack organization:

Basic Stack Operations

1. Push Operation:

o Description: Adds a data item onto the top of the

stack.

o Instruction: PUSH operand

o Functionality:

 Decreases the stack pointer (SP) to reserve

space for the new item.

 Stores the operand at the memory location

pointed to by the stack pointer.

 Updates the stack pointer to point to the new

top of the stack.

2. Pop Operation:

o Description: Removes the data item from the top of

the stack.

o Instruction: POP operand

o Functionality:

 Retrieves the data item from the memory

location pointed to by the stack pointer.

 Increments the stack pointer (SP) to release

the space previously occupied by the item.

 Stores the retrieved data item into the

specified operand location.

Stack Pointer Management

1. Initialize Stack Pointer:

o Description: Sets the initial position of the stack

pointer.

o Instruction: INIT_SP value

Computer Organization & Architecture -205

o Functionality: Initializes the stack pointer (SP) to a

specific memory location (value), typically at the

beginning of the stack memory.

2. Reset Stack Pointer:

o Description: Resets the stack pointer to its initial

position.

o Instruction: RESET_SP

o Functionality: Sets the stack pointer (SP) back to

the initial memory location, effectively clearing the

stack.

Additional Operations

1. Peek Operation:

o Description: Retrieves the top item from the stack

without removing it.

o Instruction: PEEK operand

o Functionality:

 Reads the data item from the memory

location pointed to by the stack pointer.

 Stores the retrieved data item into the

specified operand location.

 Does not modify the stack pointer (SP).

2. Check Stack Empty:

o Description: Checks if the stack is empty.

o Instruction: STACK_EMPTY

o Functionality:

 Checks if the stack pointer (SP) is at the

initial position (indicating no items are on

the stack).

 Sets a status flag or returns a boolean

indicating the stack's empty status.

Computer Organization & Architecture -206

Control Flow with Stack

1. Call Operation:

o Description: Initiates a subroutine call.

o Instruction: CALL subroutine_address

o Functionality:

 Pushes the return address (usually the

address of the next instruction after the call)

onto the stack.

 Jumps to the specified subroutine_address to

begin subroutine execution.

2. Return Operation:

o Description: Returns from a subroutine call.

o Instruction: RETURN

o Functionality:

 Pops the return address from the stack and

jumps to that address to resume execution

after the subroutine call.

Example Instruction Set

Usage and Considerations

 Efficiency: Stack operations should be efficient to

minimize overhead during program execution.

 Memory Management: Careful management of the stack

pointer ensures correct allocation and deallocation of stack

space.

Computer Organization & Architecture -207

 Error Handling: Proper checks should be in place to

handle stack overflow (exceeding stack size) and underflow

(popping from an empty stack).

Advantages and Disadvantages of Stack Organization

Stack organization offers several advantages and disadvantages in

computer architecture and programming. Here's a detailed look at

both:

Advantages of Stack Organization

1. Simplicity and Efficiency:

o Push and Pop Operations: Stack operations

(PUSH and POP) are simple and efficient, involving

only a few instructions.

o Memory Management: Provides an organized and

straightforward method for managing temporary

data storage and local variables during program

execution.

2. Support for Subroutines and Function Calls:

o Subroutine Management: Enables the

implementation of subroutine calls (CALL and

RETURN), supporting structured programming and

modular code design.

o Parameter Passing: Facilitates passing parameters

to functions and procedures, enhancing code

reusability and maintainability.

Computer Organization & Architecture -208

3. Memory Optimization:

o Automatic Memory Allocation: Allocates and

deallocates memory dynamically as items are

pushed and popped from the stack.

o Space Efficiency: Utilizes memory efficiently by

reusing stack space for different subroutine calls

and local variable scopes.

4. Context Management:

o Execution Context: Helps in preserving the

execution context of a program during subroutine

calls, ensuring seamless execution flow and easier

debugging.

5. Hardware Support:

o Hardware Stack Support: Many CPUs have

dedicated instructions and hardware support for

stack operations, optimizing performance and

reducing overhead.

Disadvantages of Stack Organization

1. Limited Size and Overflow Issues:

o Stack Size Limitations: The size of the stack is

typically fixed or limited, leading to potential stack

overflow errors if too many items are pushed onto

the stack.

o Runtime Errors: Stack overflow occurs when the

stack exceeds its allocated size, leading to program

termination or crashes.

Computer Organization & Architecture -209

2. Fragmentation:

o Memory Fragmentation: Continuous push and

pop operations can lead to memory fragmentation,

where small pockets of unused memory are

scattered throughout the stack.

3. No Random Access:

o Sequential Access: Access to stack elements is

sequential, making random access or arbitrary

retrieval of data inefficient compared to other data

structures like arrays.

4. Complexity in Multithreading:

o Thread Safety: In multithreaded environments,

managing stacks across different threads can be

complex and require careful synchronization to

prevent data corruption or race conditions.

5. Limited Data Scope:

o Scope Limitation: Data stored on the stack is

typically local to the subroutine or function where it

is allocated, limiting its scope and visibility outside

that context.

Considerations for Use

 Usage in Embedded Systems: Stack organization is

widely used in embedded systems and microcontrollers due

to its simplicity and efficient use of memory.

 Real-Time Systems: In real-time systems, careful stack

management is critical to ensure predictable execution

times and avoid stack overflow conditions.

Computer Organization & Architecture -210

 Alternative Data Structures: For applications requiring

dynamic memory allocation and larger data storage,

alternative data structures like heaps or dynamic arrays may

be more suitable.

6.10 CONCLUSION

In conclusion, the study of control units and CPU organization

reveals fundamental aspects of computer architecture essential for

understanding how instructions are processed and executed within

a CPU. Control units serve as the orchestrators of instruction

execution, managing the flow of data and operations within the

CPU. The comparison between hardwired and microprogrammed

control units highlights the trade-offs between hardware

complexity and flexibility in instruction handling.

The exploration of single organization models underscores the

importance of efficient data and control path management in

enhancing CPU performance. Understanding the interaction

between data paths and control paths provides insights into

optimizing instruction execution and system throughput.

Furthermore, the discussion on instruction set architecture (ISA)

emphasizes the role of standardized instruction formats and

addressing modes in enabling software compatibility and system

efficiency.

General register organization and stack organization demonstrate

practical implementations within CPUs, facilitating efficient data

storage and management. These organizational strategies are

Computer Organization & Architecture -211

pivotal in supporting diverse computing tasks and enhancing

system responsiveness.

Overall, a nuanced grasp of these concepts equips engineers and

developers with the knowledge to design, optimize, and

troubleshoot CPUs and computing systems effectively. As

technology advances, continued exploration and innovation in

control unit design and CPU organization will drive improvements

in computing performance and capability.

6.11 UNIT BASED QUESTIONS &
ANSWERS

1. What is the role of a control unit in a CPU?

Answer: The control unit manages the execution of instructions

within the CPU. It coordinates the fetch-decode-execute cycle,

controls data flow between different CPU components, and ensures

that instructions are executed in the correct sequence.

2. Compare and contrast hardwired and microprogrammed

control units.

Answer: Hardwired control units are implemented using

combinational logic circuits, directly controlling the CPU's

operations. Microprogrammed control units use a sequence of

microinstructions stored in memory to control the CPU, offering

flexibility but at the cost of additional memory access time.

Computer Organization & Architecture -212

3. Explain the concept of single organization in CPU

architecture.

Answer: Single organization refers to a CPU design where both

data path and control path components are integrated into a single

unit. This design simplifies the CPU structure but may limit

flexibility compared to more complex organizational models.

4. How do data path and control path interact in a CPU?

Answer: The data path performs arithmetic and logical operations

on data, while the control path directs the flow of instructions and

data within the CPU. They interact closely to execute instructions

efficiently and manage system resources.

5. What is Instruction Set Architecture (ISA)?

Answer: ISA defines the set of instructions that a CPU can

execute, including instruction formats, addressing modes, and

operations. It serves as a bridge between hardware and software,

ensuring compatibility and defining the capabilities of a CPU.

6. Discuss the importance of general register organization in

CPU design.

Answer: General registers store data temporarily during

instruction execution, facilitating quick access and manipulation of

data. They play a crucial role in optimizing CPU performance by

reducing memory access times and enhancing computational

efficiency.

Computer Organization & Architecture -213

6.12 REFERENCES

 Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

 Taub, Herbert, and Donald L. Schilling. Digital Integrated

Electronics. McGraw-Hill Education, 1994.

 Mano, M. Morris, and Michael D. Ciletti. Digital Design:

With an Introduction to the Verilog HDL. Pearson

Education, 2017.

 Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals

of Logic Design. Cengage Learning, 2013.

 Streetman, Ben G., and Sanjay Banerjee. Solid State

Electronic Devices. Prentice Hall, 2005.

 Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -214

UNIT – 7: ADDRESSING MODES AND
INSTRUCTION FORMAT

7.0 Introduction

7.1 Objectives

7.2 Addressing Modes

7.3 Instruction Formats

7.4 Data Transfer & Manipulation

7.5 I/O Organization

7.6 Bus Architecture

7.7 Programming Registers

7.8 Conclusion

7.9 Unit Based Questions & Answers

7.10 References

7.0 INTRODUCTION

In computer architecture, understanding the internal operations of a

system is crucial for designing efficient hardware and software.

This unit delves into several fundamental aspects of computer

architecture and organization that are vital for grasping how

computers execute instructions and manage data. We will explore

addressing modes, which define how the processor locates data in

memory, and instruction formats, which specify how instructions

are structured and encoded within machine code.

Furthermore, the unit covers data transfer and manipulation,

essential for understanding how data is moved between registers,

memory, and I/O devices. The Input/Output (I/O) organization and

Computer Organization & Architecture -215

bus architecture are also examined to provide insight into how

computers interface with peripheral devices and handle

communication between different system components. Finally, the

role of programming registers in managing data and executing

instructions will be analyzed to complete the picture of internal

processor operations. This comprehensive exploration provides a

foundational understanding necessary for further study and

practical application in computer system design and optimization.

7.1 OBJECTIVES

After completing this unit, you will be able to understand;

 Addressing Modes: Learn how different addressing modes

affect data retrieval and instruction execution.

 Instruction Formats: Understand the structure of

instructions, including opcode and operand fields, and their

impact on instruction processing.

 Data Transfer & Manipulation: Explore methods for data

movement and manipulation between memory, registers,

and I/O devices.

 I/O Organization: Investigate how input and output

operations are organized and managed within the computer

system.

 Bus Architecture & Programming Registers: Study the

role of bus architecture in system communication and the

function of programming registers in executing

instructions.

Computer Organization & Architecture -216

7.2 ADDRESSING MODES

An addressing mode in computer architecture defines how a

processor accesses operands to perform operations. It specifies the

method or format by which the CPU identifies and retrieves data

from memory or registers. Addressing modes are fundamental in

instruction set architecture (ISA), guiding how programs interact

with data and instructions. They vary in complexity and

functionality, offering flexibility in how programs manage memory

and compute results.

Addressing modes include immediate, direct, indirect, register,

indexed, relative, base-offset, stack, auto-increment/decrement,

and memory-indirect modes, each tailored for specific

programming needs. Immediate mode, for instance, directly

embeds constant values within instructions, simplifying simple

calculations. Direct mode accesses specific memory locations

directly by their address, suitable for fixed data storage. Indirect

mode uses a memory address that points to the actual data location,

allowing for dynamic data access and data structures. Register

mode accesses data stored within CPU registers, offering rapid

data manipulation capabilities.

These modes enable efficient program execution and memory

management, crucial for optimizing performance in computing

tasks. They are integral to designing compilers, operating systems,

and application software, ensuring programs operate effectively

across diverse hardware platforms. Understanding and selecting

appropriate addressing modes are essential for developers aiming

Computer Organization & Architecture -217

to maximize computational efficiency and memory utilization in

modern computer systems.

1. Immediate Addressing Mode:

 Description: In immediate addressing mode, the actual

operand value is specified within the instruction itself

rather than referencing a memory location.

 Example: MOV A, #25

This instruction moves the immediate value 25 directly into

register A.

 Advantages:

o Simplifies programming as operands are directly

specified.

o Useful for constants or literal values that do not

change.

 Disadvantages:

o Wasteful of memory if the same constant is used

multiple times.

o Limits flexibility as operands cannot be modified

dynamically.

2. Direct Addressing Mode:

 Description: The operand's memory address is directly

specified in the instruction.

 Example: MOV A, 2000H

This instruction moves the contents of memory location 2000H

into register A.

 Advantages:

o Simple and straightforward to implement.

o Efficient for accessing specific memory locations.

 Disadvantages:

Computer Organization & Architecture -218

o Limited flexibility as the exact memory address

must be known at compile-time.

o Not suitable for position-independent code.

3. Indirect Addressing Mode:

 Description: The instruction specifies a memory address

that holds the actual memory address of the operand.

 Example: MOV A, @X

Here, if X contains 2000H, the contents of memory location 2000H

are moved into register A.

 Advantages:

o Allows for flexible memory referencing.

o Useful for accessing data structures where memory

addresses are dynamic.

 Disadvantages:

o Requires an extra memory access to fetch the actual

operand address.

o Slower compared to direct addressing due to the

additional memory access.

4. Register Addressing Mode:

 Description: The operand is located in a processor register.

 Example: MOV A, B

This instruction moves the contents of register B into register A.

 Advantages:

o Fastest access mode as it involves direct register-to-

register transfer.

o Suitable for frequently accessed data and arithmetic

operations.

 Disadvantages:

o Limited number of registers available.

Computer Organization & Architecture -219

o Register content might need to be saved and

restored during context switches or interrupts.

5. Indexed Addressing Mode:

 Description: An offset is added to a base address to reach

the operand.

 Example: MOV A, [X + 2]

This instruction moves the contents of memory location (X + 2)

into register A.

 Advantages:

o Useful for accessing elements in arrays and data

structures.

o Supports position-independent code.

 Disadvantages:

o Requires additional arithmetic operations to

compute the effective address.

o Overhead in maintaining and updating the base

register.

6. Relative Addressing Mode:

 Description: The operand's address is calculated relative to

the program counter or instruction pointer.

 Example: JMP LABEL

This instruction jumps to the address specified by LABEL, which

is a relative address from the current instruction.

 Advantages:

o Supports position-independent code.

o Simplifies code relocation and memory

management.

Computer Organization & Architecture -220

 Disadvantages:

o Limited range of relative addressing depending on

instruction format.

o Risk of errors if the offset is not correctly

calculated.

7. Base or Base-Offset Addressing Mode:

 Description: An offset added to a base address stored in a

register or specified in the instruction.

 Example: MOV A, [BASE + OFFSET]

This instruction moves the contents of memory location (BASE +

OFFSET) into register A.

 Advantages:

o Supports efficient access to data structures and

arrays.

o Facilitates modular programming and data

segmentation.

 Disadvantages:

o Requires additional registers or memory locations to

store base addresses.

o Complexity in managing multiple base registers in

larger programs.

8. Stack Addressing Mode:

 Description: Operands are implicitly accessed from the top

of the stack.

 Example: PUSH A

This instruction pushes the contents of register A onto the stack.

 Advantages:

o Supports last-in-first-out (LIFO) data structures.

o Facilitates function calls and parameter passing.

Computer Organization & Architecture -221

 Disadvantages:

o Slower access compared to register or direct

addressing modes.

o Limited stack size and potential for stack overflow.

9. Auto-increment and Auto-decrement Addressing Mode:

 Description: The memory address automatically

increments or decrements after each access.

 Example: LDA [X+]

This instruction loads the contents of memory at address X into the

accumulator and increments X.

 Advantages:

o Simplifies sequential memory access operations.

o Reduces the need for explicit address manipulation

in loops.

 Disadvantages:

o Limited support in modern architectures.

o Requires careful management to avoid unintended

side effects.

10. Memory Indirect Addressing Mode:

 Description: Similar to indirect addressing, but the

operand address is located in memory.

 Example: MOV A, @2000H

This instruction moves the contents of the memory address stored

at 2000H into register A.

 Advantages:

o Flexibility in accessing dynamically allocated

memory.

o Supports complex data structures and pointers.

Computer Organization & Architecture -222

 Disadvantages:

o Increased memory access time due to additional

indirection.

o Potential for pointer errors and memory leaks.

7.3 INSTRUCTION FORMATS

Instruction formats in computer architecture define the structure

and layout of machine instructions that the CPU executes. They

specify how operations and operands are encoded within the binary

instructions, guiding the processor on how to fetch, decode, and

execute each instruction. Instruction formats are crucial for

defining the instruction set architecture (ISA) of a processor,

determining its capabilities and compatibility with software.

Components of Instruction Formats:

1. Opcode (Operation Code):

o Defines the operation or instruction to be performed

by the CPU.

o Typically occupies a fixed portion of the instruction

word.

o Examples include arithmetic operations (add,

subtract), data movement (load, store), and control

flow (jump, branch).

2. Operands:

o Data or addresses on which the operation acts.

o Can be specified in various ways depending on the

addressing mode (immediate, direct, indirect,

register, etc.).

Computer Organization & Architecture -223

o Operand fields may vary in size and position within

the instruction format.

3. Addressing Mode Specification:

o Specifies how to interpret or compute the operand

address.

o Directly impacts how operands are fetched from

memory or registers.

o Can be part of the opcode or in a separate field

within the instruction format.

4. Control Bits:

o Flags or control information that governs the

execution behavior of the instruction.

o Includes condition codes, interrupt enable/disable,

privilege levels, etc.

Common Instruction Formats:

1. Fixed-Length Format:

o All instructions have the same length in bits.

o Simplifies instruction fetching and decoding but

may lead to inefficient use of space for simpler

instructions.

Computer Organization & Architecture -224

2. Variable-Length Format:

o Instructions vary in length based on the complexity

of the operation or addressing mode.

o Efficient for compact instruction sets but requires

more complex decoding logic.

3. Three-Address Format:

o Allows operations with three operands.

o Useful for complex arithmetic operations and

scientific computing.

4. Two-Address Format:

o Typically used in older architectures where one

operand serves as both a source and destination.

o Limited flexibility but efficient for certain

operations.

5. One-Address Format:

o Operates on data stored in one register.

o Often used in stack-based or accumulator-based

architectures.

Design Considerations:

 Efficiency: Instruction formats aim to balance between

compactness and flexibility, optimizing instruction

decoding and execution.

 Compatibility: Formats must support a wide range of

operations and addressing modes specified by the ISA.

 Encoding Scheme: Instructions must be encoded

efficiently to minimize memory usage and maximize

execution speed.

Computer Organization & Architecture -225

Here are the various aspects of instruction formats and machine

language instructions:

1. Instruction Length and Format:

o Defines the size and structure of machine

instructions.

o Determines how instructions are fetched, decoded,

and executed by the CPU.

o Can be fixed-length or variable-length depending on

the architecture.

2. Opcode and Operand Fields:

o Opcode: Specifies the operation to be performed

(addition, subtraction, load, store, etc.).

o Operand Fields: Hold data or addresses required

for the operation.

o Format includes fields for different addressing

modes (immediate, direct, indirect, etc.).

3. Fixed-Length vs. Variable-Length Instructions:

o Fixed-Length: All instructions are of the same size

in bits.

o Variable-Length: Instructions vary in size based on

complexity or addressing modes.

o Trade-offs between simplicity of decoding (fixed-

length) and efficient use of memory (variable-

length).

4. Three-Address vs. Two-Address vs. One-Address

Formats:

Computer Organization & Architecture -226

o Three-Address: Operates on three operands, useful

for complex arithmetic.

o Two-Address: Uses one operand for both source

and destination.

o One-Address: Operates on data stored in one

register or accumulator.

5. Instruction Encoding and Decoding:

o Encoding: Translating assembly language

mnemonics into machine code.

o Decoding: Process of interpreting machine code

instructions for execution by the CPU.

o Involves mapping opcodes and operands to binary

representations.

6. Machine Language Instructions:

o Low-level instructions directly executable by the

CPU.

o Binary representation of operations and data

movements.

7. Assembly Language Instructions:

o Human-readable mnemonics representing machine

instructions.

o Translated into machine code by an assembler.

8. Format for Arithmetic Operations:

o Specifies how arithmetic instructions (addition,

subtraction, multiplication, division) are structured.

Computer Organization & Architecture -227

o Includes opcode, operand fields for source and

destination registers or memory locations.

9. Format for Logical Operations:

o Defines structure for logical operations (AND, OR,

XOR, NOT).

o Similar to arithmetic operations but with different

opcodes.

10. Format for Data Transfer Operations:

o How data is moved between registers, memory, and

I/O devices.

o Includes opcodes for load (from memory to

register) and store (from register to memory)

operations.

7.4 DATA TRANSFER &
MANIPULATION

Data transfer and manipulation in computer architecture refer to

the operations involved in moving and processing data within a

computer system. These operations are fundamental to the

execution of programs and the functioning of applications. Here's

an overview of the key aspects:

Data Transfer:

1. Load (L) and Store (S) Operations:

o Load (L): Moves data from memory to a register or

processor.

Computer Organization & Architecture -228

o Store (S): Writes data from a register or processor

to memory.

o Operands typically specify memory addresses or

offsets.

2. Move (MOV) Operations:

o Directly transfers data between registers or memory

locations.

o Often used for copying data within the CPU or

between different parts of memory.

3. Data Transfer between I/O Devices:

o Facilitates communication between the CPU and

peripherals (e.g., keyboards, displays, disks).

o Uses specialized instructions or I/O ports for data

exchange.

Data Manipulation:

1. Arithmetic Operations:

o Addition (ADD), Subtraction (SUB),

Multiplication (MUL), Division (DIV):

 Operate on numerical data stored in registers

or memory.

 Results typically stored back in registers or

specified memory locations.

2. Logical Operations:

o AND, OR, XOR, NOT:

 Manipulate binary data to perform Boolean

operations.

Computer Organization & Architecture -229

 Useful for bit manipulation, data masking,

and conditional checks.

3. Shift and Rotate Operations:

o Shift (SHL, SHR): Move bits left or right within a

binary number.

o Rotate (ROL, ROR): Circularly shift bits,

wrapping around the ends.

4. Bitwise Operations:

o Bitwise AND, OR, XOR: Perform operations on

individual bits of data.

o Essential for low-level data manipulation and

setting/clearing specific bits.

Examples:

 Data Transfer Example (Load Operation): LDR R1,

[R2]; Load data from memory address in R2 into register

R1

 Arithmetic Operation Example (Addition): ADD R3,

R1, R2; Add contents of R1 and R2, store result in R3

 Logical Operation Example (AND): AND R4, R5, R6;

Perform bitwise AND of R5 and R6, store result in R4

Importance:

 Program Execution: Essential for executing instructions

and processing data within programs.

 System Interaction: Facilitates communication between

components (CPU, memory, I/O devices).

 Performance Optimization: Efficient data handling

enhances overall system performance.

Computer Organization & Architecture -230

Here are the different aspects related to data handling, processing,

and communication in computer systems:

Data Movement Instructions:

 Instructions that move data between registers, memory, and

I/O devices.

 Include operations like load, store, move, and exchange.

Load and Store Operations:

 Specific instructions for fetching data from memory (load)

and writing data to memory (store).

 Vital for manipulating variables and data structures in

programs.

Data Conversion Instructions:

 Operations that convert data from one format to another

(e.g., integer to floating-point, ASCII to Unicode).

 Ensure compatibility and correct representation of data.

Bit Manipulation Instructions:

 Instructions for manipulating individual bits or groups of

bits within data.

 Used for tasks like setting/clearing bits, bitwise operations

(AND, OR, XOR), and shifting.

Data Packing and Unpacking:

 Techniques for compactly storing multiple data items in a

single memory location (packing).

 Unpacking retrieves individual items from packed data

structures.

Computer Organization & Architecture -231

Data Sorting Algorithms:

 Algorithms that arrange data in a specified order (e.g.,

ascending or descending).

 Essential for efficient searching, indexing, and data

retrieval.

Parallel Data Processing:

 Techniques and architectures that enable simultaneous

processing of multiple data streams or tasks.

 Includes multi-core processors, parallel computing

frameworks, and GPU acceleration.

Data Transfer Protocols:

 Standards and protocols governing the reliable and efficient

transfer of data between systems or devices.

 Examples include TCP/IP, UDP, HTTP, and FTP.

Data Compression Techniques:

 Methods for reducing the size of data to save storage space

or transmission bandwidth.

 Include lossless (e.g., ZIP) and lossy (e.g., JPEG)

compression algorithms.

Data Encryption and Decryption:

 Techniques to secure data by encoding it in a way that only

authorized parties can access (encryption).

 Decryption reverses encryption to retrieve the original data

securely.

Computer Organization & Architecture -232

7.5 I/O ORGANIZATION

I/O (Input/Output) organization refers to how computer systems

interact with external devices to exchange data and instructions.

Here's an overview of the key aspects:

Components of I/O Organization:

1. I/O Interfaces:

o Hardware components that facilitate communication

between the CPU and peripherals.

o Examples include USB ports, network interfaces,

serial ports, and expansion slots.

2. Device Controllers:

o Interface between the CPU and specific I/O devices

(e.g., disk controllers, display controllers).

o Manage data transfer, error handling, and device-

specific operations.

3. Interrupts and DMA (Direct Memory Access):

o Mechanisms for efficient data transfer and device

signaling without CPU intervention.

o Interrupts allow devices to request attention, while

DMA enables high-speed data transfers between

devices and memory.

Computer Organization & Architecture -233

Operation Modes:

1. Programmed I/O:

o Basic mode where the CPU manages data transfer

between devices and memory.

o Each byte or word transfer requires CPU

involvement, making it slower for large data

volumes.

2. Interrupt-Driven I/O:

o Devices trigger interrupts to signal readiness or

completion of data transfers.

o CPU responds to interrupts, allowing it to perform

other tasks while data transfer occurs.

3. DMA (Direct Memory Access):

o Specialized mode where devices transfer data

directly to/from memory without CPU intervention.

o Improves system performance by offloading data

transfer tasks from the CPU.

Computer Organization & Architecture -234

I/O Techniques:

1. Polling:

o CPU continuously checks the status of devices to

initiate or complete data transfers.

o Simple but inefficient for real-time or high-speed

applications.

2. Interrupt Handling:

o Devices signal interrupts to notify the CPU of data

readiness or completion.

o Enables asynchronous data transfer and

multitasking capabilities.

3. Buffering:

o Temporarily stores data in buffers (memory) to

accommodate speed mismatches between devices

and CPU.

o Prevents data loss and optimizes data flow.

Importance of I/O Organization:

 System Connectivity: Facilitates interaction with diverse

peripherals, expanding system capabilities.

 Performance Optimization: Efficient data transfer

mechanisms improve overall system responsiveness and

throughput.

 Device Management: Ensures seamless integration and

operation of peripherals within the computing environment.

Examples:

Computer Organization & Architecture -235

 USB Interface: Standardized I/O interface for connecting

peripherals like keyboards, mice, and storage devices.

 Network Interface Card (NIC): Facilitates data exchange

between computers over networks.

 Graphics Processing Unit (GPU): Specialized device

controller for rendering graphics and accelerating complex

computations.

7.6 BUS ARCHITECTURE

Bus architecture refers to the design and implementation of the

communication system that allows various components within a

computer system to transfer data between each other. Here's an

overview of the key aspects of bus architecture:

Components of Bus Architecture:

1. Bus Types:

o Data Bus: Carries data between the CPU, memory,

and peripherals.

o Address Bus: Specifies memory locations for

read/write operations.

o Control Bus: Manages signals for coordinating

operations (e.g., read, write, interrupt).

2. Bus Width:

o Determines the number of bits that can be

transmitted simultaneously.

o Common widths include 8-bit, 16-bit, 32-bit, and

64-bit buses.

Computer Organization & Architecture -236

3. Bus Speed:

o Measures how fast data can be transferred across

the bus.

o Expressed in MHz or GHz, indicating cycles per

second.

4. Bus Topology:

o Single Bus (Shared Bus): All components connect

to a single bus.

o Multi-Bus: Uses separate buses for data, address,

and control signals.

o Hierarchical Bus: Combines multiple buses with

varying speeds and functions.

Operation Modes:

1. Synchronous Bus:

o Operates on a clock signal synchronized across all

devices.

o Data transfers occur at fixed intervals.

Computer Organization & Architecture -237

2. Asynchronous Bus:

o Does not rely on a centralized clock signal.

o Devices signal readiness independently, enabling

variable data transfer rates.

Bus Arbitration:

 Master-Slave Configuration: Determines which device

controls the bus during data transfers.

 Bus Arbitration Protocols: Resolve conflicts when

multiple devices request bus access simultaneously.

Types of Bus:

 System Bus: Connects major system components like

CPU, memory, and chipset.

 Peripheral Bus: Links external devices such as USB,

SATA, and PCI Express.

 Internal Bus: Facilitates communication within CPU or

chipset components.

Importance of Bus Architecture:

 Data Transfer Efficiency: Determines how quickly data

moves between components, affecting overall system

performance.

 Compatibility: Standardizes interfaces for hardware

compatibility and interoperability.

 Scalability: Supports expansion through additional devices

or higher data rates.

Examples:

 PCI Bus: Peripheral Component Interconnect bus for

connecting hardware peripherals.

Computer Organization & Architecture -238

 USB Bus: Universal Serial Bus for external devices like

keyboards, mice, and storage.

 Memory Bus: Links CPU and memory modules for fast

data access.

7.7 PROGRAMMING REGISTERS

Programming registers refer to special storage locations within a

CPU or a microcontroller that hold data temporarily during

program execution. These registers are directly accessible by the

CPU and are crucial for various operations such as arithmetic

calculations, logical operations, and data manipulation.

Here’s an overview of programming registers:

Types of Registers:

1. General-Purpose Registers:

o Used for storing operands, intermediate results, and

memory addresses.

Computer Organization & Architecture -239

o Examples include the Accumulator (ACC), Data

Register (DR), and Index Register (IR).

2. Special-Purpose Registers:

o Dedicated to specific tasks like addressing, status

flags, and control signals.

o Examples include Program Counter (PC), Stack

Pointer (SP), and Condition Code Register (CCR).

Functionality and Operations:

 Operand Storage: Hold data for arithmetic and logical

operations performed by the CPU.

 Addressing: Store memory addresses for fetching

instructions or data.

 Control Signals: Manage control flow and execution status

within the CPU.

 Status Flags: Indicate conditions such as overflow, carry,

zero, and negative results.

Programming Register Usage:

 Arithmetic Operations: Registers store operands and

results for addition, subtraction, multiplication, and

division.

 Logical Operations: Perform bitwise operations (AND,

OR, XOR) using register contents.

 Data Movement: Transfer data between registers, memory,

and I/O devices.

 Program Control: Modify program flow using branch

instructions and condition checks.

Computer Organization & Architecture -240

Programming Model:

 Register Organization: Defines the number, size, and

purpose of registers in a CPU architecture.

 Instruction Set Architecture (ISA): Specifies how

registers are accessed and manipulated by machine

instructions.

Examples:

 x86 Architecture: Uses general-purpose registers like AX,

BX, CX, DX alongside special-purpose registers such as IP

(Instruction Pointer) and FLAGS.

 ARM Architecture: Includes general-purpose registers

R0-R15, Program Counter (PC), and Current Program

Status Register (CPSR).

Benefits of Programming Registers:

 Speed: Direct access to registers improves processing

speed compared to accessing memory.

 Efficiency: Reduces memory access times and enhances

overall system performance.

 Versatility: Enables diverse computations and operations

through flexible register usage.

Considerations:

 Register File Size: Balances the number of registers for

optimal performance and cost-efficiency.

 Register Naming Conventions: Maintains clarity and

consistency in register usage across software development.

Computer Organization & Architecture -241

7.8 CONCLUSION

In conclusion, this unit has provided a comprehensive overview of

essential concepts related to computer architecture and system

operations. Addressing modes and instruction formats are

fundamental to understanding how processors execute commands

and interact with memory. By exploring data transfer and

manipulation techniques, we gain insight into the mechanisms that

enable efficient communication between various components of a

computer system.

The organization of input and output operations is crucial for

effective data exchange between peripheral devices and the central

processing unit. Additionally, the study of bus architecture sheds

light on the system’s communication infrastructure, while

programming registers play a key role in executing instructions

and managing data. Overall, these elements collectively enhance

our understanding of computer system design and operation, laying

a foundation for more advanced topics in computer science and

engineering.

7.9 UNIT BASED QUESTIONS &
ANSWERS

1. What are addressing modes in computer architecture, and

why are they important?

Answer: Addressing modes are techniques used to specify the

operand(s) for an instruction in computer architecture. They define

how the CPU should access the data required for an operation.

Computer Organization & Architecture -242

Addressing modes are important because they provide flexibility in

accessing data, allowing for more efficient and effective instruction

execution. Common addressing modes include Immediate, Direct,

Indirect, Register, and Indexed addressing. Each mode helps in

optimizing memory usage and operational speed based on the

requirements of different applications.

2. Explain the different types of instruction formats used in

computer systems.

Answer: Instruction formats are the layouts used to encode

instructions into binary form. Common types of instruction formats

include:

 Fixed-Length Instructions: All instructions are of the

same length, simplifying decoding but potentially wasting

space.

 Variable-Length Instructions: Instructions vary in length,

providing more flexibility and potentially reducing code

size but complicating decoding.

 Three-Address Format: Uses three fields to specify two

source operands and one destination operand.

 Two-Address Format: Uses two fields, often one for

source and one for destination, with one operand serving as

both source and destination in some cases.

 One-Address Format: Typically involves an implicit

accumulator and one explicit operand.

3. What is the role of data transfer and manipulation

instructions in a computer system?

Answer: Data transfer instructions are responsible for moving data

between registers, memory, and I/O devices. These instructions

include operations like LOAD, STORE, and MOV. Manipulation

Computer Organization & Architecture -243

instructions perform operations on data, such as arithmetic (ADD,

SUB), logical (AND, OR), and bit manipulation (SHIFT,

ROTATE). These instructions are essential for executing programs

and performing computations, enabling the CPU to handle and

process data effectively.

4. Describe the role of I/O organization in a computer system.

Answer: I/O organization refers to the methods and structures used

for managing input and output operations in a computer system. It

involves interfaces and controllers that facilitate communication

between the CPU and peripheral devices, such as keyboards,

printers, and disks. Efficient I/O organization is crucial for

ensuring smooth data transfer and proper device operation,

minimizing bottlenecks, and optimizing overall system

performance.

5. What is bus architecture, and how does it impact system

performance?

Answer: Bus architecture refers to the system's communication

pathways that connect the CPU, memory, and peripheral devices. It

consists of data buses, address buses, and control buses. The bus

architecture impacts system performance by determining the speed

and efficiency of data transfer between components. A well-

designed bus architecture can enhance data throughput and reduce

latency, leading to improved overall system performance.

7.10 REFERENCES

 Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

Computer Organization & Architecture -244

 Taub, Herbert, and Donald L. Schilling. Digital Integrated

Electronics. McGraw-Hill Education, 1994.

 Mano, M. Morris, and Michael D. Ciletti. Digital Design:

With an Introduction to the Verilog HDL. Pearson

Education, 2017.

 Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals

of Logic Design. Cengage Learning, 2013.

 Streetman, Ben G., and Sanjay Banerjee. Solid State

Electronic Devices. Prentice Hall, 2005.

 Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -245

BLOCK III: MEMORY ORGANIZATION &
I/O ORGANIZATION

UNIT – 8: MEMORY HIERARCHY
Structure

8.0 Introduction

8.1 Objectives

8.2 Memory Hierarchy Overview:

8.3 Main Memory

8.4 Cache Memory

8.5 Virtual Memory

8.6 Associative Memory

8.7 Memory Management Techniques

8.8 Performance Metrics

8.9 Conclusion

8.10 Unit Based Questions & Answers

8.11 References

8.0 INTRODUCTION

In the landscape of modern computing, memory hierarchy stands

as a critical framework that enables efficient data processing. This

hierarchy encompasses a spectrum of memory types, each

strategically designed to balance the need for speed, capacity, and

cost-effectiveness. At its core lies main memory (RAM), which

directly interfaces with the processor to provide fast data access

during program execution. Complementing RAM are cache

memories, meticulously designed to bridge the speed gap between

the CPU and main memory by storing frequently accessed data and

instructions. Virtual memory expands this hierarchy by utilizing a

Computer Organization & Architecture -246

combination of RAM and disk storage, providing an illusion of

vast memory space that exceeds physical limitations. Associative

memory, in contrast, offers rapid access to data through content-

addressable memory techniques, ideal for certain types of

specialized computations.

The efficient management of memory is crucial for maximizing

system performance. Memory management techniques encompass

strategies for allocating and deallocating memory space, handling

fragmentation issues, and optimizing memory usage. Contiguous

and non-contiguous allocation methods cater to different needs,

whether ensuring uninterrupted memory blocks or dynamically

allocating scattered segments. Fragmentation, both internal within

allocated memory blocks and external due to unused but reserved

memory, necessitates careful management to prevent

inefficiencies. Performance metrics, such as throughput, latency,

and memory utilization, provide quantitative measures of how

effectively memory resources are utilized, guiding optimizations

and system enhancements.

This section explores the intricacies of memory hierarchy, delving

into the architectural details, management methodologies, and

performance evaluations that underpin efficient memory usage in

computer systems. By understanding these fundamentals, one

gains insight into how memory impacts overall system

responsiveness, scalability, and reliability in diverse computing

environments.

Computer Organization & Architecture -247

8.1 OBJECTIVES

After completing this unit, you will be able to understand;

 Memory hierarchy organizes storage in computers by speed

and proximity to the CPU, from registers to auxiliary

storage.

 RAM stores data and instructions temporarily for quick

access by the CPU, while ROM holds essential system

instructions.

 Cache memory sits between RAM and the CPU, speeding

up operations by storing frequently used data.

 Virtual memory expands RAM's capacity by swapping data

between RAM and storage devices like hard drives.

 Memory management includes techniques for efficient

allocation and usage, addressing fragmentation to optimize

system performance.

8.2 MEMORY HIERARCHY
OVERVIEW

Memory hierarchy refers to the arrangement of different types of

memory storage devices in a computer system, organized in levels

based on their speed, capacity, and cost. The primary objective of

memory hierarchy is to provide the CPU with fast access to data

and instructions while optimizing cost and capacity. The hierarchy

typically includes registers, cache memory, main memory (RAM),

secondary storage (like SSDs and HDDs), and tertiary storage

(such as optical discs and tapes).

Computer Organization & Architecture -248

Each level in the hierarchy represents a trade-off between speed

and cost. Registers and cache memory, being closer to the CPU,

offer the fastest access times but are expensive and have limited

capacity. Main memory provides larger capacity but with slower

access times compared to cache. Secondary storage offers even

greater capacity at the cost of slower access times than main

memory. Tertiary storage, although the slowest, provides the

largest storage capacity at the lowest cost per unit.

Importance of Hierarchy in Computer Systems:

The memory hierarchy is crucial for performance optimization in

computer systems for several reasons:

1. Reduced Access Latency: By placing frequently accessed

data and instructions in faster memory levels (registers and

cache), the CPU can retrieve them more quickly, reducing

latency and improving overall system performance.

2. Improved Throughput: Faster memory access allows the

CPU to process data more efficiently, increasing the

system's throughput and handling more tasks concurrently.

3. Cost-Effective Design: Memory hierarchy allows

designers to balance the need for speed with cost

constraints. Faster memory (registers and cache) is more

expensive per unit of storage, while slower memory

(secondary and tertiary storage) offers larger capacities at

lower costs.

4. Scalability and Flexibility: The hierarchical structure of

memory enables systems to scale and adapt to varying

workload demands. Different levels of memory

Computer Organization & Architecture -249

accommodate different types of data access patterns and

usage scenarios, optimizing overall system efficiency.

5. Enhanced Reliability: Multiple levels of memory

hierarchy contribute to data integrity and reliability.

Redundancy and error-checking mechanisms can be

implemented at various levels to ensure data integrity and

system stability.

The primary goal of memory hierarchy is to optimize the

performance of the system by balancing speed, capacity, and cost.

Here's an overview of memory hierarchy:

Levels of Memory Hierarchy:

1. Registers:

o Located within the CPU.

o Fastest and smallest type of memory.

o Used to store data being actively processed by the

CPU.

o Examples: Accumulator (ACC), Program Counter

(PC).

2. Cache Memory:

o Small-sized memory located close to the CPU.

o Designed to store frequently accessed data and

instructions.

o Divided into multiple levels (L1, L2, L3) based on

proximity to CPU and size.

o Faster than main memory but more expensive.

o Helps reduce the gap between CPU speed and main

memory access time.

Computer Organization & Architecture -250

3. Main Memory (RAM - Random Access Memory):

o Primary storage directly accessible by the CPU.

o Stores data and instructions required for current

tasks.

o Volatile memory (loses data when power is off).

o Examples: Dynamic RAM (DRAM), Static RAM

(SRAM).

4. Secondary Storage (Auxiliary Memory):

o Non-volatile storage used for long-term data

storage.

o Examples: Hard Disk Drives (HDDs), Solid State

Drives (SSDs), Optical Discs (CDs, DVDs).

o Slower access times compared to main memory but

larger storage capacity.

5. Tertiary Storage:

o Typically used for archival purposes.

o Examples: Magnetic tapes.

o Extremely slow access times but very high storage

capacity and low cost per unit of storage.

Computer Organization & Architecture -251

Functions and Importance:

 Performance Optimization: By placing frequently

accessed data closer to the CPU (in registers and cache),

memory hierarchy reduces latency and improves processing

speed.

 Cost-Effectiveness: Balances the cost of faster, smaller

memory (like registers and cache) with larger, slower

memory (like secondary and tertiary storage).

 Capacity Management: Provides a scalable approach to

managing data and instructions based on their usage

patterns and access requirements.

8.3 MAIN MEMORY

Main memory in computer systems refers to the primary storage

that is directly accessible by the CPU for storing data and

instructions required during program execution. It is essential for

Computer Organization & Architecture -252

the operation of the system and comes in two primary types: RAM

(Random Access Memory) and ROM (Read-Only Memory).

RAM (Random Access Memory)

RAM, or Random Access Memory, is a crucial component in

modern computer systems and digital devices. It serves as the

primary memory where data and instructions are temporarily

stored for quick access by the CPU (Central Processing Unit).

RAM is volatile memory, meaning it requires a constant supply of

power to retain stored data. When the power is turned off or the

device is restarted, the data stored in RAM is lost, distinguishing it

from non-volatile storage like ROM (Read-Only Memory).

The main function of RAM is to provide fast read and write access

to data that the CPU needs to operate on in real-time. It acts as a

bridge between the CPU and storage devices, facilitating rapid data

exchange. RAM comes in different types, such as DRAM

(Dynamic RAM) and SRAM (Static RAM), each with unique

characteristics in terms of speed, cost, and power consumption.

This memory is crucial for multitasking, as it allows the system to

store and retrieve data quickly, enhancing overall performance by

reducing the need to access slower storage devices like hard drives

or SSDs for frequently used information.

Computer Organization & Architecture -253

Dynamic RAM (DRAM):

 Function: Stores data and instructions temporarily for the

CPU.

 Characteristics:

o Requires refreshing at regular intervals to maintain

data integrity.

o Uses capacitors to store bits of data as electrical

charges.

o Slower and less expensive per bit compared to

SRAM.

 Usage:

o Mainly used as main memory (RAM) in computers

and other digital devices.

o Provides high-density storage at a lower cost per

bit.

Static RAM (SRAM):

 Function: Provides high-speed data storage for faster

access.

 Characteristics:

o Does not require refreshing like DRAM.

Computer Organization & Architecture -254

o Uses flip-flops made of transistors to store data,

which makes it faster but more expensive than

DRAM.

o Faster access times and lower power consumption

compared to DRAM.

 Usage:

o Used in cache memory and other applications where

speed and reliability are critical.

o Acts as a buffer between the CPU and slower main

memory (DRAM).

ROM (Read-Only Memory)

ROM, or Read-Only Memory, is a type of storage medium used in

computers and electronic devices to store permanent data and

instructions that are essential for the operation of the system.

Unlike RAM (Random Access Memory), ROM is non-volatile

memory, meaning it retains its contents even when the power is

turned off. This characteristic makes ROM suitable for storing

critical system software, firmware, and instructions that must not

be altered or erased during normal operation.

The primary function of ROM is to provide read-only access to

data and instructions that are integral to the system's functionality.

It typically contains firmware, boot loaders, basic input/output

system (BIOS), and other essential software components that

initialize the hardware and facilitate the startup process of the

computer or device. ROM chips are manufactured with the data

Computer Organization & Architecture -255

already stored during production, using methods that permanently

encode the information into the memory cells.

 There are several types of ROM, including PROM (Programmable

ROM), EPROM (Erasable Programmable ROM), and EEPROM

(Electrically Erasable Programmable ROM), each offering varying

degrees of programmability and permanence suited to different

application needs in computing and electronics.

PROM (Programmable Read-Only Memory):

 Function: Stores data and instructions that are permanently

programmed during manufacturing.

 Characteristics:

o Can be programmed only once using a special

device called a PROM programmer.

o Once programmed, the data cannot be changed or

erased.

o Cost-effective for small production runs of custom

software or firmware.

 Usage:

o Stores boot firmware, basic system instructions, and

other critical data that must remain unchanged.

Computer Organization & Architecture -256

EPROM (Erasable Programmable Read-Only Memory):

 Function: Allows for erasing and reprogramming of the

memory multiple times.

 Characteristics:

o Erased using ultraviolet (UV) light exposure, which

clears the memory cells.

o Once erased, new data can be written using a

PROM programmer.

o Commonly used for firmware updates and

development purposes.

 Usage:

o Ideal for applications where occasional updates or

corrections are necessary without replacing the

entire chip.

EEPROM (Electrically Erasable Programmable Read-Only

Memory):

 Function: Allows for electrical erasing and reprogramming

of the memory.

 Characteristics:

o Can be erased and reprogrammed electrically,

which is faster and more convenient than EPROM.

o Retains data without power, similar to other ROM

types.

o Used in devices where frequent updates or changes

to the stored data are required, such as BIOS

settings and configuration data.

 Usage:

o Commonly found in consumer electronics,

embedded systems, and devices requiring flexible

storage of configuration settings.

Computer Organization & Architecture -257

Auxiliary Memory:

Auxiliary memory, also known as secondary storage, refers to

external storage devices used alongside the primary memory

(RAM) of a computer system. Unlike RAM, which provides fast

access to data but is volatile, auxiliary memory offers larger

storage capacities at a lower cost per byte and retains data even

when the power is turned off.

The primary role of auxiliary memory is to provide long-term

storage for large volumes of data, programs, and files that are not

currently in use by the CPU. This includes persistent storage

solutions such as hard disk drives (HDDs), solid-state drives

(SSDs), optical discs (CDs/DVDs), magnetic tapes, and cloud

storage services. These devices typically have slower access speeds

compared to RAM but offer much larger storage capacities,

making them suitable for storing operating systems, applications,

multimedia files, and user data.

Auxiliary memory plays a critical role in enhancing the overall

functionality and efficiency of computer systems by enabling data

persistence, allowing users to store and access vast amounts of

information beyond the immediate capabilities of RAM. It

supports functions such as data backup, archiving, and data sharing

across multiple platforms, ensuring that information remains

accessible and secure over extended periods.

Computer Organization & Architecture -258

Types of Auxiliary Memory

1. Hard Disk Drives (HDDs)

Hard disk drives use spinning magnetic disks coated with a

magnetic material to store data. They are one of the most common

types of auxiliary memory due to their relatively high storage

capacity, cost-effectiveness, and widespread compatibility with

computer systems. HDDs are suitable for storing operating

systems, applications, and large files like multimedia.

2. Solid State Drives (SSDs)

Solid state drives use flash memory technology to store data

electronically. They offer faster read and write speeds compared to

HDDs, resulting in quicker access to data. SSDs are known for

their reliability, energy efficiency, and resistance to physical shock,

making them ideal for high-performance computing tasks and

portable devices.

3. Optical Discs (CDs, DVDs)

Optical discs use laser technology to read and write data on a

reflective surface. CDs (Compact Discs) and DVDs (Digital

Versatile Discs) are examples of optical discs that offer relatively

large storage capacities and are commonly used for distributing

software, music, movies, and archival data. They provide a

portable and durable storage solution.

4. Magnetic Tapes

Magnetic tapes use magnetic storage to record data sequentially on

a long strip of tape. They offer high storage capacities at a low cost

per byte, making them suitable for long-term archival storage and

Computer Organization & Architecture -259

backup purposes. Magnetic tapes are often used in enterprise

environments for data backup and disaster recovery due to their

durability and cost-effectiveness.

8.4 CACHE MEMORY

Cache memory is a type of high-speed volatile memory located

directly within or very close to the CPU (Central Processing Unit)

of a computer. Its primary role is to store frequently accessed data

and instructions that are temporarily needed by the CPU, reducing

the average time to access data from the main memory (RAM).

Role and Functionality of Cache Memory:

1. Speed Enhancement: Cache memory operates at a much

faster speed than main memory (RAM) and is designed to

bridge the speed gap between the CPU and RAM. By

storing frequently accessed data and instructions closer to

the CPU, cache memory helps to minimize the time it takes

for the CPU to fetch data, thereby improving overall system

performance.

2. Hierarchy: Cache memory is organized into multiple

levels, typically L1, L2, and sometimes L3 caches, with

each level providing progressively larger storage capacity

but slower access speeds compared to the previous level.

L1 cache is the fastest but smallest, located closest to the

CPU, while L2 and L3 caches are larger and located further

away.

3. Cache Coherency: Cache memory implements

mechanisms to ensure data consistency between different

levels of cache and main memory. When data is updated in

Computer Organization & Architecture -260

the CPU cache, these updates are eventually propagated to

the main memory to maintain data integrity.

4. Automatic Management: Cache memory utilizes

hardware and software algorithms to manage data

placement and replacement based on access patterns. This

includes prefetching data likely to be needed soon and

evicting data that is least likely to be used.

Types of Cache Memory:

 L1 Cache: The smallest and fastest cache directly

integrated into the CPU. It typically stores instructions and

data that are currently being executed by the CPU cores.

 L2 Cache: Located between L1 cache and main memory,

L2 cache is larger in size and provides additional storage

for frequently accessed data. It serves as a buffer between

L1 cache and main memory.

 L3 Cache: Found in some multi-core processors, L3 cache

is shared among multiple CPU cores within a processor. It

offers larger storage capacity than L1 and L2 caches and

helps improve overall system performance by reducing the

need to access main memory.

Computer Organization & Architecture -261

Importance of Cache Memory:

Cache memory plays a crucial role in enhancing the speed and

efficiency of modern computer systems by reducing latency in

memory access. It optimizes the utilization of the CPU's

processing power by ensuring that frequently accessed data and

instructions are readily available, thereby minimizing the idle time

of the CPU waiting for data from slower main memory. This

efficient data retrieval mechanism significantly improves the

overall responsiveness and performance of computers, especially

in tasks requiring rapid data processing and execution of complex

software applications.

8.5 VIRTUAL MEMORY

Virtual memory is a memory management technique used by

operating systems to provide the illusion of a larger and contiguous

memory space than physically available in the main memory

(RAM). It allows programs to operate as if they have access to a

large, continuous block of memory, even though physical memory

may be limited or fragmented.

Computer Organization & Architecture -262

Key Concepts and Functionality of Virtual Memory:

1. Address Space: Virtual memory extends the address space

visible to a program beyond the actual physical memory

installed on the computer. Each program sees a virtual

address space that starts from zero and goes up to the

maximum addressable limit, defined by the architecture and

operating system.

2. Demand Paging: Virtual memory uses demand paging, a

strategy where portions of a program's code and data are

loaded into the main memory only when they are actively

needed. This minimizes the amount of physical memory

required to run programs and optimizes the usage of

available resources.

3. Page Faults: When a program accesses a portion of

memory that is not currently in the main memory but

resides in the virtual memory, a page fault occurs. The

operating system then retrieves the required data from the

secondary storage (usually the hard disk) into the main

memory and updates the page tables to reflect this

mapping.

4. Page Tables: Virtual memory relies on page tables to

manage the mapping between virtual addresses used by

programs and physical addresses in the main memory.

These tables store information about which pages of

memory are currently resident in physical memory and

facilitate quick lookups during address translation.

5. Memory Protection: Virtual memory systems provide

memory protection mechanisms to isolate and protect the

memory space of different processes from unauthorized

access. This ensures that each program operates within its

Computer Organization & Architecture -263

designated memory boundaries, enhancing system security

and stability.

Benefits of Virtual Memory:

 Efficient Memory Management: Virtual memory allows

efficient utilization of physical memory by dynamically

swapping data between main memory and secondary

storage as needed, optimizing overall system performance.

 Support for Large Applications: Virtual memory enables

the execution of large applications that require more

memory than available physical RAM, enhancing the

capabilities of modern software systems.

 Simplified Programming: Programmers can write code

without worrying about physical memory limitations, as the

operating system manages memory allocation and paging

transparently.

Implementation and Considerations:

Virtual memory is implemented by the operating system using a

combination of hardware support (such as memory management

units in CPUs) and software algorithms (like page replacement

policies). Efficient management of virtual memory requires

balancing factors such as page size, page replacement algorithms

(e.g., LRU - Least Recently Used), and disk I/O performance to

minimize overhead and maximize system responsiveness.

Paging and segmentation techniques in virtual memory

systems.

Paging and segmentation are two fundamental techniques used in

virtual memory systems to manage and utilize memory efficiently.

Here's a detailed explanation of each:

Computer Organization & Architecture -264

Paging:

Definition: Paging divides physical memory into fixed-size blocks

called pages and logical memory into blocks of the same size

called frames. Pages are the unit of data transfer between

secondary storage and main memory.

Key Concepts:

1. Page Table: Each process has a page table that maps

virtual pages to physical frames. The page table typically

resides in main memory and is managed by the operating

system. It translates virtual addresses generated by the CPU

into physical addresses.

2. Page Fault: When a program references a page not

currently in main memory (a page fault occurs), the

operating system loads the required page from secondary

storage (e.g., disk) into a free frame in main memory. This

process is known as demand paging.

3. Page Replacement: If all frames are occupied and a page

fault occurs, the operating system must replace a page in

main memory with the required page. Various algorithms

like Least Recently Used (LRU), First-In-First-Out (FIFO),

and Clock are used for page replacement decisions.

4. Benefits: Paging allows efficient use of physical memory

by allocating memory on-demand, supports memory

protection through page-level permissions, and simplifies

memory allocation by using fixed-size pages.

Segmentation:

Definition: Segmentation divides a program's address space into

variable-sized logical segments (such as code, data, stack) rather

than fixed-size pages.

Computer Organization & Architecture -265

Key Concepts:

1. Segment Table: Each segment is mapped to a segment

table entry that stores the base address and size of the

segment in main memory. The segment table is typically

stored in the CPU and is indexed by a segment number

obtained from the virtual address.

2. Address Translation: When a virtual address is generated

by the CPU, the segment number is used to index the

segment table to retrieve the base address of the segment.

The offset within the segment is then added to the base

address to obtain the physical address.

3. Segmentation Fault: Similar to page faults, segmentation

faults occur when a program attempts to access a segment

that is not present in main memory or violates memory

protection rules.

4. Benefits: Segmentation allows for more flexible memory

allocation than paging, as segments can vary in size and

type (code, data, stack). It supports modular program

design and simplifies memory management by providing a

hierarchical view of memory.

Comparison:

 Granularity: Paging uses fixed-size pages, whereas

segmentation uses variable-sized segments.

 Address Translation: Paging translates virtual addresses to

physical addresses using page tables, while segmentation

uses segment tables.

 Flexibility: Segmentation provides more flexibility in

memory allocation and management compared to paging

but may lead to external fragmentation.

Computer Organization & Architecture -266

Combined Approach (Paging and Segmentation):

Modern virtual memory systems often combine paging and

segmentation techniques to leverage their respective advantages.

This hybrid approach, known as paged segmentation or

segmented paging, allows for both flexible memory allocation and

efficient use of physical memory.

8.6 ASSOCIATIVE MEMORY

Associative memory, also known as content-addressable memory

(CAM), is a type of computer memory that enables rapid search

and retrieval of data based on its content rather than its location in

memory. Here's a detailed explanation of associative memory:

Definition and Function:

Associative Memory: Unlike conventional memory structures

where data is accessed via an address, associative memory allows

data retrieval based on its content. It stores data as pairs of key-

value or tag-data entries, where the key serves as a search

argument.

Functionality: When a search is performed in associative memory,

the system compares the search key against all stored keys

simultaneously. If a match is found, the associated data or value is

retrieved. This parallel search capability makes associative

memory extremely fast for certain types of operations, such as

database queries or caching mechanisms.

Key Concepts:

1. Content-Based Access: Data retrieval is based on the

content or value of the data rather than its memory address.

Computer Organization & Architecture -267

This makes associative memory suitable for applications

where quick access to specific information is critical.

2. Search Operation: Associative memory performs searches

in parallel, comparing the search key against all stored keys

simultaneously. This parallelism allows for rapid access

times, often in constant time O(1), making it efficient for

real-time applications.

3. Applications: Associative memory is used in various

fields, including:

o Cache Memory: CPU caches often use associative

memory to quickly retrieve recently accessed data.

o Database Systems: Associative memory

accelerates search operations in databases,

improving query response times.

o Pattern Recognition: Used in AI and image

processing applications to match patterns quickly.

Comparison with Conventional Memory:

 Access Time: Associative memory offers faster access

times compared to traditional random-access memory

(RAM), which requires sequential access based on memory

addresses.

 Storage Efficiency: While associative memory is efficient

for quick retrieval based on content, it typically stores

fewer data entries than conventional memory due to its

specialized search mechanism.

Implementation:

 Hardware: Associative memory is typically implemented

using special-purpose hardware known as associative

Computer Organization & Architecture -268

memory chips or content-addressable memory (CAM)

chips.

 Structure: Each entry in associative memory consists of a

tag or key and associated data. Modern implementations

may use ternary content-addressable memory (TCAM) for

more flexible search operations, allowing for matches,

mismatches, and "don't care" conditions.

Advantages and Limitations:

 Advantages: Fast access times, parallel search capability,

suitable for real-time applications.

 Limitations: Higher cost and complexity compared to

conventional memory, limited scalability for large data sets.

Comparison with conventional memory types (RAM, ROM).

Access Method:

 Associative Memory: Access is based on content (data),

allowing for parallel searches across all stored entries

simultaneously.

 RAM: Access is based on physical addresses assigned to

each memory cell, requiring sequential access or direct

addressing.

Speed:

 Associative Memory: Provides very fast access times,

often in constant time (O(1)), due to parallel search

capability.

 RAM: Offers fast access times but depends on the memory

address, leading to variable access times depending on the

location of data in memory.

Computer Organization & Architecture -269

Applications:

 Associative Memory: Ideal for applications requiring

quick retrieval based on content, such as cache memories

and database systems.

 RAM: Used for general-purpose computing tasks where

sequential or direct access to specific memory locations is

sufficient.

Capacity and Cost:

 Associative Memory: Typically stores fewer entries

compared to RAM due to its specialized search mechanism,

which can increase costs.

 RAM: Offers larger storage capacity and is more cost-

effective for storing large amounts of data.

Comparison with ROM (Read-Only Memory):

Access and Modification:

 Associative Memory: Allows for both reading and writing

of data based on content, making it versatile for dynamic

applications.

 ROM: Generally used for storing fixed data or firmware

that cannot be easily modified or updated.

Speed and Usage:

 Associative Memory: Provides fast access times similar to

RAM, making it suitable for applications requiring frequent

data retrieval and updates.

 ROM: Offers fast read access times but limited or no write

capability, suitable for storing programs, firmware, and

essential system data.

Computer Organization & Architecture -270

Flexibility:

 Associative Memory: Offers flexibility in data retrieval

and search operations, supporting complex search patterns

and conditions.

 ROM: Provides fixed data storage, limiting its flexibility

compared to associative or random-access memory.

Cost and Implementation:

 Associative Memory: Generally more expensive and

complex to implement compared to ROM due to its

specialized hardware requirements.

 ROM: Cost-effective for applications requiring permanent

storage of data that does not change frequently.

8.7 MEMORY MANAGEMENT
TECHNIQUES

Memory management techniques are fundamental in computer

systems to efficiently allocate and manage memory resources. Here

are key techniques related to memory allocation strategies and

fragmentation management:

Memory Allocation Strategies

1. Contiguous Allocation:

o Concept: Allocates a contiguous block of memory

to a process.

o Implementation: Typically used in systems with

fixed-size partitions or with dynamic partitioning

where a large enough contiguous block is available.

Computer Organization & Architecture -271

o Advantages: Simple implementation, minimal

overhead.

o Disadvantages: Can lead to external fragmentation.

2. Non-contiguous Allocation:

o Concept: Allocates memory to a process in non-

contiguous blocks.

o Implementation: Includes paging and

segmentation techniques.

o Advantages: Reduces external fragmentation,

allows efficient memory usage.

o Disadvantages: Requires more complex

management due to page tables (for paging) or

segment tables (for segmentation).

Fragmentation Types and Management Techniques

Fragmentation in memory management refers to the inefficient use

of memory space, resulting in wastage or fragmentation of

available memory. There are two main types of fragmentation:

internal fragmentation and external fragmentation, each requiring

specific management techniques.

Internal Fragmentation

Definition: Internal fragmentation occurs when allocated memory

space is larger than what is actually needed by the process.

Causes:

 Fixed-size Allocation: When memory is allocated in fixed-

size blocks and a process does not fully utilize the entire

block.

Computer Organization & Architecture -272

 Variable-size Allocation: When variable-sized allocations

result in leftover space due to alignment requirements or

memory allocation policies.

Management Techniques:

 Best Fit, Worst Fit, First Fit: These allocation strategies

aim to reduce internal fragmentation by matching process

size closely to the available memory block size. For

example, Best Fit allocates the smallest block that fits the

process, minimizing leftover internal fragmentation.

 Memory Compaction: In systems with dynamic

partitioning, memory compaction involves rearranging

memory contents to place all free memory together,

allowing larger contiguous blocks to be allocated to

processes.

External Fragmentation

Definition: External fragmentation occurs when there is enough

total memory space to satisfy a request, but it is fragmented into

small, non-contiguous blocks, making it unusable.

Causes:

 Dynamic Allocation: Frequent allocation and deallocation

of memory lead to small holes (free blocks) scattered

throughout memory.

 Memory Reclamation: As processes finish and free

memory, the remaining memory may be fragmented into

small pieces that cannot be used efficiently.

Computer Organization & Architecture -273

Management Techniques:

 Memory Compaction: Similar to managing internal

fragmentation, memory compaction involves rearranging

memory to place all free blocks together, reducing external

fragmentation and making larger contiguous blocks

available for allocation.

 Buddy System: Allocates memory in powers of two sizes.

When a block is freed, it checks if its buddy (adjacent free

block of the same size) is also free. If so, it merges them

into a larger block, reducing fragmentation.

 Paging and Segmentation: Techniques used in virtual

memory systems where memory is divided into fixed-size

pages or variable-sized segments. Paging reduces external

fragmentation by allocating memory in fixed-size pages,

while segmentation allows for more flexible allocation but

requires management of segment tables to handle

fragmentation.

8.8 PERFORMANCE METRICS

Performance metrics in computing are essential for evaluating the

efficiency and effectiveness of various system components and

processes. These metrics provide insights into how well a system

performs under different conditions and workloads. Here are some

key performance metrics commonly used in computing:

Computer Organization & Architecture -274

1. Execution Time (Response Time)

 Definition: The total time taken to complete a task or

process.

 Importance: Indicates the speed at which a system

executes tasks, directly impacting user experience and

system throughput.

2. Throughput

 Definition: The number of tasks completed or processed

per unit of time.

 Importance: Measures the system's capacity to handle

multiple tasks simultaneously, providing an overall

measure of system performance under load.

3. CPU Utilization

 Definition: The percentage of time the CPU is actively

executing instructions.

 Importance: Reflects how efficiently the CPU resources

are being utilized. High CPU utilization may indicate

resource contention or inefficient code execution.

4. Memory Utilization

 Definition: The percentage of available memory resources

(RAM) being used.

 Importance: Monitors the efficiency of memory allocation

and usage. High memory utilization may lead to paging or

swapping, impacting overall system performance.

5. Latency

 Definition: The time delay between initiating a request and

receiving a response.

Computer Organization & Architecture -275

 Importance: Critical for real-time systems and interactive

applications, where low latency is essential for

responsiveness.

6. Bandwidth

 Definition: The amount of data transferred per unit of time

over a network or between components.

 Importance: Determines the capacity and speed of data

transmission, influencing network and system performance.

7. Cache Hit Rate

 Definition: The percentage of memory accesses that are

satisfied from the cache without accessing main memory.

 Importance: Higher cache hit rates indicate efficient use of

cache memory, reducing memory latency and improving

overall system performance.

8. Fault Tolerance

 Definition: The ability of a system to continue operating in

the event of hardware or software failures.

 Importance: Measures system reliability and resilience,

crucial for mission-critical applications and systems.

9. Scalability

 Definition: The ability of a system to handle increasing

workload or resource demands by adding resources.

 Importance: Evaluates how well a system can grow to

meet future needs without compromising performance or

functionality.

Computer Organization & Architecture -276

8.9 CONCLUSION

In examining the intricacies of memory hierarchy, it becomes

evident that its layered structure is fundamental to the efficiency

and functionality of modern computing systems. Main memory,

encompassing both volatile RAM and non-volatile ROM, serves as

the immediate repository for data and instructions needed by the

CPU. This proximity ensures swift access times critical for rapid

computation and responsiveness. Cache memory further optimizes

performance by storing frequently accessed data closer to the CPU,

reducing latency and enhancing overall system speed.

Virtual memory extends the capabilities of physical RAM by

utilizing secondary storage, such as hard drives, to simulate larger

memory spaces. This technique allows for efficient multitasking

and handling of large datasets that exceed the limitations of

physical RAM alone. Associative memory introduces specialized,

fast-access storage solutions tailored for specific applications, such

as high-speed data retrieval in databases or real-time processing in

embedded systems.

Effective memory management techniques, including allocation

strategies and fragmentation management, are essential for

maximizing the use of available memory resources. By minimizing

wasted space and optimizing data placement, these techniques

ensure that applications can efficiently utilize memory without

unnecessary delays or inefficiencies. Performance metrics play a

crucial role in evaluating the effectiveness of memory systems,

measuring factors like latency, throughput, and overall system

Computer Organization & Architecture -277

responsiveness to guide improvements in memory architecture and

design.

In conclusion, a well-designed memory hierarchy is essential for

achieving optimal performance in computing systems. It balances

the need for speed, capacity, and flexibility, accommodating

diverse computing tasks and workloads efficiently. As computing

continues to evolve, advancements in memory technology and

management will play a pivotal role in shaping the capabilities of

future systems, enhancing both user experience and computational

capabilities across various domains.

8.10 UNIT BASED QUESTIONS &
ANSWERS

1. Explain the concept of memory hierarchy and its importance in

computer systems.

Answer: Memory hierarchy refers to the layered structure of

memory in a computer system, from fast and expensive memory at

the top (registers and cache) to slower and cheaper memory at the

bottom (secondary storage). It optimizes performance by balancing

speed, capacity, and cost-effectiveness, ensuring that data can be

accessed quickly by the CPU when needed.

2. Compare Dynamic RAM (DRAM) and Static RAM (SRAM) in

terms of structure and performance.

Answer: DRAM uses capacitors to store data and requires

refreshing, whereas SRAM uses flip-flops and is faster but more

expensive. DRAM is suitable for main memory due to its higher

Computer Organization & Architecture -278

density and lower cost per bit, while SRAM is used in cache

memory for its faster access times.

3. Explain the principle of locality and its relevance to cache

memory.

Answer: The principle of locality suggests that programs tend to

access a small subset of their data and instructions at any given

time. Cache memory leverages this by storing recently accessed

data and instructions close to the CPU, reducing the time required

to fetch them from main memory.

3. How does virtual memory expand the address space available to

programs?

Answer: Virtual memory uses disk space as an extension of RAM,

allowing programs to access more memory than physically

available. It uses paging or segmentation to manage memory,

swapping data between RAM and disk based on demand, thereby

enabling efficient multitasking and handling of large datasets.

4. Discuss the advantages and applications of associative memory.

Answer: Associative memory enables rapid data retrieval by

storing data and its associated addresses together. It is used in

applications requiring fast access times, such as databases, real-

time systems, and hardware-based pattern recognition.

5. Explain the difference between internal and external

fragmentation.

Answer: Internal fragmentation occurs when allocated memory is

larger than required, wasting space within a block. External

fragmentation occurs when there is enough total memory space to

Computer Organization & Architecture -279

satisfy a request, but it is fragmented into small non-contiguous

blocks, making it unusable.

6. Define latency and throughput in the context of memory

performance metrics.

Answer: Latency refers to the time taken for a memory operation

to complete, such as the time between requesting data and

receiving it. Throughput measures the rate at which data can be

transferred, indicating the overall bandwidth of memory systems.

8.11 REFERENCES

 Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

 Taub, Herbert, and Donald L. Schilling. Digital Integrated

Electronics. McGraw-Hill Education, 1994.

 Mano, M. Morris, and Michael D. Ciletti. Digital Design:

With an Introduction to the Verilog HDL. Pearson

Education, 2017.

 Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals

of Logic Design. Cengage Learning, 2013.

 Streetman, Ben G., and Sanjay Banerjee. Solid State

Electronic Devices. Prentice Hall, 2005.

 Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -280

UNIT – 9: MEMORY MANAGEMENT
HARDWARE

9.0 Introduction

9.1 Objectives

9.2 Memory Management Unit (MMU)

9.3 Paging Hardware

9.4 Segmentation Hardware

9.5 TLB (Translation Lookaside Buffer)

9.6 Hit/Miss Ratio

9.7 Magnetic Disk and Its Performance

9.8 Magnetic Tape

9.9 Conclusion

9.10 Unit Based Questions & Answers

9.11 References

9.0 INTRODUCTION

In the realm of computer systems, effective memory management

is crucial for ensuring optimal performance, efficient data access,

and seamless execution of applications. Memory management

involves a variety of hardware components and algorithms

designed to manage the flow of data between the computer's main

memory and other storage devices. This unit delves into the

essential aspects of memory management hardware, including the

Memory Management Unit (MMU), paging, segmentation, and the

Translation Lookaside Buffer (TLB).

Furthermore, the unit explores the performance implications of

memory management, focusing on the hit/miss ratio, a critical

Computer Organization & Architecture -281

metric for assessing the efficiency of memory access. The role of

magnetic storage devices, such as magnetic disks and tapes, in

providing reliable and high-capacity data storage is also examined.

Understanding these components and their interplay is

fundamental for anyone looking to grasp the complexities of

modern computer architectures.

By the end of this unit, readers will gain a comprehensive

understanding of how memory management hardware functions,

the significance of different memory access strategies, and the

performance considerations associated with various storage media.

This knowledge is essential for both designing efficient computer

systems and troubleshooting performance issues in existing setups.

9.1 OBJECTIVES

After completing this unit, student will able to understand;

 Understand the role and function of the Memory

Management Unit (MMU) in computer systems.

 Explain the hardware mechanisms for paging and

segmentation in memory management.

 Calculate and analyze the hit/miss ratio and its impact on

system performance.

 Explore the structure and performance characteristics of

magnetic disks and RAID configurations.

 Describe the uses and performance implications of

magnetic tape storage systems.

Computer Organization & Architecture -282

9.2 MEMORY MANAGEMENT UNIT
(MMU)

The Memory Management Unit (MMU) is a crucial hardware

component in a computer system responsible for handling memory

and caching operations. It primarily translates virtual addresses to

physical addresses, enabling processes to utilize memory

efficiently and securely. The MMU plays a key role in

implementing virtual memory, which allows a system to use more

memory than is physically available by swapping data to and from

the disk.

Functions of the MMU

1. Address Translation: The MMU translates virtual

addresses generated by the CPU into physical addresses in

the main memory.

2. Memory Protection: It ensures that a process cannot

access the memory allocated to another process, thus

providing isolation and security.

3. Paging: The MMU divides virtual memory into pages and

maps these pages to physical memory frames. This helps in

efficient memory allocation and management.

4. Segmentation: The MMU can support segmentation,

where memory is divided into segments of varying lengths,

each associated with specific permissions and attributes.

5. Cache Control: It manages the translation lookaside buffer

(TLB), which caches recent address translations to speed

up memory access.

Computer Organization & Architecture -283

Components of an MMU

1. Page Table: The page table is a data structure used by the

MMU to keep track of the mapping between virtual pages

and physical frames. Each entry in the page table contains

information such as the frame number, access permissions,

and status bits.

2. Segment Table: If segmentation is used, the MMU

maintains a segment table containing base addresses and

limits for each segment, along with access control

information.

3. Translation Lookaside Buffer (TLB): The TLB is a cache

that stores recent translations of virtual addresses to

physical addresses. It helps speed up the address translation

process by reducing the need to access the page table

frequently.

4. Control Registers: These registers hold configuration and

status information related to the MMU, such as base

addresses for page tables and segment tables, and control

bits for enabling or disabling features.

Address Translation Process

1. Virtual Address Generation: The CPU generates a virtual

address for accessing memory.

2. TLB Lookup: The MMU first checks the TLB to see if the

translation for the virtual address is already cached.

o TLB Hit: If the translation is found in the TLB, the

physical address is obtained quickly, and memory

access proceeds.

o TLB Miss: If the translation is not found, the MMU

accesses the page table to find the corresponding

physical address.

Computer Organization & Architecture -284

3. Page Table Access: The MMU uses the virtual address to

index into the page table and retrieve the physical address.

If paging is used, this involves locating the appropriate

page table entry.

4. Address Translation: The MMU translates the virtual

address into a physical address using the information from

the page table.

5. Memory Access: The physical address is used to access the

desired memory location.

Components of an MMU Diagram

To illustrate the components of an MMU, here is a simplified block

diagram:

1. CPU: Generates virtual addresses.

2. TLB: Stores recent address translations.

3. Page Table: Maps virtual pages to physical frames.

4. Physical Memory: Actual memory locations accessed

using physical addresses.

Benefits of MMU

1. Efficient Memory Utilization: The MMU allows for

efficient use of physical memory by mapping only the

necessary pages, reducing fragmentation.

2. Security: By isolating processes, the MMU ensures that

one process cannot interfere with another, providing

memory protection.

3. Flexibility: Virtual memory enables running larger

applications than the available physical memory by

swapping pages in and out of disk storage.

Computer Organization & Architecture -285

4. Performance: The TLB and caching mechanisms within

the MMU help improve the speed of address translation

and memory access.

Figure: MMU Address Translation

9.3 PAGING HARDWARE

Paging is a memory management scheme that eliminates the need

for contiguous allocation of physical memory, thereby reducing

issues like fragmentation. It divides the virtual memory into blocks

of physical memory called "pages," which are typically of fixed

size (e.g., 4KB). The main components involved in paging are the

page table, the Translation Lookaside Buffer (TLB), and the

physical memory.

Components of Paging Hardware

1. Page Table:

o Definition: A data structure used to map virtual

addresses to physical addresses.

o Function: Each process has its own page table,

which keeps track of the frame number

corresponding to each page number.

Computer Organization & Architecture -286

o Structure: Contains entries that include the frame

number and status bits (e.g., valid/invalid bit, access

permissions, dirty bit).

2. Translation Lookaside Buffer (TLB):

o Definition: A cache that stores recent page table

entries.

o Function: Reduces the time taken to access the

page table by caching recent translations of virtual

addresses to physical addresses.

o Structure: A small, fast memory structure within

the MMU.

3. Memory Management Unit (MMU):

o Definition: The hardware component responsible

for handling all memory and caching operations,

including paging.

o Function: Translates virtual addresses to physical

addresses using the page table and TLB.

4. Physical Memory (RAM):

o Definition: The hardware where data and

instructions are stored.

o Function: Stores the actual data corresponding to

the virtual pages.

Paging Process

1. Virtual Address Generation: The CPU generates a virtual

address that needs to be translated to a physical address.

Computer Organization & Architecture -287

2. TLB Lookup: The MMU first checks the TLB to see if the

translation is cached.

o TLB Hit: If found, the physical address is quickly

retrieved, and the memory access proceeds.

o TLB Miss: If not found, the MMU accesses the

page table.

3. Page Table Access: The MMU uses the virtual page

number to index into the page table and retrieve the

corresponding frame number.

4. Address Translation: The virtual address is converted into

a physical address using the frame number obtained from

the page table.

5. Memory Access: The physical address is used to access the

desired memory location.

Detailed Steps in Paging

1. CPU Generates Virtual Address:

o The virtual address consists of a virtual page

number (VPN) and an offset within that page.

o Example: If the virtual address is 0x1234 and the

page size is 4KB, the VPN might be 0x1 and the

offset 0x234.

2. TLB Lookup:

o The TLB is checked for an entry matching the VPN.

o If an entry is found (TLB hit), it provides the

corresponding frame number.

o If no entry is found (TLB miss), the MMU must

access the page table.

Computer Organization & Architecture -288

3. Page Table Access:

o The VPN is used to index into the page table.

o The page table entry (PTE) contains the frame

number and status bits.

o If the PTE is marked valid, the frame number is

used for address translation.

o If the PTE is invalid (e.g., page not in memory), a

page fault occurs, and the operating system must

handle it by loading the page from disk into

memory.

4. Physical Address Calculation:

o The physical address is formed by combining the

frame number from the PTE with the offset from

the virtual address.

o Example: If the frame number is 0x2 and the offset

is 0x234, the physical address is 0x2234.

5. Memory Access:

o The physical address is used to access the desired

data in the RAM.

Diagram of Paging Hardware

Here is a simplified block diagram of paging hardware:

Computer Organization & Architecture -289

Key Points

 TLB: Enhances performance by caching recent address

translations.

 Page Table: Maps virtual pages to physical frames, with

entries containing frame numbers and status bits.

 MMU: Manages the entire address translation process,

utilizing the TLB and page table.

Benefits of Paging Hardware

1. Efficient Memory Management: Allows non-contiguous

memory allocation, reducing fragmentation.

2. Security and Isolation: Ensures processes cannot access

each other's memory.

3. Performance Optimization: TLB and page table

structures improve address translation speed.

9.4 SEGMENTATION HARDWARE

Segmentation is a memory management technique that divides the

memory into different segments based on the logical divisions of a

program, such as code, data, and stack. Each segment has its own

base address and limit, which helps in accessing and managing

memory efficiently. Unlike paging, which divides memory into

fixed-size blocks, segmentation deals with variable-sized

segments.

Components of Segmentation Hardware

1. Segment Table:

Computer Organization & Architecture -290

o Definition: A data structure that maintains

information about all segments of a process.

o Function: Each entry in the segment table holds the

base address and limit of a segment.

o Structure: Contains entries with fields for the

segment base address, segment limit, and status bits

(e.g., valid/invalid bit, access permissions).

2. Segment Table Register (STR):

o Definition: A special register that holds the base

address of the segment table.

o Function: Points to the segment table in memory,

enabling the CPU to access segment information.

3. Memory Management Unit (MMU):

o Definition: The hardware component responsible

for translating logical addresses to physical

addresses using the segment table.

o Function: Facilitates address translation by

accessing the segment table and combining the

segment base address with the offset.

Segmentation Process

1. Logical Address Generation: The CPU generates a logical

address that consists of a segment number and an offset

within that segment.

2. Segment Table Access: The MMU uses the segment

number to index into the segment table and retrieve the

base address and limit of the segment.

3. Address Translation: The MMU checks if the offset is

within the segment limit. If valid, the logical address is

Computer Organization & Architecture -291

translated into a physical address by adding the offset to the

segment base address.

4. Memory Access: The physical address is used to access the

desired memory location.

Detailed Steps in Segmentation

1. CPU Generates Logical Address:

o The logical address is composed of a segment

number (SN) and an offset (O).

o Example: If the logical address is SN:O = 3:0x456

and the segment size is 4KB, SN is 3 and the offset

is 0x456.

2. Segment Table Lookup:

o The MMU uses the segment number to index into

the segment table.

o Retrieves the base address and limit for the

segment.

3. Address Translation:

o The MMU checks if the offset is within the segment

limit.

o If the offset is valid, the physical address is

calculated by adding the segment base address to

the offset.

o Example: If the segment base address is 0x2000 and

the offset is 0x456, the physical address is 0x2000 +

0x456 = 0x2456.

Computer Organization & Architecture -292

4. Memory Access:

o The physical address is used to access the desired

data in RAM.

Diagram of Segmentation Hardware

Here is a simplified block diagram of segmentation hardware:

Key Points

 Segment Table: Maps segment numbers to base addresses

and limits.

 Segment Table Register (STR): Holds the base address of

the segment table.

 MMU: Translates logical addresses to physical addresses

using segment table entries.

Benefits of Segmentation Hardware

1. Logical Organization: Aligns with the logical divisions of

a program, making it easier to manage code, data, and stack

separately.

Computer Organization & Architecture -293

2. Memory Protection: Each segment can have its own

access permissions, enhancing security.

3. Dynamic Memory Allocation: Segments can grow or

shrink as needed, reducing fragmentation.

9.5 TLB (TRANSLATION LOOKASIDE
BUFFER)

The Translation Lookaside Buffer (TLB) is a specialized cache

used to improve the speed of virtual address translation in

computer systems. It is a part of the memory management unit

(MMU) and stores recent translations of virtual addresses to

physical addresses.

Importance of TLB

Without a TLB, every memory access would require a page table

lookup, which involves accessing main memory and can

significantly slow down the system. By caching recent translations,

the TLB reduces the number of memory accesses needed for

address translation, thereby improving overall system performance.

Components of TLB

1. Tag: Identifies the virtual page number.

2. Page Frame Number: The corresponding physical page

frame number.

3. Valid Bit: Indicates whether the TLB entry is valid.

4. Access Control Bits: Permissions and access rights for the

page.

5. Other Bits: May include bits for managing replacement

policies (e.g., LRU).

Computer Organization & Architecture -294

Operation of TLB

1. Virtual Address Generation: The CPU generates a virtual

address.

2. TLB Lookup: The MMU checks the TLB for a match with

the virtual page number.

3. TLB Hit: If a match is found (TLB hit), the corresponding

physical page frame number is used to form the physical

address, and the memory access proceeds.

4. TLB Miss: If no match is found (TLB miss), the MMU

must perform a page table lookup.

o The page table lookup retrieves the physical page

frame number.

o The TLB is updated with the new translation.

o The memory access then proceeds with the

translated address.

Detailed Steps in TLB Operation

1. Virtual Address Generation:

o The CPU generates a virtual address, consisting of a

virtual page number and an offset within the page.

o Example: For a 32-bit virtual address with a 4 KB

page size, the top 20 bits could represent the virtual

page number, and the bottom 12 bits represent the

offset.

2. TLB Lookup:

o The MMU uses the virtual page number to search

the TLB.

o If the TLB has multiple entries, associative or

direct-mapped search techniques may be used.

Computer Organization & Architecture -295

3. TLB Hit:

o If the virtual page number is found in the TLB, the

corresponding physical page frame number is

retrieved.

o The physical address is constructed by combining

the physical page frame number with the offset.

o Example: If the TLB entry maps virtual page

number 0x123 to physical page frame 0x456, and

the offset is 0x789, the physical address is

0x456789.

4. TLB Miss:

o If the virtual page number is not found in the TLB,

a page table lookup is initiated.

o The MMU retrieves the page table entry for the

virtual page number, obtaining the physical page

frame number.

o The TLB is updated with the new translation.

o The physical address is then constructed, and the

memory access proceeds.

5. Memory Access:

o The constructed physical address is used to access

the memory.

Diagram of TLB Operation

Here is a simplified block diagram of TLB operation:

Computer Organization & Architecture -296

Benefits of TLB

1. Speed: Significantly reduces the time needed for address

translation by caching recent translations.

2. Efficiency: Decreases the number of memory accesses

required for translation, freeing up memory bandwidth for

other operations.

3. Performance: Improves the overall performance of the

system by reducing latency in memory access.

Challenges and Solutions

1. TLB Miss Penalty: When a TLB miss occurs, the penalty

is the time taken to perform a page table lookup. This can

be mitigated by optimizing page table structures and using

larger TLBs.

2. TLB Size: A larger TLB can store more entries, reducing

the miss rate but at the cost of increased hardware

complexity and power consumption. Balancing TLB size

and performance is critical.

Computer Organization & Architecture -297

9.6 HIT/MISS RATIO

The hit/miss ratio refers to a metric used to measure the

effectiveness of caching algorithms in computer systems,

particularly in relation to cache memory. It represents the ratio of

cache hits (successful accesses where the requested data is found in

the cache) to cache misses (failed accesses where the requested

data is not found in the cache and must be fetched from main

memory or another lower-level cache).

In more detail, the hit/miss ratio is calculated using the formula:

A high hit ratio indicates that a significant portion of memory

accesses are satisfied by the cache, which is desirable for

optimizing system performance. Conversely, a low hit ratio

suggests that many accesses require fetching data from slower

main memory or storage, which can impact performance

negatively.

Efficient caching strategies and algorithms aim to maximize the hit

ratio by predicting which data will be needed soon and ensuring it

is readily available in the cache. Various factors, such as cache

size, replacement policies (like LRU - Least Recently Used), and

access patterns, influence the hit/miss ratio in practical computing

scenarios.

Calculation

Calculating the hit/miss ratio involves using the following formula:

Computer Organization & Architecture -298

Here’s how you can calculate it step-by-step:

1. Count Cache Hits and Misses:

o Cache Hits: Count the number of times the

requested data is found in the cache.

o Cache Misses: Count the number of times the

requested data is not found in the cache and must be

fetched from main memory or another level of

cache.

2. Total Memory Accesses:

o Sum of both cache hits and cache misses. This gives

you the total number of memory accesses made by

the system.

3. Calculate the Ratio:

o Divide the number of cache hits by the total number

of memory accesses.

o Multiply the result by 100% to convert it into a

percentage.

Example Calculation:

Let's say a system has 1000 memory accesses, out of which 800

accesses were cache hits and 200 accesses were cache misses.

So, in this example, the hit/miss ratio is 80%. This means that 80%

of the memory accesses were satisfied by the cache, while 20%

required fetching data from slower memory levels due to cache

misses.

Computer Organization & Architecture -299

Factors Affecting Hit/Miss Ratio

Several factors influence the hit/miss ratio in a caching system,

impacting its effectiveness and overall performance:

1. Cache Size: Larger caches tend to have higher hit ratios

because they can store more data and accommodate more

frequently accessed items.

2. Cache Replacement Policy: The policy used to decide

which items to remove from the cache when it is full

affects the hit ratio. LRU (Least Recently Used), LFU

(Least Frequently Used), and random replacement policies

can significantly impact cache performance.

3. Cache Mapping Technique: Different mapping techniques

like direct mapping, set-associative mapping, and fully

associative mapping affect how addresses are mapped to

cache locations. More associative mappings typically result

in higher hit ratios.

4. Data Size and Alignment: The size of data blocks stored

in the cache and their alignment with cache line boundaries

affect the likelihood of cache hits. Optimal block size and

alignment reduce the number of cache misses.

5. Processor Architecture and Bus Speed: Faster processors

and buses reduce the latency associated with accessing data

from caches and main memory, potentially improving the

hit ratio by reducing the penalty for cache misses.

6. Cache Placement: How caches are placed in the memory

hierarchy, their proximity to the processor, and their level

(L1, L2, L3 caches) affect the hit ratio. Caches closer to the

processor typically have higher hit rates due to faster access

times.

Computer Organization & Architecture -300

Improving Hit/Miss Ratio

Improving the hit/miss ratio in a caching system is crucial for

optimizing performance. Here are several strategies to enhance the

hit ratio and reduce cache misses:

1. Increase Cache Size: Larger caches can hold more data,

reducing the likelihood of cache evictions and increasing

the chances of finding requested data in the cache.

2. Optimize Cache Replacement Policy: Choose a

replacement policy that best suits the application's access

patterns. Policies like LRU (Least Recently Used), LFU

(Least Frequently Used), or adaptive policies can improve

hit ratios by keeping frequently accessed data in the cache

longer.

3. Use Higher Associativity: Higher associativity allows

more flexibility in mapping data to cache lines, reducing

collisions and improving the hit ratio. Moving from direct-

mapped to set-associative or fully associative caches can be

beneficial.

4. Prefetching: Implement prefetching algorithms that

anticipate future memory accesses based on current access

patterns. This can reduce misses by bringing data into the

cache before it's requested.

5. Compiler Optimizations: Compiler optimizations such as

loop unrolling, software prefetching, and code restructuring

can optimize memory access patterns, reducing cache

misses and improving overall performance.

6. Cache Coherency and Consistency: Ensure cache

coherency in multi-core or distributed systems to prevent

unnecessary cache invalidations and misses due to stale

data.

Computer Organization & Architecture -301

9.7 MAGNETIC DISK AND ITS
PERFORMANCE

A magnetic disk, often referred to as a hard disk drive (HDD), is a

non-volatile storage device that uses magnetic storage to store and

retrieve digital data. Here's an overview of its structure, operation,

and performance characteristics:

Structure and Operation

A typical magnetic disk consists of the following components:

 Platters: Circular, metallic disks coated with a magnetic

material where data is stored.

 Read/Write Heads: Positioned above and below each

platter, these heads magnetically read data from and write

data to the platters.

 Actuator Arm: Moves the read/write heads across the

surface of the disk to access different tracks and sectors.

Data on a magnetic disk is organized into concentric tracks (circles

on the surface of each platter) and sectors (pie-shaped divisions

within each track). The disk spins at a high speed (e.g., 5400 to

15000 revolutions per minute), allowing the read/write heads to

access data quickly.

Performance Characteristics

1. Access Time: The time it takes for the read/write heads to

position over the correct track and sector. It includes:

o Seek Time: Time to move the heads to the correct

track.

Computer Organization & Architecture -302

o Latency: Time for the desired sector to rotate under

the heads.

2. Data Transfer Rate: The speed at which data can be read

from or written to the disk, measured in megabytes per

second (MB/s). It depends on factors like rotational speed,

data density, and interface type (e.g., SATA, SAS).

3. Capacity: HDDs typically offer large storage capacities,

ranging from gigabytes to multiple terabytes, making them

suitable for storing vast amounts of data at a relatively low

cost per gigabyte compared to other storage technologies.

4. Reliability and Durability: Modern HDDs are robust and

can withstand shocks and vibrations to some extent, but

they are mechanical devices prone to wear over time.

Performance Factors

 Rotational Speed: Higher speeds generally reduce latency

and improve data access times.

 Data Density: Higher density allows more data to be

stored per platter, increasing transfer rates.

 Caching: Use of onboard cache (buffer memory) helps

improve read and write speeds by temporarily storing

frequently accessed data.

Applications

Magnetic disks are widely used in:

 Personal Computers: Primary storage for operating

systems, applications, and user data.

 Servers and Data Centers: Bulk storage for databases,

files, and backups.

Computer Organization & Architecture -303

 External Storage: Portable HDDs for data backup and

transfer.

RAID (Redundant Array of Independent Disks)

RAID (Redundant Array of Independent Disks) is a technology

that combines multiple physical disk drives into a single logical

unit to improve performance, redundancy, or both. Here's an

overview of common RAID levels and their characteristics:

RAID Levels and Characteristics

1. RAID 0: Striping

o Characteristics: Data is divided ("striped") evenly

across multiple disks without parity information.

o Performance: Improves read and write speeds

significantly because data is accessed in parallel

across all disks.

o Reliability: No redundancy; if one disk fails, data

on all disks may be lost.

2. RAID 1: Mirroring

o Characteristics: Data is mirrored across pairs of

disks.

o Performance: Read performance can be enhanced

since data can be read from both disks

simultaneously.

o Reliability: Provides fault tolerance; if one disk

fails, data is still accessible from the mirrored disk.

Computer Organization & Architecture -304

3. RAID 5: Striping with Distributed Parity

o Characteristics: Data is striped across multiple

disks with distributed parity (parity information is

distributed across all disks).

o Performance: Offers good read performance and

moderate write performance.

o Reliability: Provides fault tolerance with

distributed parity; can withstand the failure of one

disk without losing data.

4. RAID 6: Striping with Dual Parity

o Characteristics: Similar to RAID 5 but with dual

parity, which means parity information is written to

two disks.

o Performance: Slower than RAID 5 due to dual

parity calculations, but offers better fault tolerance.

o Reliability: Can tolerate the failure of up to two

disks simultaneously without losing data.

5. RAID 10 (RAID 1+0): Mirrored Striping

o Characteristics: Combines RAID 1 (mirroring)

and RAID 0 (striping).

o Performance: Provides high performance and fault

tolerance.

o Reliability: Offers excellent fault tolerance as long

as at least one disk in each mirrored pair is

operational.

Benefits of RAID Configurations

 Improved Performance: RAID configurations,

particularly RAID 0 and RAID 10, can significantly

Computer Organization & Architecture -305

improve read and write speeds by distributing data across

multiple disks and allowing parallel access.

 Enhanced Reliability: RAID levels like RAID 1, RAID 5,

and RAID 6 provide varying degrees of fault tolerance,

allowing systems to continue functioning even if one or

more disks fail.

 Scalability: Some RAID levels, such as RAID 5 and RAID

6, allow for expansion by adding more disks to the array

without significant downtime or data migration.

 Data Protection: Redundancy provided by RAID

configurations ensures that data remains accessible even in

the event of disk failures, reducing the risk of data loss and

downtime.

Disk Caching

Disk caching plays a crucial role in enhancing the performance of

magnetic disks (hard disk drives, or HDDs) by leveraging faster

access times of volatile memory compared to the slower

mechanical operations of disk drives. Here's an exploration of its

role and mechanisms:

Role of Disk Caches in Improving Performance

Disk caches act as a buffer between the CPU and the slower

magnetic disks, storing frequently accessed data and metadata

temporarily in faster volatile memory (RAM). This mechanism

accelerates read and write operations by reducing the number of

times the CPU needs to wait for data retrieval from the

comparatively slower HDDs. Key benefits include:

 Faster Data Access: By keeping frequently accessed data

in RAM, disk caches reduce latency associated with

Computer Organization & Architecture -306

mechanical disk operations, enhancing overall system

responsiveness.

 Improved Throughput: Caches ensure that data required

by the CPU is readily available, minimizing idle time and

maximizing data throughput from the disk subsystem.

 Enhanced User Experience: Applications load faster and

respond more quickly to user commands when critical data

is cached in memory, leading to smoother user interactions

and reduced perceived latency.

Cache Mechanisms and Strategies for Magnetic Disks

1. Read-ahead and Write-back Caching:

o Read-ahead: Pre-fetching data into the cache

before it's requested by the CPU, anticipating

sequential access patterns.

o Write-back: Holding writes in the cache

temporarily and committing them to the disk later,

optimizing write performance by batching smaller

writes into larger, more efficient operations.

2. Write-through Caching:

o Immediate Write: Writing data both to the cache

and to the disk simultaneously ensures data

consistency but can impact performance due to

frequent disk writes.

3. LRU (Least Recently Used) and LFU (Least Frequently

Used) Policies:

o LRU: Evicting the least recently accessed data from

the cache when space is needed for new data.

Computer Organization & Architecture -307

o LFU: Removing the least frequently accessed data

to optimize cache usage and performance.

4. Cache Size and Placement:

o Size: Balancing the cache size with available RAM

and workload requirements to maximize hit rates

without excessively consuming system resources.

o Placement: Strategically positioning caches to

minimize latency and maximize effectiveness based

on access patterns and workload characteristics.

9.8 MAGNETIC TAPE

Magnetic tape is a type of data storage media that uses magnetic

material coated on a thin strip of plastic to store digital

information. It has been used for decades for various storage

purposes, particularly for backup, archiving, and bulk data transfer.

Here's an in-depth exploration of magnetic tape:

Definition and Role

Magnetic tape is a sequential storage medium that stores data in a

linear format. It consists of a thin strip of plastic film coated with a

magnetic material, typically iron oxide or a similar compound.

Data is written to and read from the tape by a tape drive, which

magnetizes or demagnetizes specific areas of the tape to represent

binary information.

Role in Data Storage:

 Backup and Archiving: Magnetic tape is widely used for

backing up large volumes of data due to its high storage

Computer Organization & Architecture -308

capacity and durability. It is also preferred for long-term

archiving because it can retain data for several decades if

stored properly.

 Cost-Effective Storage: Compared to other storage media

like hard drives and SSDs, magnetic tape offers a lower

cost per gigabyte, making it an economical choice for

storing large datasets.

 Bulk Data Transfer: Magnetic tapes are used to transport

large datasets physically, especially in scenarios where

network transfer is impractical or too slow.

Types of Magnetic Tape Storage

1. Cartridge Tapes: These are enclosed in protective

cartridges and include formats like Linear Tape-Open

(LTO) and Digital Linear Tape (DLT).

2. Reel-to-Reel Tapes: Traditional open reels of tape, now

largely obsolete, but historically significant in early

computing.

Performance Characteristics

1. Storage Capacity:

o Modern magnetic tapes, such as LTO-9, offer

capacities of up to 18 terabytes (native) and 45

terabytes (compressed).

2. Data Transfer Rate:

o High data transfer rates are possible, with LTO-9

offering transfer rates up to 400 MB/s (native) and

1,000 MB/s (compressed).

Computer Organization & Architecture -309

3. Durability and Longevity:

o Tapes can last up to 30 years or more when stored

in optimal conditions, making them ideal for long-

term data preservation.

Advantages and Disadvantages

Advantages:

 High Capacity: Magnetic tape can store large amounts of

data, making it suitable for enterprise-level backup and

archival solutions.

 Cost-Effective: Low cost per gigabyte compared to disk-

based storage.

 Durability: Resistant to physical shocks and can last for

decades if stored properly.

Disadvantages:

 Sequential Access: Data access is slower compared to

random access storage devices like HDDs and SSDs, as the

tape must be wound to the specific location of the data.

 Physical Storage: Requires significant physical space for

tape libraries and proper environmental conditions to

ensure longevity.

 Maintenance: Regular maintenance of tape drives and

libraries is necessary to ensure reliable performance.

Usage Scenarios

1. Enterprise Backup Systems: Companies use magnetic

tape for regular backup operations, storing copies of critical

data to protect against data loss.

Computer Organization & Architecture -310

2. Data Archiving: Organizations archive historical data,

research data, and compliance-related information on

magnetic tape to ensure long-term preservation.

3. Disaster Recovery: Magnetic tapes are part of disaster

recovery plans, providing a reliable medium for restoring

data in case of catastrophic failures.

9.9 CONCLUSION

In this unit, we explored critical components and concepts related

to memory management and storage systems in computer

architecture. We began by examining the Memory Management

Unit (MMU), understanding its role in facilitating efficient

memory access and protection. We delved into the hardware

mechanisms behind paging and segmentation, gaining insights into

how modern systems handle memory allocation and address

translation.

We then analyzed the hit/miss ratio, an essential performance

metric for evaluating cache effectiveness. Understanding the

factors affecting this ratio and methods to improve it is vital for

optimizing system performance. Our discussion extended to

magnetic disks, where we examined their performance

characteristics, RAID configurations for enhanced reliability and

performance, and the role of disk caching. Finally, we explored

magnetic tape, a storage medium still relevant for specific archival

and backup applications due to its cost-effectiveness and capacity.

This comprehensive exploration of memory management

hardware, performance metrics, and storage solutions underscores

Computer Organization & Architecture -311

the importance of these components in designing efficient and

reliable computer systems. The knowledge gained in this unit

provides a solid foundation for further studies and practical

applications in computer architecture and system optimization.

9.10 UNIT BASED QUESTIONS &
ANSWERS

1. What is the role of the Memory Management Unit (MMU) in

a computer system?

Answer: The MMU is responsible for translating logical addresses

to physical addresses, managing memory protection, and handling

virtual memory. It ensures that each process in the system has its

own address space, providing both isolation and efficient memory

utilization.

2. How does paging hardware facilitate memory management?

Answer: Paging hardware divides the memory into fixed-size

pages and manages the mapping between virtual pages and

physical frames. It helps in reducing fragmentation and enables

efficient use of memory by allowing non-contiguous memory

allocation.

3. Explain the concept of hit/miss ratio in the context of cache

memory.

Answer: The hit/miss ratio is a performance metric that measures

the effectiveness of a cache. A "hit" occurs when the requested data

is found in the cache, while a "miss" occurs when it is not. The hit

Computer Organization & Architecture -312

ratio is the proportion of hits to total accesses, and a higher hit ratio

indicates better cache performance.

4. What are RAID levels, and how do they improve

performance and reliability?

Answer: RAID (Redundant Array of Independent Disks) levels

define various ways of storing data across multiple disks to

improve performance and reliability. For example, RAID 0

improves performance by striping data across disks, RAID 1

improves reliability through mirroring, and RAID 5 and 6 provide

a balance of performance and reliability with distributed parity.

5. Describe the purpose of disk caching and how it improves

magnetic disk performance.

Answer: Disk caching temporarily stores frequently accessed data

in a faster storage medium to reduce access times. It improves

performance by minimizing the latency associated with reading

from or writing to a magnetic disk, thus speeding up data retrieval

and overall system performance.

6. What is the significance of Translation Lookaside Buffer

(TLB) in memory management?

Answer: The TLB is a cache used by the MMU to reduce the time

taken to access the translation tables. It stores recent translations of

virtual addresses to physical addresses, significantly speeding up

address translation and improving overall system performance.

Computer Organization & Architecture -313

9.11 REFERENCES

 Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

 Taub, Herbert, and Donald L. Schilling. Digital Integrated

Electronics. McGraw-Hill Education, 1994.

 Mano, M. Morris, and Michael D. Ciletti. Digital Design:

With an Introduction to the Verilog HDL. Pearson

Education, 2017.

 Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals

of Logic Design. Cengage Learning, 2013.

 Streetman, Ben G., and Sanjay Banerjee. Solid State

Electronic Devices. Prentice Hall, 2005.

 Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -314

UNIT – 10: PERIPHERAL DEVICES &
I/O INTERFACES
Structure

10.0 Introduction

10.1 Objectives

10.2 Peripheral Devices

10.3 I/O Interface

10.4 Modes of Transfer

10.5 Priority Interrupt

10.6 Direct Memory Access (DMA)

10.7 Input-Output Processor (IOP)

10.8 Conclusion

10.9 Unit Based Questions & Answers

10.10 References

10.0 INTRODUCTION

In modern computer systems, the efficient management of input

and output operations is crucial for optimal performance and user

experience. Peripheral devices, such as keyboards, mice, printers,

and storage devices, form an essential part of the computing

environment, allowing interaction with the system and extending

its capabilities. These devices require robust interfaces and transfer

methods to communicate effectively with the central processing

unit (CPU) and memory.

The architecture and methods used to handle input and output

operations significantly impact the overall system performance.

Computer Organization & Architecture -315

Various techniques, including direct memory access (DMA),

priority interrupts, and the use of specialized input-output

processors (IOPs), have been developed to streamline these

operations and reduce the CPU's workload. Each of these

techniques has its unique advantages and is suited to different

types of tasks and performance requirements.

This unit explores the fundamental concepts and structures related

to peripheral devices and their interaction with computer systems.

It covers the various types of I/O interfaces, modes of data transfer,

the concept and implementation of priority interrupts, and the role

of DMA in improving data transfer efficiency. Additionally, we

delve into the design and function of input-output processors,

which further enhance the system's ability to handle complex I/O

operations seamlessly. Through this comprehensive examination,

we aim to provide a clear understanding of how input-output

operations are managed in modern computer systems and their

impact on overall performance.

10.1 OBJECTIVES

After completing this unit, you will be able to understand;

 Understand the role and types of peripheral devices in

computer systems.

 Explore the different types of I/O interfaces and their

functionalities.

 Learn about various modes of data transfer and their

applications.

 Comprehend the concept of priority interrupts and their

implementation.

Computer Organization & Architecture -316

 Gain insights into Direct Memory Access (DMA) and

its benefits.

 Study the architecture and function of Input-Output

Processors (IOPs).

10.2 PERIPHERAL DEVICES

Peripheral devices are hardware components that are not part of the

central processing unit (CPU) or main memory of a computer

system but are essential for various input, output, and storage

functions. They are typically connected to the computer via various

ports and interfaces.

Definition and Examples of Peripheral Devices

Peripheral devices are external devices that provide input to the

computer, output from the computer, or storage capabilities. They

enhance the functionality of the computer system by allowing it to

interact with the external environment and store data persistently.

Examples of peripheral devices include:

 Input Devices: Keyboard, mouse, scanner, microphone.

 Output Devices: Monitor, printer, speakers.

 Storage Devices: Hard drives, solid-state drives (SSDs),

optical drives (CDs, DVDs).

Classification of Peripheral Devices

1. Input Devices

Computer Organization & Architecture -317

o Keyboard: A primary input device used to input

text and commands into the computer.

o Mouse: A pointing device that allows users to

interact with the computer's graphical user interface.

o Scanner: A device that converts physical

documents into digital format.

o Microphone: An audio input device used for voice

recording or communication.

2. Output Devices

o Monitor: The primary output device used to display

visual information from the computer.

o Printer: A device that produces hard copies of

digital documents.

o Speakers: Audio output devices used to play sound.

3. Storage Devices

o Hard Disk Drives (HDDs): Traditional storage

devices that use spinning disks to read and write

data.

o Solid-State Drives (SSDs): Faster, more reliable

storage devices that use flash memory.

o Optical Drives: Devices that read and write data

from optical discs like CDs, DVDs, and Blu-rays.

Types of Peripheral Devices

1. Input Devices

o Keyboard: The keyboard is a primary input device

used to input text and commands into the computer.

Keyboards come in various layouts, with the

Computer Organization & Architecture -318

QWERTY layout being the most common. They can

be wired or wireless.

o Mouse: The mouse is a pointing device that allows

users to interact with the computer's graphical user

interface. It can be moved on a surface to control

the position of a cursor on the screen and has

buttons for clicking and selecting items.

o Scanner: A scanner converts physical documents

into digital format by capturing images of the

documents. Scanners can be flatbed, sheet-fed, or

handheld, and are used for digitizing printed text,

images, and other documents.

o Microphone: Microphones capture audio input for

recording or communication purposes. They can be

standalone devices or integrated into other hardware

like headsets, webcams, and laptops.

2. Output Devices

o Monitor: Monitors display visual output from the

computer. They come in various sizes and

resolutions, with technologies like LCD, LED, and

OLED. Monitors can be used for general

computing, gaming, graphic design, and other

applications.

o Printer: Printers produce hard copies of digital

documents. They can be inkjet, laser, or 3D printers,

each suited for different tasks like printing photos,

documents, or three-dimensional objects.

o Speakers: Speakers output audio from the

computer, providing sound for multimedia

applications, music, and communication. They can

Computer Organization & Architecture -319

be part of a sound system or integrated into other

devices.

3. Storage Devices

o Hard Disk Drives (HDDs): HDDs use spinning

disks coated with magnetic material to read and

write data. They offer large storage capacities and

are commonly used for data storage and backup.

o Solid-State Drives (SSDs): SSDs use flash memory

to store data, providing faster read/write speeds and

greater reliability compared to HDDs. They are

increasingly used in modern computers for their

performance benefits.

o Optical Drives: Optical drives read and write data

from optical discs like CDs, DVDs, and Blu-rays.

They are used for data distribution, media playback,

and backup storage.

10.3 I/O INTERFACE

The I/O (Input/Output) interface is a critical component of a

computer system, facilitating communication between the CPU

and peripheral devices. It ensures that data is transferred efficiently

and accurately between the internal system components and

external devices, such as keyboards, monitors, printers, and storage

drives.

Definition and Role of I/O Interface

The I/O interface acts as a bridge between the CPU and peripheral

devices, managing data exchange and ensuring compatibility

Computer Organization & Architecture -320

between different hardware components. It translates data and

control signals from the CPU into a form that peripheral devices

can understand and vice versa. This interface also handles the

timing and synchronization of data transfers, enabling smooth

operation of the entire system.

Types of I/O Interfaces

1. Parallel Interface

 Definition: A type of interface that transfers multiple bits

of data simultaneously across multiple channels or wires.

 Examples: Parallel ports, used primarily for printers and

older storage devices.

 Characteristics:

o Speed: High-speed data transfer as multiple bits are

transferred at once.

o Cable Length: Limited to shorter lengths due to

signal degradation over distance.

o Noise: Susceptible to noise and crosstalk between

wires.

 Applications: Older computers for connecting printers and

other high-speed peripherals.

2. Serial Interface

 Definition: Transfers data one bit at a time over a single

channel or wire.

 Examples:

o USB (Universal Serial Bus): Widely used for

connecting peripherals like keyboards, mice, and

storage devices.

o RS-232: Older standard used for serial

communication in modems and other devices.

Computer Organization & Architecture -321

o SATA (Serial ATA): Used for connecting hard

drives and SSDs.

 Characteristics:

o Cable Length: Can use longer cables without

significant signal degradation.

o Interference: Less susceptible to interference and

crosstalk.

 Applications: Modern computers for most peripheral

connections.

3. USB (Universal Serial Bus)

 Definition: A serial interface standard designed to connect

peripheral devices to a computer.

 Features:

o Plug-and-Play: Automatically recognized by the

system when connected.

o Hot-Swappable: Devices can be connected and

disconnected without rebooting.

o Hubs: Supports multiple devices through hubs.

 Versions: USB 1.0, 2.0, 3.0, 3.1, and USB-C, each offering

higher data transfer rates and better power delivery.

 Applications: Connecting a wide range of devices

including keyboards, mice, external storage, printers, etc.

4. SCSI (Small Computer System Interface)

 Definition: A set of standards for connecting and

transferring data between computers and peripheral

devices.

 Applications: Primarily used in servers, high-performance

workstations, and storage systems.

 Characteristics:

Computer Organization & Architecture -322

o Multiple Devices: Supports multiple devices on a

single bus.

o Speed: High-speed data transfer rates.

o Complexity: More complex configuration and

higher cost.

 Applications: High data throughput and reliability

environments like servers and professional workstations.

5. Bluetooth and Wireless Interfaces

 Definition: Wireless communication protocols for short-

range data transfer.

 Examples:

o Bluetooth: For peripherals like keyboards, mice,

and headphones.

o Wi-Fi: For connecting devices to local networks

and the internet.

 Characteristics:

o Mobility: Eliminates the need for physical cables.

o Range: Limited range for Bluetooth, wider for Wi-

Fi.

o Interference: Potential for interference from other

wireless devices.

 Applications: Mobile devices, laptops, and peripherals

requiring wireless connectivity.

I/O Interface Components

1. I/O Ports

o Definition: Physical connectors on the computer

where peripheral devices are attached.

o Examples: USB ports, Ethernet ports, HDMI ports,

audio jacks.

Computer Organization & Architecture -323

o Function: Provide a point of connection and

communication between the computer and external

devices.

2. I/O Controllers

o Definition: Hardware components that manage the

communication between the CPU and peripheral

devices.

o Examples: Disk controllers, network interface cards

(NICs), graphics cards.

o Function: Handle data transfer, error detection, and

correction, and ensure proper operation of

connected devices.

3. Device Drivers

o Definition: Software programs that enable the

operating system to communicate with peripheral

devices.

o Function: Translate high-level commands from the

OS into low-level commands understood by the

device, manage data transfer, and provide an

interface for device configuration and control.

Data Transfer Techniques

1. Programmed I/O

o Definition: The CPU is responsible for all data

transfer between the peripheral devices and

memory.

o Advantages: Simple and straightforward

implementation.

Computer Organization & Architecture -324

o Disadvantages: CPU is heavily involved, leading to

inefficiency and slower performance.

2. Interrupt-Driven I/O

o Definition: Peripheral devices interrupt the CPU to

signal that they are ready for data transfer, allowing

the CPU to perform other tasks in the meantime.

o Advantages: More efficient use of CPU resources.

o Disadvantages: Increased complexity in handling

interrupts and context switching.

3. Direct Memory Access (DMA)

o Definition: A method where data is transferred

directly between peripheral devices and memory

without CPU involvement.

o Advantages: Frees up CPU resources, faster data

transfer.

o Components: DMA controller, which manages the

data transfer process.

Importance of I/O Interface

1. Efficient Data Transfer

o Ensures fast and reliable communication between

the CPU and peripheral devices.

o Minimizes delays and maximizes system

performance.

2. Device Compatibility

o Standardized interfaces ensure compatibility

between different hardware components.

o Allows for easy integration and expansion of

computer systems.

Computer Organization & Architecture -325

3. System Stability

o Properly designed I/O interfaces and controllers

ensure stable and error-free operation of connected

devices.

o Helps prevent data corruption and system crashes.

10.4 MODES OF TRANSFER

The modes of transfer in computer systems refer to the methods

used to move data between the computer's central processing unit

(CPU), memory, and input/output (I/O) devices. Efficient data

transfer is crucial for system performance, and different modes are

used depending on the data transfer requirements and the hardware

capabilities. Here are the primary modes of transfer:

1. Programmed I/O

 Definition: In this mode, the CPU is responsible for

executing I/O instructions, checking the status of I/O

devices, and transferring data between memory and I/O

devices.

 Characteristics:

o CPU Involvement: The CPU actively manages the

transfer, which can lead to inefficiencies as the CPU

is occupied with I/O operations.

o Polling: The CPU continuously checks the status of

an I/O device in a loop until the device is ready for

data transfer.

 Applications: Suitable for systems with simple and low-

speed I/O operations.

Computer Organization & Architecture -326

2. Interrupt-Driven I/O

 Definition: This mode allows I/O devices to notify the

CPU when they are ready for data transfer by generating an

interrupt signal.

 Characteristics:

o CPU Efficiency: The CPU can perform other tasks

and is interrupted only when the I/O device is ready,

improving overall system efficiency.

o Interrupt Handling: The CPU executes an

interrupt service routine (ISR) to handle the data

transfer when an interrupt is received.

 Applications: Commonly used in systems where I/O

devices need to transfer data intermittently and efficiency is

important.

3. Direct Memory Access (DMA)

 Definition: DMA is a technique that allows I/O devices to

directly transfer data to and from memory without CPU

intervention.

 Characteristics:

o DMA Controller: A dedicated hardware

component, the DMA controller, manages the data

transfer process.

o CPU Offloading: The CPU initiates the DMA

transfer and is then free to perform other tasks,

significantly improving system performance.

o High-Speed Transfer: Suitable for high-speed data

transfer applications like disk drives and network

cards.

Computer Organization & Architecture -327

 Applications: Used in systems requiring high-speed data

transfers such as multimedia applications and high-speed

network interfaces.

4. Memory-Mapped I/O

 Definition: In this mode, I/O devices are assigned specific

memory addresses, and data transfer occurs through

standard memory access instructions.

 Characteristics:

o Unified Addressing: The same instructions used for

memory access are used for I/O operations.

o Efficiency: Simplifies the CPU's design as no

special I/O instructions are needed.

 Applications: Commonly used in systems with simple I/O

requirements and where the integration of memory and I/O

addressing simplifies system design.

5. Isolated I/O

 Definition: Isolated I/O uses a separate address space for

I/O devices, distinct from the memory address space.

 Characteristics:

o Special Instructions: Requires specific I/O

instructions to access I/O devices.

o Complexity: More complex CPU design due to the

need for additional I/O instructions.

 Applications: Used in older computer systems and

microcontrollers where a clear distinction between memory

and I/O addressing is necessary.

Computer Organization & Architecture -328

10.5 PRIORITY INTERRUPT

Priority interrupt systems are designed to handle multiple interrupt

requests from various I/O devices based on their priority levels.

The main goal is to ensure that the most critical tasks are addressed

first, enhancing the efficiency and responsiveness of the system.

This section delves into the concept, mechanisms, and applications

of priority interrupt systems.

1. Definition and Purpose

 Definition: A priority interrupt system assigns priority

levels to different interrupt sources and ensures that higher-

priority interrupts are serviced before lower-priority ones.

 Purpose: The primary purpose is to manage multiple

interrupt requests efficiently, ensuring that critical tasks

receive immediate attention while less critical tasks are

deferred.

2. Priority Levels

 Hierarchy: Interrupt sources are organized into a hierarchy

of priority levels. Each device or interrupt source is

assigned a specific priority level.

 Preemptive Handling: If a high-priority interrupt occurs

while a lower-priority interrupt is being serviced, the

current process is suspended, and the high-priority interrupt

is handled first.

Computer Organization & Architecture -329

3. Mechanisms for Priority Interrupts

 Daisy-Chaining: A simple hardware approach where

devices are connected in series. The first device in the chain

has the highest priority, and the priority decreases down the

chain.

 Parallel Priority Interrupt: A more complex and faster

approach where each device is connected to a priority

encoder. The encoder determines the highest-priority

interrupt and sends a signal to the CPU.

 Software Polling: The CPU polls the interrupt sources in a

predefined priority order. This method is simpler but slower

compared to hardware-based mechanisms.

4. Interrupt Vectors and Service Routines

 Interrupt Vector Table (IVT): A table that holds the

addresses of the interrupt service routines (ISRs) for

various interrupts. Each interrupt source has a specific

entry in the IVT.

 Interrupt Service Routine (ISR): A special block of code

executed in response to an interrupt. The ISR for a high-

priority interrupt must complete quickly to minimize the

delay for lower-priority interrupts.

5. Applications

 Real-Time Systems: Priority interrupt systems are crucial

in real-time systems where timely processing of critical

tasks is essential, such as in embedded systems, industrial

control systems, and medical devices.

 Multitasking Operating Systems: Used in operating

systems to manage hardware interrupts from various

peripheral devices like keyboards, mice, and network cards.

Computer Organization & Architecture -330

 Communication Systems: Ensures that urgent

communication tasks, like handling incoming data packets,

are given priority over less critical tasks.

6. Challenges and Considerations

 Complexity: Implementing a priority interrupt system can

add complexity to both hardware and software design.

 Overhead: Context switching and handling multiple

interrupts can introduce overhead, impacting system

performance if not managed efficiently.

 Starvation: Lower-priority tasks may face starvation if

high-priority interrupts occur frequently. Proper system

design and scheduling are necessary to mitigate this issue.

Types of Priority Interrupt Systems

Priority interrupt systems can be classified based on their

implementation methods and the way they manage and handle

multiple interrupt requests. Here are the main types of priority

interrupt systems:

1. Daisy-Chaining Priority System

 Mechanism: Devices are connected in a series (daisy-

chain) with each device having an interrupt enable line that

passes through it to the next device in the chain.

 Priority Determination: The device closest to the CPU

has the highest priority. If it generates an interrupt, it will

block further interrupts from lower-priority devices.

 Advantages: Simple and cost-effective.

 Disadvantages: Not scalable for systems with many

devices; lower-priority devices may experience long wait

Computer Organization & Architecture -331

times if higher-priority devices frequently generate

interrupts.

2. Parallel Priority Interrupt System

 Mechanism: Each interrupting device has a separate

interrupt line connected to a priority encoder, which

determines the highest-priority interrupt.

 Priority Determination: The priority encoder identifies

the highest-priority interrupt and sends the corresponding

interrupt vector to the CPU.

 Advantages: Fast and efficient; better suited for systems

with multiple interrupt sources.

 Disadvantages: More complex and expensive due to

additional hardware (priority encoder).

3. Software Polling

 Mechanism: The CPU periodically checks each device's

status in a predefined order to determine if it has requested

an interrupt.

 Priority Determination: The order in which devices are

polled defines their priority.

 Advantages: Simple to implement in software; no need for

additional hardware.

 Disadvantages: Slower than hardware-based systems; not

suitable for systems requiring immediate interrupt

servicing.

4. Interrupt Priority Level System

 Mechanism: Each interrupt request line is assigned a

priority level. The CPU includes a priority controller that

handles multiple interrupt requests based on these levels.

Computer Organization & Architecture -332

 Priority Determination: The priority controller ensures

that the highest-priority interrupt is serviced first.

 Advantages: Highly flexible and can handle complex

priority schemes; allows dynamic priority assignment.

 Disadvantages: Requires sophisticated hardware and

software support.

5. Vectored Interrupt System

 Mechanism: Each interrupt source is assigned a unique

vector address, which directly points to the interrupt service

routine (ISR).

 Priority Determination: The priority is determined by the

vector addresses assigned to the interrupt sources.

 Advantages: Fast and efficient interrupt handling; reduces

the need for interrupt processing overhead.

 Disadvantages: Complex to implement; requires hardware

support for vector addresses.

6. Nested Interrupts

 Mechanism: Allows an interrupt service routine (ISR) to

be interrupted by higher-priority interrupts.

 Priority Determination: Higher-priority interrupts can

interrupt lower-priority ISRs.

 Advantages: Improves system responsiveness for high-

priority tasks; prevents critical task delays.

 Disadvantages: Increases system complexity; requires

careful management to prevent stack overflow and ensure

ISR completion.

Computer Organization & Architecture -333

10.6 DIRECT MEMORY ACCESS
(DMA)

Direct Memory Access (DMA) is a method that allows peripheral

devices to transfer data to and from memory without the

continuous involvement of the CPU. This mechanism significantly

enhances the data transfer speed and efficiency within a computer

system by offloading the data transfer workload from the CPU.

Components of a DMA System

1. DMA Controller (DMAC)

o Manages the data transfer between memory and

peripheral devices.

o Controls the timing and sequencing of data transfer

operations.

o Often has multiple channels to handle multiple

devices simultaneously.

2. Peripheral Devices

o Include devices like disk drives, network cards, and

sound cards that need to transfer large amounts of

data.

3. System Bus

o The communication pathway that connects the

DMA controller, CPU, memory, and peripheral

devices.

Computer Organization & Architecture -334

How DMA Works

1. Initiation

o The CPU initializes the DMA controller by

providing it with the necessary parameters,

including:

 Source address (where the data is coming

from).

 Destination address (where the data is

going).

 The amount of data to be transferred.

o The CPU then instructs the peripheral device to

begin the data transfer.

2. Data Transfer

o The DMA controller takes over the data transfer

process.

o It sends requests to the memory to read or write data

directly.

o The DMA controller handles the data transfer

between the peripheral device and the memory

while the CPU performs other tasks.

3. Completion

o Once the data transfer is complete, the DMA

controller sends an interrupt to the CPU.

o The CPU then resumes control and processes the

data as needed.

Computer Organization & Architecture -335

Types of DMA Transfers

1. Burst Mode

o Transfers a block of data in a single, continuous

burst.

o The DMA controller takes control of the bus and

transfers all the data before releasing the bus back

to the CPU.

o Provides high-speed data transfer but can cause the

CPU to wait if it needs the bus.

2. Cycle Stealing Mode

o The DMA controller transfers one data word per bus

cycle, allowing the CPU to access the bus between

transfers.

o This mode balances bus usage between the DMA

and the CPU, reducing the CPU's waiting time.

3. Transparent Mode

o The DMA controller transfers data only when the

CPU is not using the bus.

o Provides the lowest data transfer speed but does not

interfere with the CPU's operations.

Computer Organization & Architecture -336

Advantages of DMA

 Increased Efficiency: Offloads data transfer tasks from the

CPU, allowing it to focus on more critical operations.

 Faster Data Transfer: Enables high-speed data transfers

directly between memory and peripheral devices.

 Reduced CPU Overhead: Minimizes CPU involvement in

data transfer processes, reducing processing overhead.

Disadvantages of DMA

 Complexity: Adds complexity to the system design and

requires additional hardware (DMA controller).

 Bus Contention: Potential for bus contention, as both the

DMA controller and the CPU may need to access the bus

simultaneously.

DMA Operation Flow

1. CPU Initiates DMA Transfer: The CPU sets up the DMA

controller with source, destination addresses, and transfer

size.

2. DMA Controller Requests Bus Access: The DMA

controller sends a request to the bus arbiter for control of

the system bus.

3. Bus Arbiter Grants Bus Access: The bus arbiter grants the

DMA controller access to the system bus.

4. DMA Controller Performs Data Transfer: The DMA

controller reads data from the source and writes it to the

destination.

Computer Organization & Architecture -337

5. DMA Controller Sends Interrupt: After completing the

transfer, the DMA controller sends an interrupt to the CPU.

6. CPU Processes Data: The CPU processes the data as

required.

10.7 INPUT-OUTPUT PROCESSOR
(IOP)

An Input-Output Processor (IOP) is a specialized processor used to

manage input and output operations in a computer system. It

offloads these tasks from the main CPU, enabling more efficient

processing and better overall system performance. The IOP is

designed to handle data transfer between the main memory and

peripheral devices independently of the CPU.

Functions of an IOP

1. Data Transfer Management: The IOP controls the transfer

of data between the main memory and peripheral devices,

ensuring that data is correctly transmitted and received.

2. Interrupt Handling: The IOP manages interrupts from

peripheral devices, freeing the CPU from having to handle

these interruptions directly. It processes the interrupt

requests and signals the CPU only when necessary.

3. Device Control: The IOP issues commands to peripheral

devices, controlling their operation and status. It ensures

that devices are correctly configured and ready for data

transfer.

4. Buffering: The IOP often includes buffer memory to

temporarily store data during transfers. This buffering helps

Computer Organization & Architecture -338

to smooth out differences in data transfer rates between the

CPU, memory, and peripheral devices.

5. Error Detection and Correction: The IOP can detect and

correct errors that occur during data transfer, ensuring data

integrity and reliability.

Architecture of an IOP

1. Control Unit: Manages the execution of input-output

instructions and coordinates the operations of the IOP.

2. Buffer Memory: Temporarily stores data during transfers

to manage differences in data rates between devices.

3. Device Interfaces: Connects the IOP to various peripheral

devices, allowing it to send and receive data.

4. Interrupt System: Handles interrupt signals from

peripheral devices, prioritizing and processing them as

needed.

5. Communication Bus: Connects the IOP to the main CPU

and memory, enabling data exchange and coordination.

IOP Operation Flow

1. Initialization: The CPU initializes the IOP with the

necessary parameters for data transfer, including source and

Computer Organization & Architecture -339

destination addresses, transfer size, and device control

information.

2. Data Transfer: The IOP takes over the data transfer

process, moving data between memory and peripheral

devices according to the instructions provided by the CPU.

3. Interrupt Handling: The IOP processes interrupts from

peripheral devices, performing the necessary actions and

notifying the CPU only when essential.

4. Completion: Upon completing the data transfer or

handling an interrupt, the IOP signals the CPU, allowing it

to resume or take necessary actions based on the completed

task.

Advantages of Using an IOP

 Increased CPU Efficiency: Offloads input-output tasks

from the CPU, allowing it to focus on core processing

tasks.

 Improved System Performance: Manages data transfer

more efficiently, reducing bottlenecks and improving

overall system throughput.

 Enhanced Reliability: Provides dedicated error detection

and correction, ensuring data integrity.

 Scalability: Allows for easier integration of additional

peripheral devices without significantly impacting CPU

performance.

Input-Output Processor (IOP)

1. Definition and Role of IOP

o Explanation of input-output processors.

o Difference between IOP and CPU.

Computer Organization & Architecture -340

2. Architecture of IOP

o Components and operation.

o Interaction with CPU and peripheral devices.

3. Applications and Benefits

o Use cases in modern computing.

o Advantages of using IOPs.

10.8 CONCLUSION

The management of input and output operations is a critical aspect

of computer system design, directly influencing performance and

efficiency. Peripheral devices, through their various types and

functionalities, expand the capabilities of a computer system,

allowing it to interact with the external environment effectively.

The interfaces and modes of transfer used for these devices must

be well-designed to ensure smooth communication between the

peripheral devices, the CPU, and memory.

Understanding the different types of I/O interfaces, such as serial

and parallel interfaces, is crucial for selecting the right method for

specific tasks. Modes of data transfer, including programmed I/O,

interrupt-driven I/O, and direct memory access (DMA), each have

their advantages and ideal use cases, impacting how efficiently

data is transferred and processed. Priority interrupts and their

types, such as vectored and non-vectored interrupts, play a

significant role in managing the flow of data and ensuring that

high-priority tasks are addressed promptly.

The introduction of specialized components like Direct Memory

Access (DMA) controllers and Input-Output Processors (IOPs) has

Computer Organization & Architecture -341

further enhanced the system's ability to handle I/O operations

efficiently. DMA reduces the CPU's involvement in data transfer

tasks, freeing it up for other processing activities, while IOPs

manage complex I/O operations independently, significantly

improving system performance.

Through this unit, we have explored the various components and

techniques involved in managing input-output operations in

computer systems. By understanding these concepts, we gain a

deeper appreciation of the intricacies involved in computer

architecture and the continuous advancements aimed at improving

system efficiency and performance.

10.9 UNIT BASED QUESTIONS &
ANSWERS

1. What is the role of peripheral devices in a computer system?

Answer: Peripheral devices are hardware components that connect

to the computer to provide additional functionality and

input/output capabilities. Examples include keyboards, mice,

printers, and external storage devices. They enable the computer to

interact with the external environment, allowing users to input

data, receive output, and expand storage capacity.

2. Explain the difference between serial and parallel I/O

interfaces.

Answer: Serial I/O interfaces transmit data one bit at a time over a

single channel, making them suitable for long-distance

communication and simpler connections, such as USB and RS-

232. Parallel I/O interfaces transmit multiple bits simultaneously

Computer Organization & Architecture -342

over multiple channels, which allows for faster data transfer rates

but is often limited by cable length and complexity, as seen in

older parallel ports like the LPT port.

3. What are the different modes of data transfer, and how do

they impact system performance?

Answer: The primary modes of data transfer are:

 Programmed I/O (PIO): The CPU actively controls data

transfers, which can be slow as it requires continuous CPU

intervention.

 Interrupt-driven I/O: The CPU is notified via interrupts

when data transfer is required, reducing idle time and

improving efficiency compared to PIO.

 Direct Memory Access (DMA): A DMA controller

handles data transfers directly between memory and

peripheral devices, freeing the CPU to perform other tasks

and significantly improving data transfer rates and system

performance.

4. What is a priority interrupt, and why is it important?

Answer: A priority interrupt system allows the CPU to handle

multiple interrupt requests by assigning different priorities to each

request. Higher-priority interrupts are serviced before lower-

priority ones, ensuring that critical tasks receive prompt attention.

This mechanism prevents lower-priority tasks from delaying the

processing of urgent requests and maintains system

responsiveness.

Computer Organization & Architecture -343

5. Describe the function of an Input-Output Processor (IOP)

and its advantages.

Answer: An Input-Output Processor (IOP) is a specialized

processor designed to manage I/O operations independently of the

main CPU. It handles data transfers between peripherals and

memory, performs I/O control tasks, and often manages multiple

I/O channels simultaneously. The advantages include reduced CPU

load, improved overall system performance, and the ability to

handle complex I/O operations more efficiently.

Computer Organization & Architecture -344

10.10 REFERENCES

 Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

 Taub, Herbert, and Donald L. Schilling. Digital Integrated

Electronics. McGraw-Hill Education, 1994.

 Mano, M. Morris, and Michael D. Ciletti. Digital Design:

With an Introduction to the Verilog HDL. Pearson

Education, 2017.

 Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals

of Logic Design. Cengage Learning, 2013.

 Streetman, Ben G., and Sanjay Banerjee. Solid State

Electronic Devices. Prentice Hall, 2005.

 Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -345

UNIT – 11: DATA TRANSFER, STROBE
CONTROL, AND HANDSHAKING
Structure

11.0 Introduction

11.1 Objectives

11.2 Serial Communication

11.3 I/O Controllers

11.4 Asynchronous Data Transfer

11.5 Strobe Control

11.6 Handshaking

11.7 Conclusion

11.8 Unit Based Questions & Answers

11.9 References

11.0 INTRODUCTION

In modern computer systems, the efficient management of data

transfer between the central processing unit (CPU) and peripheral

devices is essential for optimal performance and functionality. This

communication is facilitated through a variety of methods and

components designed to handle different aspects of input-output

(I/O) operations. Serial communication, I/O controllers, and data

transfer techniques such as asynchronous data transfer, strobe

control, and handshaking are crucial elements in this process.

Understanding these concepts provides a foundation for

comprehending how data is managed and transferred in computing

systems.

Computer Organization & Architecture -346

Serial communication is a fundamental method for transmitting

data sequentially over a single channel, making it particularly

effective for long-distance and low-speed applications. This

approach contrasts with parallel communication, which transfers

multiple bits simultaneously, and is essential in many everyday

devices and systems. The principles of serial communication,

including data framing and baud rates, are key to ensuring accurate

and efficient data transfer.

I/O controllers play a pivotal role in managing interactions

between the CPU and peripheral devices, handling tasks such as

data transfer, device initialization, and error management. By

abstracting the complexity of these operations, controllers improve

system performance and simplify device communication.

Additionally, methods like asynchronous data transfer, strobe

control, and handshaking further enhance data integrity and

synchronization, ensuring reliable and efficient communication

between devices. This section explores these topics in detail,

offering insights into their functions and impact on computer

system design.

11.1 OBJECTIVES

After completing this unit, you will be able to understand;

 Serial Communication: Learn the basics of serial data

transmission, including framing, baud rates, and its use in

connecting devices.

 I/O Controllers: Understand the role of I/O controllers in

facilitating communication between the CPU and

Computer Organization & Architecture -347

peripheral devices, including their functions and

management.

 Asynchronous Data Transfer: Explore how asynchronous

data transfer operates without a synchronous clock signal,

enabling flexible data communication.

 Strobe Control: Study how strobe signals manage timing

and synchronization in data transfer processes to ensure

accurate communication.

 Handshaking: Learn about handshaking protocols that

coordinate data transfer between devices, ensuring

reliability and error management.

11.2 SERIAL COMMUNICATION

Serial communication is a method of transmitting data one bit at a

time over a single communication line or channel. Unlike parallel

communication, which sends multiple bits simultaneously across

multiple channels, serial communication sends data sequentially.

This method is widely used due to its simplicity and efficiency,

particularly for long-distance data transmission where parallel

communication would be cumbersome and less reliable.

Types of Serial Communication

 Synchronous Serial Communication

o Description: Data is transmitted in sync with a

clock signal that both the sender and receiver share.

This allows for the precise timing of data bits,

leading to faster and more reliable data transfers.

o Protocols: Common synchronous protocols include

Serial Peripheral Interface (SPI) and Inter-

Computer Organization & Architecture -348

Integrated Circuit (I2C). SPI uses a master-slave

architecture with a dedicated clock line, while I2C

allows multiple devices to communicate over a

shared bus with a clock signal.

o Applications: Used in high-speed data transfer

applications such as memory devices and

communication between microcontrollers.

 Asynchronous Serial Communication

o Description: Data is transmitted without a clock

signal. Instead, it uses start and stop bits to frame

the data bits, which allows the receiver to identify

the beginning and end of each byte.

o Protocols: Examples include Universal

Asynchronous Receiver-Transmitter (UART) and

RS-232. UART is commonly used for serial ports

on computers, while RS-232 is a standard for serial

communication that defines the electrical

characteristics and connector types.

o Applications: Suitable for devices where precise

timing is less critical, such as serial ports for

peripherals and communication between

microcontrollers.

Computer Organization & Architecture -349

3. Baud Rate

 Definition: The baud rate is the rate at which data is

transmitted in a communication channel, measured in bits

per second (bps). It determines the speed of data transfer

and must be set equally on both communicating devices.

 Common Baud Rates: Examples include 9600 bps, 19200

bps, 115200 bps. Higher baud rates allow for faster data

transfer but may require better signal integrity to prevent

errors.

4. Advantages and Disadvantages

 Advantages:

o Reduced Wiring: Serial communication requires

fewer wires compared to parallel communication,

simplifying connections and reducing costs.

o Long-Distance Transmission: More suitable for

long-distance communication where signal

degradation and timing issues affect parallel

transmission.

Computer Organization & Architecture -350

o Simplicity: The protocol and hardware required for

serial communication are generally simpler and less

expensive.

 Disadvantages:

o Lower Data Transfer Rate: Generally slower

compared to parallel communication, making it less

ideal for applications requiring very high data rates.

o Error Detection: Error detection and correction are

more complex due to the lack of synchronization

provided by a clock signal.

5. Common Protocols

 UART (Universal Asynchronous Receiver-Transmitter)

o Description: A hardware communication protocol

that manages asynchronous serial communication. It

handles the framing of data, including start and stop

bits, and often includes error-checking features such

as parity bits.

o Usage: Commonly used for serial ports and

communication between microcontrollers.

 RS-232

o Description: A standard for serial communication

that defines the electrical characteristics and

connector types for serial ports. It supports both

synchronous and asynchronous communication.

o Usage: Frequently used for connecting peripherals

like modems, printers, and older computer

hardware.

Computer Organization & Architecture -351

 SPI (Serial Peripheral Interface)

o Description: A synchronous serial communication

protocol used for high-speed data transfer. It uses

separate lines for data, clock, and select signals.

o Usage: Commonly used in communication between

microcontrollers and peripheral devices like sensors

and memory chips.

 I2C (Inter-Integrated Circuit)

o Description: A synchronous serial communication

protocol that allows multiple devices to

communicate over a two-wire bus (SDA for data

and SCL for clock). It uses addressing to

differentiate between multiple devices on the same

bus.

o Usage: Often used for communication between low-

speed peripherals, such as sensors and EEPROMs,

within embedded systems.

6. Applications

Serial communication is used in various applications including:

 Computer Serial Ports: For connecting peripherals such

as mice, keyboards, and modems.

 Embedded Systems: For communication between

microcontrollers and sensors or other modules.

 Data Acquisition: For transferring data from sensors or

instruments to a central processing unit.

Computer Organization & Architecture -352

11.3 I/O CONTROLLERS

An I/O (Input/Output) controller is a crucial component in

computer systems that manages the communication between the

CPU (Central Processing Unit) and peripheral devices such as

keyboards, mice, printers, and storage devices. Its primary purpose

is to handle data transfers to and from these peripherals and to

ensure that the data is processed correctly. The I/O controller

abstracts the complexities of interfacing with different types of

hardware and provides a standard interface for the CPU to interact

with these devices.

2. Types of I/O Controllers

 Peripheral Interface Controllers (PICs)

o Description: These controllers manage the

communication between the CPU and peripheral

devices. They handle tasks such as data buffering,

signal conversion, and protocol management.

o Examples: Programmable Peripheral Interface

(PPI), and Advanced Programmable Interrupt

Controller (APIC).

o Usage: Used in various types of peripherals

including serial and parallel ports.

 Direct Memory Access (DMA) Controllers

o Description: DMA controllers facilitate direct data

transfer between memory and peripheral devices

without involving the CPU in the data transfer

Computer Organization & Architecture -353

process. This reduces CPU overhead and improves

system performance.

o Types: Single-channel DMA, Multi-channel DMA.

o Usage: Commonly used for high-speed data

transfers such as disk I/O operations and

multimedia processing.

 Storage Controllers

o Description: Storage controllers manage data

transfer between storage devices (like hard drives

and SSDs) and the system memory. They handle

tasks such as data read/write operations, error

checking, and data buffering.

o Examples: SATA controllers, RAID controllers.

o Usage: Used to interface with hard drives, SSDs,

and other storage devices to manage data storage

and retrieval.

 Network Interface Controllers (NICs)

o Description: NICs manage network communication

between the computer and network devices. They

handle data packet transmission, reception, and

protocol management.

o Examples: Ethernet controllers, Wi-Fi adapters.

o Usage: Used for connecting computers to local area

networks (LANs) or the internet.

3. Functions of I/O Controllers

 Data Buffering

o Description: I/O controllers often use buffers to

temporarily store data while it is being transferred

Computer Organization & Architecture -354

between the CPU and peripheral devices. This helps

to smooth out data transfers and manage differences

in data transfer rates.

o Benefit: Reduces the risk of data loss or corruption

during transfer and improves overall system

efficiency.

 Signal Conversion

o Description: Converts signals between different

formats used by the CPU and peripherals. For

instance, converting parallel data from a peripheral

to serial data for transmission to the CPU.

o Benefit: Ensures compatibility between devices

with different signaling methods.

 Interrupt Handling

o Description: Manages interrupts generated by

peripheral devices to notify the CPU of events that

need attention, such as data availability or errors.

o Benefit: Allows for efficient handling of multiple

I/O operations by prioritizing and managing

interrupt requests.

 Protocol Management

o Description: Implements communication protocols

specific to each peripheral device. This includes

managing the timing, data format, and error

checking.

o Benefit: Ensures that data is transmitted and

received correctly according to the requirements of

each device.

Computer Organization & Architecture -355

4. Design Considerations

 Performance

o Description: The performance of an I/O controller

can affect overall system performance. High-speed

data transfer capabilities and efficient interrupt

handling are crucial.

o Consideration: Controllers should be designed to

handle the data rates and workload requirements of

the system.

 Compatibility

o Description: I/O controllers must be compatible

with various peripheral devices and system

architectures. They should support standard

communication protocols and interfaces.

o Consideration: Ensures that the controller can

interface with a wide range of devices and systems.

 Scalability

o Description: Controllers should be able to handle

an increasing number of peripherals and higher data

transfer rates as system requirements grow.

o Consideration: Design should accommodate future

expansion and upgrades.

5. Applications

I/O controllers are integral to many aspects of modern computing,

including:

 Computer Systems: Managing communication between

the CPU and various peripheral devices.

Computer Organization & Architecture -356

 Embedded Systems: Handling I/O operations in devices

like printers, medical equipment, and industrial machines.

 Networking: Managing data transfers in networked

environments through NICs.

11.4 ASYNCHRONOUS DATA
TRANSFER

Asynchronous data transfer is a communication method where data

is transmitted between devices without the need for a shared clock

signal to synchronize the transmission. Unlike synchronous data

transfer, which relies on a common clock signal to coordinate the

timing of data transfers, asynchronous transfer uses start and stop

signals to manage the timing of data exchanges. This allows for

flexible and independent operation of the transmitting and

receiving devices.

2. Characteristics

 Start and Stop Bits

o Description: In asynchronous data transfer, each

data frame is enclosed between start and stop bits.

The start bit signals the beginning of data

transmission, while the stop bit indicates the end of

the transmission.

o Usage: This method helps in identifying the

boundaries of data frames and ensuring that the

receiver knows when to start and stop reading data.

Computer Organization & Architecture -357

 Variable Timing

o Description: Unlike synchronous transfer, which

requires precise timing synchronization,

asynchronous transfer allows for variable timing

between data bits. The receiver determines when to

sample the data based on the start and stop bits.

o Benefit: Provides flexibility in communication, as

devices do not need to operate at the same clock

speed.

 Error Detection

o Description: Asynchronous transfer typically

includes mechanisms for error detection, such as

parity bits, to ensure the integrity of transmitted

data.

o Usage: Parity bits can detect errors in data

transmission and trigger retransmission if necessary.

3. Modes of Asynchronous Data Transfer

 Simplex

o Description: Data transfer occurs in only one

direction, from the transmitter to the receiver, with

no feedback from the receiver to the transmitter.

o Example: Keyboard data sent to a computer.

 Half-Duplex

o Description: Data can flow in both directions, but

not simultaneously. The communication device

must switch between sending and receiving modes.

o Example: Walkie-talkies where one person speaks

while the other listens, and vice versa.

Computer Organization & Architecture -358

 Full-Duplex

o Description: Data can flow in both directions

simultaneously, allowing for simultaneous sending

and receiving of data.

o Example: Telephones where both parties can talk

and listen at the same time.

4. Advantages

 Simplified Hardware

o Description: Asynchronous transfer does not

require complex synchronization circuits,

simplifying the design of communication systems.

o Benefit: Reduces the cost and complexity of

hardware.

 Flexibility

o Description: Devices do not need to operate at the

same clock speed or maintain precise timing,

allowing for greater flexibility in communication.

o Benefit: Facilitates communication between devices

with different clock speeds and operating rates.

 Error Detection

o Description: Includes mechanisms such as parity

bits to detect errors in transmission and ensure data

integrity.

o Benefit: Improves reliability of data transfer.

5. Disadvantages

 Overhead

Computer Organization & Architecture -359

o Description: The inclusion of start and stop bits

increases the amount of data transmitted, leading to

overhead.

o Impact: Reduces the effective data transfer rate.

 Limited Speed

o Description: Asynchronous transfer may be slower

compared to synchronous transfer due to the lack of

continuous synchronization.

o Impact: Less suitable for high-speed data transfer

requirements.

6. Applications

Asynchronous data transfer is widely used in various

communication systems, including:

 Serial Communication: Commonly used in serial ports for

computer peripherals such as keyboards and mice.

 Modems: Used for data transmission over telephone lines.

 UARTs (Universal Asynchronous Receiver-

Transmitter): Used in microcontrollers for serial

communication with other devices.

11.5 STROBE CONTROL

Strobe control refers to a mechanism used in digital

communication systems to manage the timing of data transfer

between devices. A strobe signal is a timing pulse that is used to

indicate when data should be read or written, ensuring that both the

sender and receiver are synchronized. It acts as a "trigger" that tells

the receiving device when to sample or process the incoming data.

Computer Organization & Architecture -360

Characteristics of Strobe Control

 Strobe Signal

o Description: A strobe signal is a timing pulse that is

generated by the sender to indicate that data on the

bus is valid and ready to be read by the receiver. It

typically accompanies data signals and is used to

synchronize data transfer.

o Usage: Helps in ensuring that the data is captured

correctly by signaling the exact time when the data

should be sampled.

 Timing Control

o Description: Strobe control provides precise timing

for data transfer, ensuring that data is valid when it

is sampled by the receiving device. The timing of

the strobe signal is crucial for accurate data

transmission.

o Benefit: Reduces the chances of data corruption and

synchronization issues.

 Data Validity

o Description: The strobe signal indicates when data

is stable and valid, allowing the receiver to read the

data accurately. The data is only considered valid

when the strobe signal is active.

o Benefit: Ensures reliable data transfer by avoiding

sampling of unstable or incorrect data.

Modes of Strobe Control

 Active High Strobe

Computer Organization & Architecture -361

o Description: The strobe signal is active (high)

when data is valid. The receiver reads the data when

the strobe signal is high.

o Example: Used in many parallel communication

systems where the strobe pulse is used to latch data

into the receiver.

 Active Low Strobe

o Description: The strobe signal is active (low) when

data is valid. The receiver reads the data when the

strobe signal is low.

o Example: Commonly used in some digital systems

where the low level indicates the readiness of data.

Applications

 Parallel Communication

o Description: In parallel data transfer systems,

strobe control is used to coordinate the transfer of

multiple bits of data simultaneously. The strobe

signal ensures that all data lines are read at the same

time.

o Example: Used in interfacing with peripheral

devices such as printers and memory modules.

 Memory Systems

o Description: In memory systems, strobe signals are

used to control the timing of data read and write

operations. The strobe pulse ensures that memory

operations occur at the correct times.

o Example: In DRAM (Dynamic Random Access

Memory) systems, strobe signals help in

synchronizing memory access.

Computer Organization & Architecture -362

 Microprocessor Buses

o Description: Strobe control is used in

microprocessor buses to manage the timing of data

transfers between the processor and other

components.

o Example: Used in the control signals for data

transfer between the CPU and peripheral devices.

Advantages

 Improved Synchronization

o Description: Strobe control provides precise timing

for data transfer, improving the synchronization

between sender and receiver.

o Benefit: Ensures accurate data transmission and

reduces the likelihood of timing-related errors.

 Enhanced Data Integrity

o Description: By indicating when data is valid,

strobe control helps in maintaining data integrity

and reliability.

o Benefit: Reduces the chances of data corruption and

errors.

Disadvantages

 Increased Complexity

o Description: Implementing strobe control adds

complexity to the communication system, requiring

additional timing circuits and control signals.

Computer Organization & Architecture -363

o Impact: Increases the design and implementation

efforts.

 Timing Issues

o Description: Precise timing of the strobe signal is

crucial. Any delays or timing mismatches can lead

to data transfer issues.

o Impact: Requires careful design and calibration to

ensure reliable operation.

11.6 HANDSHAKING

Handshaking is a communication protocol used to synchronize the

data transfer between two devices or systems. It involves a series

of signal exchanges to establish, control, and terminate a

communication session. Handshaking ensures that both sender and

receiver are ready for data transmission and can handle the data

correctly, thereby preventing data loss or corruption.

Types of Handshaking

 Manual Handshaking

o Description: Involves manual intervention to

coordinate the start and stop of data transmission.

Typically used in simpler or less automated

systems.

o Example: Manual switch or lever activation to start

data transfer in older systems.

 Automatic Handshaking

Computer Organization & Architecture -364

o Description: Utilizes automated signals and

protocols to manage the synchronization and

transfer of data without human intervention.

o Example: Automatic handshaking protocols used in

modern communication systems like UART

(Universal Asynchronous Receiver/Transmitter) and

Ethernet.

Handshaking Protocols

 Handshake Protocol

o Description: A specific sequence of signals

exchanged between devices to establish a

communication link and ensure that both parties are

ready for data transfer.

o Process: Often includes phases like request,

acknowledgment, and data transfer.

 Three-Way Handshake

Computer Organization & Architecture -365

o Description: A common handshaking protocol used

in TCP/IP networks to establish a connection

between two devices.

o Process: Involves three steps—SYN (synchronize)

request, SYN-ACK (synchronize-acknowledge)

response, and ACK (acknowledge) to finalize the

connection.

Handshaking Mechanisms

 Start-Stop Handshaking

o Description: Involves a start signal to initiate data

transfer and a stop signal to end the transfer. Often

used in serial communication.

o Example: RS-232 serial communication uses start

and stop bits to frame data.

 Flow Control Handshaking

o Description: Ensures that the sender does not

overwhelm the receiver with data. It involves

signals to control the rate of data transfer and

prevent buffer overflow.

o Example: XON/XOFF (software flow control) and

RTS/CTS (Request to Send/Clear to Send) are flow

control mechanisms.

5. Handshaking Process

 Request for Data Transfer

o Description: The sender requests permission to

transmit data. This request is often signaled by a

specific line or signal in the communication

protocol.

Computer Organization & Architecture -366

o Example: A request signal in a UART

communication system.

 Acknowledgment

o Description: The receiver acknowledges the

request, signaling that it is ready to accept data.

This acknowledgment confirms that both devices

are synchronized.

o Example: An ACK (acknowledgment) signal in

TCP/IP.

 Data Transfer

o Description: The actual data is transmitted between

the sender and receiver following successful

handshaking. Data transfer occurs only after

acknowledgment of readiness.

o Example: Data packets in a network protocol are

transferred after the three-way handshake.

 Termination

o Description: After data transfer, a termination

signal or sequence is used to end the

communication session. This ensures that resources

are released and no further data is transmitted.

o Example: FIN (finish) signal in TCP/IP protocol.

Computer Organization & Architecture -367

Applications

 Serial Communication

o Description: Handshaking is used in serial

communication to ensure proper synchronization

and error-free data transfer.

o Example: UART handshaking for serial ports in

computers.

 Networking

o Description: Handshaking protocols are

fundamental in establishing and maintaining

network connections.

o Example: TCP three-way handshake for

establishing a reliable connection between network

devices.

 Peripheral Devices

o Description: Used to manage communication

between a computer and peripheral devices such as

printers, disk drives, and modems.

o Example: Handshaking in printer communication

protocols.

Advantages

 Reliable Data Transfer

o Description: Ensures that data is transmitted

accurately by confirming readiness and

synchronization between devices.

o Benefit: Reduces errors and data loss.

Computer Organization & Architecture -368

 Flow Control

o Description: Manages the rate of data transfer,

preventing buffer overflow and ensuring smooth

communication.

o Benefit: Prevents data loss due to overwhelming the

receiver.

Disadvantages

 Increased Overhead

o Description: The handshaking process introduces

additional overhead due to the exchange of control

signals.

o Impact: May reduce the efficiency of data transfer.

 Complexity

o Description: Implementing and managing

handshaking protocols adds complexity to

communication systems.

o Impact: Requires careful design and

implementation to ensure reliable operation.

11.7 CONCLUSION

In this unit, we delved into essential concepts of serial

communication, I/O controllers, and data transfer mechanisms

critical for computer system operations. Serial communication, a

method of transmitting data one bit at a time, plays a pivotal role in

connecting and managing peripheral devices with efficiency and

simplicity. Understanding I/O controllers' functions highlights their

crucial role in managing data exchange between the CPU and

Computer Organization & Architecture -369

external devices, ensuring smooth and orderly operations within a

computer system.

Asynchronous data transfer, which operates without a

synchronized clock signal, provides flexibility in communication

but requires effective management to ensure data integrity.

Techniques such as strobe control and handshaking protocols are

essential in coordinating data transfers, enhancing synchronization,

and minimizing errors. These mechanisms ensure that data is

transmitted and received accurately, reflecting their importance in

maintaining reliable communication between different system

components.

Overall, mastering these concepts equips one with the knowledge

needed to effectively manage and troubleshoot data

communication and device interfacing in modern computer

systems. Understanding these fundamental principles is crucial for

designing efficient and reliable computer systems and interfaces.

11.8 UNIT BASED QUESTIONS &
ANSWERS

1. What is serial communication, and how does it differ from

parallel communication?

Answer: Serial communication transmits data one bit at a time

over a single channel or wire, which makes it more suitable for

long-distance transmission due to reduced signal degradation and

interference. In contrast, parallel communication sends multiple

bits simultaneously across multiple channels or wires, which

allows for faster data transfer but is limited by issues such as signal

skew and crosstalk over longer distances.

Computer Organization & Architecture -370

2. What are I/O controllers, and what is their role in computer

systems?

Answer: I/O controllers are specialized hardware components that

manage the communication between the CPU and peripheral

devices. They handle the data transfer operations, control signals,

and protocol conversions necessary for interfacing with devices

such as keyboards, printers, and storage drives. Their role is crucial

in ensuring efficient data exchange and processing between the

system’s central components and external peripherals.

3. Explain asynchronous data transfer and its advantages.

Answer: Asynchronous data transfer involves transmitting data

without a synchronized clock signal, meaning that data can be sent

at irregular intervals. This method allows for greater flexibility and

efficiency as it does not require a constant clock signal, which can

simplify design and reduce hardware requirements. However, it

requires additional mechanisms like handshaking to ensure proper

synchronization and error-free data transmission.

4. What is strobe control, and how does it facilitate data

transfer?

Answer: Strobe control is a technique used in data transfer where

a strobe signal is sent alongside the data to indicate the timing of

the data being transmitted. The strobe pulse informs the receiving

device that data is present on the data lines and should be read.

This method ensures that data is correctly captured and processed

at the right moment, preventing miscommunication and data loss.

Computer Organization & Architecture -371

5. Describe the concept of handshaking in data

communication.

Answer: Handshaking is a process used to establish a

communication protocol between two devices to ensure that data is

transferred reliably. It involves a series of signals or messages

exchanged between the sender and receiver to agree on parameters

such as data format, timing, and error-checking methods.

Handshaking ensures that both devices are synchronized and ready

to send or receive data, minimizing the risk of data loss or

corruption.

11.9 REFERENCES

 Floyd, Thomas L. Digital Fundamentals. Pearson

Education, 2015.

 Taub, Herbert, and Donald L. Schilling. Digital Integrated

Electronics. McGraw-Hill Education, 1994.

 Mano, M. Morris, and Michael D. Ciletti. Digital Design:

With an Introduction to the Verilog HDL. Pearson

Education, 2017.

 Roth, Charles H., Jr., and Larry L. Kinney. Fundamentals

of Logic Design. Cengage Learning, 2013.

 Streetman, Ben G., and Sanjay Banerjee. Solid State

Electronic Devices. Prentice Hall, 2005.

 Hayes, John P. Introduction to Digital Logic Design.

Addison-Wesley, 1993.

Computer Organization & Architecture -372

BLOCK IV: PROCESS

ORGANIZATION

UNIT – 12: INTRODUCTION TO 8 BIT
AND 16 BIT INTEL
MICROPROCESSOR
ARCHITECTURE AND REGISTER
SET
Structure

12.0 Introduction

12.1 Objectives

12.2 Overview of Microcomputer Structure and Operation

12.3 8085 Microprocessor Introduction

12.4 8085 Architecture

12.5 Pin Diagram of 8085

12.6 Timing Diagrams

12.7 Summary

12.8 Questions

12.9 References

12.0 INTRODUCTION

Microcomputer: A personal computer or a computer that runs on a

microprocessor is referred to as a microcomputer. Microcomputers,

whether they be in the form of PCs, workstations, or laptop

computers, are intended for individual use. A microcomputer is

composed of a microprocessor, which is a CPU on a microchip, a

bus system, an I/O port array, and a memory system, which is

usually housed in a motherboard.

Computer Organization & Architecture -373

What is a Microprocessor?

• The word comes from the combination micro and processor.

– Processor means a device that processes numbers,

specifically binary numbers, 0’s and 1’s.

– Micro is a new addition.

– In the late 1960’s, processors were built using discrete

elements.

– These devices performed the required operation, but

were too large and too slow.

– In the early 1970’s the microchip was invented. All of

the components that made up the processor were now

placed on a single piece of silicon. The size became

several thousand times smaller and the speed became

several hundred times faster.

– The “Micro” Processor was born.

12.1 OBJECTIVE

In this unit, you will understand

 Overview of Microcomputer Structure and Operation

 To understand the fundamental concepts of microcomputer

structure and operation.

 To gain insight into the 8085 microprocessor, including its

architecture and operational features.

 To analyze the pin configuration and timing diagrams of

the 8085 microprocessor.

 To appreciate the role of the 8085 microprocessor in the

context of modern computing.

Computer Organization & Architecture -374

12.2 OVERVIEW OF
MICROCOMPUTER STRUCTURE
AND OPERATION

Evolution of Microprocessors:

Intel released the 4004 and 8008 microprocessors, its first 4-bit and

8-bit microprocessors, respectively, in 1971 and 1972. These

microprocessors' performance and design restrictions prevented

them from being successful as general-purpose microprocessors.

1. Launched in 1974, the first general-purpose 8-bit

microprocessor, the 8080, was later modified and given

further functionality in 1977, making it a functionally

complete microprocessor. This was known as the 8085

microprocessor.

2. The primary drawbacks of 8-bit microprocessors were their

poor speed, restricted amount of general purpose registers,

low memory addressing capacity, and weaker instruction

set.

3. The first member of the 16-bit microprocessor family to be

released in 1978 was Intel's 8086.

 4004 8008 8080 8085 8086

Year 1971 1972 1974 1977 1978

No. of Bits 4 8 8 8 16

Technology PMOS PMOS NMOS NMOS HMOS

MEMORY 4 KB 16 KB 64 KB 1MB

INSTRUCTIO

N SET

45 48 246

SPEED 50 KIPS

Computer Organization & Architecture -375

NO. OF

TRANSISTORS

2300 3500 4500 6500 29000

MICROPROCESSOR INTRODUCTION

Microprocessor: A CPU-containing silicon chip. Within the context

of personal computers, microprocessor and CPU are synonymous

concepts.

 A microprocessor, frequently shortened to µP, is a single

semiconductor integrated circuit (IC) that contains

miniature transistors.

 A computer system or portable device's central processing

unit (CPU) is usually one or more microprocessors.

 The development of the microcomputer was made possible

by microprocessors.

 A microprocessor is the central component of most

workstations and desktop computers. Almost all digital

devices, including clock radios and car fuel injection

systems, use microprocessors that manage their logic.

 Microprocessors differ in three fundamental ways:

 A microprocessor's instruction set is the collection of

commands it is capable of carrying out.

 The amount of bits processed in a single instruction is

known as bandwidth.

 Clock speed: The clock speed, expressed in megahertz

(MHz), dictates the number of instructions the CPU can

process in a second.

 The CPU's power increases with the value in both

scenarios. A 32-bit CPU operating at 50MHz, for instance,

has greater power than a 16-bit microprocessor operating at

25MHz.

Computer Organization & Architecture -376

12.3 8085 MICROPROCESSOR
INTRODUCTION

Intel intoduced the Intel 8085, an 8-bit microprocessor, in 1977.

Because it needed less auxiliary hardware and was binary

compatible with the more well-known Intel 8080, simpler and less

expensive microcomputer systems could be constructed. The

model number "5" was derived from the fact that the 8085 only

needed a +5-Volt (V) power supply, as opposed to the +5 V, −5 V,

and +12 V supplies that the 8080 required. Key characteristics of

8085 μP are:

 It's a microprocessor with eight bits.

 It is produced utilizing N-MOS technology.

 Because of its 16-bit address bus, it can access memory

locations through A0–A15, or 216 = 65536 bytes (64KB).

 AD0–AD7 is the multiplex of the first eight address bus

lines and the first eight data bus lines.

 Data bus consists of 8 lines, D0 through D7.

 External interrupt requests are supported.

 A 16-bit stack pointer (SP) with a 16-bit program counter

(PC)

 Six general purpose registers with eight bits each, paired

off as BC, DE, and HL.

 It runs at 3.2 MHZ single phase clock and needs a signal

+5V power supply.

 It has 40 DIP (Dual in line package) pins enclosed.

Computer Organization & Architecture -377

12.4 8085 ARCHITECTURE

As seen in Fig. 1, 8085 is made up of several units, each of which

carries out a specific duty. The following is a list of a

microprocessor's different units.

 Program counter

 Stack pointer

 Timing and Control unit

 Interrupt control

 Temporary register

 Accumulator

 Arithmetic and logic Unit

 Address buffer and Address-Data buffer

 Address bus and Data bus

 General purpose register

 Flags

 Instruction register and Decoder

Figure: 8085 Architecture

 Accumulator: A register that can store 8-bit data is all an

Accumulator is.

Computer Organization & Architecture -378

Accumulator makes it easier to store two quantities

simultaneously. An accumulator stores the data that will be

pjrocessed by an arithmetic and logic unit. The outcome of the

operation performed by the Arithmetic and Logic unit is likewise

stored there. An 8-bit register is another name for the accumulator.

The ALU (arithmetic and logic unit) and Internal Data Bus are

connected to the accumulator. The Internal Data Bus can be

utilized to transmit and receive data through the accumulator.

 Arithmetic and Logic Unit

Arithmetic operations such as +, -, *, and /, as well as logical

operations such as AND, OR, NOT, and so forth, are always

required. Thus, the creation of a distinct unit capable of carrying

out these kinds of tasks is required. The Arithmetic and Logic Unit

(ALU) handles these functions. These procedures are carried out

via ALU on 8-bit data. However, without an input (or) set of data

on which to perform the intended operation, these operations

cannot be carried out. Where do these inputs come from then to get

to the ALU? An accumulator is utilized in this situation. The

accumulator and temporary register provide the input for the ALU.

Once the required processes have been completed, the outcome is

returned to the accumulator.

 General Purpose Registers

Six unique register types known as General Purpose Registers

make up 8085, aside from the accumulator. As with other registers,

data is stored in these general-purpose registers. The 8085

processors have the following general-purpose registers: B, C, D,

E, H, and L. A register can store up to 8 bits of data. These

Computer Organization & Architecture -379

registers can be used in pairs to store 16-bit data in addition to the

previously mentioned function.

To hold 16-bit data, they can function in pairs like B-C, D-E, and

H-L. As a memory pointer, the H-L pair is functional. An

individual memory location's address is stored in a memory

pointer. In their pairwork, they are able to store 16-bit addresses.

 Program Counter and Stack Pointer

Program counter is a special purpose register. Consider that an

instruction is being executed by processor. As soon as the ALU

finished executing the instruction, the processor looks for the next

instruction to be executed. So, there is a necessity for holding the

address of the next instruction to be executed in order to save time.

This is taken care by the program counter. A program counter

stores the address of the next instruction to be executed. In other

words, the program counter keeps track of the memory address of

the instructions that are being executed by the microprocessor and

the memory address of the next instruction that is going to be

executed. Microprocessor increments the program whenever an

instruction is being executed, so that the program counter points to

the memory address of the next instruction that is going to be

executed. Program counter is a 16-bit register. Stack pointer is also

a 16-bit register which is used as a memory pointer. A stack is

nothing but the portion of RAM (Random access memory). So,

does that mean the stack pointer points to portion of RAM?

Yes. The address of the most recent byte added to the stack is kept

track of by the stack pointer. The stack pointer is decreased each

time data is added to the stack. On the other hand, when data is

taken out of the stack, it is increased.

Computer Organization & Architecture -380

Temporary Register During arithmetic and logical processes, this

register serves as a temporary memory, as its name implies. This

temporary register is totally inaccessible to programmers and is

solely accessible by the microprocessor, in contrast to other

registers. An 8-bit register is a temporary register.

Flags All that Flags are is a collection of single Flip-flops. The

flags are mostly connected to operations in logic and arithmetic.

Depending on the data conditions in the accumulator and other

registers, the flags will display a logical (0 or 1), or a set or reset.

In reality, a flag is just a latch that can store data. It notifies the

processor that an event has occurred.

Figure: Flag Register

Intel processors have a set of 5 flags.

1. Carry flag

2. Parity flag

3. Auxiliary carry flag

4. Zero flag

5. Sign flag

Consider two binary numbers.

For example

1100 0000

1000 0000

The most significant bit generates a carry when the two values

above are added. The most significant bit is the number on the

extreme left, and the least significant bit is the number on the

Computer Organization & Architecture -381

extreme right. Thus, the carry results in the generation of a ninth

bit. Then, how can the ninth bit be used in an eight-bit register?

This is the use of the Carry flag. Every time a carry is generated,

the carry flag is set; it is reset when there isn't a carry. However, is

there a backup carry flag? What distinguishes an auxiliary carry

flag from a carry flag?

Let's use an illustration to explain. Take a look at the two numbers

below.

0000 1100

0000 1001

The fourth bit from the least significant bit generates a carry when

we add the two values. Auxiliary carry flag is set as a result. The

secondary carry flag is reset in the event that there is no carry. The

carry flag is thus set whenever there is a carry in the most

important bit. Conversely, a carry that is created in bits other than

the most significant bit only results in the setting of an auxiliary

carry flag.

Parity adds parity or tests to see if it's even. In the event of odd

parity, this flag returns a 0, while in the event of even parity, it

returns a 1. They are also known by the name parity bit, which is

sometimes used to detect faults in data transfer.

The zero flag indicates if the operation's output is zero or not. The

outcome of the operation is not zero if the Zero flag's value is 0.

The flag returns value 1 if it is zero.

A positive or negative sign is indicated by the sign flag in the

operation's output. When a sign is positive, 0 is returned, and when

Computer Organization & Architecture -382

it is negative, 1 is returned.

 Instruction Register and Decoder

Like all other microprocessor registers, the instruction register is

an 8-bit register. Think of a directive. The instructions could be

anything from copying a data to moving a data or adding two data,

among other things. An instruction of this type is sent to the

instruction register when it is retrieved from memory. Thus, the

purpose of the instruction registers is to hold the instructions that

are retrieved from memory. The data contained in the instruction

register is decoded by an instruction decoder so that it can be

processed further.

 Timing and Control Unit

Because it synchronizes the registers and data flow through many

registers and other units, the timing and control unit is a crucial

component of the system. This unit transmits control signals

required for both internal and external control of data and other

units. It is composed of an oscillator and a controller sequencer.

The oscillator produces two-phase clock impulses that help the

8085 microprocessor's registers all synchronize.

The following signals are connected to the timing and control unit:

Signals of Control: RD', WR', ALE

ALE serves as a control signal to synchronize the microprocessor's

components and timing for instructions.

 Carry out the procedure.

To show whether an operation is reading data from memory or

writing data into memory, two indicators are used: RD (Active

low) and WR (Active low).

Computer Organization & Architecture -383

Status Signals: S0, S1, IO/M’

IO/M (Active low) is used to indicate whether the operation

belongs to the memory or peripherals.

Figure: Table – Status signals and the status of data bus

 DMA Signals: HOLD, HLDA, READY

HOLD: Denotes a request for address and data bus usage from

another master. The CPU will give up bus usage as soon as the

current bus transfer is finished after receiving the hold request.

Internal processing is now complete. The CPU can only recover

the bus once the HOLD is released. The Address, Data RD, WR,

and IO/M' lines are tri-stated when the HOLD is acknowledged.

Hold Acknowledgment (HLDA): This indicates that the CPU has

received the HOLD request and will release the bus in the

subsequent clock cycle. After the Hold request is withdrawn,

HLDA decreases. After the HLDA drops low, the CPU takes the

bus for one half-clock cycle.

READY: This signal brings the slow peripherals and fast CPU into

sync. The memory or peripheral is prepared to send or receive data

if READY is high during a read or write cycle. Before finishing the

read or write cycle, the CPU will wait an integral number of clock

Computer Organization & Architecture -384

cycles for READY to reach high if it is low. READY has to follow

the setup and hold times given.

 Reset Signals: Reset in, Reset out

RESET IN: This pin's low point;

 Zeroes out the program counter (0000H).

 Resets the HLDA flip-flops and interrupt enables.

 The data bus, address bus, and control bus are tri-stated.

 Randomly modifies the contents of the internal registers of

the CPU.

The 8085 executes the first instruction from address 0000H when

the Program counter is set to 0000h upon reset.

RESET OUT: The processor is being reset, as indicated by this

active high signal. This signal can be used to reset other system-

connected devices and is synced with the processor clock.

 Interrupt control

This control stops a process, as its name implies. The main

program is being run by a microprocessor, consider. Currently, the

microprocessor switches over to handle incoming requests when

the interrupt signal is activated or requested. Once the request is

processed, the microprocessor returns control to the main program.

To indicate that the data is prepared for entry, an input/output

device can, for instance, emit an interrupt signal.

The microprocessor gives the I/O device control while

momentarily stopping the main program's execution. The control is

returned to the main program once the input data has been

Computer Organization & Architecture -385

collected. The following interrupt signals are found in 8085: INTR,

RST 7.5, RST 6.5, and RST 5.5.

o Mask able 8080A compatible interrupt, or TRAP INTR.

When an interrupt happens, the CPU retrieves one

instruction—typically one of the following instructions—

from the bus: One of the eight RST commands (RST0–

RST7). The CPU branches to memory address N * 8, where

N is a 3-bit number between 0 and 7 that is given with the

RST instruction, and saves the current program counter into

the stack.

o Call instruction (3-byte instruction). Calling the subroutine

from the processor where the instruction's second and third

bytes specify the address of.

o Mask able interrupts are like RST5.5. Upon receiving this

interruption, the Hexadecimal address 2CH is where the

processor branches after saving the contents of the PC

register into a stack.

o Mask able interrupts are like RST6.5. Upon receiving this

interrupt, the CPU branches to the 34H (hexadecimal)

address and stores the contents of the PC register in the

stack.

o Mask able interrupts are like RST7.5. Upon receiving this

interrupt, the CPU branches to the 3CH (hexadecimal)

address and stores the contents of the PC register in the

stack.

o Non-mask able interrupts are like TRAP. Upon receiving

this interrupt, the CPU branches to the 24H (hexadecimal)

address and stores the contents of the PC register in the

stack.

Computer Organization & Architecture -386

o With the use of EI and DI commands, all maskable

interrupts can be activated or disabled. SIM instructions

can be used to independently enable or disable RST5.5,

RST6.5, and RST7.5 interrupts.

Serial Input/output control

The input and output of serial data can be carried out using 2

instructions in 8085.

 SID-Serial Input Data

 SOD-Serial Output Data

Two more instructions are used to perform serial-parallel

conversion needed for serial I/O devices.

 SIM

 RIM

Address buffer and Address-Data buffer

The address buffer and address-data buffer are filled with the

contents of the program counter and stack pointer. The address-

data bus and external address bus are then driven by these buffers.

The CPU may exchange desired data with the memory and I/O

chips since they are connected to these busses.

The internal data bus, which has eight bits, and the external data

bus are both connected to the address-data buffer. Data from the

internal data bus can be sent and received via the address data

buffer.

Computer Organization & Architecture -387

Data bus and the Address Bus

It is known that the 8085 microprocessor has eight bits.

Consequently, the microprocessor's data bus has an 8-bit width.

Thus, eight bits of data can be sent. Either to or from the CPU.

However, because memory addresses are 16 bits wide, the 8085

CPU needs a 16-bit address bus. The eight most important

components of the address bus is used to communicate addresses,

while the multiplexed address/data bus is used to transmit the eight

least significant bits. The eight least significant bits of the address

bus are multiplexed with the eight-bit data bus.

The data bus and address bus are time multiplexed. This indicates

that the data is created by the same pin for a few seconds after the

eight least significant bits of the address are generated for a few

microseconds. We refer to this as time multiplexing. However,

there are instances in which it's necessary to send data and an

address at the same time. The signal known as ALE (address latch

enables) is utilized for this purpose. The address is also available at

the output latch when the CPU sends the data again because the

ALE signal retains the received address in its latch until the data is

obtained. We refer to this method as Address/Data demultiplexing.

12.5 PIN DIAGRAM OF 8085

The signals can be grouped as follows

1. Power supply and clock signals

2. Address bus

3. Data bus

4. Control and status signals

5. Interrupts and externally initiated signals

6. Serial I/O ports

Computer Organization & Architecture -388

Power supply and Clock frequency signals

 Vcc + 5-volt power supply

 Vss Ground

 X1, X2: Crystal or R/C network or LC network connections

to set the frequency of internal clock generator. The

frequency is internally divided by two. Since the basic

operating timing frequency is 3 MHz, a 6 MHz crystal is

connected externally.

 CLK (output) – Clock Output is used as the system clock

for peripheral and devices interfaced with the

microprocessor.

Address Bus and Data Bus

AD0-AD7: These are data bus and address multiplexed. Therefore,

in addition to carrying data, it can also carry a lower order 8-bit

address. Usually, the Latch is used to demultiplex these lines. The

lines deliver the lower order address bus A0-A7 in the first clock

cycle of the opcode fetch operation. It serves as data bus D0-D7 in

the IO/M read or write that follows. Data can be read or written by

Computer Organization & Architecture -389

the CPU over these lines. Address buses A8 through A15 are used

to address memory locations.

Instruction Set

The following five functional headings apply to the 8085

instruction set.

 Data Transfer Instructions: Instructions for moving

(copying) data between registers or between memory

locations and registers are included in the Data Transfer

Instructions. Not a single data transfer transaction modifies

the contents of the source register. As a result, data

transport is a copying process.

 Arithmetic Instructions: Contains instructions for

performing operations such as addition, subtraction,

increment, and decrement. Following the execution of an

instruction in this group, the flag conditions are changed.

 Logical Instructions: This category includes instructions

that carry out logical operations such as AND, OR,

EXCLUSIVE-OR, complement, compare, and rotate.

Following the execution of an instruction in this group, the

flag conditions are changed.

 Branching Instructions: This category includes

instructions used to move the program's control from one

memory region to another.

 Machine Control Instructions: Contains instructions for

stopping program execution and for handling interruptions.

Data Transfer Instructions

 These instructions transfer information from memory to

registers or between registers and memory.

Computer Organization & Architecture -390

 These instructions replicate information from one location

to another.

 The contents of the source are not altered throughout the

copying process.

Arithmetic Instructions

These instructions perform arithmetic operations such as addition,

subtraction, increment, and decrement.

Logical Instructions

These instructions perform various logical operations with the

contents of the accumulator.

Computer Organization & Architecture -391

Branching Instructions

This group of instructions alters the sequence of program

execution either conditionally or unconditionally.

Machine Control Instructions

These instructions control machine functions such as Halt,

Interrupt, or do nothing.

Computer Organization & Architecture -392

Figure: SIM Instruction

Figure: RIM Instruction

Addressing Modes

A program's instructions must all function with data. The process

of defining the data that an instruction is to operate on is known as

addressing. The 8085 is equipped with five distinct addressing

types.

 IMMEDIATE ADDRESSING

 Direct Addressing Method

 Register Addressing -

 Register Indirect Addressing.

 Implied Addressing

Immediate Addressing

The data is given in the instruction itself when using immediate

addressing mode. The information will be included in the

program's instructions.

Computer Organization & Architecture -393

Move the data indicated in the instruction, 3EH, to the B register

(EX. MVI B, 3EH); LXI SP, 2700H.

Direct Addressing

The instruction contains the address of the data in direct addressing

mode. It will be stored in memory. Data and program instructions

can be kept in separate memory locations when using this

addressing technique.

For example, LDA 1050H loads the data into the accumulator at

memory address 1050H; SHLD 3000H.

Register Addressing.

When using register addressing mode, the instruction identifies the

register that contains the data.

For example, SPHL; ADD C; MOV A, B - Transfer the contents of

B register to A register.

Register Indirect Addressing

In this style of instruction, the address of the data is available in a

register named after the instruction. In this case, the address will be

in the register pair while the data will be in memory.

MOV A, M - This moves the memory data addressed by the H L

pair to register A. LDAX B.

Implied Addressing

When using implied addressing mode, the data to be operated is

specified right in the instruction itself. For example, CMA -

Enhance the accumulator's content; RAL

Computer Organization & Architecture -394

12.6 TIMING DIAGRAMS

A timing diagram shows when read/write and transfer of data

operations begin, with three status signals—IO/M', S1, and S0—

controlling the process. Numerous clock cycles make up each

machine cycle. Since both the data and the instructions are kept in

memory, the µP uses a fetch operation to read the data and then the

instruction before executing it. The IO / M', S1 and S0 status

signals are generated at the start of every machine cycle.

These three distinct status signals work together to uniquely

identify read or write operations, and they are valid for the entire

cycle. Therefore, the clock period is used to determine how long it

takes any µP to complete a single instruction. To transport data to

or from the µP, memory, or I/O devices, read and write operations

are always necessary for the execution of an instruction. Each

read/write operation results in one cycle of the machine. T-states,

or several clock periods/cycles, make up each machine cycle.

Figure: Machine cycle showing clock periods

The clock cycle governs every single process that takes place

inside the microprocessor. The clock signal controls how long it

takes the CPU to complete an instruction. The difference in time

between the clock's two leading or trailing edges is known as the

state. The amount of time needed to move data to and from

memory or I/O devices is called a machine cycle.

Computer Organization & Architecture -395

Five basic machine cycles make up the 8085 microprocessor.

They're

 Opcode fetch cycle (4T)

 Memory read cycle (3 T)

 Memory write cycle (3 T)

 I/O read cycle (3 T)

 I/O write cycle (3 T)

Processor Cycle

The fetch and execute cycles of each program instruction make up

the microprocessor's function. All that a program consists of is a

sequence of instructions kept in memory. The microprocessor

normally fetches, receives, or reads instructions and then proceeds

to execute each one sequentially until it reaches the halt (HLT)

command.

The time needed to retrieve and execute an instruction is therefore

defined as an instruction cycle. With the use of clocks, any

program is essentially executed in two steps at a time.

 Fetch

 Execute.

The term "fetch and execute cycle" refers to how long it takes the

µP to complete the fetch and execute activities. As seen in Fig., the

instruction cycle is thus the total of the fetch and execute cycles.

Computer Organization & Architecture -396

Figure: Processor cycle

Every instruction starts with an Opcode fetch cycle, during which

the processor determines what kind of instruction it is. It has a

minimum of four states. It might reach six states.

The processor learns the type of instruction to be performed during

the opcode fetch cycle. During the first cycle (M1), the processor

loads the contents of the program counter into the address bus and

uses the read process to read the instruction's opcode. The basic

memory read operation uses the T1, T2, and T3 clock cycles; the

opcode is interpreted starting with the T4 clock and up. These

interpretations let the µP determine what kind of further data or

information is required to carry out the instruction, and it then

moves on to read and write memory for one or two machine

cycles.

Instruction Fetch (FC): During the fetch, a single, double, or

triple-byte instruction is taken out of the memory locations and

placed in the instruction register of the µP.

Instruction Execute (EC): During the execution stage, the

instruction is decoded and translated into particular actions.

Opcode Retrieve Reading data from memory is the first stage in a

communication process between the microprocessor and memory.

We refer to this reading procedure as "opcode fetch." Opcode fetch

operation is the first machine cycle (M1) of each instruction and

requires a minimum of four clock cycles, T1, T2, T3, and T4. The

machine cycle uses the status signals IO/ M, S1, and S0 to

distinguish between the data byte related to an address and an

Computer Organization & Architecture -397

opcode. Opcode fetch action is indicated by S1 = S0 = 1, while

memory operation is indicated by IO/M = 0.

There are four states in the opcode fetch machine cycle M1 (T1,

T2, T3, and T4).

The byte is fetched (transferred) from memory using the first three

states, and it is decoded using the fourth state.

Example

Fetch the 41H byte that is kept at memory address 2105H.

The CPU has to locate the byte's storage location in memory

before it can be fetched. Next, establish a condition (control) for

the data transfer between the microprocessor and memory. Figs.

5.3(a), (b), and (c) depict the fetch operation's timing diagram and

data flow mechanism. The following sequence describes how the

µP retrieves the instruction's opcode from memory.

 A low IO/M' indicates that the CPU is trying to talk to

memory.

 To indicate a fetch operation, the µP delivers a high on

status signals S0 and S1.

 The µP transmits a 16-bit address. The address for the AD

bus is T1, the first clock of the first machine cycle.

 When ALE = 1, the AD7to AD0 address is latched in the

external latch.

 Data can now be carried by AD bus.

 To allow read operation of the memory, the RD control

signal drops in T2.

 Opcode is placed on the AD bus by the memory.

 After being entered into the data register (DR), the data is

moved to the information register (IR).

Computer Organization & Architecture -398

 During T3, memory is disabled and the RD signal rises.

 The opcode is submitted for decoding during T4 and is

decoded in T4.

 If the instruction consists of a single byte, the execution is

also finished in T4.

 For instructions with two or three bytes, more machine

cycles are required. The purpose of machine cycle M1 is to

retrieve the opcode. The M2 and M3 machine cycles are

necessary for reading and writing data, as well as for

addressing memory and I/O devices.

Memory and I/O Read Cycle

The CPU uses the memory read machine cycle to read a data byte

from memory. For the CPU to complete this cycle, 3T states are

needed. Following the opcode fetch machine cycle, instructions

with word sizes larger than one byte will utilize the machine cycle.

Computer Organization & Architecture -399

Figure: Memory Read Cycle

Figure: I/O Read Cycle

On the first low going transition of the clock pulse, the low order

address and high order address are

asserted. Fig. displays the IO/M read timing diagram. For the

remainder of the bus cycle, or T1, T2, and T3, the are

still valid, but are only valid in T1. It needs to be

stored for usage in the T2 and T3 since it needs to be valid for the

entire bus cycle. Every bus cycle's T1 begins with the assertion of

ALE and ends with its negation. ALE is utilized as the clock pulse

to latch the address (AD7⇔AD0) during T1 and is only active

during T1. Near the start of T2, the RD is declared. It concludes at

T3's end. Upon activation, the RD compels the memory or I/O port

to assert data. As T3 comes to a conclusion, RD' becomes inactive,

which causes the port or memory to stop the data.

Memory and I/O Write Cycle

The processor asserts data on the address/data bus at the start of the

T2, right after the low order address terminates.

WR' control is turned on close to the beginning of T2 and turns off

at the conclusion of T3. The processor keeps up current data till

Computer Organization & Architecture -400

WR's termination. This guarantees that when WR' is active, the

memory or port contains valid data. Figures show that in the case

of the READ bus cycle, data appears on the bus as a result of RD's

activation, and in the case of the WR' bus cycle, valid data is on the

bus for a longer period of time than WR' is active.

Figure: Memory Write Cycle

Figure: I/O Write Cycle

Computer Organization & Architecture -401

Figure: Opcode Fetch

12.7 SUMMARY

The 8085 Microprocessor, introduced in the early 1970s, is a prime

example of the 8 Bit and 16 Bit Intel Microprocessor Architecture

and Register set. This architecture allows for faster and smaller

processors, with key characteristics including a 16-bit address bus,

16-bit stack pointer, 16-bit program counter, six general-purpose

registers, and 3.2 MHZ single-phase clock.

The 8085 processors consist of several units, including a program

counter, stack pointer, timing and control unit, interrupt control,

temporary register, accumulator, arithmetic and logic unit, address

buffer, address-data buffer, address bus and data bus, general-

purpose register, flags, instruction register, and decoder. The

instruction register holds instructions retrieved from memory and

is decoded by an instruction decoder for further processing.

Interrupt control is crucial for the microprocessor, allowing it to

stop a process and return control once the main program has been

executed. In the 8085 microprocessor, two instructions are used:

SID-Serial Input Data and SOD-Serial Output Data. The address

Computer Organization & Architecture -402

buffer and address-data buffer are filled with the contents of the

program counter and stack pointer, allowing the CPU to exchange

desired data with memory and I/O chips.

The 8085 instruction set consists of five functional headings: Data

Transfer Instructions, Arithmetic Instructions, Logical Instructions,

Branching Instructions, and Machine Control Instructions. These

instructions transfer information from memory to registers or

between registers and memory, perform operations like addition,

subtraction, increment, decrement, and branching instructions, and

control machine functions like Halt, Interrupt, or do nothing.

The 8085 microprocessor has five addressing modes: Immediate

Addressing, Direct Addressing, Register Addressing, Register

Indirect Addressing, and Implied Addressing. It uses data in

instructions, stores it in memory, identifies the register containing

data, and specifies the data to be operated. The microprocessor

consists of five basic machine cycles: opcode fetch cycle (4T),

memory read cycle (3 T), memory write cycle (3 T), I/O read cycle

(3 T), and I/O write cycle (3 T). Each instruction is a sequence of

instructions stored in memory, executed sequentially until the halt

(HLT) command is reached. The opcode fetch cycle determines the

type of instruction and uses the read process to read the

instruction's opcode.

Computer Organization & Architecture -403

12.8 QUESTIONS

1. What are the key components of the 8085 microprocessor

architecture?

Answer: The key components of the 8085 microprocessor

architecture include the Arithmetic Logic Unit (ALU), register

array, instruction decoder, and control unit. The ALU performs

arithmetic and logical operations, the register array stores data and

instructions, the instruction decoder interprets instructions, and the

control unit manages the execution of instructions.

2. How many pins does the 8085 microprocessor have and what

are the key pins?

Answer: The 8085 microprocessor has 40 pins. Key pins include

Vcc (power supply), GND (ground), address/data buses, control

signals such as RD (Read), WR (Write), and IRQ (Interrupt

Request), and the clock pin.

3. What is the purpose of the address/data bus in the 8085

microprocessor?

Answer: The address/data bus in the 8085 microprocessor is used

for both addressing memory and transferring data. The bus is

multiplexed, meaning that it functions as both an address bus and a

data bus at different times during the microprocessor’s operation.

Computer Organization & Architecture -404

4. What is the significance of timing diagrams in the context of

the 8085 microprocessor?

Answer: Timing diagrams are significant as they illustrate the

relationships between various control signals and operations of the

8085 microprocessor. They help in understanding the timing

requirements for instruction fetch, memory read/write, and I/O

operations, ensuring correct synchronization and operation.

5. Explain the function of the Arithmetic Logic Unit (ALU) in

the 8085 microprocessor.

Answer: The Arithmetic Logic Unit (ALU) in the 8085

microprocessor is responsible for performing arithmetic operations

(such as addition and subtraction) and logical operations (such as

AND, OR, and XOR). It is a crucial component that enables the

microprocessor to carry out computations and decision-making

processes.

Computer Organization & Architecture -405

12.9 REFERENCES

 "The 8085 Microprocessor: Architecture,

Programming, and Interfacing" by K. Udayakumar and

M. R. S. Srinivas: This book offers a comprehensive guide

to the 8085 microprocessor, including architecture,

programming, and interfacing techniques.

 "Microprocessor Architecture, Programming, and

Applications with the 8085" by Ramesh S. Gaonkar: This

book provides detailed explanations of the 8085

microprocessor architecture and programming, with

practical examples and applications.

 "Computer Organization and Design: The

Hardware/Software Interface" by David Patterson and

John Hennessy: This book covers fundamental concepts in

computer organization and architecture, including memory

hierarchy and I/O systems.

 "Computer Architecture: A Quantitative Approach" by

John L. Hennessy and David A. Patterson: A

comprehensive text on computer architecture that includes

detailed discussions on memory systems, cache

architecture, and performance metrics.

 "Structured Computer Organization" by Andrew S.

Tanenbaum: This book provides an introduction to

computer architecture and organization, including

discussions on memory, I/O systems, and processors.

Computer Organization & Architecture -406

UNIT-13: ASSEMBLY LANGUAGE
PROGRAMMING BASED ON INTEL
8085; INSTRUCTIONS: DATA
TRANSFER, ARITHMETIC, LOGIC

13.1 Introduction

13.2 Objectives

13.3 Simple Assembly Programs

13.4 Memory Interfacing

13.5 Overview: 8085 Programming model

13.6 Instruction set of 8085

13.7 Writing Assembly Language Program

13.8 Summary

13.9 Questions

13.10 References

13.1 INTRODUCTION

After covering directives, program development tools, and

Input/Output in assembly language programming, let's delve

deeper into assembly language programs. This unit will begin by

exploring simple assembly programs, which handle basic tasks

such as data transfer, arithmetic operations, and shifts. A

fundamental example includes determining the larger of two

numbers. Subsequently, we'll progress to more intricate programs

demonstrating the use of loops and various comparisons to

accomplish tasks such as code conversion, character coding, and

finding the largest value in an array. Additionally, this unit delves

into more advanced arithmetic and string operations, as well as

Computer Organization & Architecture -407

modular programming. For further details on these programming

concepts, additional readings are recommended.

13.2 OBJECTIVES

After going through this unit, you should be able to:

• create assembly programs that include shift, logical, and

basic arithmetic operations;

• implement loops;

• build different comparison functions using comparisons;

• create basic assembly programs to convert codes;

• create basic assembly programs to use arrays;

• describe how to use a stack when passing parameters; and

• Employ assembly language for modular programming

13.3 SIMPLE ASSEMBLY PROGRAMS

The 0–1 combinations that the computer decodes directly make up

machine language code. However, the following issues with the

machine language exist:

• Writing in 0-1 forms is challenging for most individuals

and heavily relies on the computer.

• Debugging is challenging.

• The machine code is incredibly hard to decipher. As a

result, it will be difficult to understand program logic.

Computer manufacturers have created English-like terms to

describe a machine's binary instruction in order to get around these

problems. A mnemonic is a symbolic code that corresponds to each

instruction. A specific instruction's mnemonic is made up of letters

Computer Organization & Architecture -408

that allude to the task that the instruction is supposed to complete.

The ADD mnemonic, for instance, is used to add two numbers.

Machine language instructions can be written in symbolic form

using these mnemonics, with one corresponding symbolic

instruction for each machine instruction. We refer to this as an

assembly language.

Advantages and disadvantages of using assembly language:

Advantages:

1) Assembly language provides extensive control over

specific hardware and software components, enabling in-

depth exploration of instruction sets, addressing modes,

interrupts, and more.

2) Programs written in assembly generate smaller, more

compact executable modules due to their close proximity to

the machine. This proximity allows for the creation of

highly optimized programs, resulting in faster execution.

3) Assembly language programs tend to be at least 30%

denser than equivalent programs written in high-level

languages. This density arises from the fact that compilers

often produce lengthy code sequences for each instruction,

whereas assembly language typically employs a single line

of code for each instruction, particularly noticeable in

string-related programs.

4) Assembly language offers programmers significant

freedom, as it imposes few restrictions or rules, allowing

for flexible system construction.

Disadvantages:

1) Assembly language is inherently machine-dependent, with

each microprocessor featuring its own unique set of

Computer Organization & Architecture -409

instructions. Consequently, assembly programs lack

portability.

2) Programming in assembly requires a deep understanding of

underlying hardware architecture, making it more complex

and time-consuming compared to high-level languages.

3) Debugging and maintaining assembly code can be

challenging due to its intricate and less readable nature

compared to code written in higher-level languages.

4) Development in assembly language often demands more

effort and expertise, potentially increasing development

time and costs, and making it less accessible to beginners.

What the Assembler Does

A source program is required before using the assembler.

Instructions written in assembly language by the programmer make

up the source program. These instructions have been written with

mnemonic labels and opcodes. Programs written in assembly

language and sent to the assembler must be machine-readable. You

can keep source programs as paper tape or diskette files with the

help of the text editor included in the Intellect development

system. After that, you can give the assembler the generated source

program file. The 8080 and 8085 microprocessors can run object

code thanks to the assembler program, which handles the tedious

operation of converting symbolic code. The output of the

assembler can be found in three different files: the object file,

which is your program translated into object code; the list file,

which is a printout of your source code, the object code produced

by the assembler, and the symbol table; and the symbol-cross

reference file, which is a list of such records.

Computer Organization & Architecture -410

Figure: Function of an Assembler

Example Programs

1. Statement: Store the data byte 32H into memory location

4000H.

Program 1

MVI A, 32H : Store 32H in the accumulator

STA 4000H : Copy accumulator contents at address

4000H

HLT : Terminate program execution

Program 2

LXI H : Load HL with 4000H

MVI M : Store 32H in memory location pointed by

HL register pair (4000H)

HLT : Terminate program execution

Statement: Exchange the contents of memory locations 2000H

and 4000H

Program 1

LDA 2000H : Get the contents of memory location 2000H

into accumulator

MOV B, A : Save the contents into B register

Computer Organization & Architecture -411

LDA 4000H : Get the contents of memory location 4000H

into accumulator

STA 2000H : Store the contents of accumulator at address

2000H

MOV A, B : Get the saved contents back into A register

STA 4000H : Store the contents of accumulator at address

4000H

Program 2

LXI H 2000H : Initialize HL register pair as a pointer to

memory location

LXI D 4000H : Initialize DE register pair as a pointer to

memory location 4000H.

MOV B, M : Get the contents of memory location 2000H

into B register.

LDAX D : Get the contents of memory location 4000H

into A register.

MOV M, A : Store the contents of A register into memory

location 2000H.

MOV A, B : Copy the contents of B register into

accumulator.

STAX D : Store the contents of A register into memory

location 4000H.

HLT : Terminate program execution.

Sample problem

(4000H) = 14H

(4001H) = 89H

Result = 14H + 89H = 9DH

Source program

LXI H 4000H : HL points 4000H

MOV A, M : Get first operand

Computer Organization & Architecture -412

INX H : HL points 4001H

ADD M : Add second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution

Statement: Subtract the contents of memory location 4001H from

the memory location 2000H and place the result in memory

location 4002H.

Program - 4: Subtract two 8-bit numbers

Sample problem

(4000H) = 51H

(4001H) = 19H

Result = 51H - 19H = 38H

Source program

LXI H, 4000H : HL points 4000H

Sample problem

MOV A, M : Get first operand

INX H : HL points 4001H

SUB M : Subtract second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H.

HLT : Terminate program execution

13.4 MEMORY INTERFACING

A crucial component of computer design is memory interfacing,

which makes it easier for different kinds of memory modules and a

Computer Organization & Architecture -413

computer's central processing unit (CPU) to communicate. In order

to allow the CPU to read from and write to memory effectively,

hardware and protocols must be designed and put into place. Static

random-access memory (SRAM), dynamic random-access memory

(DRAM), and non-volatile memory, including flash memory, are

commonly used in memory interfaces in contemporary computers.

Ensuring smooth data communication between the CPU and

memory while maximizing speed, dependability, and affordability

is the main objective of memory interfacing. Memory controllers

and bus interfaces are examples of specialized integrated circuits

that are frequently needed for this. Memory controllers handle

operations including addressing, data transmission, and error

detection and correction as well as the flow of data between the

CPU and memory modules.

Addressing mechanisms to access certain memory locations and

data transmission protocols, such as synchronous and

asynchronous communication techniques, are also included in the

process of integrating. Memory interfacing design also takes into

account factors like bus designs, memory hierarchy, and caching

techniques, all of which contribute to improved system

performance.

The seamless functioning of computer systems depends on

effective memory interfacing, which affects things like program

performance, multitasking ability, and user experience in general.

Memory interface strategies must change to provide larger

capacities, quicker speeds, and new kinds of memory modules as

memory technology grow, guaranteeing continuous improvements

in computing power.

Computer Organization & Architecture -414

Typical EPROM and Static RAM

 There are typically "n" address pins and "m" data pins (also

known as output pins) on a semiconductor memory IC.

 Possessing two power supply pins, one for ground and the

other for attaching the necessary supply voltage (V).

 Chip select (chip enable), read control (output enable), and

write control (write enable) are the control signals required

for static RAM.

 Read control (output enable) and chip select (chip enable)

are the control signals required for EPROM read

operations.

Computer Organization & Architecture -415

Assembly language program to add two numbers

MVI A, 2H ; Copy value 2H in register A

MVI B, 4H ; Copy value 4H in register B

ADD B ; A = A + B

Note:

• Assembly language is specific to a given processor

• For e.g. assembly language of 8085 is different than that of

Motorola 6800 microprocessor

Microprocessor understands Machine Language only!

Microprocessor cannot understand a program written in Assembly

language

• A program known as Assembler is used to convert a

Assembly language program to machine language

Programming model of 8085

Computer Organization & Architecture -416

13.5 OVERVIEW: 8085
PROGRAMMING MODEL

The 8085 programming model is an assembly language program

written specifically for the Intel 8085 CPU. Fundamental parts

include the accumulator (A), which is primarily used for arithmetic

and logical operations, and the six general-purpose registers (B, C,

D, E, H, and L), which are critical for data manipulation and

storage. While the stack pointer (SP) handles subroutine calls and

returns by showing the top of the stack, the program counter (PC)

tracks the address of the next instruction to be executed. Status

indications that represent the results of arithmetic and logical

operations, such as Sign (S), Zero (Z), and Carry (CY), are kept in

the flags register. To this are added a variety of instructions

covering data transfer, branching, and arithmetic, logic, and control

transfer functions. Programming design is made more flexible and

efficient by addressing modes, which control how operands are

accessed during instruction execution. The 8085 also has

input/output connections that allow it to communicate with other

devices. This allows for a variety of applications, from simple

Computer Organization & Architecture -417

control programs to complex data processing and communication

jobs. Comprehending this programming approach is essential to

effectively utilizing the microprocessor's capabilities and creating

assembly language programs.

1. Six general-purpose Registers

2. Accumulator Register

3. Flag Register

4. Program Counter Register

5. Stack Pointer Register

Details:

Six general-purpose Registers – B, C, D, E, H, L

– Can be combined as register pairs to

• Perform 16-bit operations (BC, DE, HL)The Intel 8085

microprocessor features six general-purpose registers,

which are used for storing and manipulating data during

program execution. These registers are as follows:

• B Register: The B register is an 8-bit register used for

temporary storage of data and as an operand in arithmetic

and logical operations.

• C Register: The C register is another 8-bit register that

works in conjunction with the B register as a pair (BC

register pair). It is commonly used for storing data and as

an operand in various instructions.

• D Register: The D register is an 8-bit general-purpose

register used for storing intermediate data and as an

operand in arithmetic and logical operations.

• E Register: The E register is another 8-bit register that

forms a pair (DE register pair) with the D register. It serves

Computer Organization & Architecture -418

similar functions to the D register, providing additional

storage for data.

• H Register: The H register is an 8-bit general-purpose

register used for storing data and as an operand in

arithmetic and logical operations. It often works in

conjunction with the L register.

• L Register: The L register is the sixth 8-bit general-purpose

register in the 8085 microprocessor. Like the H register, it

is used for data storage and manipulation, often forming a

pair (HL register pair) with the H register for 16-bit

operations.

Accumulator Register

An essential part of the programming model for the Intel 8085

microprocessor is the Accumulator Register, sometimes known as

the "A" register. It temporarily stores data during arithmetic, logic,

and data transfer operations as an 8-bit register. The accumulator

functions as the main working register and is essential to the

majority of the microprocessor's arithmetic and logical operations.

The accumulator stores the outcomes of data transfer operations

between memory and other registers in addition to its use in

arithmetic operations. When data is transported into or out of the

microprocessor's memory or other registers, it serves as the

destination register. The accumulator is frequently listed as one of

the operands in instructions involving arithmetic, logic, or data

transfer operations.

The accumulator register is essential to the execution of

instructions and numerous computations carried out by assembly

language programs developed for the 8085 microprocessor, owing

Computer Organization & Architecture -419

to its fundamental role in data management and processing.

Efficient programming and utilization of the microprocessor's

capabilities require an understanding of its usage and capabilities.

– This register is a part of ALU

– 8-bit data storage

– Performs arithmetic and logical operations

– Result of an operation is stored in accumulator

Flag Register

An essential part of the Intel 8085 microprocessor's programming

model is the Flag Register, which holds a variety of condition code

flags representing the results of logical and arithmetic operations.

The outcomes of the most recent arithmetic or logical command

that the processor carried out are indicated by these flags. The Flag

Register is made up of multiple flags, each of which stands for a

distinct condition:

• Sign Flag (S): When an operation has a negative result,

this flag is set, meaning that the most important bit of the

result is 1.

• Zero Flag (Z): When an operation yields a zero result, the

Zero Flag is set. The Zero Flag is set when the result is

00000000, meaning that no bits are set in the result.

• The Auxiliary Carry Flag (AC) is utilized in arithmetic

procedures involving Binary Coded Decimal (BCD). In

order to enable BCD correction, it is set if there is a carry

from bit 3 to bit 4 during an arithmetic operation.

• Parity Flag (P): When an operation yields an even number

of set bits, which indicates even parity, the Parity Flag (P)

Computer Organization & Architecture -420

is set. The Parity Flag is removed in the event that the

result has an odd number of set bits.

• Carry Flag (CY): During an arithmetic operation, if the

most significant bit (bit 7) is carried out, the Carry Flag is

set. Additionally, it is employed in subtraction procedures

to detect borrow.

Program Counter (PC)

An essential part of the architecture of the Intel 8085

microprocessor is the Program Counter (PC), a 16-bit register that

stores the memory address of the subsequent instruction to be

retrieved and performed. The Program Counter, which points to the

memory address of the next instruction as it is executed

sequentially by the CPU, automatically increases after each

instruction execution.

The microprocessor retrieves the instruction stored at the memory

address that the Program Counter points to during the fetch-

execute cycle. After an instruction is fetched, the PC automatically

increments to point to the memory address of the next instruction,

readying it for the next fetch operation. The CPU can then carry

out instructions sequentially until a branch or jump instruction

modifies the value of the Program Counter. This process is

repeated iteratively.

The Program Counter is altered by branching and jumping

instructions, which reroute the execution flow to alternative

sections of the program or subroutine. For example, conditional

branch instructions allow the execution of different instruction

sequences dependent on the result of previous operations by

altering the PC's value based on predetermined criteria.

Computer Organization & Architecture -421

The microprocessor's ability to execute instructions sequentially

from memory is made possible by the Program Counter, whose

function in managing the instruction sequence is essential to its

functioning. For the purpose of creating successful assembly

language programs and guaranteeing proper program flow inside

the 8085 microprocessor architecture, it is imperative to

comprehend and efficiently manage the Program Counter.

The Stack Pointer (SP)

An essential component of the Intel 8085 microprocessor's

architecture, the Stack Pointer (SP) Register is in charge of

overseeing the stack memory region. The memory address of the

top of the stack at any given time is stored in this 16-bit register.

The stack of the 8085 microprocessor functions according to the

Last-of-First-Out (LIFO) principle, which states that the last data

item added to the stack will be the first one removed. Typically, the

stack is utilized for interrupts and subroutine calls, where it is used

to temporarily store data and return addresses.

The Program Counter (PC) is pushed onto the stack when a

subroutine is called, enabling the CPU to return to the proper place

in the main program once the subroutine has finished executing.

Furthermore, during the execution of a procedure, additional

registers or temporary data may be pushed into the stack for

storage.

In contrast, the CPU can resume running the main program when a

subroutine is completed by popping the previously saved return

address off the stack and loading it into the Program Counter.

Computer Organization & Architecture -422

As data is added to or removed from the stack, the Stack Pointer

automatically increases or decreases to preserve the accurate

memory location of the stack's top. It is essential for effectively

controlling the stack and guaranteeing the accuracy of the data kept

therein.

13.6 INSTRUCTION SET OF 8085

The instruction set of the Intel 8085 microprocessor comprises a

wide range of instructions categorized into various groups,

including data transfer, arithmetic, logical, branching, and control

transfer instructions. Here's an overview of the instruction set:

Data Transfer Instructions:

– MOV: Move data from one register/memory location to

another.

– MVI: Move immediate data into a register/memory

location.

– LXI: Load immediate 16-bit data into a register pair.

– LDA: Load accumulator with data from a memory address.

– STA: Store accumulator data into a memory address.

– LHLD and SHLD: Load and store HL register pair data

from/to memory.

Data Transfer (Copy) Operations

 Load a 8-bit number in a Register

 Copy from Register to Register

 Copy between Register and Memory

 Copy between Input/Output Port and Accumulator

Computer Organization & Architecture -423

 Load a 16-bit number in a Register pair

 Copy between Register pair and Stack memory

Example Data Transfer (Copy) Operations / Instructions

Arithmetic Instructions:

– ADD: Add the contents of a register/memory location to

the accumulator.

– ADC: Add the contents of a register/memory location to the

accumulator with carry.

– SUB: Subtract the contents of a register/memory location

from the accumulator.

– SBB: Subtract the contents of a register/memory location

from the accumulator with borrow.

– INR: Increment the contents of a register/memory location.

– DCR: Decrement the contents of a register/memory

location.

Arithmetic Operations

 Addition of two 8-bit numbers

 Subtraction of two 8-bit numbers

 Increment/ Decrement a 8-bit number

Example Arithmetic Operations / Instructions

Computer Organization & Architecture -424

Logical Instructions:

– ANA: Perform a logical AND operation between the

accumulator and a register/memory location.

– XRA: Perform a logical XOR operation between the

accumulator and a register/memory location.

– ORA: Perform a logical OR operation between the

accumulator and a register/memory location.

– CMP: Compare the accumulator with a register/memory

location.

Logical & Bit Manipulation Operations

 AND two 8-bit numbers

 OR two 8-bit numbers

 Exclusive-OR two 8-bit numbers

 Compare two 8-bit numbers

 Complement

 Rotate Left/Right Accumulator bits

Example Logical & Bit Manipulation Operations / Instructions

Computer Organization & Architecture -425

Branching Instructions:

– JMP: Unconditional jump to a specified memory address.

– JC, JNC, JP, JM, JZ, JNZ, JPE, JPO: Conditional jumps

based on various flag conditions.

– CALL: Call a subroutine at a specified memory address.

– RET: Return from a subroutine.

Example Branching Operations / Instructions

Control Transfer Instructions:

– NOP: No operation (Do nothing).

– HLT: Halt the microprocessor.

– DI and EI: Disable and enable interrupts, respectively.

Computer Organization & Architecture -426

Stack Manipulation Instructions:

– PUSH: Push register pairs onto the stack.

– POP: Pop register pairs from the stack.

Input/Output Instructions:

– IN: Read data from an input port.

– OUT: Write data to an output port.

13.7 WRITING A ASSEMBLY
LANGUAGE PROGRAM

Steps to write a program

 Analyze the problem

 Develop program Logic

 Write an Algorithm

 Make a Flowchart

 Write program Instructions using Assembly language of

8085

Program 8085 in Assembly language to add two 8-bit numbers and

store 8-bit result in register C.

Algorithm for writing this problem:

1. Get two numbers  Load 1st no. in register D

 Load 2nd no. in register E

2. Add them  Copy register D to A

 Add register E to A

3. Store result  Copy A to register C

4. Stop  Stop processing

Try to Make a Flowchart

Computer Organization & Architecture -427

Assembly Language Program

Addressing Modes of 8085

The Intel 8085 microprocessor supports several addressing modes

that determine how operands are accessed during instruction

execution. These addressing modes offer flexibility in

programming and allow efficient use of memory and register

resources. Here are the main addressing modes of the 8085:

[Label:] Mnemonic [Operands] [;comments]

 HLT

 MVI A, 20H

MOV M, A ; Copy A to memory location whose address is

stored in register pair HL

Computer Organization & Architecture -428

LOAD: LDA 2050H ; Load A with contents of memory location

with address 2050H

READ: IN 07H; Read data from Input port with address 07H

1. Immediate Addressing: In immediate addressing, the operand

is specified directly within the instruction itself. For example:

MVI A, 05H ; Load immediate data 05H into the accumulator

2. Direct Addressing: In direct addressing, the operand's memory

address is directly specified within the instruction. For example:

MOV A, M ; Move the data from memory location addressed by

HL into the accumulator

3. Register Addressing: In register addressing, the operand is

located in one of the microprocessor's registers. For example:

MOV B, C ; Move the contents of register C into register B

4. Indirect Addressing: In indirect addressing, the operand's

address is stored in a register or memory location, and the data is

accessed indirectly. For example:

MOV A, (HL) ; Move the data from the memory location

addressed by the contents of HL into the accumulator

5. Register Indirect Addressing: This is a specific form of

indirect addressing where the operand's address is stored in a

register. For example:

MOV A, (B) ; Move the data from the memory location addressed

by the contents of register B into the accumulator

6. Indexed Addressing: In indexed addressing, the operand's

address is calculated by adding an index value to a base address.

This mode is often used for accessing elements of arrays or data

Computer Organization & Architecture -429

structures. The 8085 doesn't have built-in support for indexed

addressing, but it can be simulated using other addressing modes.

These addressing modes provide versatility in accessing operands

and data, allowing programmers to write efficient and compact

code for various tasks. Mastery of addressing modes is essential

for effective programming on the Intel 8085 microprocessor,

enabling the utilization of its capabilities to their fullest extent.

Instruction & Data Formats

In the Intel 8085 microprocessor architecture, instructions and data

are structured according to specific formats to facilitate their

interpretation and execution. The instruction format typically

consists of an operation code (opcode) and, in some cases,

additional operands.

Instructions are encoded using a variable-length format, with

opcodes representing different operations such as data transfer,

arithmetic, logical, branching, and control transfer instructions.

Each opcode is associated with a specific operation that the

microprocessor performs when executing the instruction.

Additionally, some instructions may require additional data, which

can be specified as immediate values, memory addresses, or

register operands, depending on the addressing mode used.

Data in the 8085 architecture can be represented in various

formats, including binary, hexadecimal, and ASCII. Binary data

consists of sequences of 1s and 0s, which are interpreted by the

microprocessor as numerical values or instructions. Hexadecimal

notation is commonly used to represent binary data in a more

compact and readable format, with each hexadecimal digit

representing four bits of binary data. ASCII encoding is used for

Computer Organization & Architecture -430

representing alphanumeric characters and symbols, with each

character assigned a unique binary code.

Both instructions and data are stored in the memory of the 8085

microprocessor, with instructions typically residing in program

memory and data stored in either program memory or data memory

locations. The microprocessor fetches instructions from memory

using the program counter (PC) and executes them sequentially,

interpreting each opcode and its associated operands according to

the instruction set architecture.

 8085 Instruction set can be classified according to size (in bytes)

as

1. 1-byte Instructions

2. 2-byte Instructions

3. 3-byte Instructions

1. One-byte Instructions

One-byte instructions in the Intel 8085 microprocessor architecture

are compact instructions that occupy only one byte of memory.

These instructions typically represent simple operations that can be

executed quickly by the microprocessor.

One-byte instructions are often used for basic arithmetic, logical

operations, data transfer between registers, and control transfer

instructions such as NOP (no operation) and HLT (halt). Since they

are encoded in only one byte, they are easy to decode and execute,

contributing to faster program execution and efficient memory

utilization.

Examples of one-byte instructions in the 8085 architecture include:

Computer Organization & Architecture -431

 MOV r1, r2: Move the contents of register r2 into register

r1.

 ADD r: Add the contents of register r to the accumulator.

 SUB r: Subtract the contents of register r from the

accumulator.

 INR r: Increment the contents of register r.

 JMP addr: Unconditionally jump to the memory address

specified by addr.

 NOP: Perform no operation.

 HLT: Halt the microprocessor.

2-byte Instructions

Two-byte instructions in the Intel 8085 microprocessor architecture

are instructions that require two bytes of memory to represent.

These instructions are typically more complex than one-byte

instructions and may involve additional operands or data. Two-byte

instructions provide more functionality and flexibility, allowing for

a wider range of operations to be performed by the microprocessor.

Some examples of two-byte instructions in the 8085 architecture

include:

1. MVI Rd, data: Move immediate data (data) into the

specified register (Rd).

 Example: MVI A, 0AH (Move immediate value

0AH into the accumulator).

Computer Organization & Architecture -432

2. LXI Rp, data: Load immediate data (data) into the

specified register pair (Rp).

 Example: LXI H, 2050H (Load immediate value

2050H into the HL register pair).

3. STA address: Store the contents of the accumulator into

the memory location specified by the 16-bit address.

 Example: STA 3000H (Store the contents of the

accumulator into memory location 3000H).

4. LDA address: Load the accumulator with the contents of

the memory location specified by the 16-bit address.

 Example: LDA 4000H (Load the accumulator with

the contents of memory location 4000H).

5. JMP address: Unconditionally jump to the memory

address specified by the 16-bit address.

 Example: JMP 5000H (Jump to the memory

address 5000H).

6. CALL address: Call a subroutine located at the memory

address specified by the 16-bit address.

 Example: CALL 6000H (Call subroutine at

memory address 6000H).

3-byte Instructions

Computer Organization & Architecture -433

In the Intel 8085 microprocessor architecture, three-byte

instructions are instructions that require three bytes of memory to

represent. These instructions are typically more complex and

involve additional operands or data compared to one-byte or two-

byte instructions. Three-byte instructions provide even greater

functionality and flexibility, enabling a wider range of operations

to be performed.

Some examples of three-byte instructions in the 8085 architecture

include:

1. LHLD address: Load the HL register pair with the

contents of the memory location specified by the 16-bit

address.

 Example: LHLD 2000H (Load the HL register pair

with the contents of memory location 2000H).

2. SHLD address: Store the contents of the HL register pair

into the memory location specified by the 16-bit address.

 Example: SHLD 3000H (Store the contents of the

HL register pair into memory location 3000H).

3. LXI Rp, address: Load immediate 16-bit data (address)

into the specified register pair (Rp).

 Example: LXI SP, 4000H (Load immediate value

4000H into the stack pointer register pair).

4. STA address: Store the contents of the accumulator into

the memory location specified by the 16-bit address.

 Example: STA 4000H (Store the contents of the

accumulator into memory location 4000H).

Computer Organization & Architecture -434

5. LDA address: Load the accumulator with the contents of

the memory location specified by the 16-bit address.

 Example: LDA 5000H (Load the accumulator with

the contents of memory location 5000H).

6. CALL address: Call a subroutine located at the memory

address specified by the 16-bit address.

 Example: CALL 6000H (Call subroutine at

memory address 6000H).

Block data transfer

 MVI C, 0AH ; Initialize counter i.e no. of bytes Store the

count in Register C, ie ten

• LXI H, 2200H ; Initialize source memory pointer Data

Starts from 2200 location

• LXI D, 2300H ; Initialize destination memory pointer

 MOV A, M ; Get byte from source memory block i.e 2200

to accumulator.

• STAX D ; Store byte in the destination memory block i.e

2300 as stored in D-E pair

• INX H ; Increment source memory pointer

• INX D ; Increment destination memory pointer

• DCR C ; Decrement counter to keep track of bytes moved

• JNZ BK ; If counter 0 repeat steps

• HLT ; Terminate program

Computer Organization & Architecture -435

13.8 SUMMARY

This unit explores assembly language programming based on Intel

8085, focusing on basic tasks like data transfer, arithmetic

operations, and shifts. It progresses to more intricate programs,

demonstrating the use of loops and comparisons for code

conversion, character coding, and finding the largest value in an

array. Assembly language programs are machine-dependent and

require a deep understanding of underlying hardware architecture.

Development in assembly language often demands more effort and

expertise, potentially increasing development time and costs.

The assembler is a crucial component of computer design, enabling

smooth communication between memory modules and the central

processing unit (CPU). It handles the tedious operation of

converting symbolic code into object code, which can be stored as

paper tape or diskette files using the Intellect development system's

text editor. Memory interfacing is essential for ensuring smooth

data communication between the CPU and memory, and memory

interface strategies must change to provide larger capacities,

quicker speeds, and new memory modules as memory technology

grows.

In summary, understanding the programming model and its

functions is crucial for effectively using the microprocessor's

capabilities and creating assembly language programs.

The Intel 8085 microprocessor architecture consists of the Program

Counter (PC), a 16-bit register that stores the memory address of

Computer Organization & Architecture -436

subsequent instructions. It automatically increases after each

instruction execution, allowing the CPU to execute instructions

sequentially until a branch or jump instruction modifies the value.

The Stack Pointer (SP) Register oversees the stack memory region,

following the Last-of-First-Out (LIFO) principle. The instruction

set of the 8085 microprocessor includes data transfer, arithmetic,

logical, branching, and control transfer instructions. The 8085

assembly language allows for problem analysis, program logic

development, algorithm creation, and program instruction writing.

The microprocessor supports several addressing modes, allowing

for flexibility in programming and efficient use of memory and

register resources. Instructions and data are structured according to

specific formats, with instructions encoding in variable-length

format and data represented in binary, hexadecimal, and ASCII

formats. The 8085 instruction set can be classified as 1-byte

Instructions, 2-byte Instructions, and 3-byte Instructions. Assembly

language defines instructions, while memory interfacing is used for

efficient memory utilization.

13.9 QUESTIONS

1. What is the significance of understanding assembly language

programming in the context of microprocessors?

Answer: Understanding assembly language programming is

crucial for developing efficient and optimized code for

microprocessors. It allows programmers to write low-level code

that interacts directly with the hardware, giving them control over

the system’s resources and performance.

Computer Organization & Architecture -437

2. What are the primary objectives of learning 8085 assembly

language programming?

Answer: The primary objectives include understanding the 8085

microprocessor's architecture and instruction set, learning how to

write and debug assembly language programs, and interfacing

memory and I/O devices with the 8085 microprocessor.

3. Write a simple 8085 assembly language program to add two

numbers stored in memory locations 2000H and 2001H and store

the result in 2002H.

Answer:

4. Explain how memory interfacing is done with the 8085

microprocessor.

Answer: Memory interfacing with the 8085 involves connecting

memory chips to the microprocessor using address and data buses.

The 8085 uses address lines to specify the memory location, and

data lines to read from or write to that location. Control signals

such as Memory Read (M/IO) and Memory Write (WR) are used

to manage the read and write operations.

5. Describe the basic programming model of the 8085

microprocessor.

Answer: The 8085 microprocessor programming model includes 5

registers (B, C, D, E, H, L), a 16-bit stack pointer, a 16-bit program

counter, and an accumulator (A). The microprocessor also has a set

Computer Organization & Architecture -438

of flag registers that indicate the status of the accumulator after

arithmetic and logic operations.

6. What are the main categories of instructions in the 8085

instruction set?

Answer: The 8085 instruction set is divided into several

categories: Data Transfer Instructions (e.g., MOV, MVI),

Arithmetic Instructions (e.g., ADD, SUB), Logical Instructions

(e.g., AND, OR), Branch Instructions (e.g., JMP, CALL), and

Control Instructions (e.g., NOP, RLC).

Computer Organization & Architecture -439

13.10 REFERENCES

 "The 8085 Microprocessor: Architecture,

Programming, and Interfacing" by K. Udayakumar and

M. R. S. Srinivas: This book offers a comprehensive guide

to the 8085 microprocessor, including architecture,

programming, and interfacing techniques.

 "Microprocessor Architecture, Programming, and

Applications with the 8085" by Ramesh S. Gaonkar: This

book provides detailed explanations of the 8085

microprocessor architecture and programming, with

practical examples and applications.

 "Computer Organization and Design: The

Hardware/Software Interface" by David Patterson and

John Hennessy: This book covers fundamental concepts in

computer organization and architecture, including memory

hierarchy and I/O systems.

 "Computer Architecture: A Quantitative Approach" by

John L. Hennessy and David A. Patterson: A

comprehensive text on computer architecture that includes

detailed discussions on memory systems, cache

architecture, and performance metrics.

 "Structured Computer Organization" by Andrew S.

Tanenbaum: This book provides an introduction to

computer architecture and organization, including

discussions on memory, I/O systems, and processors.

Computer Organization & Architecture -440

UNIT – 14: ARCHITECTURAL
CLASSIFICATION SCHEMES
Structure

14.0 Introduction

14.1 Objectives

14.2 Types of Classification

14.3 Basic types of architectural classification

 14.3.1 Instruction Cycle

 14.3.2 Instruction Stream and Data Stream

14.3.3 FLYNN’S TAXONOMY OF COMPUTER

ARCHITECTURE

 14.3.4 FENG’S CLASSIFICATION

 14.2.5 Handler Classification

14.4 Structural Classification

 14.4.1 Shared Memory System / Tightly Coupled System

 14.4.1.1 Uniform Memory Access Model (UMA)

 14.4.1.2 Non-Uniform Memory Access Model

(NUMA)

 14.4.1.3 Cache-Only Memory Access Model

(COMA)

 14.4.2 Loosely Coupled Systems

14.5 CLASSIFICATION BASED ON GRAIN SIZE

 14.5.1 Parallelism Conditions

 14.5.2 Bernstein Conditions for Detection of Parallelism

 14.5.3 Parallelism based on Grain size

14.6 Summary

14.7 Questions

14.8 References

Computer Organization & Architecture -441

14.0 INTRODUCTION

Parallel computing has become an essential technology in modern

computers, driven by the constantly increasing demands for higher

performance, lower costs, and sustained productivity in real

applications. There are concurrent events taking place in today's

high performance computers due to the common practices of

multiprogramming, multiprocessing, or multi-computing.

Parallelism can take the form of look ahead, pipelining,

vectorization, concurrency, simultaneity, data parallelism,

partitioning, interleaving, overlapping, multiplicity, replication,

time sharing, space sharing, multitasking, multiprogramming,

multithreading, and distributed computing at different processing

levels. Parallel computing is a type of computation where many

calculations are performed at the same time, operating under the

principle that large problems can often be divided into smaller

ones, which are then solved together concurrently.

14.1 OBJECTIVES

After reading this unit, you should be able to:

 Clarify the different standards used to categorize

parallel computers;

 Talk about flynn's classification system which is based

on instruction and data flows;

 Characterize the structural classification that is based

on varying computer architectures;

 Elucidate handler's classification which focuses on

three separate computer levels: the processor control

Computer Organization & Architecture -442

unit (pcu), the arithmetic logic unit (alu), and the bit-

level circuit (blc);

 Delineate the sub-tasks or instructions within a program

that can be run concurrently depending on the

granularity.

14.2 TYPES OF CLASSIFICATION

The following classifications of parallel computers have been

identified:

1) Classification based on the instruction and data streams

2) Classification based on the structure of computers

3) Classification based on how the memory is accessed

4) Classification based on grain size

All these classification schemes are discussed in subsequent

sections.

14.3 BASIC TYPES OF
ARCHITECTURAL CLASSIFICATION

This categorization of computers was initially researched and

suggested by Michael Flynn in 19714. Flynn did not take into

account the machine design when classifying parallel computers.

Instead, he presented the ideas of instruction and data flows to

categorize computers. Not all the computers classified by Flynn are

parallel, but to understand parallel computers, it is essential to

comprehend all kinds of Flynn's classification. Because this

classification relies on instruction and data flows, we first need to

grasp how the instruction cycle functions.

Computer Organization & Architecture -443

14.3.1 Instruction Cycle

The instruction cycle consists of a sequence of steps needed for the

execution of an instruction in a program. A typical instruction in a

program is composed of two parts: Opcode and Operand. The

Operand part specifies the data on which the specified operation is

to be done. (See Figure 1). The Operand part is divided into two

parts: addressing mode and the Operand. The addressing mode

specifies the method of determining the addresses of the actual

data on which the operation is to be performed and the operand

part is used as an argument by the method in determining the

actual address.

Figure: Opcode and Operand (Image Source: IGNOU)

The control unit of the central processing unit (CPU) in the

computer sequentially obtains instructions from the program, one

instruction at a time. The obtained instruction is then interpreted by

the decoder, which is part of the control unit, and the processor

carries out the interpreted instructions. The outcome of the

execution is briefly stored in the Memory Buffer Register (MBR),

also known as the Memory Data Register. The standard execution

process is illustrated in Figure.

Computer Organization & Architecture -444

Figure: Instruction Execution steps

14.3.2 Instruction Stream and Data Stream

The term ‘stream’ refers to a sequence or flow of either instructions

or data operated on by the computer. In the complete cycle of

instruction execution, a flow of instructions from main memory to

the CPU is established. This flow of instructions is called

instruction stream. Similarly, there is a flow of operands between

processor and memory bi-directionally. This flow of operands is

called data stream. These two types of streams are shown in Figure

3.

Figure: Instruction and Data stream

14.3.3 FLYNN’S TAXONOMY OF COMPUTER

ARCHITECTURE

Computer Organization & Architecture -445

Parallel computing is a form of computation where tasks are

divided into separate pieces that can be worked on at the same

time. Each part is further split into a sequence of instructions. The

instructions from each part are executed simultaneously on

different CPUs. Parallel systems involve the concurrent use of

multiple computer resources, which can include a single computer

with multiple processors, several computers linked by a network to

create a parallel processing cluster, or a mix of both. Parallel

systems are harder to program than single-processor computers

because the architecture varies based on the parallel computer and

the processes across multiple CPUs need to be coordinated and

synchronized. CPUs are at the core of parallel processing. Based

on the number of instruction and data streams that can be handled

at the same time, computing systems are categorized into four

major types:

Figure: Flynn's taxonomy (1966) (Image courtesy: Research Gate)

According to Flynn’s classification, either of the instruction or data

streams can be single or multiple.

Computer architecture can be classified into the

 Single-Instruction Single-Data Streams (SISD)

 Single-Instruction Multiple-Data Streams (SIMD)

 Multiple-Instruction Single-Data Streams (MISD)

Computer Organization & Architecture -446

 Multiple-Instruction Multiple-Data Streams (MIMD).

SISD (Single Instruction Single Data Stream):

Traditional sequential computers are classified as SISD - [single

instruction stream over single data stream] machines. Instructions

in these computers are carried out one after another, but their

execution phases may overlap (pipelining).

Fig: SISD Uni-processor Architecture

SIMD (Single Instruction Multiple Data Stream)

This represents computers with both vector/array processing

capabilities as well as scalar hardware. There are multiple

processing elements overseen by one control unit. All the

processing elements get the same instruction from the control unit

but work on different data sets from separate data streams.

Captions(abbreviations)

CU = Control Unit

PU = Processing Unit

MU = Memory Unit

IS = Instruction stream

DS = Data Stream

PE = Processing Element

LM = Local Memory

Computer Organization & Architecture -447

MIMD(multiple instructions over multiple data stream) –

most popular model. parallel computers ters are reserved for

MIMD.

Fig: MIMD Architecture (with shared memory)

MISD(multiple instruction over single data stream): The same

data stream flows through a linear array of processors executing

Computer Organization & Architecture -448

different instruction streams. This architecture is also known as

systolic arrays For pipelined execution of specific algorithms.

Figure: MISD Architecture (the systolic array)

Of the four machine models, most parallel computers constructed

in the past were based on the MIMD model for general purpose

computing tasks. The SIMD and MISD models are better suited for

specific computations. As a result, MIMD is the most widely used

model, followed by SIMD, while MISD is the least common model

implemented in commercial machines.

14.3.4 FENG’S CLASSIFICATION

Feng suggested the use of degree of parallelism to classify various

computer architectures. Tse-yun Feng suggested the use of degree

of parallelism to classify various computer architectures.

 The maximum number of binary digits that can be

processed within a unit time by a computer system is called

the maximum parallelism degree P.

 A bit slice is a string of bits one from each of the words at

the same vertical position.

 Under above classification

 Word Serial and Bit Serial (WSBS)

 Word Parallel and Bit Serial (WPBS)

 Word Serial and Bit Parallel(WSBP)

Computer Organization & Architecture -449

 Word Parallel and Bit Parallel (WPBP)

Classification:

 WSBS has been called bit parallel processing because

one bit is processed at a time.

 WPBS has been called bit slice processing because m-

bit slice is processes at a time.

 WSBP is found in most existing computers and has

been called as Word Slice processing because one word

of n bit processed at a time.

 WPBP is known as fully parallel processing in which an

array on n x m bits is processes at one time.



Mode Computer Model Degree of

parallelism

WSPS

N = 1

M = 1

The “MINIMA” (1, 1)

WPBS

N = 1

M > 1

STARAN

MPP

DAP

(1, 256)

(1, 16384)

(1, 4096)

WSBP

N > 1

M = 1 (Word Slice

Processing)

IBM 370/168 UP

CDC 660

Burrough 7700

VAX 11/780

(64, 1)

(60, 1)

(48, 1)

(16/32, 1)

WPBP

N > 1

M > 1 (FULLY

Parallel Processing)

Illiav IV (64, 64)

Computer Organization & Architecture -450

14.3.5 Handler Classification

In 1977, Wolfgang Handler proposed an elaborate notation for

expressing the pipelining and parallelism of computers. Handler's

classification addresses the computer at three distinct levels:

• Processor control unit (PCU),

• Arithmetic logic unit (ALU),

• Bit-level circuit (BLC).

The PCU corresponds to a processor or CPU, the ALU corresponds

to a functional unit or a processing element and the BLC

corresponds to the logic circuit needed to perform onebit

operations in the ALU.

Handler's classification uses the following three pairs of integers to

describe a computer:

Computer = (p * p', a * a', b * b')

Where p = number of PCUs

Where p'= number of PCUs that can be pipelined

Where a = number of ALUs controlled by each PCU

Where a'= number of ALUs that can be pipelined

Where b = number of bits in ALU or processing element

(PE) word

Where b'= number of pipeline segments on all ALUs or in a

single PE

The following rules and operators are used to show the relationship

between various elements of the computer:

Computer Organization & Architecture -451

• The '*' operator is used to indicate that the units are

pipelined or macro-pipelined with a stream of data running

through all the units.

• The '+' operator is used to indicate that the units are not

pipelined but work on independent streams of data.

• The 'v' operator is used to indicate that the computer

hardware can work in one of several modes.

• The '~' symbol is used to indicate a range of values for any

one of the parameters.

• Peripheral processors are shown before the main processor

using another three pairs of integers. If the value of the

second element of any pair is 1, it may omitted for brevity.

Handler's system for categorizing computers can be clarified by

demonstrating how the guidelines and operators are utilized to sort

various machines.

The CDC 6600 has a solitary central processor upheld by 10 I/O

processors. One control unit coordinates one ALU with a 60-bit

word length. The ALU has 10 functional units which can be

assembled into a pipeline. The 10 peripheral I/O processors may

work at the same time with one another and with the CPU. Each

I/O processor contains one 12-bit ALU. The portrayal for the 10

I/O processors is:

CDC 6600I/O = (10, 1, 12)

The description for the main processor is:

CDC 6600main = (1, 1 * 10, 60)

Computer Organization & Architecture -452

The main processor and the I/O processors can be regarded as

forming a macro-pipeline so the '*' operator is used to combine the

two structures:

 CDC 6600 = (I/O processors) * (central processor = (10, 1,

12) * (1, 1 * 10, 60)

Texas Instrument's Advanced Scientific Computer (ASC) has one

controller coordinating four arithmetic units. Each arithmetic unit

is an eight stage pipeline with 64-bit words.

Thus we have:

ASC = (1, 4, 64 * 8)

The Cray-1 is a 64-bit single processor computer whose ALU has

twelve functional units, eight of which can be chained together

from a pipeline. Different functional units have from 1 to 14

segments, which can also be pipelined. Handler's description of the

Cray-1 is:

Cray-1 = (1, 12 * 8, 64 * (1 ~ 14))

Another sample system is the C.mmp multiprocessor developed by

Carnegie-Mellon University. The C.mmp was designed to facilitate

research into parallel computer architectures, so it can be

extensively reconfigured. The system consists of 16 PDP-11

minicomputers with 16-bit word lengths, interconnected by a

crossbar switching network. Typically, the C.mmp operates in

MIMD mode, where the processors execute asynchronously; this

mode's description is (16, 1, 16). The C.mmp can also run in SIMD

mode, where a single master controller coordinates all processors.

The SIMD mode's description is (1, 16, 16). Additionally, the

C.mmp can be reconfigured to operate in MISD mode, where the

processors are chained together and a single data stream passes

Computer Organization & Architecture -453

through them all. The MISD mode's description is (1 * 16, 1, 16).

Handler describes the complete C.mmp using the 'v' operator to

combine the descriptions of its different operating modes:

C.mmp = (16, 1, 16) v (1, 16, 16) v (1 * 16, 1, 16)

The '*' and '+' operators are utilized to bring together multiple

separate hardware components. The 'v' operator differs from the

other two in that it is employed to combine the various operating

modes of a single hardware piece.

While Flynn's categorization is straightforward, Handler's

classification is unwieldy. The direct application of numbers in the

nomenclature of Handler's classification makes it much more

abstract and thus difficult. Handler's classification is highly

oriented towards depicting pipelines and chains. Although it can

adequately illustrate the parallelism in a single processor, the

diversity of parallelism in multiprocessor computers is not well

addressed.

14.4 STRUCTURAL CLASSIFICATION

Flynn's taxonomy focuses on the behavioral aspects of parallel

computers and does not consider their structural design. However,

parallel computers can also be classified based on their

architecture, as discussed below and illustrated in Figure 8.

As we have seen, a parallel computer (MIMD) consists of multiple

processors and shared memory modules or local memories

connected via an interconnection network. When the processors in

a multiprocessor system communicate through global shared

memory modules, this organization is called a shared memory

Computer Organization & Architecture -454

computer or tightly coupled system, as depicted in Figure. In

contrast, when each processor has its own local memory and

processors exchange messages between their local memories, this

is called a distributed memory computer or loosely coupled

system, as shown in Figure. Figure provides simplified diagrams of

both architectures.

In both organizations, the processors and memories are linked

through an interconnection network, which can take various forms

like a crossbar switch, multistage network, etc. We will discuss

these in more detail in the next unit.

Figure: Structural Classification

Figure: Tightly Coupled System

Computer Organization & Architecture -455

Figure: Loosely Coupled System

14.4.1 Shared Memory System / Tightly Coupled System

Shared memory multiprocessors have the following characteristics:

 Every processor communicates through a shared global

memory.

 For high speed real time processing, these systems are

preferable as their throughput is high as compared to

loosely coupled systems.

In tightly coupled system organization, multiple processors share a

global main memory, which may have many modules as shown in

detailed Figure. The processors have also access to I/O devices.

The inter- communication between processors, memory, and other

devices are implemented through various interconnection

networks, which are discussed below.

Figure: Tightly Coupled System Organization

i) Processor-Memory Interconnection Network (PMIN):

This switch links up various processors with different

memory units. Connecting each processor directly to

each memory module in one step can make the crossbar

switch very complex. So a multi-step network can be

used instead. There can also be a clash where

processors try to access the same memory modules at

Computer Organization & Architecture -456

the same time. The PMIN system deals with this clash

as well.

ii) Input-Output-Processor Interconnection Network

(IOPIN): This interconnection network is used for

communication between processors and input/output

(I/O) channels. All processors talk to an I/O channel to

interact with an I/O device, but only after getting

permission from the I/O processor interconnection

network (IOPIN).

iii) Interrupt Signal Interconnection Network (ISIN): When

one processor desires to interrupt another processor, the

interruption first travels to the ISIN (Inter-processor

Interrupt Network). The ISIN then passes the

interruption to the destination processor. This allows the

ISIN to synchronize the processors by facilitating their

interruptions. Additionally, if a processor fails, the ISIN

can broadcast a message to the other processors about

the failure.

The ISIN acts as an intermediary for interruptions

between processors. It coordinates and relays the

interruptions while also notifying all processors if any

individual processor malfunctions. This allows for

synchronization and communication between the

processors.

Since, every reference to the memory in tightly coupled systems is

via interconnection network, there is a delay in executing the

instructions. To reduce this delay, every processor may use cache

memory for the frequent references made by the processor as

shown in Figure.

Computer Organization & Architecture -457

Figure: Tightly coupled systems with cache memory

The shared memory multiprocessor systems can further be divided

into three modes which are based on the manner in which shared

memory is accessed. These modes are shown in Figure and are

discussed below.

Figure: Modes of Tightly coupled systems

14.4.1.1 Uniform Memory Access Model (UMA)

In this model, main memory is uniformly shared by all processors

in multiprocessor systems and each processor has equal access

time to shared memory. This model is used for time-sharing

applications in a multi user environment.

Computer Organization & Architecture -458

14.4.1.2 Non-Uniform Memory Access Model (NUMA)

In shared memory multiprocessor systems, local memories can be

connected with every processor. The collections of all local

memories form the global memory being shared. In this way,

global memory is distributed to all the processors. In this case, the

access to a local memory is uniform for its corresponding

processor as it is attached to the local memory. But if one reference

is to the local memory of some other remote processor, then the

access is not uniform. It depends on the location of the memory.

Thus, all memory words are not accessed uniformly.

14.4.1.3 Cache-Only Memory Access Model (COMA)

As we have discussed earlier, shared memory multiprocessor

systems may use cache memories with every processor for

reducing the execution time of an instruction. Thus in NUMA

model, if we use cache memories instead of local memories, then it

becomes COMA model. The collection of cache memories forms a

global memory space. The remote cache access is also non-

uniform in this model.

14.4.2 Loosely Coupled Systems

In loosely coupled systems, processors do not share global memory

as shared memory leads to memory conflict issues, which slow

down instruction execution. To mitigate this problem, each

processor has a large local memory that is not shared with other

processors. These systems have multiple processors with their own

local memory and I/O devices, forming individual computer

systems. They are connected via a message passing

interconnection network through which processes communicate by

exchanging messages. Since each node has separate memory, they

are called distributed multicomputer systems. They are also known

Computer Organization & Architecture -459

as loosely coupled systems, indicating little interdependence

between nodes.

Figure: Loosely Coupled System Organization

Since, local memories can only be accessed by their attached

processor, no processor is able to access remote memory. For this

reason, these systems are also referred to as no-remote memory

access (NORMA) systems. The message passing interconnection

network connects every node and communication between nodes

with messages is dependent on the type of interconnection

network. For instance, the interconnection network for a non-

hierarchical system could be a shared bus.

14.5 CLASSIFICATION BASED ON
GRAIN SIZE

This classification is based on recognizing the parallelism in a

program to be executed on a multiprocessor system. The idea is to

identify the sub-tasks or instructions in a program that can be

executed in parallel. For example, there are 3 statements in a

program and statements S1 and S2 can be exchanged. That means,

Computer Organization & Architecture -460

these are not sequential as shown in Figure. Then S1 and S2 can be

executed in parallel.

Figure: Parallel Execution for S1 and S2

But it is not sufficient to check for the parallelism between

statements or processes in a program. The decision of parallelism

also depends on the following factors:

• Number and types of processors available, i.e., architectural

features of host computer

• Memory organisation

• Dependency of data, control and resources

14.5.1 Parallelism Conditions

As mentioned earlier, parallel computing necessitates that the

segments to be run concurrently must be autonomous of one

another. Therefore, before implementing parallelism, all the

prerequisites of parallelism between the segments need to be

examined. In this part, we talk about three kinds of dependency

circumstances between the segments.

Computer Organization & Architecture -461

Figure: Dependency relations among the segments for

parallelism

Data Dependency: It refers to the condition where two or more

commands use the same information. The directions in a program

can be organized based on the connection of data reliance; this

means how two directions or parts depend on the same data. The

following kinds of data dependencies are identified:

i) Flow Dependence: If instruction I2 follows I1 and output of

I1 becomes input of I2, then I2 is said to be flow dependent on

I1.

ii) Antidependence: When instruction I2 follows I1 such that

output of I2 overlaps with the input of I1 on the same data.

iii) Output dependence: When output of the two instructions I1

and I2 overlap on the same data, the instructions are said to be

output dependent.

iv) I/O dependence: When read and write operations by two

instructions are invoked on the same file, it is a situation of I/O

dependence.

Consider the following program instructions:

I1: a = b

I2: c = a + d

I3: a = c

Computer Organization & Architecture -462

This program segment contains instructions I1, I2, and I3 that have

various dependencies. I1 and I2 are flow dependent because I1

generates variable as a output, which is then used by I2 as input. I2

and I3 are anti-dependent since I3 generates variable a but I2 uses it,

and I2 comes before I3 in the sequence. I3 is flow dependent on I2

due to variable c. I3 and I1 are output dependent because both

instructions generate variable a.

Control Dependence: Instructions or segments in a program often

contain control structures. As a result, dependency among the

statements can also occur within control structures. However, the

order in which instructions in control structures will execute is not

known until run time. Therefore, when analyzing dependencies

among instructions, any dependencies introduced by control

structures must be examined carefully. For instance, in the

following control structure, the successive iterations are dependent

on one another:

For (i= 1; I<= n ; i++)

{

if (x[i - 1] == 0)

 x[i] =0

 else

 x[i] = 1;

}

Resource Dependence: The similarity between the instructions

can also be influenced because of the shared resources. If two

instructions are utilizing the same shared resource then there is a

resource dependency situation. For instance, floating point units or

registers are shared, and this is referred to as ALU dependency.

Computer Organization & Architecture -463

When memory is being shared, then it is called Storage

dependency.

14.5.2 Bernstein Conditions for Detection of Parallelism

For execution of instructions or block of instructions in parallel, it

should be ensured that the instructions are independent of each

other. These instructions can be data dependent / control dependent

/ resource dependent on each other. Here we consider only data

dependency among the statements for taking decisions of parallel

execution. A.J. Bernstein has elaborated the work of data

dependency and derived some conditions based on which we can

decide the parallelism of instructions or processes. Bernstein

conditions are based on the following two sets of variables:

i) The Read set or input set RI that consists of memory

locations read by the statement of instruction I1.

ii) The Write set or output set WI that consists of memory

locations written into by instruction I1.

The sets RI and WI are not disjoint as the same locations are used

for reading and writing by SI.

The following are Bernstein Parallelism conditions which are used

to determine whether statements are parallel or not:

Locations in R1 from which S1 reads and the locations W2 onto

which S2 writes must be mutually exclusive. That means S1 does

not read from any memory location onto which S2 writes. It can be

denoted as:

 R1∩W2=φ

Computer Organization & Architecture -464

2) Similarly, locations in R2 from which S2 reads and the locations

W1 onto which S1 writes must be mutually exclusive. That means

S2 does not read from any memory location onto which S1 writes.

It can be denoted as: R2∩W1=φ

3) The memory locations W1 and W2 onto which S1 and S2 write,

should not be read by S1 and S2. That means R1 and R2 should be

independent of W1 and W2. It can be denoted as :

W1∩W2=φ

To show the operation of Bernstein’s conditions, consider the

following instructions of sequential program:

I1: x = (a + b) / (a * b)

I2: y = (b + c) * d

I3: z = x2 + (a * e)

Now, the read set and write set of I1, I2 and I3 are as follows:

R1 = {a, b} W1 = {x}

R2 = {b, c, d} W2 = {y}

R3 = {x, a, e} W3 = {z}

Now let us find out whether I1 and I2 are parallel or not

 R1∩W2=φ

 R2∩W1=φ

 W1∩W2=φ

That means I1 and I2 are independent of each other.

Similarly for I1 || I3,

R1∩W3=φ

Computer Organization & Architecture -465

R3∩W1≠φ

W1∩W3=φ

Hence I1 and I3 are not independent of each other.

For I2 || I3,

 R2∩W3=φ

R3∩W2=φ

W3∩W2=φ

Hence, I2 and I3 are independent of each other.

Thus, I1 and I2, I2 and I3 are parallelizable but I1 and I3 are not.

14.5.3 Parallelism based on Grain size

Grain size: Grain size or Granularity is a measure which

determines how much computation is involved in a process. Grain

size is determined by counting the number of instructions in a

program segment. The following types of grain sizes have been

identified

Figure: Types of Grain sizes

1) Fine Grain: This type contains approximately less than 20

instructions.

2) Medium Grain: This type contains approximately less than 500

instructions.

3) Coarse Grain: This type contains approximately greater than or

equal to one thousand instructions.

Computer Organization & Architecture -466

According to the grain sizes, parallelism in a program can be

categorized into different levels. These parallelism levels make up

a hierarchy where processes become finer-grained at lower levels.

As the level increases, the degree of parallelism decreases. Each

level requires communication and scheduling overhead depending

on its grain size. The parallelism levels are as follows:

Figure: Parallelism Levels

i. The instruction level is the most basic level and has the

highest degree of parallelism. The grain size here is fine,

with just a few instructions making up each grain. The

exact fine grain size can vary based on the program type -

for scientific applications, the instruction level grain size

may be larger. This level allows for the highest degree of

parallelism, but also requires more overhead for the

programmer.

ii. The loop level involves parallelizing iterative loop

instructions. The grain size at this level is also fine. Simple

program loops are easy to parallelize, while recursive loops

are more difficult. Compilers can achieve this type of

parallelism automatically.

Computer Organization & Architecture -467

iii. The procedure or subprogram level consists of procedures,

subroutines or subprograms. The grain size here is medium,

containing thousands of instructions per procedure.

Multiprogramming is implemented at this level.

Programmers have exploited parallelism here, but

compilers have not achieved parallelism at medium or

coarse grain sizes.

iv. The program level is the highest level, consisting of

independent programs. The grain size here is coarse, with

tens of thousands of instructions per program. Time sharing

achieves parallelism at this level. Parallelism here has been

exploited through the operating system.

The relation between grain sizes and parallelism levels has been

shown in Table 1

Table 1: Relation between grain sizes and parallelism

Grain Size Parallelism Level

Fine Grain Instruction or Loop Level

Medium Grain Procedure or SubProgram Level

Coarse Grain Program Level

.

Typically, coarse grain parallelism is carried out in tightly coupled

or shared memory multiprocessors such as the Cray Y-MP. Loosely

coupled systems are utilized to execute medium grain program

segments. Fine grain parallelism has been seen in the SIMD

organization of computers.

Computer Organization & Architecture -468

14.6 SUMMARY

In section 2.3.3, we examined Flynn’s Classification of computers.

This classification system was proposed by Michael Flynn in 1972

and is founded on the ideas of data flow and instruction flow. Next,

in section 2.2.5, we discuss Handler’s classification scheme. This

classification system, suggested by Wolfgang Handler in 1977,

categorizes computers at the following three distinct tiers:

 Processor Control Unit (PCU)

 Arithmetic Logic Unit (ALU)

 Bit-Level Circuit (BLC)

In section 2.5, in the context of structural classification of

computers, several new concepts are presented and examined. The

concepts covered include: Tightly Coupled (or shared memory)

systems, loosely coupled (or distributed memory) systems. In the

case of distributed memory systems, different kinds of Processor

Interconnection Networks (PIN) are talked about. Another

classification scheme based on the idea of grain size is examined in

section 2.6.

14.7 QUESTIONS

1. Why is the classification of computer architectures important in

computer science?

Answer: The classification of computer architectures is important

because it helps in understanding the design and operational

principles of various computer systems. It aids in selecting the

Computer Organization & Architecture -469

appropriate architecture for specific tasks and performance

requirements, and in evaluating and comparing different systems

based on their capabilities.

2. What are the main types of classification used in computer

architecture?

Answer: The main types of classification in computer architecture

include structural classification, classification based on grain size,

and instruction set classification. These classifications help in

organizing and analyzing computer systems based on their design,

performance, and operational characteristics.

3. What is the instruction cycle in computer architecture?

Answer: The instruction cycle is the sequence of operations that a

CPU performs to execute an instruction. It typically includes

fetching the instruction from memory, decoding it to determine the

operation, executing the instruction, and storing the result. This

cycle is fundamental to the operation of any computer system.

4. How do instruction streams and data streams differ in computer

architecture?

Answer: Instruction streams refer to the sequence of instructions

that a CPU executes, while data streams refer to the sequence of

data being processed. The differentiation is important for

optimizing performance, as different architectures may handle

instruction and data streams in varying ways to achieve efficiency.

5. What is Flynn’s Taxonomy and how does it classify computer

architectures?

Answer: Flynn's Taxonomy classifies computer architectures

based on their parallel processing capabilities. It includes four

Computer Organization & Architecture -470

categories: Single Instruction stream Single Data stream (SISD),

Single Instruction stream Multiple Data streams (SIMD), Multiple

Instruction streams Single Data stream (MISD), and Multiple

Instruction streams Multiple Data streams (MIMD). Each category

describes how instructions and data are processed in parallel.

Computer Organization & Architecture -471

14.8 REFERENCES

 Hennessy, J. L., & Patterson, D. A. (2022). Computer

architecture: A quantitative approach (6th ed.). Morgan

Kaufmann Publishers.

 Tanenbaum, A. S., & Austin, T. (2021). Structured

computer organization (7th ed.). Pearson Education.

 Patterson, D. A., & Hennessy, J. L. (2022). Computer

organization and design: The hardware/software

interface (7th ed.). Morgan Kaufmann Publishers.

 Silberschatz, A., Korth, H. F., & Sudarshan, S.

(2022). Database system concepts (7th ed.). McGraw-

Hill Education.

 Hwang, K., & Briggs, F. A. (2020). Computer

architecture and parallel processing. McGraw-Hill

Education.

 Stallings, W. (2021). Computer organization and

architecture: Designing for performance (11th ed.).

Pearson Education.

 Cox, R. M., & Davis, A. K. (2020). Introduction to

computer systems: From bits and gates to C programs

and operating systems (4th ed.). McGraw-Hill

Education.

Computer Organization & Architecture -472

UNIT – 15: PARALLELISM IN UNI-
PROCESSOR SYSTEMS & PARALLEL
COMPUTER STRUCTURE
Structure

15.0 Introduction

15.1 Objectives

15.2 PARALLELISM IN UNIPROCESSOR SYSTEMS

15.3 PARALLEL COMPUTR STRUCTURES

15.3.1 Pipeline Computer

15.3.2 Array Computers

15.3.3 Multi-Processor Systems

15.4 Serial Versus Parallel Processing

15.4.1 PARALLELISM VERSUS PIPELINING

15.4.2 PARALLEL PROCESSING APPLICATIONS

15.5 Scalability and Load Balancing

15.6 Summary

15.7 Model Questions

15.8 References

15.0 INTRODUCTION

In the realm of modern computing, the pursuit of enhanced

performance and efficiency has led to significant advancements in

parallel processing techniques. Parallelism, a key concept in

computing, involves executing multiple processes or tasks

simultaneously to optimize computational speed and resource

utilization. This approach contrasts with serial processing, where

Computer Organization & Architecture -473

tasks are executed sequentially, one after the other. The transition

from serial to parallel processing has revolutionized the way

complex computations are handled, enabling the development of

more powerful and efficient computing systems.

Parallel processing can be implemented in various forms, ranging

from simple uniprocessor systems with parallel capabilities to

sophisticated multi-processor and multi-core architectures. Each of

these systems employs distinct parallel computing structures, such

as pipeline computers, array computers, and multi-processor

systems, to achieve different performance goals. Understanding

these structures and their operational principles is essential for

designing and utilizing effective parallel computing systems.

The concepts of scalability and load balancing further enhance the

efficiency of parallel systems. Scalability refers to a system's

ability to handle increasing workloads by adding more resources,

while load balancing ensures that these resources are utilized

effectively without overloading any single component. Together,

these principles help optimize parallel processing applications

across various domains, from scientific research and data analysis

to real-time processing and large-scale simulations. This chapter

will explore these aspects in detail, providing a comprehensive

overview of parallel processing in contemporary computing.

15.1 OBJECTIVES

At the end of this unit, you should be able to understand:

 Uni-processor

 Parallelism in uni-processor

Computer Organization & Architecture -474

 Hardware and software approach in parallelism

 Parallel and serial computer architecture

15.2 PARALLELISM IN
UNIPROCESSOR SYSTEMS

The majority of general purpose single processor systems share a

common fundamental design. Advancing parallel processing

capabilities in single processor computers can improve power and

bandwidth of the machine, mechanisms and so on. In this section

we will examine single processor architectures in the following

manner:

Basic Uni-processor Architecture

A usual single processor computer has three major parts: main

memory, a central processing unit, and input/output devices. The

structure of two commercially available single processor

computers illustrates how these three subsystems can interconnect.

The diagram shows the components of the VAX-11/780 super

minicomputer made by Digital Equipment Corporation. The CPU

is the main controller of the VAX system. It has sixteen 32-bit

general purpose registers, with one register as the program counter.

The CPU also contains a special status register with information

about the current state of the processor and the program being

executed. The CPU includes an arithmetic logic unit with optional

floating point accelerator and some local cache memory. The

operator can interface with the CPU through a console connected

to a floppy disk. The CPU, main memory, and I/O devices all

connect to a common bus called the synchronous backplane

interconnect. Through this bus, all I/O devices can communicate

Computer Organization & Architecture -475

with each other, the CPU, or memory. Peripheral storage and I/O

devices can connect directly to the bus through a controller.

Figure 1: The system architecture of the super-mini VAX-11/780

uni-processor system (Courtesy of IGNOU Book)

Parallelism in Uniprocessor

What is Parallelism?

Parallel computing is the method done by computer systems to

execute multiple instructions at the same time by allocating each

task to different processors. This capability is done in a

uniprocessor system through various techniques such as utilizing

multi-core processors or multiple cores within a single processor

chip, separating a job into smaller sub-tasks that can be processed

concurrently, or leveraging specialized hardware or software to

coordinate parallel processing.

Parallelism in Uniprocessor

Uniprocessor has only one processor but still, it is possible to

achieve parallelism by using certain techniques such as pipelining

and multitasking.

Computer Organization & Architecture -476

Pipelining is a technique that allows a processor to execute a set of

instructions simultaneously by dividing the instructions execution

process into several stages.

Uniprocessor contains a single processor, however parallel

processing is still achievable through certain methods like

pipelining and multitasking. Pipelining allows a processor to carry

out multiple instructions at the same time by dividing the execution

process into several phases.

Each stage in the pipeline operates on a different instruction

concurrently, allowing one instruction to be fetched from memory

while another is being executed. This parallelism enhances the

throughput of the processor and enhances performance.

Multitasking is a method that permits a single processor to run

multiple tasks at the same time. It works by dividing the

processor's time into short intervals and rapidly changing between

tasks. Each task gets allocated a particular time slot to execute.

Although the processor executes only one task at a time, this rapid

switching creates the illusion of parallel processing.

These methods enhance the performance of a single processor.

However, as the number of tasks or instructions running at the

same time grows, the performance eventually decreases. Therefore,

a multiprocessor is required here to boost performance.

Advantages of Uniprocessor

 Improves performance- Improves the performance of a

uniprocessor by allowing it to execute multiple tasks or

instructions simultaneously. This is achieved by increasing

throughput which reduces the time required to complete a

particular task.

Computer Organization & Architecture -477

 Cost Effective- A Parallelism in uniprocessor is cost-

effective for applications that do not require the

performance of a multiprocessing system. The cost of a

uniprocessor with parallelism is often lower compared to a

multiprocessing system.

 Low power consumption- A uniprocessor consumes less

power than a multiprocessor system which makes it

suitable for mobile and battery powers devices.

 All these advantages make the uniprocessor an attractive

option for some applications.

Disadvantage of Uniprocessor

 Limited scalability– Parallelism is achieved in a very limited

way and as the number of tasks or instructions being executed

simultaneously increases the performance decrease. This makes

it unsuitable for applications that require high levels of

parallelism.

 Limited processing power– It has limited processing power as

compared to a multiprocessing system hence it is not suitable

for applications that require high computational power like

scientific simulations and large-scale data processing.

 Complex design– Implementing parallelism in a uniprocessor

can be complex as it requires careful design and optimization

to ensure that the system operates correctly and efficiently this

increases the development and maintenance costs of the

system.

Computer Organization & Architecture -478

Applications of Parallelism in Uniprocessor

 Multimedia applications– In multimedia applications such as

video and audio playback, image processing, and 3D graphics

rendering it helps in increasing performance.

 Web servers– Provides assistance to web servers by allowing

them to handle multiple requests simultaneously which makes

it more reliable.

 Artificial Intelligence and machine learning– It improves

performance in artificial intelligence and machine learning

applications allowing them to process large amounts of data

more quickly.

 Scientific simulations– Parallelism performs scientific

simulations such as weather forecasting, fluid dynamics, and

molecular modeling.

 Database management systems– Parallelism in uniprocessors is

used to improve the performance of database management

systems by allowing them to handle large volumes of data

more efficiently.

Figure: Trends towards parallel processing

Computer Organization & Architecture -479

Parallel Processing Mechanism

The parallel processing is an effective way of processing

information that focuses on taking advantage of events happening

at the same time in the computing process. Parallelism means

events can take place concurrently using multiple resources during

the same time period. Simultaneity means events can occur at

exactly the same instant. Pipelining allows events to happen in

overlapping time frames.

Figure: Shows one possible way of separating the execution unit

into eight functions specified by the instruction associated with the

operands.

Hardware Approach for Parallelism in Uniprocessor

Multiplicity of Functional Unit

In earlier computers, the central processing unit (CPU) had just

one arithmetic logic unit that could only carry out one function at a

time. This slowed down the execution of long sequences of

arithmetic instructions. To improve this, the number of functional

Computer Organization & Architecture -480

units in the CPU was increased so that parallel and simultaneous

arithmetic operations could be performed.

In reality, many of the tasks performed by the ALU can be spread

out across multiple specialized units that work at the same time.

The CDC-6600 computer has ten different functional units built

into its central processing unit as shown in the diagram.

Figure: The system architecture of CDC-6600 computer (Courtesy of

control data corp.).

These ten units work independently and can run at the same time.

A scoreboard keeps track of which functional units and registers

are available. With 10 functional units and 24 registers, the

instruction issue rate can be greatly increased.

Another great example of a multifunction uniprocessor is the IBM

360/91. It has two parallel execution units: one for integer

arithmetic and one for floating point arithmetic. The floating point

unit has two functional units inside it - one for float add/subtract

and one for float multiply/divide. The IBM 360/91 is a highly

pipelined, multifunction scientific processor.

Computer Organization & Architecture -481

Parallelism and Pipelining within CPU

Parallel adders that use methods like carry-lookahead and carry-

save are not integrated into all arithmetic logic units, unlike the bit-

serial adders used in early computers. Techniques like high-speed

multiplier recoding and convergent division allow parallel

processing and sharing of hardware components for multiply and

divide operations.

The execution of instructions is now divided into multiple pipeline

stages, including fetching the instruction, decoding it, fetching

operands, executing the arithmetic logic, and storing the result. To

allow overlapped execution of instructions through the pipeline,

techniques like instruction prefetching and data buffering have

been developed.

Overlapped CPU and I/O Operation

The input/output (I/O) operations can be carried out at the same

time as the CPU computations through the use of separate I/O

controllers, channels, or I/O processors. A direct memory access

(DMA) channel enables direct transfer of information between the

I/O devices and main memory. DMA operates by cycle stealing,

which is transparent to the CPU. Additionally, I/O multiprocessing

such as utilizing I/O processors in the CDC-6600 can accelerate

data transfer between the CPU and external devices.

Use Hierarchical Memory System

The CPU is about 1000 times faster than memory access. A

hierarchical memory system can be used to close up the speed gap.

Computer memory hierarchy is as shown in the diagram.

Computer Organization & Architecture -482

The most internal level is the register files that can be directly

accessed by the ALU. The cache memory can function as a buffer

between the CPU and main memory. Block access of main

memory can be accomplished through multiway interleaving

across parallel memory modules.

Balancing of Subsystem Bandwidth

In general, the CPU is the fastest unit in computer with a processor

cycle of tp of tens of nanoseconds. The main memory has a cycle

time tm of hundreds of nanoseconds and I/O devices are the

slowest with an average of access time td of few milliseconds. It is

observed that

td > tm > tp

For example, the IBM 370/168 has td of 8 ms , tm = 360 ns and tp

= 90 ns. With these speed gaps between the subsystems, we need to

match their processing bandwidth in order to avoid a system

bottleneck problem.

The bandwidth of the system is defined as number operations

performed per unit time. In the case of main memory system the

Computer Organization & Architecture -483

memory bandwidth is measured by the number of memory words

that can be accessed per unit time. Let W be the number of words

delivered per memory cycle tm . Then the maximum memory

bandwidth Bm is equal to

Bm = W/ tm

The bandwidth of the processor is measured as the maximum CPU

computation rate Bp . For example it is 160 megaflops in the Cray-

1 and 12.5 million instructions per second in IBM 370/168.

Also the utilized CPU rate is

Hence the utilized rate is measured as

Bandwidth balancing between CPU and memory

The performance difference between the CPU and memory can be

reduced by utilizing fast cache memory in between them. The

cache should have an access time similar to the CPU. A block of

memory words is transferred from main memory into the cache so

that subsequent instructions or data are accessible most of the time

from the cache. The cache acts as a data or instruction buffer.

Bandwidth balancing between Memory and I/O devices

Communication channels with different speeds can be utilized

between slow input/output devices and main memory. These

input/output channels execute buffering and multiplexing functions

to move data from multiple disks into main memory by taking

cycles from the CPU. Additionally, more advanced disk controllers

or database machines can be used to filter out non-relevant data

directly from the tracks of the data. This filtering will alleviate

input/output channel overloading. The combined buffering,

Computer Organization & Architecture -484

multiplexing, and filtering processes can enable faster, more

productive data transfer rates, aligning with that of the memory.

Multiprogramming and Time Sharing

In a single processor computer system with just one CPU, we can

still accomplish a high level of resource sharing between many

user programs. Multiprogramming and time sharing are software

techniques that allow concurrency in a single processor system. We

use three symbols - i for input, c for compute, and o for output - to

represent operations.

Software Approach for Parallelism in Uni-processor

Multiprogramming

Within a given time period, multiple processes may be running

concurrently in a computer system. These processes compete for

memory, input/output, and CPU resources. We know that some

programs are CPU-intensive while others are I/O-intensive. We can

execute a mix of program types to balance usage across different

hardware components. Interleaving program execution is meant to

enable better utilization through overlapping of I/O and CPU

operations.

When a process P1 is occupied with I/O, the scheduler can switch

the CPU to process P2. This allows multiple programs to run

simultaneously. When P2 finishes, the CPU can switch to P3. Note

that interleaving I/O and CPU work and CPU wait times are

greatly reduced. The interleaving of CPU and I/O operations across

multiple programs is called multiprogramming.

Time Sharing

Multiprogramming on a single processor involves the CPU being

shared by many programs. Sometimes, a high priority program

Computer Organization & Architecture -485

may occupy the CPU for a long time which prevents other

programs from sharing it. This issue can be resolved through a

method called timesharing. Timesharing builds on

multiprogramming by assigning fixed or variable time slots to

multiple programs. This provides equal opportunities for all

programs competing to use the CPU.

The timesharing use of the CPU by multiple programs on a single

processor computer creates the concept of virtual processors.

Timesharing is especially effective for computer systems

connected to many interactive terminals. Each user at a terminal

can interact with the computer. Timesharing was first developed

for single processor systems. It has also been extended to multi-

processor systems.

15.3 PARALLEL COMPUTER
STRUCTURES

Parallel computers are those systems that use parallel processing.

The basic features of parallel computers are listed below, they are

(i) Pipeline computers

(ii) Array processors

(iii)Multiprocessor systems.

A pipeline computer performs overlapped computations to exploit

temporal parallelism. An array processor uses multiple

synchronized arithmetic logic units to active spatial parallelism. A

ultiprocessor system achieves asynchronous parallelism through a

set of interactive processors with shared resources.

Computer Organization & Architecture -486

15.3.1 Pipeline Computers

The execution of an instruction on a digital computer involves four

steps:

(i) Fetching the instruction from main memory,

(ii) Decoding the instruction to identify the operation to

perform,

(iii)Fetching operands if needed for the execution, and

(iv) Executing the decoded arithmetic/logic operation.

In non-pipelined computers, these four steps must finish before the

next instruction can start. However, in a pipelined computer,

successive instructions are executed concurrently in an overlapped

manner. The diagram illustrates this process.

In the diagram, the four pipeline stages - Instruction Fetch (IF),

Instruction Decode (ID), Operand Fetch (OF), and Execute (EX) -

are arranged in a linear sequence. The two space-time diagrams

demonstrate the difference between overlapped pipelined

execution versus sequential non-pipelined execution.

The instruction cycle is made up of multiple pipeline cycles. A

pipeline cycle can be set to the delay of the slowest stage. Data

flows from stage to stage on each cycle, triggered by a common

pipeline clock. All stages operate synchronously under this clock.

Interface latches between stages hold intermediate results. For a

non-pipelined computer, one instruction takes four pipeline cycles.

Once the pipeline is full, output results emerge from the pipeline

each cycle.

Because of the overlapped instruction fetch/decode and execution,

pipelines are well-suited for repeatedly performing the same

operations. When the operation changes (e.g. from add to

Computer Organization & Architecture -487

multiply), the pipeline must be drained and reconfigured, causing

delays. Thus, pipelines are most attractive for vector processing

with repeated operations.

Figure: Basic concepts of pipelined processor and overlapped

instruction execution

Computer Organization & Architecture -488

15.3.2 Array Computers

Figure: Functional structure of an SIMD array processor with

concurrent scalar processing

An array processor is a synchronized parallel computer with

multiple arithmetic logic units, referred to as processing elements

(PEs). It can operate simultaneously in a lockstep fashion. By

replicating ALUs, spatial parallelism can be achieved. The PEs are

synchronized to execute the same function concurrently. An

appropriate data routing system must connect the PEs.

A typical array processor is structured as shown in the diagram.

Scalar and vector instructions are directly implemented in the

Control unit. Each PE has an ALU with registers and local

memory. The PEs are interconnected by a data routing network.

The interconnection pattern established for a specific computation

is under program control. Vector instructions are broadcast to the

PEs for distributed execution across different component operands

Computer Organization & Architecture -489

fetched directly from local memory. The PEs are passive devices

with instruction decoding capabilities.

Additionally, associative memory, which is content addressable,

will be examined in the context of parallel processing. Array

processors designed with associative memory are called

associative processors. Parallel algorithms on array processors will

be provided for matrix multiplication, merging, sorting, and

Fourier transforms.

15.3.3 MULTIPROCESSOR SYSTEMS

The goal of researching and developing multiprocessor systems is

to enhance throughput, reliability, flexibility, and availability. The

fundamental multiprocessor design has two or more processors

with similar capabilities. All processors have access to the same

memory modules, I/O channels, and peripherals. Most critically,

the entire system must be controlled by a single integrated

operating system that enables interaction between processors and

their programs. In addition to the shared memories and I/O

devices, each processor has its own local memory and private

devices. Processors can communicate through the shared memories

or the interrupt network.

Multiprocessor hardware system organization is determined by the

interconnection structure to be used between the memories and

processors . The three different interconnections are

 Time-shared common bus

 Crossbar switch network

 Multiport switches

Computer Organization & Architecture -490

15.4 SERIAL VERSUS PARALLEL
PROCESSING

Parallelism: Parallelism refers to the simultaneous execution of

multiple tasks or processes to achieve faster computation and

efficiency. This is done by dividing a task into smaller subtasks

that can be processed concurrently by multiple processing units.

There are several types of parallelism:

 Data Parallelism: Involves distributing data across

different processors and performing the same operation on

each piece of data simultaneously. This is commonly used

in tasks like image processing or matrix operations.

 Task Parallelism: Involves performing different tasks or

operations at the same time. This type of parallelism is

useful when tasks can be executed independently, such as

in multi-threaded applications where different threads

handle different functions.

 Instruction-Level Parallelism (ILP): Refers to executing

multiple instructions from a single program simultaneously.

Modern CPUs use techniques like out-of-order execution

and speculative execution to exploit ILP.

Pipelining: Pipelining is a technique used in computer architecture

to improve the throughput of a system by overlapping the

execution of different stages of an instruction. It is similar to an

assembly line in manufacturing, where each stage completes a part

of the task. In pipelining, an instruction is divided into several

stages, such as fetch, decode, execute, and write-back. While one

Computer Organization & Architecture -491

instruction is being executed in one stage, other instructions can be

processed in previous or subsequent stages.

Comparison:

 Parallelism aims to execute multiple tasks or processes

simultaneously to improve overall performance. It can be

applied at different levels, such as data, tasks, or

instructions.

 Pipelining focuses on increasing the efficiency of a single

task by overlapping the stages of instruction execution. It

improves the throughput of a processor by reducing the idle

time between stages.

While both parallelism and pipelining aim to improve

performance, parallelism is more about executing multiple tasks

concurrently, whereas pipelining enhances the efficiency of

sequential task execution.

15.4.2 Parallel Processing Applications

Parallel processing involves the use of multiple processors or cores

to perform computations simultaneously, and it has a wide range of

applications across various fields:

 Scientific Computing: Large-scale simulations and

computations in fields such as physics, climate modeling,

and bioinformatics often require parallel processing to

handle complex calculations and large datasets efficiently.

 Image and Video Processing: Tasks such as image

filtering, video encoding, and real-time image recognition

benefit from parallel processing. Processing multiple

frames or pixels simultaneously speeds up these operations

significantly.

Computer Organization & Architecture -492

 Data Analysis and Machine Learning: Training machine

learning models, especially deep learning networks,

involves processing large amounts of data and performing

complex calculations. Parallel processing helps accelerate

these tasks, allowing for faster model training and

inference.

 Computational Fluid Dynamics (CFD): CFD simulations

involve solving complex equations that describe fluid flow.

Parallel processing allows these simulations to be divided

into smaller tasks, each handled by different processors,

resulting in faster computations.

 Cryptography: Encryption and decryption algorithms,

which involve complex mathematical operations, can be

parallelized to enhance security and performance. Parallel

processing helps handle large volumes of data and improve

encryption speed.

 Database Management: Parallel processing is used to

improve the performance of database queries and

transactions. By distributing queries across multiple

processors, databases can handle more requests and deliver

faster responses.

 Rendering: In graphics rendering, such as in computer-

aided design (CAD) or video games, parallel processing

enables the simultaneous rendering of different parts of a

scene, leading to faster image generation and better frame

rates.

Computer Organization & Architecture -493

15.5 SCALABILITY AND LOAD
BALANCING

Scalability refers to the capability of a system to handle increasing

workloads or accommodate growth effectively. It involves

designing systems that can scale up (vertical scalability) by adding

more power to existing machines or scale out (horizontal

scalability) by adding more machines to distribute the load.

Scalable systems can adjust to varying demands without

compromising performance, making them suitable for applications

with fluctuating or growing resource requirements. For example,

cloud computing platforms often utilize horizontal scalability to

manage large amounts of data and user requests by adding more

servers to a network.

Types of Scalability:

 Vertical Scalability: This involves upgrading the existing

hardware or software to increase the capacity of a single

machine. For example, adding more CPUs, memory, or

storage to a server to handle larger workloads is vertical

scaling. While this approach can enhance performance, it is

limited by the maximum capacity of the hardware and often

involves significant investment in high-end equipment.

 Horizontal Scalability: This approach involves adding

more machines or nodes to a system to distribute the load.

For instance, deploying additional servers in a cloud

environment to handle increased traffic or processing

requirements is horizontal scaling. This method is generally

more flexible and cost-effective, allowing for incremental

Computer Organization & Architecture -494

expansion and better handling of high demand or failure

scenarios.

Scalability Challenges:

 Bottlenecks: As systems scale, certain components may

become bottlenecks, limiting overall performance. For

instance, a single database server may struggle to keep up

with requests if it becomes overwhelmed, even if other

parts of the system are scaled effectively.

 System Limitations: Not all systems or applications are

designed to scale easily. Certain architectural constraints,

such as dependencies on centralized resources or

inadequate distribution mechanisms, can hinder scalability.

 Impact on Performance: Scaling can introduce

complexity in managing consistency, synchronization, and

coordination across multiple nodes. Ensuring that all parts

of a distributed system work harmoniously and efficiently

is essential to maintaining performance and avoiding issues

like data inconsistency or increased latency.

Load Balancing is the process of distributing workloads evenly

across multiple resources to ensure optimal performance and

prevent any single resource from becoming a bottleneck. It aims to

improve system efficiency, reliability, and availability by directing

incoming traffic or tasks to the least loaded or most appropriate

server. Techniques such as round-robin, least connections, and least

load algorithms are commonly used to manage this distribution.

Effective load balancing ensures that no single server is

overwhelmed, enhances the responsiveness of applications, and

contributes to overall system resilience.

Computer Organization & Architecture -495

Load Balancing Techniques:

 Round-Robin: This simple method distributes incoming

requests or tasks sequentially among available resources.

Each resource is assigned a request in turn, which helps

ensure an even distribution of the load. However, this

technique assumes all resources have similar capabilities

and may not be optimal if resources vary in performance.

 Least Connections: This approach directs traffic to the

resource with the fewest active connections. It is

particularly effective in environments where the workload

is unevenly distributed among resources, as it dynamically

adjusts based on current load conditions.

 Least Response Time: This technique routes requests to

the resource with the fastest response time. It is useful for

applications requiring minimal latency, as it prioritizes

resources that can handle requests more quickly.

 Weighted Distribution: Resources are assigned weights

based on their capacity or performance. The load balancer

then distributes requests according to these weights,

allowing more capable resources to handle a higher share

of the load.

 Dynamic Load Balancing: This method involves

continuously monitoring the performance and load on

resources and adjusting the distribution of tasks in real-

time. It adapts to changing conditions and ensures optimal

use of resources based on current demand.

Challenges and Considerations:

 Session Persistence: In some applications, it is essential to

maintain a user's session on the same server throughout

Computer Organization & Architecture -496

their interaction. Load balancing must handle session

persistence or sticky sessions to ensure users do not

experience disruptions.

 Scalability: Effective load balancing should support

scalability by accommodating additional resources as

needed. This requires coordination with the system's

scalability mechanisms to ensure that new resources are

integrated smoothly.

 Fault Tolerance: Load balancing must account for

potential failures by redirecting traffic away from failed

resources and ensuring continuous service availability. This

involves implementing health checks and failover

mechanisms to maintain system reliability.

Load Balancing in Distributed Systems:

In distributed systems, load balancing refers to the process of

distributing workloads evenly across multiple servers or nodes in a

network. The goal is to optimize resource utilization, maximize

throughput, minimize response time, and ensure high availability

and fault tolerance. Unlike single systems, distributed systems rely

on multiple interconnected components, making effective load

balancing crucial for maintaining performance and preventing any

single node from becoming a bottleneck.

Techniques and Strategies:

1. Round-Robin Load Balancing:

o Description: Distributes requests or tasks

sequentially across a list of servers or nodes.

o Advantages: Simple to implement and ensures an

even distribution of tasks.

Computer Organization & Architecture -497

o Challenges: Assumes all nodes have similar

performance capabilities, which may not be true in

heterogeneous environments.

2. Least Connections Load Balancing:

o Description: Routes new requests to the node with

the fewest active connections.

o Advantages: Dynamic adjustment based on current

load, effective in environments with varying

workloads.

o Challenges: Requires real-time monitoring of

connection counts and may be complex to

implement in large-scale systems.

3. Least Response Time Load Balancing:

o Description: Directs requests to the node with the

fastest response time.

o Advantages: Reduces latency by prioritizing nodes

that can handle requests more quickly.

o Challenges: Requires continuous measurement of

response times and can be affected by network

latency.

4. Weighted Load Balancing:

o Description: Assigns weights to nodes based on

their capacity or performance and distributes

requests proportionally.

o Advantages: Allows more powerful nodes to

handle a higher share of the load.

Computer Organization & Architecture -498

o Challenges: Requires accurate weight assignment

and may need adjustments as system capabilities

change.

5. Dynamic Load Balancing:

o Description: Continuously monitors the load and

performance of nodes and adjusts the distribution of

tasks in real-time.

o Advantages: Adapts to changing conditions,

providing optimal performance and resource

utilization.

o Challenges: Complex implementation and may

require sophisticated monitoring and adjustment

mechanisms.

Challenges and Considerations:

 Session Persistence (Sticky Sessions): In some

applications, it's essential to keep a user's session on the

same node. Load balancers must manage session

persistence to ensure a consistent user experience.

 Fault Tolerance: Load balancing in distributed systems

must handle node failures gracefully. This involves

redirecting traffic away from failed nodes and ensuring that

the system continues to operate smoothly.

 Scalability: Effective load balancing should support

horizontal scaling by integrating new nodes into the system

seamlessly. The load balancing strategy must adapt as the

number of nodes increases.

 Data Consistency: In distributed systems with shared data,

load balancing must ensure that all nodes have consistent

Computer Organization & Architecture -499

views of the data. This may involve synchronization

mechanisms to prevent data inconsistency.

 Network Latency: Load balancing decisions can be

affected by network latency between nodes. Strategies

should account for the impact of network delays on overall

system performance.

15.6 CONCLUSION

The evolution of parallel processing represents a significant leap in

computing capabilities, addressing the limitations of serial

processing and meeting the demands for higher performance and

efficiency. By leveraging parallelism, modern computing systems

can execute multiple tasks concurrently, drastically reducing

processing time and enhancing overall system throughput. This

advancement is embodied in various parallel computing structures,

such as pipeline computers, array computers, and multi-processor

systems, each offering unique advantages and applications.

Understanding the nuances of scalability and load balancing is

crucial for optimizing parallel systems. Scalability ensures that a

system can adapt to increasing workloads by expanding its

resources, while load balancing distributes tasks evenly across

available resources to prevent bottlenecks and maintain system

efficiency. Together, these principles enable parallel systems to

perform effectively across diverse applications, from complex

simulations to real-time data processing.

In summary, parallel processing, with its diverse architectures and

efficient management techniques, plays a pivotal role in advancing

Computer Organization & Architecture -500

computing technology. The ongoing development in this field

continues to push the boundaries of what is possible, paving the

way for more robust, high-performance computing solutions. As

technology progresses, the understanding and application of these

parallel processing principles will remain integral to achieving

computational excellence and addressing the ever-evolving

demands of modern applications.

15.7 UNIT BASED QUESTIONS AND
ANSWERS

1. What is parallel processing, and how does it differ from

serial processing?

Answer: Parallel processing is a computing paradigm where

multiple processors or cores work simultaneously to perform tasks

or computations. This approach contrasts with serial processing,

where tasks are executed one after the other in a sequential manner.

Parallel processing improves efficiency and performance by

dividing tasks into smaller sub-tasks that can be processed

concurrently, while serial processing can become a bottleneck for

large-scale or complex operations due to its linear execution.

2. Explain the concept of pipelining and its benefits in parallel

processing.

Answer: Pipelining is a technique used in parallel processing

where multiple instruction phases are overlapped to improve the

throughput of a processor. It involves dividing a single instruction

into several stages, with each stage being executed in parallel by

different pipeline stages. This allows multiple instructions to be

processed simultaneously at different stages, increasing the overall

Computer Organization & Architecture -501

processing speed. Benefits of pipelining include improved

execution efficiency and reduced processing time for tasks, as it

maximizes the utilization of processor resources.

3. What are the key differences between SIMD and MIMD

architectures?

Answer: SIMD (Single Instruction, Multiple Data) and MIMD

(Multiple Instruction, Multiple Data) are two types of parallel

architectures. SIMD architecture executes the same instruction on

multiple data points simultaneously, making it well-suited for tasks

requiring repetitive operations on large data sets, such as image

processing. In contrast, MIMD architecture allows different

processors to execute different instructions on different data points

independently, making it more versatile for a wider range of

applications, including complex simulations and multitasking

environments.

4. Describe the role of scalability in parallel computing

systems.

Answer: Scalability refers to a system's ability to handle increased

workloads by expanding its resources, either by adding more

processing units (horizontal scaling) or enhancing the existing ones

(vertical scaling). In parallel computing, scalability is crucial for

maintaining performance as demands grow. Scalable systems can

adapt to larger datasets or more complex computations without a

significant drop in efficiency or performance, ensuring that the

system remains effective and cost-efficient as it scales.

5. What is load balancing, and why is it important in

distributed systems?

Computer Organization & Architecture -502

Answer: Load balancing is the process of distributing workloads

evenly across multiple computing resources to ensure that no

single resource is overwhelmed while others are underutilized. In

distributed systems, load balancing is vital for optimizing resource

use, maximizing throughput, minimizing response time, and

avoiding bottlenecks. Effective load balancing improves system

performance and reliability by ensuring that all components are

used efficiently and that tasks are handled in a timely manner.

15.8 REFERENCES

 Hennessy, J.L., & Patterson, D.A. (2019). Computer

Architecture: A Quantitative Approach (6th ed.). Morgan

Kaufmann.

 Sutter, H., & Larus, J.R. (2005). Software and the

Memory Hierarchy. ACM Computing Surveys (CSUR),

37(3), 223-271.

 Gharachorloo, K., & McKenney, S. (1995). Memory

Consistency Models for Shared-Memory Multiprocessors.

ACM Computing Surveys (CSUR), 27(4), 462-489.

 Hwang, K., & Briggs, F.A. (2017). Computer Architecture

and Parallel Processing. McGraw-Hill Education.

 Silberschatz, A., Korth, H.F., & Sudarshan, S. (2011).

Database System Concepts (6th ed.). McGraw-Hill

Education.

Computer Organization & Architecture -503

UNIT – 16: SYSTEM-LEVEL
ORGANIZATION
Structure

16.0 Introduction

16.1 Objectives

16.2 System Architectures

16.3 Single-Processor Systems

16.4 Multiprocessor Systems

16.5 Distributed Systems

16.6 Scalability and Reliability

16.7 Conclusion

16.8 Unit Based Questions & Answers

16.9 References

16.0 INTRODUCTION

In the realm of computer science and engineering, system

architecture forms the foundational framework for designing and

implementing computing systems. It encompasses a broad

spectrum of architectures, including single-processor systems,

multiprocessor systems, and distributed systems, each tailored to

specific computational needs and performance criteria.

Understanding these architectures is essential for optimizing

system performance, enhancing scalability, and ensuring reliability.

Single-processor systems, characterized by a single central

processing unit (CPU), provide a straightforward approach to

Computer Organization & Architecture -504

computing tasks but may face limitations in handling complex or

high-demand applications. Multiprocessor systems, which

integrate multiple CPUs, offer improved performance and

redundancy by distributing tasks across processors. Distributed

systems take this further by spreading computations across

multiple machines, often geographically dispersed, to achieve

higher scalability and resilience.

The study of scalability and reliability is crucial in evaluating how

well these architectures handle increased workloads and maintain

consistent performance. Scalability examines a system's capacity

to grow and manage additional load efficiently, while reliability

focuses on the system's ability to operate continuously without

failure. By analyzing these aspects, one can design robust systems

capable of adapting to evolving demands while maintaining high

performance and reliability.

16.1 OBJECTIVES

After completing this unit, you will be able to understands;

 Understand System Architectures: Learn the fundamental

types of system architectures, including single-processor,

multiprocessor, and distributed systems.

 Explore Single-Processor Systems: Analyze the structure,

performance, and limitations of systems with a single

central processing unit (CPU).

 Examine Multiprocessor Systems: Investigate how

systems with multiple CPUs manage parallel processing

and enhance performance.

Computer Organization & Architecture -505

 Study Distributed Systems: Understand how tasks are

distributed across multiple machines and networks to

handle complex computing needs.

 Evaluate Scalability and Reliability: Assess techniques

for ensuring systems can scale efficiently and remain

reliable under varying loads and conditions.

16.2 SYSTEM ARCHITECTURES

System architectures refer to the fundamental structures and

organization of computer systems that define how various

hardware and software components interact to perform computing

tasks. This encompasses the design of the central processing unit

(CPU), memory hierarchy, input/output systems, and

communication pathways. System architectures are crucial for

determining the overall performance, scalability, and efficiency of

a computing system. They provide a blueprint for integrating

different components to meet specific operational requirements and

user needs, impacting everything from system speed and capacity

to energy consumption and reliability.

In practice, system architectures can be categorized into several

types, including single-processor, multiprocessor, and distributed

systems. Single-processor systems feature a single CPU that

handles all processing tasks, which can limit performance due to

its single processing thread. Multiprocessor systems use multiple

CPUs or cores to execute parallel tasks, enhancing performance

and reliability but introducing complexities in communication and

synchronization. Distributed systems spread computational tasks

across multiple interconnected computers or nodes, enabling

Computer Organization & Architecture -506

scalability and fault tolerance but requiring sophisticated

coordination and data consistency mechanisms. Understanding

these architectures helps in designing systems that efficiently

handle various workloads and adapt to evolving technological

demands.

Overview of system architecture types and their applications.

System architecture defines how various components of a

computer system are structured and interact with each other.

Understanding the different types of system architectures is

essential for selecting or designing systems that meet specific

performance, scalability, and reliability requirements. Here’s an

overview of major system architecture types and their applications:

16.3 SINGLE-PROCESSOR SYSTEMS

Single-processor systems, also known as single-core systems, are

computing systems that utilize a single central processing unit

(CPU) to handle all computational tasks. This CPU is responsible

for executing instructions, managing data, and performing

calculations.

Computer Organization & Architecture -507

Characteristics:

1. Architecture:

o Central Processing Unit (CPU): The sole

processor performs all operations and controls the

system.

o Memory: Typically includes both primary memory

(RAM) and secondary storage (like hard drives or

SSDs).

o I/O Devices: Interfaces with peripheral devices

such as keyboards, mice, printers, and displays

through I/O controllers.

2. Performance:

o Simplicity: The architecture is straightforward,

making it easier to design and implement.

o Limited Multitasking: Although modern single-

processor systems can switch between tasks rapidly

(context switching), true parallel processing is not

possible. Performance may degrade with increased

multitasking.

3. Cost and Power Consumption:

o Cost-Efficient: Generally lower cost compared to

systems with multiple processors or cores.

Computer Organization & Architecture -508

o Power Consumption: Consumes less power than

multi-core systems, making it more suitable for

battery-powered or low-energy applications.

4. Applications:

o Personal Computers: Many desktops and laptops

with moderate computing needs use single-

processor systems.

o Embedded Systems: Devices like microwaves,

digital cameras, and some home appliances often

use single-processor systems due to their simplicity

and cost-effectiveness.

o Basic Workstations: Used for tasks that do not

require extensive parallel processing, such as word

processing, web browsing, and light multimedia

tasks.

5. Limitations:

o Performance Bottlenecks: The single CPU can

become a performance bottleneck when handling

multiple or complex tasks simultaneously.

o Scalability: Limited in terms of scalability and

parallel processing capabilities compared to multi-

core or multi-processor systems.

Advantages:

 Ease of Design and Implementation: The

architecture is less complex, which simplifies

system design and reduces development time.

 Cost-Effectiveness: Fewer components and simpler

design lead to lower manufacturing and

maintenance costs.

Computer Organization & Architecture -509

 Lower Power Consumption: Generally consumes

less power, making it suitable for energy-efficient

applications.

Disadvantages:

 Limited Multitasking: Although capable of

switching between tasks quickly, the system cannot

execute multiple tasks simultaneously as efficiently

as multi-core systems.

 Performance Constraints: May struggle with

performance-intensive applications or tasks that

require significant computational power.

16.4 MULTIPROCESSOR SYSTEMS

Multiprocessor systems, also known as multi-core systems, use

more than one central processing unit (CPU) to handle

computations. Each CPU or core can perform separate tasks or

work together on a single task, improving overall system

performance and efficiency.

Computer Organization & Architecture -510

Characteristics:

1. Architecture:

o Multiple CPUs/Cores: The system contains two or

more CPUs or cores that work in parallel to execute

instructions. These processors share the system's

resources, such as memory and I/O devices.

o Interconnection Network: A communication

network or bus connects the processors and

facilitates data exchange between them. This

network can be a shared bus, crossbar switch, or

other interconnect technologies.

o Shared Memory: In many multiprocessor systems,

all processors have access to a common memory

space, which requires synchronization mechanisms

to manage concurrent access.

2. Performance:

o Parallel Processing: Multiple processors can

execute different instructions simultaneously,

leading to significant performance improvements

for tasks that can be parallelized.

o Increased Throughput: The system can handle

more operations per unit time compared to a single-

processor system, enhancing overall throughput.

o Load Balancing: Workload can be distributed

among processors, leading to more efficient

utilization of system resources.

3. Cost and Complexity:

o Higher Cost: More CPUs or cores increase the

system's cost due to additional hardware and

complexity in design and implementation.

Computer Organization & Architecture -511

o Complex Design: Multiprocessor systems require

sophisticated design to manage processor

synchronization, communication, and memory

consistency.

4. Applications:

o Servers and Workstations: Often used in high-

performance computing environments where

parallel processing is crucial, such as web servers,

database servers, and scientific computing.

o Enterprise Systems: Utilized in environments

requiring high reliability and availability, including

financial systems and large-scale enterprise

applications.

o High-Performance Computing (HPC): Employed

in supercomputers and data centers to handle

complex simulations, data analysis, and large-scale

computations.

5. Types:

o Symmetric Multiprocessing (SMP): All

processors have equal access to the memory and I/O

devices, and each processor runs a copy of the

operating system.

o Asymmetric Multiprocessing (AMP): One

processor, called the master, controls the system,

while the other processors, called slaves, perform

specific tasks as directed by the master.

o Cluster Computing: Multiple computers (or nodes)

work together as a single system, often connected

by a network, to provide high-performance

computing capabilities.

Computer Organization & Architecture -512

Advantages:

 Enhanced Performance: Capable of handling

multiple tasks simultaneously, leading to improved

performance for multi-threaded and parallel

applications.

 Scalability: Systems can be scaled by adding more

processors or cores, allowing for increased

computational power and capacity.

 Improved Reliability: Redundancy and fault

tolerance can be built into multiprocessor systems,

increasing system reliability and availability.

Disadvantages:

 Increased Complexity: Design and management of

multiprocessor systems are more complex due to

issues related to synchronization, communication,

and consistency.

 Higher Cost: Additional hardware and the need for

sophisticated software and management tools

contribute to higher costs.

 Software Compatibility: Not all software is

designed to take advantage of multiple processors,

which can limit the benefits of the system.

16.5 DISTRIBUTED SYSTEMS

A distributed system is a network of independent computers that

appears to its users as a single coherent system. These computers

communicate and coordinate their actions by passing messages,

working together to achieve a common goal. Distributed systems

Computer Organization & Architecture -513

are designed to share resources, manage tasks, and ensure

reliability across multiple machines, often spread over a wide

geographical area.

Characteristics:

1. Geographical Distribution:

o Location Independence: Components of a

distributed system can be located in different

physical locations, ranging from different rooms in

a building to different cities or countries.

o Networked Communication: These systems rely

on networks (e.g., local area networks (LANs),

wide area networks (WANs), or the internet) to

enable communication between distributed nodes.

2. Resource Sharing:

o Shared Resources: Resources such as files,

databases, and computing power are shared among

the nodes in the system. This enables efficient use

of hardware and software resources.

Computer Organization & Architecture -514

o Scalability: Distributed systems can scale

horizontally by adding more nodes to the network,

accommodating increased loads and demands.

3. Fault Tolerance and Reliability:

o Redundancy: Redundant components and data

replication are used to enhance reliability and

ensure continuous operation even if some nodes

fail.

o Fault Detection and Recovery: The system must

detect failures and recover from them to maintain its

operations, often through mechanisms like

checkpointing and failover.

4. Concurrency and Coordination:

o Parallel Processing: Multiple nodes can process

tasks simultaneously, improving performance and

throughput.

o Synchronization: Coordinating actions between

distributed nodes requires synchronization

mechanisms to ensure consistency and avoid

conflicts.

5. Transparency:

o Access Transparency: Users interact with the

system as if it were a single entity, without being

aware of the underlying distribution of resources.

o Location Transparency: Users do not need to

know the physical location of resources or services

they are accessing.

Types of Distributed Systems:

1. Distributed Computing:

Computer Organization & Architecture -515

o Grid Computing: Utilizes a network of dispersed

computers to work on a shared task, often used for

scientific research and large-scale computations.

o Cloud Computing: Provides on-demand access to

computing resources and services over the internet,

allowing users to scale resources up or down as

needed.

2. Distributed Databases:

o Replication: Copies of data are maintained on

multiple nodes to ensure availability and reliability.

o Partitioning: Data is divided and distributed across

different nodes to improve performance and

manageability.

3. Distributed File Systems:

o Network File Systems (NFS): Allows files to be

shared and accessed over a network as if they were

on a local disk.

o Distributed File Systems: Spreads files across

multiple servers and provides a unified interface for

file access.

4. Distributed Applications:

o Service-Oriented Architecture (SOA):

Applications are built as a collection of services that

communicate over a network, promoting modularity

and reusability.

o Microservices: A variant of SOA, where

applications are decomposed into smaller, loosely-

coupled services that interact over well-defined

interfaces.

Computer Organization & Architecture -516

Advantages:

 Scalability: Easily scales by adding more nodes to

handle increased loads and demands.

 Resource Utilization: Efficiently uses resources by

leveraging distributed nodes.

 Fault Tolerance: Redundant components and data

replication increase reliability and availability.

Disadvantages:

 Complexity: Designing and managing distributed

systems is more complex due to issues like

communication, synchronization, and fault

tolerance.

 Latency: Network communication can introduce

latency, affecting performance.

 Security: Distributing resources across multiple

locations can create security challenges that need to

be addressed.

16.6 SCALABILITY AND
RELIABILITY

Scalability refers to a system’s ability to handle increasing

workloads or accommodate growth without compromising

performance. It ensures that as demand grows, a system can

expand its capacity either by adding more resources (scaling up) or

by adding more nodes or instances (scaling out). Scalability is

crucial for maintaining efficient performance and ensuring that

systems can grow alongside business needs or user demands.

Computer Organization & Architecture -517

Types of Scalability:

1. Vertical Scalability (Scaling Up):

o Involves adding more power (CPU, RAM, storage)

to an existing server or node.

o Suitable for applications that require high

performance from a single node or where the

application does not support distributed processing.

2. Horizontal Scalability (Scaling Out):

o Involves adding more nodes or instances to

distribute the workload across multiple machines.

o Common in cloud computing environments and

distributed systems where tasks can be parallelized

and distributed across different servers.

Scalability Challenges:

 Bottlenecks: As a system scales, certain components may

become bottlenecks if they cannot handle the increased

load.

 System Limitations: Physical and architectural limitations

may impact the effectiveness of scaling strategies.

 Performance Impact: Ensuring that performance remains

optimal as the system grows requires careful planning and

architecture.

Reliability:

Definition and Importance: Reliability refers to a system’s ability

to continuously operate correctly and consistently over time. A

reliable system minimizes downtime and ensures that it performs

its intended functions accurately. Reliability is essential for

maintaining trust and meeting user expectations, particularly in

Computer Organization & Architecture -518

critical applications such as financial systems, healthcare, and

infrastructure.

Key Concepts in Reliability:

1. Fault Tolerance:

o The ability of a system to continue operating

properly in the event of a failure of some of its

components.

o Implemented through redundancy (e.g., backup

systems, failover mechanisms) and error detection

and correction techniques.

2. Redundancy:

o Involves having multiple instances of critical

components or systems to ensure that a failure in

one does not disrupt overall functionality.

o Types include hardware redundancy (e.g., redundant

power supplies, RAID storage) and software

redundancy (e.g., duplicated services, load

balancing).

3. Error Detection and Recovery:

o Techniques to identify and correct errors that occur

during operation.

o Includes mechanisms such as error codes,

checksums, and automatic failover processes.

Reliability Challenges:

 Single Points of Failure: Identifying and mitigating

potential points where a failure could impact the entire

system.

 Complexity: As systems grow in complexity, ensuring

reliability becomes more challenging.

Computer Organization & Architecture -519

 Maintenance and Updates: Balancing reliability with the

need for regular maintenance and updates to address issues

and improve functionality.

Evaluating System-Level Scalability and Reliability

Evaluating system-level scalability and reliability involves

assessing various aspects of a computing system to ensure it can

grow with increasing demands and maintain consistent

performance and operation. This process includes understanding

and testing how well a system scales, identifying potential

bottlenecks, and ensuring that the system remains reliable under

different conditions.

Evaluating System-Level Scalability

1. Performance Testing:

 Load Testing: Measure how the system performs under

different levels of load, from normal to peak usage. This

helps identify the system's capacity limits and performance

characteristics.

 Stress Testing: Push the system beyond its normal

operational limits to observe how it behaves under extreme

conditions. This helps identify potential points of failure

and bottlenecks.

2. Scalability Metrics:

 Throughput: Measure the amount of work the system can

handle over a given period. Higher throughput indicates

better scalability.

 Latency: Assess the time it takes for the system to respond

to requests. Lower latency with increased load indicates

effective scaling.

Computer Organization & Architecture -520

 Resource Utilization: Monitor how system resources

(CPU, memory, network bandwidth) are used as the system

scales. Efficient resource utilization is a sign of good

scalability.

3. Capacity Planning:

 Predictive Modeling: Use historical data and trends to

predict future growth and resource needs. This helps in

planning for future expansions.

 Scalability Testing: Test various scaling strategies (e.g.,

vertical vs. horizontal scaling) to determine the most

effective approach for your system's needs.

4. Bottleneck Identification:

 Profiling Tools: Use performance profiling tools to identify

bottlenecks in the system. This includes detecting slow

components or resource constraints.

 Optimization: Implement optimization techniques to

address identified bottlenecks and improve overall

scalability.

5. Architectural Considerations:

 Scalable Design Patterns: Evaluate if the system

architecture employs scalable design patterns (e.g.,

microservices, distributed databases).

 Elasticity: Assess the system's ability to dynamically

allocate and deallocate resources based on current demand.

Evaluating System-Level Reliability

1. Fault Tolerance Testing:

 Redundancy Testing: Verify the effectiveness of redundant

components (e.g., backup systems, failover mechanisms) in

maintaining system operation during failures.

Computer Organization & Architecture -521

 Failure Injection: Simulate failures to test how the system

responds and recovers. This helps identify weaknesses in

the fault tolerance design.

2. Reliability Metrics:

 Mean Time Between Failures (MTBF): Measure the

average time between system failures. Higher MTBF

indicates better reliability.

 Mean Time to Repair (MTTR): Measure the average time

required to repair and restore the system after a failure.

Lower MTTR indicates more efficient recovery processes.

 Uptime: Track the percentage of time the system is

operational and available. Higher uptime indicates greater

reliability.

3. Error Handling:

 Error Detection and Correction: Evaluate the

mechanisms in place for detecting and correcting errors.

This includes error codes, checksums, and automated

recovery processes.

 Logging and Monitoring: Assess the effectiveness of

system logging and monitoring in detecting and diagnosing

issues. Comprehensive logging helps in identifying root

causes of failures.

4. Redundancy and Backup:

 Backup Testing: Ensure that backup systems and processes

are reliable and can be quickly restored in case of failure.

 Failover Mechanisms: Test automatic failover

mechanisms to ensure seamless transitions to backup

systems without disrupting operations.

5. Maintenance and Updates:

 Scheduled Maintenance: Evaluate the impact of scheduled

maintenance on system reliability. Regular maintenance

Computer Organization & Architecture -522

should minimize disruptions and improve overall system

health.

 Patch Management: Assess the process for applying

patches and updates to address security vulnerabilities and

improve system stability.

16.7 CONCLUSION

The study of system architectures provides crucial insights into the

various approaches used to design and optimize computing

systems, addressing different needs and challenges. Single-

processor systems represent the foundational architecture, focusing

on a single CPU to perform all computing tasks. These systems are

simpler and cost-effective but can struggle with performance

limitations when faced with high workloads or complex

applications. As computing demands grow, single-processor

systems often reach their capacity, necessitating the exploration of

more advanced architectures.

Multiprocessor systems, which utilize multiple CPUs, offer a

significant advancement by allowing parallel processing. This

design improves performance and efficiency by distributing tasks

across several processors, enabling better handling of intensive

computations and multitasking. On a broader scale, distributed

systems extend the principles of multiprocessing by connecting

multiple machines over a network, each contributing to the overall

computational power. This approach enhances both scalability and

fault tolerance, making it suitable for large-scale and

geographically dispersed applications.

Computer Organization & Architecture -523

Scalability and reliability are critical aspects of evaluating system

architectures. Scalability ensures that a system can expand its

resources to accommodate increasing workloads, whether by

adding more power to existing machines (vertical scaling) or

integrating additional machines into the network (horizontal

scaling). Reliability focuses on maintaining consistent performance

and availability, crucial for minimizing downtime and ensuring

uninterrupted service. Together, these considerations are vital for

building robust and adaptable computing environments capable of

meeting the evolving demands of modern technology.

16.8 UNIT BASED QUESTIONS &
ANSWERS

1. What are the main types of system architectures, and how do

they differ?

Answer: The main types of system architectures include single-

processor systems, multiprocessor systems, and distributed

systems.

 Single-Processor Systems: These have a single central

processing unit (CPU) that handles all tasks. They are

straightforward and cost-effective but may face

performance bottlenecks with increasing workloads.

 Multiprocessor Systems: These systems use multiple

CPUs to handle tasks in parallel, which improves

performance and efficiency by distributing the

computational load.

 Distributed Systems: These involve a network of

interconnected computers that work together to perform

tasks. They offer scalability and fault tolerance by

Computer Organization & Architecture -524

leveraging the resources of multiple machines across

various locations.

2. What is the significance of scalability in system architecture?

Answer: Scalability refers to a system's ability to handle

increasing workloads by adding resources without significantly

compromising performance. It is crucial for adapting to growing

demands and ensuring that systems can expand efficiently.

Scalability can be achieved through vertical scaling (adding more

power to existing machines) or horizontal scaling (adding more

machines to the network). Effective scalability ensures that

systems remain functional and efficient as user demands and data

volumes grow.

3. Describe the concept of reliability in system architectures.

Answer: Reliability in system architectures pertains to a system's

ability to perform consistently and maintain operational stability

over time. It involves minimizing downtime, preventing system

failures, and ensuring that the system can recover from issues

quickly. Reliable systems incorporate features such as fault

tolerance, redundancy, and error correction mechanisms to

maintain performance and availability even in the face of hardware

or software failures.

4. What are the key differences between single-processor

systems and multiprocessor systems?

Answer:

 Single-Processor Systems: These systems are

characterized by a single CPU that manages all processing

tasks. They are simpler and less expensive but may

experience performance limitations under heavy loads.

Computer Organization & Architecture -525

 Multiprocessor Systems: These use multiple CPUs to

process tasks simultaneously, which improves performance

and allows for better handling of complex computations.

Multiprocessor systems can execute multiple instructions in

parallel, enhancing overall system efficiency and

responsiveness.

5. How do distributed systems enhance scalability and

reliability?

Answer: Distributed systems enhance scalability by distributing

tasks across multiple machines, which can be added or removed as

needed to handle varying workloads. This horizontal scaling

approach allows for a flexible and scalable system that can grow

with demand. Reliability is improved through redundancy and fault

tolerance, as the failure of one machine does not necessarily lead to

system failure. Distributed systems often incorporate backup and

failover mechanisms to ensure continuous operation and minimize

the impact of any single point of failure.

Computer Organization & Architecture -526

16.9 REFERENCES

 Hennessy, J. L., & Patterson, D. A. (2019). Computer

Architecture: A Quantitative Approach (6th ed.). Morgan

Kaufmann.

 Tanenbaum, A. S. (2014). Structured Computer

Organization (6th ed.). Pearson.

 Silberschatz, A., Korth, H. F., & Sudarshan, S. (2019).

Database System Concepts (7th ed.). McGraw-Hill.

 Hwang, K., & Briggs, F. A. (2017). Computer Architecture

and Parallel Processing. McGraw-Hill.

 García-Molina, H., Ullman, J. D., & Widom, J. (2008).

Database System Implementation. Prentice Hall.

 Stallings, W. (2017). Computer Organization and

Architecture: Designing for Performance (10th ed.).

Pearson.

 Patterson, D. A., & Hennessy, J. L. (2017). Computer

Organization and Design: The Hardware/Software

Interface (5th ed.). Morgan Kaufmann.

