) DrillBit

The Report is Generated by DrilIBit Plagiarism Detection Software

Submission I nformation

Author Name MTSOU

Title CSM-6151
Paper/Submission 1D 3643408

Submitted by librarian@mtsou.edu.in
Submission Date 2025-05-21 12:05:19
Total Pages, Total Words 233, 63550

Document type Others

Result Information

Similarity 10 %

- T
Sources Type Report Content
Words <
Internet 14,
1.85% 0.65% Quotes
21.01%
Ref/Bib
Journal/ 41.14%
Publicatio
n 8.15%
Exclude Information Database Selection
Quotes Excluded Language English
References/Bibliography Excluded Student Papers Yes
Source: Excluded < 14 Words Excluded Journals & publishers Yes
Excluded Source 0% Internet or Web Yes

Excluded Phrases Not Excluded Institution Repository Yes

) DrillBit

DrillBit Similarity Report

10 36

A

A-Satisfactory (0-10%)
B-Upgrade (11-40%)
C-Poor (41-60%)
D-Unacceptable (61-100%)

43 egyankosh.ac.in

<1

SIMILARITY % MATCHED SOURCES GRADE
LOCATION MATCHED DOMAIN % SOURCE TYPE
3 egyankosh.ac.in 2 Publication
8 egyankosh.ac.in 1 Publication
11 egyankosh.ac.in 1 Publication
13 egyankosh.ac.in 1 Publication
17 www.slideshare.net <] !ntemetData
20 egyankosh.ac.in 1 Publication
23 egyankosh.ac.in <1 Publication
. www.slideshare.net <] memetData
26 egyankosh.ac.in <1 Publication
29 egyankosh.ac.in <1 Publication
32 pdfcookie.com <] 'ntemetDaa
. pdfcookie.com <1 'ntemetData
38 pdfcookie.com <] 'nemetDaa
Publication

https://egyankosh.ac.in/bitstream/123456789/9736/1/Unit-6.pdf
https://egyankosh.ac.in/bitstream/123456789/9732/1/Unit-4.pdf
https://egyankosh.ac.in/bitstream/123456789/72704/1/Block-1.pdf
https://egyankosh.ac.in/bitstream/123456789/72708/1/Unit-3.pdf
https://www.slideshare.net/JitendraYadav351971/c-programmingpdf-259708079
https://egyankosh.ac.in/bitstream/123456789/75152/2/Unit-5.pdf
https://egyankosh.ac.in/bitstream/123456789/72712/1/Block-2.pdf
https://www.slideshare.net/31433143/cprogramming-tutorial-71484716
https://egyankosh.ac.in/bitstream/123456789/9737/1/Unit-7.pdf
https://egyankosh.ac.in/bitstream/123456789/9732/1/Unit-4.pdf
https://pdfcookie.com/documents/objective-c-tutorial-yv8o54oy7121
https://pdfcookie.com/documents/c-tutorial-3lkzop0ypelk
https://pdfcookie.com/documents/c-tutorial-3lkzop0ypelk
https://egyankosh.ac.in/bitstream/123456789/72709/1/Unit-4.pdf

Publication

<1

90 Thesis Submitted to Shodhganga Repository <1
51 pdfcookie.com <1 IntemetDaa
. prgscience.com <1 Publication
33 www.studocu.com <] IntemetData
. technodocbox.com <] IntenetData
S5 pdfcookie.com <1 'ntemetData
56 pdfcookie.com <1 'ntemetData
S7 batch.libretexts.org <1 Publication
62| www.slideshare.net <1 [IntemetData
64 pdfcookie.com <] 'ntemetData
66 files.geu.ac.in <1 Publication
69 iareac.in <1 Publication
70 livrosdeamor.com.br <1 IntemetData
71 baou.edu.in <1 Publication
. pdfcookie.com <1 IntemetDaa
76 Thesis Submitted to Shodhganga Repository <1 Publication
77 docplayer.net <] IntemetData
80 repositorio.uchile.cl <1 Publication
83 jareac.n Publication

https://shodhganga.inflibnet.ac.in/jspui/bitstream/10603/396816/11/11_chapter01.pdf
https://pdfcookie.com/documents/let-us-c-yashwant-kanetkar-r429mmz1m1ln
https://prgscience.com/IQAC/doc2.pdf
https://www.studocu.com/in/document/indira-gandhi-national-open-university/problem-solving-and-programming/cp-mcs-11-em-sp-important-questions/63245803
https://www.technodocbox.com/C_and_CPP/79141326-21/79141326-2-hours-total-marks-75.html
https://pdfcookie.com/documents/linux-programming-lecture-notes-1g2w6n1zzdl5
https://pdfcookie.com/documents/vbnet-tutorial-3-r4296350e02n
https://batch.libretexts.org/print/Letter/Finished/eng-45646/Full.pdf
https://www.slideshare.net/31433143/cprogramming-tutorial-71484716
https://pdfcookie.com/documents/reference-manual-52e1d7qogwv8
https://files.geu.ac.in/odl/ciqa/OMC%20101%20Computer%20Fundamentals%20and%20Programming%20Methodology%20Using%20C.pdf
https://www.iare.ac.in/sites/default/files/AERO_PROGRAMMING_FOR_PROBLEM_SOLVING_LECTURE_NOTES.pdf
https://livrosdeamor.com.br/documents/swift-apprentice-v11-5c187ed9d49bd
https://baou.edu.in/assets/pdf/PGMAD_slm_6921.pdf
https://pdfcookie.com/documents/high-frequency-words-with-meaning-and-correct-usagepdf-52e1p6678dv8
https://shodhganga.inflibnet.ac.in/jspui/bitstream/10603/471557/6/06_chapter%202.pdf
http://docplayer.net/11858512-Introduction-to-computers-and-c-programming.html
http://repositorio.uchile.cl/bitstream/handle/2250/126984/Join-point-interfaces-for-safe-and-flexible-decoupling-of-aspects.pdf?sequence=1&isAllowed=y
https://www.iare.ac.in/sites/default/files/IARE-PPS_PPT.pdf

86 www.pmydigital.com

<1

Internet Data

88 info.ikbamansas.or.id

<1

Internet Data

90 www.geeksforgeeks.org

<1

Internet Data

https://www.pmydigital.com/sabas/wp-content/themes/wisnia/vy-commodore/blazor-element-reference.html
https://info.ikbamansas.or.id/t0leyj/kha-in-sanskrit-numbers.html
https://www.geeksforgeeks.org/operators-in-cpp/

CSM -6151 PROGRAMMING WITH ‘C’ & LAB

COURSE INTRODUCTION

Welcome to the world of C programming! This book serves as your gateway into the
foundational aspects of computer programming using the C language. C, developed by Dennis
Ritchie in the early 1970s, remains one of the most influential and widely used programming
languages, serving as the bedrock for numerous modern languages and systems.

This book is on C programming. We focus on problem solving using the language and present
standard programming techniques such as alternation, iteration, and recursion. We will look at
the fundamentals of software engineering principles such as modularization, commenting, and
naming conventions that aid in team collaboration and development.

OVERVIEW

In this book, we'll embark on an exciting journey to understand the core concepts and principles
that underpin C programming. From mastering the syntax to comprehending powerful concepts
like pointers and memory management, each module will equip you with the tools necessary to
write efficient, robust, and scalable programs.

What You'll Learn:

= Fundamentals: You'll begin with the basics, learning about variables, data types, operators,
and control structures that form the building blocks of C programming.

* Functions and Modularity: Dive into the realm of functions, understanding their role in
code organization, passing arguments, return values, and utilizing libraries.

= Memory Management: Explore the intricate world of memory, understanding pointers,
dynamic memory allocation, and their significance in optimizing code efficiency.

* Advanced Concepts: We'll cover more advanced topics like file handling, structures, and
preprocessor directives, elevating your programming prowess.

How You'll Learn:

Through a blend of comprehensive lectures, hands-on coding exercises, quizzes, and real-world
examples, you'll grasp not just the theory but also the practical applications of C programming.
The book is designed to encourage active participation, allowing you to code alongside the
lessons and solidify your understanding through practice.

Who Is This Book For:

Whether you're a novice programmer eager to start your journey or an experienced developer
seeking to deepen your understanding of low-level programming, this book caters to individuals
at all levels. It's ideal for students, hobbyists, professionals, and anyone passionate about honing
their programming skills.

Conclusion:

By the end of this book, you'll emerge with a solid foundation in C programming, equipped to
write efficient algorithms, create versatile applications, and approach more complex
programming challenges with confidence. Get ready to unlock the potential of C programming
and embark on a transformative learning experience that will shape your programming journey
for years to come!

This introduction aims to provide a glimpse into the learning approach, target audience, and the
potential impact it can have on a learner's programming abilities.

UNIT1 ALGORITHMIC PROCESS & BASICS OF C
PROGRAMMING

Basic Structure

1.0 Introduction
1.1 Objectives
1.2 Learning outcomes
1.3 Program and Programming Language
1.3.1 Early Developments of Programming
1.3.2 Programming Elements
1.3.3 Design and Implementations
1.3.4 Uses and Properties
1.4 Introduction to C Language
1.4.1 History of C language
1.4.2 The Structure of C Program
1.4.3 Features of C language
1.4.4 C Program installation
1.4.5 Tools and Uses
1.5 Programming Format of C
1.5.1 Basic format and functions
1.5.2 A simple C programming
1.6 Creating a C Program
1.7 Compilation process in C Program
1.7.1 The Compiler
1.7.2 Semantic and Syntax Errors
1.8 Link and Running C Program
1.8.1 Running Program through Menu
1.8.2 Running Executable File
1.8.3 Linker Errors
1.8.4 Logical and Runtime Errors
1.9 Diagrammatic Illustration
1.10 Conclusion
1.11 Unit based Questions /Answers

1.0 INTRODUCTION

This unit introduces you to problem-solving ideas, particularly as they apply to computer
programming. In this section, we introduce C, a standardized, industrial value programming
language recognized for its power and portability as an implementation vehicle for these computer-
based problem-solving methodologies. C's characteristics are designed to accurately match the
capabilities of the targeted CPUs. It has to a long the history of usage in operating systems and
device drivers, and protocol stacks, but its use in application software is declining. C is frequently
used on computer architectures ranging from supercomputers to microcontrollers and embedded
devices.

Language is the part of method for two people is to be communicateg#iith one another. To
communicate, both parties must understand the language. Even if the two pcople do not speak the

same language, a translator can help translate one language into another that the second person
understands. A computer language, like a translator, allows a user and a machine to communicate.
One version of the computer language is understood by the user, while the other is understood by
the machine. A translator (or compiler) is necessary to convert from user form to computer form.
A computer language, like any other, has a grammar known as syntax.

It is an imperative procedural language with a @ic type system that supports structured
programming, lexical variable scoping, and recursion. It was meant to be constructed in such a
way that it provides low-level memory access and language features that translate effectively to
machine instructions while requiring little runtime support. Despite its low-level capabilities, the
language was meant to promote cross-platform development. With little changes to its source
code, a standards-compliant C program developed with portability in mind may be generated for a
broad range of computer platforms and operating systems.

This unit offers a concise introduction to programming, with an emphasis on understanding the
concept of a computer.

A computer is an electronic device that receives, processes, and responds to instructions provided
by users. It operates under the control of a computer program, which guides it in handling and
manipulating data. A program consists of a set of instructions and data, often developed with the
goal of building user-friendly applications, such as mobile apps. This unit is tailored for learners
who have an interest in programming and aim to pursue a career in the field.

This unit will explain to you the fundamentals of the programming language C.

1.1 OBJECTIVES

After completing this unit, you will be able to:

e Gain comprehensive knowledge @he C programming language.
e Develop logical thinking skills essential for creating programs and applications using C.
e Understand fundamental programming concepts, enabling an easier transition to other
programming languages in the future.
e Build a strong foundation in the core principles of C programming.
e Apply the learned concepts through practical components designed to provide hands-on
experience.

1.2 LEARNING OUTCOMES

Advantages of understanding the concepts from the unit are:

= Understanding a functional hierarchical code organization.

= Ability to define and manage data structures based on problem subject domain.

= Ability to work with textual information, characters and strings.

= Ability to work with arrays of complex objects.

® Understanding a concept of g@ect thinking within the framework of functional model.

= Understanding a concept of fliictional hierarchical code organization.

= Understanding a defensive programming concept. Ability to handle possible errors during
program execution.

1.3 PROGRAM AND PROGRAMMING LANGUAGE

(@

A programming language is a formal language that provides instructions for computers to
perform specific tasks. It is used for developing software, applications, and controlling
computer systems. Popular programming languages include Java, Python, C++, JavaScript,
and C#. The chosen language depends on the platform, target audience, and desired output.
Programming languages evolve and change over time, with new ones established and old
ones improved to meet evolving demands. It provides a notation system for creating
computer programs which is frequently defined by its syntax and semantics. They are usually
specified using a formal language. A language usually has at least one application, like a
compiler or interpreter, that enables programs written in the language to run. Programming
language theory is a study of the structure, execution, evaluation, description, and
classification of programming languages. The C programming language source code for a
small computer program.

Programming is a talent that is growing in demand in the employment market. Anyone who
works with technology should have at least a fundamental grasp of how software works. You
can obtain a career coding, developing software, data architecture, or building user interfaces
if you have a programming background.

While there are many of methods to categorize programming languages, they typically fall
into five basic groups:

Procedural Programming Language (PPL): Procedural language employs a series of
statements or instructions to get the desired result. A procedure is a set of steps; therefore a
program developed in one of these languages will have one or more procedures. Examples of
procedural language includes: C, C++, Java, Pascal and BASIC.

(i) Functional Programming Languages (FPL): Rather than focusing on statement execution,

functional languages concentrate on the output of mathematical functions and evaluations.
Each function--a reusable code module--completes a defined job and produces a result. The
outcome depends on the data you enter into the function. Among the most prominent
functional programming languages are: Scala, Erlang, Haskell, Elixir and F#.

(iii) Object-Oriented Programming Languages (OOP): This language views a program as a

collection of objects made up of data and program components known as attributes and
methods. Objects can be reused both within and outside of a program. Because code is easy
to reuse and scale, it is a common language type for complicated applications. Among the
most common object-oriented languages are: PHP, C#, Ruby, Java and Python.

(iv) Script-Oriented Languages (SOL): Scripting languages are used by programmers to

automate tedious operations, manage dynamic online content, and support processes in
bigger applications. Among the most popular scripting languages are: PHP, Ruby, bash, Perl,
Python and Node.js.

(v) Logic Programming Languages (LPL): A logic programming language communicates a

collection of facts and rules to advise a computer on how to make decisions rather than
telling it what to do. Logic languages include the following: Prolog, Absys, Datalog and
Alma-0.

1.3.1 Early Developments of Programming

Early computers, like the Colossus, were programmed without a stored program by altering
their circuitry or configuring physical controllers. Later, programs could be written in
machine language, where the programmer puts each command in a numeric format that the
hardware can directly execute. These programs were read in decimal or binary form from
various sources, such as punched cards, paper tape, magnetic tape, or switches on the
computer's front panel. First-generation programming languages (1GL) were later coined to
refer to machine languages. Second-generation programming languages (2GL) or assembly
languages were created, which were tightly linked to the instruction set architecture of the
individual machine. These languages made software more human-readable and reduced time-
consuming and error-prone address computations. In the 1950s, the first high-level

programming languages (3GL) were developed. Plankalkiil, an early high-level programming
language for computers, was created by Konrad Zuse between 1943 and 1945 for the German
Z3. Short Code, suggested by John Mauchly in 1949, was one of the earliest high-level
languages ever devised for electronic computers. Short Code statements, as opposed to
machine code, represented mathematical formulas in a comprehensible format. However,
every time the program was performed, it had to be translated into machine code, which
made the process significantly slower than executing the comparable machine code. Alick
Glennie created Autocode at the University of Manchester in the early 1950s. As a
programming language, it employs a compiler to translate the language into machine code
automatically. The original code and compiler were created in 1952 at the University of
Manchester for the Mark 1 computer, and it is regarded as the first compiled high-level
programming language. In 1954, R. A. Brooker created the "Mark 1 Autocode" for the Mark
1.

Brooker collaborated with the University of Manchester in the 1950s to design an auto code
for the Ferranti Mercury. D. F. Hartley of the University of Cambridge Mathematical
Laboratory created the EDSAC 2 Autocode in 1961, a direct derivation from Mercury
Autocode. Atlas Autocode was created for the University of Manchester Atlas 1 computer. In
1954, John Backus invented FORTRAN, the first widely used high-level general-purpose
programming language with a functional implementation. It remains a popular high-
performance computing language, with programs benchmarking and ranking supercomputers.
Grace Hopper designed FLOW-MATIC, an early programming language, for the UNIVAC 1
between 1955 and 1959. Hopper and her team created a specification for an English
programming language and constructed a prototype in 1955. The FLOW-MATIC compiler
was made public early in 1958 and was almost complete in 1959. FLOW-MATIC had a
significant impact on the architecture of COBOL because only it as well as its immediate
descendent AIMACO were in service at that time.

1.3.2 Programming Elements

(i)

Every programming language has certain basic building fragments for describing data and the
operations or transformations that are done to it (such as adding two integers or selecting an
item from a collection). These primitives are specified via syntactic and semantic principles
which demonstrate their structure and meaning accordingly.

Syntax: The surface form of a computer language can be identified as its syntax. Several
programming languages are basically textual; they employ textual sequences of words,
numbers, as well as punctuation, similar to written natural languages. Some programming
languages, alternatively, tend to be graphical in nature, relying on visual interactions between
symbols to express a program.

The syntax of a language specifies the many symbol combinations that can be used to create
a correctly structured program. Semantics handles the meaning assigned to a combination of
symbols. Because most languages are textual, this article focuses on textual syntax. The
syntax of a programming language is often established using a combination of standard
expressions and grammatical structures.

(i) Semantics: The word semantics (It is the study of meaning and reference. The word can be

applied to various different areas, including theory, language study, and computer science.)
relates to the meaning of languages rather than their structure (syntax).

(iii) Type System: A type system specifies how the programming language categorizes items and

expressions into formats, how those kinds may be manipulated, and how they interact. A type
system's purpose is to identify and typically enforce a particular level of accuracy in
programs written in that language by recognizing certain erroneous operations. Any sort of
decidable system includes a trade-off: although it rejects many wrong programs, it may also
prevent certain accurate, but rare, ones. A variety of languages feature type loopholes, which
are generally unchecked casts that can potentially used by the programmer to expressly
enable a normally forbidden action between distinct types.

In most typed languages, the type system is primarily used to type check programs; however,

a few languages, especially functional ones, infer types, reducing the need for the
programmer to write type annotations. Type theory is the formal structure and analysis of
type systems.

1.3.3 Design and Implementations

Programming languages have traits with natural languages, such as having a syntactic form
independent from its semantics and exhibiting language families of related languages
branching one from another. However, because they are artificial creations, they differ
fundamentally from languages that have evolved through usage. Because a programming
language has a clear and limited definition, it can be thoroughly defined and examined in its
entirety. Natural languages, on the other hand, have changeable meanings as determined by
their users in different groups. While constructed languages are artificial languages that are
built from the ground up with a specific goal in mind, they lack the exact and comprehensive
semantic definition that a programming language possesses.

Several programming languages have been developed and created from scratch, modified to
fit new requirements, and integrated with others. Many have ultimately gone out of favor.
Although attempts have been made to create a single "global" programming language that
suits all needs, none of them have been widely regarded as fulfilling this function. The range
of situations in which languages are employed necessitates the development of varied
programming languages:

e Programs can vary greatly in scale—from simple scripts written by individual
enthusiasts to complex systems developed by large teams of programmers.

e Developers possess a wide range of expertise, from beginners who prioritize
simplicity to advanced professionals capable of handling intricate designs.

e Software must be optimized for performance, memory usage, and clarity, whether
it's running on small microcontrollers or powerful supercomputers.

e Some programs remain unchanged for long periods, while others undergo frequent
updates and modifications.

e Developers often have personal or professional preferences, influenced by their
familiarity with certain problem-solving methods or programming languages.

One recurrent tendency in programming language evolution has been to offer a greater
capacity to handle issues at a higher degree of abstraction. The early programming languages
were inextricably linked to the computer's underlying hardware. As new programming
languages have evolved, capabilities that allow programmers to express ideas that are further
distant from straightforward translation to underlying hardware instructions have been added.
Because programmers are less dependent on the computer's complexity, their programs may
perform more computation with less effort from the programmer. As a result, they can write
more functionality per time unit.

Natural-language programming aims to eliminate specialized language requirements, but its
merits are debated. Dijkstra and Perlis condemn it, while Structured English and SQL use
hybrid techniques. The designers and users of a language must construct a variety of artifacts
that control and facilitate programming practice. The most important of these artifacts are the
language definition and implementation.

1.3.4 Uses and Properties

Numerous different programming languages have been developed, mostly in the realm of
computing. Individual software projects frequently employ five or more programming
languages.

Programming languages demand a greater degree of precision and completeness compared to most
human forms of communication. While natural languages tolerate ambiguity and minor errors—
often still conveying the intended meaning—computers lack this flexibility. They strictly follow the
instructions given and cannot infer what the programmer may have meant. Therefore, the
programming language's syntax, the program itself, and its inputs must clearly define the expected
behavior during execution, within the scope of the program's control. To express algorithmic ideas
without needing full accuracy for execution, pseudo code is often used. This method blends
everyday language with code-like constructs to help convey computational logic in a more
understandable way. Programming languages, however, offer a structured means to define data and
outline how it can be manipulated or processed systematically. Through the abstractions these
languages provide, a programmer can translate complex concepts into precise, executable
instructions.

Fundamentally, programming involves using a set of core building blocks to represent and solve
problems. The process of writing code entails combining these primitives to create new software or
adapting existing code to suit new requirements or changing conditions. This creative and logical
activity forms the essence of software development. Programs can be executed automatically in
batch mode or interactively with user input, often through an interpreter. In interactive scenarios,
individual commands are essentially small programs executed in sequence. Languages that allow
this real-time, line-by-line execution without prior compilation are commonly known as scripting
languages.

1.4 BASICS OF ‘C’ LANGUAGE

It @ne of the most widely used programming languages on the planet, because the syntax is
comparable, if you know C, you will have no trouble learning other popular programming
languages such as Java, Python, C++, C#, and so on. C is extremely quick when compared to
other programming languages such as Java and Python. C is a very flexible programming
language that may be utilized in both applications and technology. It is a general-purpose
programming language that was created in 1972 and is still widely used today. It is quite
powerful; it has been used to create systems for operating systems, databases, applications,
and so on.

1.4.1 History of C Language
The creation of C is inextricably linked to the development of the Unix operating system,
which was first developed in assembly language on a PDP-7 by Dennis Ritchie and Ken
Thompson, who included other ideas from colleagues. They eventually opted to move the
operating system to the PDP-11. The first PDP-11 version of Unix was written in assembly
language as well. Thompson wished to use a programming language to create utilities for the
new platform. He first attempted to create a Fortran compiler but quickly abandoned the
concept. Instead, he designed BCPL, a simplified version of the recently discovered systems
programming language. Because the official definition of BCPL was not available at the
time, Thompson adjusted the syntax to be less complex and more comparable to SMALGOL,
a simplified ALGOL. Thompson dubbed the outcome B. B was described as "BCPL
semantics with an abundance of SMALGOL syntax" by him. B, like BCPL, featured a
bootstrapping compiler to make porting to new machines easier. However, because B was too
sluggish and couldn't make use of PDP-11 characteristics like byte addressability, few
utilities were eventually created in it.

1) First C and new B launch: In 1971, Ritchie enhanced B to use PDP-11, introducing New B
g
(NB) as a character data type. Thompson used NB to design the Unix kernel, influencing its

evolution. NB introduced arrays of int and char, pointers, arrays of all types, and function

(ii)

(iii)

(iv)

V)

(vi)

return types. Arrays within expressions were converted to pointers, and the language was
renamed C. Version 2 Unix, commonly known as Research Unix, contained the C compiler
and several tools written with it.

Mechanisms and modifications of the Unix kernel: The Unix kernel was largely re-
implemented in C in Version 4 Unix, which was published in November 1973. The C
language has gained several significant features by this point, such as struct types. The
preprocessor was created in 1973, at the request of Alan Snyder, and in acknowledgment of
the utility of the file-inclusion techniques provided in BCPL and PL/I. Its initial form simply
contained files and basic string replacements: parameter less macro #include and #define.
Soon after, it was expanded to include macros with arguments and conditional compilation,
mainly by Mike Lesk and subsequently by John Reiser.

Unix was among the first operating system kernels written in a language other than assembly.
In 1961, the Multics system (written in PL/I) and the Master Control Program (MCP) for the
Burroughs B5000 (written in ALGOL) were examples. Ritchie and Stephen C. Johnson made
additional improvements to the language in 1977 to improve the portability of the Unix
operating system. Johnson's Portable C Compiler was the foundation for various C
implementations on new platforms.

The commented-out int type specifiers might be deleted in K&R C, but are mandatory in
subsequent standards. Function parameter type examines were not performed because K&R
function declarations did not include any information about function arguments, although
some compilers would issue a warning message if a local function was called with the
incorrect number of arguments, or if multiple calls to an external function used different
numbers or types of arguments. Separate tools, such as Unix's lint program, were created to
ensure function uniformity across various source files. Several features were added to the
language in the years after its release, backed by compilers from AT&T and other
manufacturers. These were some examples:

= void functions

= functions that return struct or union kinds

= struct data type allocation

= enumerated types

The vast number of extensions and absence of agreement on a standard library, along with
the popularity of the language and the fact that not even Unix compilers accurately
implemented the K&R specification, made standardization necessary.

ISO C and ANSI C: In the late 1970s and 1980s, C was implemented for various mainframe
computers, minicomputers, and microcomputers, including the IBM PC. In 1983, the
American National Standards Institute (ANSI) formed a committee, X3J11, to establish a
standard specification of C. The standard was ratified as ANSI X3.159-1989 "Programming
Language C" in 1989, often referred to as ANSI C, Standard C, or sometimes C89. In 1990,
the ANSI C standard was adopted by the International Organization for Standardization
(ISO) as ISO/IEC 9899:1990, also known as C90. The C standardization process aimed to
produce a superset of K&R C, incorporating unofficial features and additional features. C89
is supported by current C compilers and most modern C code is based on it.

C99: The C standard was revised in the late 1990s, leading to the publication of ISO/IEC
9899:1999 in 1999, also known as "C99". C99 introduced new features such as inline
functions, data types, variable-length arrays, flexible array members, floating point support,
variadic macros, and one-line comments. Although backwards compatible with C90, C99 is
stricter in some ways. GCC, Solaris Studio, and other C compilers now support many or all
of C99's new features. Microsoft Visual C++ implements the C89 standard and C99 parts for
compatibility with C++11. C99 also requires support for identifiers using Unicode and
suggests support for raw Unicode names.

C11: The C standard, formerly known as "C1X," was developed in 2007 and officially
released as ISO/IEC 9899:2011 in 2011. It introduced new features like type generic macros,
anonymous structures, Unicode support, atomic operations, multi-threading, and bounds-
checked functions.

C17 (C standard revision): The latest standard for the C programming language is C17,

which was published in June 2018 as ISO/IEC 9899:2018. It has no new language attributes,
merely technical repairs and explanations of C11 flaws. 201710L is the standard macro
_STDC_VERSION .

(vii) C23 (C standard revision): C23 is the informal moniker for the next main C language

standard version (following C17). It is scheduled to be released in 2024.

(viii) Embedded C: It has always required nonstandard additions to the C language in order to

handle exotic features like as fixed-point arithmetic, many different memory banks, and
fundamental 1/O operations. The C Standards Committee produced a technical report in 2008
that extended the C language to solve these difficulties by creating a uniform standard to
which all implementations must comply. It has features not found in standard C, including as
fixed-point arithmetic, named address spaces, and basic I/O hardware addressing.

1.4.2 The Structure of ‘C’ Program

(i)

A ‘C’ program's basic structure is separated into six components, making it easier to read,
edit, document, and comprehend in a specific manner. In order to build and execute
effectively, the C program must adhere to the guidelines outlined below. In a well-structured
C program, debugging is easy.

Sections of the C Program: A program's proper execution is the responsibility of six basic
components. The following sections are mentioned:

a) Documentation: This part includes a program description, the program's name, and the
program's inception date and time. It is supplied in the form of comments at the
beginning of the program. Documentation can be represented in the following ways:

// description, name of the program, programmer name, date, time etc.
OR
/* description, name of the program, programmer name, date, time etc. */
Anything placed in comments will be viewed as program documentation and will not
interfere with the supplied code. Essentially, it provides the reader with an overview of
the software.

b) Preprocessor Section: All of the program's header files will be defined in the program's
preprocessing section. Header files allow us to incorporate better code from others into
our own. Before the compilation process, a copy of these various files is placed into our
software. Example:

#include<stdio.h>
#include<math.h>

¢) Definition: Preprocessors are programs that process our sour ode prior to
compilation. There are several processes involved in the creation and iffiplementation of
the program. Preprocessor instructions begin with the symbol '#. The #define
preprocessor is used to declare a constant that will be used throughout the program.
When the compiler encounters this term, it replaces it with the actual piece of declared
code.
Example:

#define long long 11

d) Global Declaration: Global variables, function declarations, and static variables are all
included in the global declaration section. Variables and functions specified in this
scope can be utilized throughout the application.

Example:
int num = 18;

e) Main() Function: A main function must be present in every C program. This section

(i)

contains the program's main() function. Declaration and implementation are carried out
within the curly braces in the main program. The return type of the main() function can
be either int or void. The compiler is informed by void() main that the program will not
produce any value. The main() function instructs the compiler that the code will return a
numerical value.
Example:

void main()

OR
int main()

Sub Programs: In this area of the program, user-defined functions are invoked. When
they are called from the main() function or from outside the main() function, control of
the program is transferred to the called function. These are specified in accordance with
the programmer's needs.

Example:

int sum(int x, int y)

{

return x+y;

}

Structure of the C Program with Example:

Example: Below grogram to find the sum of 2 numbers:

// Documentation

ok

* file: sum.c
* description: program to find sum.

*/

// Link
#include <stdio.h>

// Definition
#define X 20

/I Global Declaration
int sum(int y);

// Main() Function
int main(void)

{

inty =55;
printf("Sum: %d", sum(y));
return 0;

}

// Subprogram
int sum(int y)

return y + X;

}

Output:
Sum: 75

Explanation of the aforementioned Program:
The aforesaid software is explained in detail below. With a description of the program's

meaning and application.

Sections

/**
* file: sum.c
* author: you
* description: program to find
sum. */

#include<stdio.h>

#define X 20

int sum(int y)

int main()

£

printf(“Sum: %d”, sum(y));

return 0;

int sum(int y)

{

returny + X;

}

Description

It is the comment section and is @ of the description
section of the code.

Header file which is used for standard input-output.
This is the preprocessor section.

This is the definition section. It allows the use of
constant X in the code.

This is the Global declaration section includes the
function declaration that can be used anywhere in the
program.

main() is the first function that is executed in the C
program.

These curly braces mark the beginning and end of the
main function.

printf() function is used to print the sum on the
screen.

We have used int as the return type so we have to
return 0 which states that the given program is free
from the error and it can be exited successfully.

This is the subprogram section. It includes the user-
defined functions that are called in the main()
function.

Compilation and the execution of a C program involves the following steps are Program
Creation, Compilation of the program, Execution of the program and output of the

Program.

The following are some of the elements we acquired about the structure of the C Program

in this article:

(iif)

A C program's basic structure is separated into six components, making it easier to
read, edit, document, and comprehend in a specific manner.
In a well-structured C program, debugging is easy.
A C program is divided into six sections: Documentation, Preprocessor Section,
inition, Global Declaration, Main() Function, and Sub Programs.
¢ following stages are taken during the compilation and execution of a C

program:

i). Development of a Program

ii). Putting together the program

iii). The initiative is being carried out.

iv). Result of the program

Syntax of C Program:

The C standard specifies a formal grammar for C. Line ends are not normally
relevant in C; nevertheless, line boundaries are during the preprocessing step.
Comments can appear within the delimiters /* and /, or (since C99) after // until the
end of the line. Comments delimited by / and */ do not nest, and if they occur inside
string or character literals, they are not interpreted as comment delimiters.

The declarations and defined functions are found in C source files. Declarations and
statements are included in function definitions. Declarations either declare new types
with keywords like struct, union, and enum, or assign types to and maybe reserve
storage for new variables by writing a type followed by the variable name. Built-in
types are specified via keywords that include char and int. Braces (and, sometimes
known as "curly brackets") are used to limit the scope of declarations and to serve as
a single statement for structuring controls.

C, being an imperative language, specifies actions using statements. The most
frequent statement is an argument statement, which consists of an argument to be
evaluated preceded by a semicolon; as a result of the assessment, functions and
variables may be called and new values set. C includes many control-flow
statements designated by reserved keywords to change the regular sequential
execution of statements. If... [otherwise] conditional execution and do... while,
while, and for sequential execution (looping) provide structured programming. The
for statement has distinct initialization, evaluation, and reinitialization expressions,
which can be omitted in any order. Within the loop, break and continue can be
utilized. Break is used to exit the innermost contained loop statement, while
continue skips to its reinitialisation. There is also a non-structured goto statement
that goes directly to the function's assigned label. The value of an integer expression
is used to pick a case to be performed by switch. Unlike numerous other languages,
the the control process will continue to the next case until interrupted by a break.
Expressions in C can employ a variety of integrated operators and call function,
without no restriction on the sequence of evaluations. All side effects, including
variable storage, occur before the next "sequence point," which includes the
conclusion of each expression statement as well as the entrance to and return from
each function call. Sequence points can also appear during the assessment of
expressions that contain specific operators (&&, ||,?:, and the comma operator). This
allows the compiler to optimize object code at a high level, but it needs greater effort
from programmers to get accurate results. Because of the impact on existing
software, the C standard was unable to remedy many of these flaws.

1.4.3 Features of ‘C’ Language

C is an imperative programming language. Dennis Ritchie was the first to create it in
1972. It was created primarily as an operational programming language for creating
an operating system.

C language's core characteristics are low-level memory access, a minimal set of
keywords, and an elegant style; these characteristics make C language excellent for
system programming such as computer operating systems or compiler development.

What are the Most Significant C Language Characteristics?
Here are a few of the most essential C language features:

e Procedural Language Structure: Languages like C follow a procedural programming
approach, where instructions are executed in a defined sequence. In C, programs are
typically structured into multiple functions, each responsible for a specific task. This
step-by-step execution can make it easier for beginners to follow the program’s
flow. While many new programmers might assume this is the only programming
style, there are multiple paradigms in the software world, with object-oriented
programming (OOP) being one of the most prominent alternatives.

e Speed and Efficiency: Although modern programming languages like Python and
Java offer more built-in features, they often compromise on execution speed due to
additional layers of abstraction. C, as a middle-level language, allows direct
interaction with hardware components, making it exceptionally efficient. Its
performance benefits from being statically typed, which ensures variable types are
known at compile-time, reducing overhead during runtime. This efficiency and
speed are key reasons why C is often recommended as a starting point for learning
programming.

e Modular Design and Reusability: C promotes the concept of modularity by allowing
code to be divided into reusable libraries. These libraries enable developers to
manage complex codebases more efficiently by reusing common functionalities. The
standard C library is a powerful toolset that provides pre-built solutions for
frequently encountered problems, thereby enhancing development productivity and
maintaining cleaner code architecture.

e Versatile and Extensible Language: C is recognized as a general-purpose
programming language with applications spanning from operating systems (like
Windows, Linux, and i0OS) to database engines (such as MySQL and Oracle). Its
robust set of built-in operators and extensive libraries makes it suitable for a wide
range of tasks. As a middle-level language, it bridges the gap between low-level
hardware manipulation and high-level application development. C programs are also
highly portable across systems, and their extensible nature means new functionalities
can easily be added to existing codebases.

1.4.4 ‘C’ Program Installation

= Installing the C Programming Language Across Different Operating Systems
Setting up a development environment for C programming varies slightly depending
on the operating system in use. Below is a general guideline for installing C on
popular platforms such as Windows and macOS.

= For Windows Users: To begin programming in C on a Windows system, you'll first
need an Integrated Development Environment (IDE) like Visual Studio Co@
Code::Blocks, or Dev-C++. After selecting and installing your preferred IDE, ¢
next step is to install a C compiler. Common options include GCC via MinGW or
Clang, both of which enable you to compile and execute C programs directly from
your development environment.

For macOS Users: On macOS, one of the most convenient ways to start
programming in C is by installing Xcode. Xcode is a complete development suite
that includes a built-in C compiler and tools for writing, compiling, and debugging
code. If you prefer not to use Xcode, you can opt for standalone compilers such as
GCC or Clang, which can be installed using Homebrew, a package manager for
macOS.

ux:
@st Linux distributions come with GCC (GNU Compiler Collection) preinstalled.
You can use a terminal or command-line interface to compile and run C programs.
You can also install an IDE such as Code::Blocks or Dev-C++ if you prefer a
graphical development environment.

NOTE: The exact procedures to install C may differ based on the operating
system edition and the tools you use. Make careful to follow the manufacturer's
or community's directions.

Here's how to install the C programming language on Windows, macOS, and Linux:
Windows: @

Download and inStall Visual Studio Code from the official website:
https://code.visualstudio.com/download

Download and install MinGW (GCC) from the official website:
https://osdn.net/projects/mingw/releases/

Open Visual Studio Code and go to Extensions, then search for “C/C++” and install
the Microsoft C/C++ extension.

Open the Command Palette (Ctrl + Shift + P) and select “C/C++: Edit configurations
(UI)”. Add the following configuration in the “tasks.json” file:

{

"version": "2.0.0",
"tasks": [
{
"type": "cppbuild",
"label": "C/C++: g++.exe build active file",
"command": "C:\MinGW\\bin\\g++.exe",
"args": [
Vl_g"’
Vl$ {ﬁle} "’
II_OH’
"${fileDirname}\\$ { fileBasenameNoExtension}.exe"

]’
"options": {

"ewd": "C:\MinGW\\bin"
}’
"problemMatcher": [

Vl$gccll
]3
"group": {
"kind": "build",
"isDefault": true
¥
¥
1

}

Write your first C program, save it with a “.c” extension, and press Ctrl + Shift + B

to build and run it.
macOS:

= Launch Terminal and perform the following command to install Xcode Command
Line Tools:

xcode-select —install

= Install GCC by running the following command:

brew install gcc

= Write your first C program in a text editor, save it with a “.c” extension, and
compile it using GCC by running the following command:

gcc -0 myProgram my ram.c

= Run your program by typing the following command:

./myProgram

Linux:

= Most Linux distributions come with GCC preinstalled. You can check if GCC is
installed by running the following command in a terminal:

gce --version

= If GCC is not installed, you can install it using the package manager of your
distribution. For example, on Ubuntu, you can run the following command:

sudo apt-get install build-essential

= Write your first C program in a text editor, save it with a “.c” extension, and
compile it using GCC by running the following command:

gce -0 myProgram myProgram.c

® Run your program by typing the following command:

./myProgram

Note: These examples are intended to be given you as an idea of how to install C
and compile a small application. The precise methods may differ based on the
applications and operating system versions you are running.

1.4.5 Tools and Uses

(1) Tools or IDE for ‘C’ program

Though we've covered the relevance and demand for the C language, in this
unit we'll look in depth at a critical precondition necessary for conducting
programming in the C language, namely, a C IDE (Integrated Development
Environment). In general, IDEs are designed to make things simpler for
developers and boost their productivity by including tools such as a code editor,
debugging support, a compiler, auto code completion, and many more. A C IDE
offers you with a full collection of tools for the developing applications in C
languages. There are various C IDEs accessible for both experienced developers
and beginner programmers to use to program without difficulty, and you may
choose any one of them based on your needs.

Meanwhile, to make your job easier, we've produced a list of the best C IDEs:

a) Visual Studio: First and foremost, here is an enlightening a Integrated and
Development Environment (IDE) created by the IT behemoth, Microsoft.
Microsoft's Visual Studio as provides you a with several impressive
capabilities like automated code completion, code redesigning, syntax
highlighting, assistance with various languages, and many more. Aside from
C/C++ and C#, Visual Studio supports a variety of additional languages via
plugins, including JavaScript, TypeScript, XML, and others, as well as
Python, Ruby, and others. Its features are as follows:

= Compatible with: Windows, macOS, and Linux

= Code completion using IntelliSense

* Built-in Git Integration

b)

©)

d)

Easy Azure Development
Integrated Debugger and VCS support

CLion: CLion is another popular cross-platform C/C++ Integrated
Development Environment (IDE) for programmers that is integrated with the
CMake build system and supports macOS, Linux, and Windows. It was
created by JetBrains and includes a smart C/C++ code editor for improved
code help, safe refactoring and rapid documentation, the ability to test
individual units of source code, effective code and project management, and
so on. In addition to C/C++, CLion supports numerous more languages via
plugins, including Kotlin, Python, Swift, and others. Its features are as
follows:

Integrated debugger

On-the-fly code analysis

Supports Embedded Development

Supports CVS (Concurrent Versions System) & TFS (Team Foundation
Server)

Compatible with: Windows, macOS, and Linux

Eclipse: Eclipse is a well-known brand in the area of Integrated Development
Environments (IDEs). Although it is best recognized for its outstanding
support for Java, Eclipse has also proven to be a valuable IDE for C and C++.
It has several essential features for C programming, such as code auto-
completion, code refactoring, visual debugging tools, remote system
explorer, and many more. Furthermore, you may enhance the functionality of
Eclipse IDE by incorporating numerous additional plugins according on your
needs. Its features are as follows:

Open-source & Rich Community

Compatible with: Windows, macOS, and Linux
Easier Project Creation

Supports Static Code Analysis

Easy Debugging

Code::Blocks: Going down the list, we have Code::Blocks, an open-source
C IDE written in C and built with the wxWidgets GUI toolkit. Code::Blocks
has all of the essential features needed for C and C++ programming, such as
syntax highlighting, a tabbed interface, code completion, code coverage,
simple navigation, debugging support, and so on. Furthermore, it allows you
to include full breakpoint conditions, which means you may stop the code
execution if the condition is true. The Code::Blocks IDE's source code and
may make changes based on your choices for a C Integrated Development
Environment. Its features are as follows:

Compatible with: Windows, macOS, and Linux

Supports multiple compilers — GCC, Clang, and Visual C++
Extensible via plugins

Full Breakpoints Support

Open-source & Rich Community

CodeLite: CodeLite is a different open-source C and IDE (Integrated
Development Environment) that many developers prefer. It improves
compiler compatibility by including built-in assistance with GCC, Clang, and
Visual C++, and it is also compatible with additional languages outside
C/C++, such as PHP, JavaScript (Node.js), and others. CodeLite provides
you with a plethora of useful tools, like code restructuring, organizing

projects, code browsing, syntax highlighting, test automation, and a lot more.
CodeLite also includes a number of other features like clickable errors, clang-
based completion of code for C projects, and so on. CodeLite also offers a
Rapid Application Development application for creating wxWidgets-based
apps. Its features are as follows:

" Compatible with: Windows, macOS, and Linux
= Project Management

= [nteractive Debugger

= Valgrind Support

= Supports Static Code Analysis

f) NetBeans: NetBeans, created by the Apache Software Foundation - Oracle
Corporation, is additionally a popular IDE among C/C++ developers. This
open-source and free Integrated Development Environment (IDE) allows you
to develop C and C++ programs using dynamic and static libraries. NetBeans
provides several C/C++ development enhancements such as code
restructuring, bracket matching, automated indentation, unit evaluation, and
many more. Furthermore, it provides excellent support for a wide range of
compilers, including Oracle Solaris Studio, GNU, CLang/LLVM, Cygwin,
MinGW, and others. NetBeans additionally provides features like as quicker
file navigation, source inspection, packaging, and so on. NetBeans, like
Eclipse, has improved drag and drop functionality, which is why it is highly
recommended for students and beginner-level C/C++ developers. Its features
are as follows:

= Free and Open Source

= Compatible with: Windows, macOS, Linux, and Solaris
= Qt Toolkit Support

= Supports Remote Development

= Efficient Project Management

Therefore, these are the most recommended IDEs for C developers, together
with their individual features and benefits. However, before selecting any of
the IDEs, you must first determine your requirements, since this is really
important! For example, if you require a if you are a beginner-level
programmer looking for greater drag-and-drop functionality, you may use
NetBeans or Eclipse; and so on.

(ii) Uses of ‘C’ program

a) Justification for usage in system programming:
C is a programming language that is commonly used in the implementation
of operating systems and embedded system applications. This is due to
numerous factors:

= The code generated after compilation processes does not need many system
features and can be invoked in a straightforward manner from some boot
code - it is easy to execute.

= The C language statements and operators typically map properly ona
sequence of commands for the target processor, resulting in a low run-time
interest on system resources - it is fast to execute.

= The C language, with its extensive collection of operators, can take use of
many of the capabilities of target CPUs. Where a certain CPU contains more
exotic instructions, a language version may be built with perhaps inherent
functions to take advantage of those instructions - it can leverage almost all

of the target CPU's characteristics.

= The language allows for the simple overlay of structures over blocks of data
that are binary, enabling the data to be understood, traversed, and updated - it
can create data structures and even file systems.

® The language has a rich collection of operators for integer computation and
logic, as well as perhaps varying sizes of floating-point values - it can process
suitably organized data effectively.

= C(Cis a little language, with only a few statements and few features that create
a lot of target code - it's understandable.

= C offers immediate control over the allocation of memory and deallocation,
which provides fair efficiency and predictable time to memory-handling tasks
while eliminating the need to worry about periodic stop-the-world garbage
disposal events - it has steady performance.

= C allows for the usage and implementation of several memory allocation
strategies, such as the standard malloc and free; a complicated mechanism for
various domains; or a version for an OS kernel which could suit DMA, be
used in interrupt handlers, or incorporate with the virtual memory system.

= Because platform hardware can be accessible via pointers and type punning,
system-specific functions (e.g. Control/Status Registers, 1/O registers) may
be set and utilized with C code - it interacts well with the platform on which
it runs.

" Based on the linker and environment, C code may also call assembly
language libraries and be called from assembly language - it collaborates well
with other lower-level programs.

® C, as well as its calling conventions and linker structures, are frequently used
in combination with other high-level languages, with calls to and from C
supported - it interoperates well with other high-level programs.

= C has a developed and diverse ecosystem that includes frameworks, libraries,
and open source compilers, debuggers, and tools, it is the de facto standard. It
is likely in that the drivers already exist in C, or that a similar CPU
architecture exists as a back-end of a C compiler, therefore there is less
motivation to use another language.

b) Previously used for web development:
C was formerly used for web development, with the Common Gateway
Interface (CGI) acting as a "gateway" to transfer data between the web
application, the server, and the browser. With its speed, security, and near-
@/ersal availability, C may have been selected over interpreted languages.
s a no longer usual practice to design websites with C, and there are
several alternative web development tools available.

¢) Some additional languages are written in C as well:
Because of C's widespread availability and efficiency, compilers, libraries,
and interpreters for other programming languages are frequently written in C.
Python, Perl, Ruby, and PHP, for example, have reference implementations
written in C.

d) Allows use with computationally demanding libraries:
Although the layer of abstractions from hardware is thin and the overhead is
minimal, C allows programmers to develop efficient implementation of
algorithms and data structures, which is a key criteria for computationally
intensive systems. The GNU Multi Precision Arithmetic Library, the GNU
Scientific Library, mathematically, and MATLAB, for example, are written
entirely or partially in C. Many languages enable invoking C library
functions; for example, the Python-based architecture NumPy makes use of C

for high-performance and hardware interaction.

e) Cis used as an intermediate language:

C sometimes can be utilized as an intermediate language by other language
implementations. This method can be employed for scalability or
convenience; utilizing C as an intermediary language eliminates the need for
machine-specific code generators. C has certain characteristics that aid with
the compilation of produced code, such as line-number preprocessor
directives and optional unnecessary commas at the end of initializer lists.
However, some of C's inadequacies have encouraged the development of
additional C-based languages, such as C--, that are expressly designed for
usage as intermediate languages. Furthermore, the modern main compilers
GCC and LLVM both provide an intermediate format that is not C, and both
allow front ends for numerous languages, including C.

) End-user programs:
C is also commonly used to create end-user apps. Such programs, however,
can also be created in more recent higher-level languages.

1.5 PROGRAMMING FORMAT OF “C’

In C, the format specifier informs the compiler about the kind of data to be
written or scanned during input and output operations. They usually begin
with a % symbol and are utilized in formatted strings in functions such as
printf(), scanf(), sprintf(), and so on. The C programming language has a
number of format specifiers associated with various data types, like %d for
int, %c for char, and so on. This article will go over some of the most often
used formatting specifiers and how to utilize them.

The table below lists the most widely used format specifiers in C:

Description
Format Specifier
Yoc For character type
%d For signed integer type
Yoe For scientific notation of floats
%f For floats type
%g For float type with the current precision
%l Unsigned integer
%Id or %li Long
%If Double
Y%Lf Long double
Y%lu Unsigned int or Unsigned long
%lli Long long
Yollu Unsigned long long
%0 Octal representation
%p Pointer
%os String
Y%ou Unsigned int
%x Hexadecimal representation
%n Print nothing
%% Print % character

1.5.1 Basic format and functions
1. Character Format Specifier — %c in C:

In C, the format specifier for the char data type is %c. It may be used in C for both
formatted input and formatted output.
Syntax:
scanf("%d...", ...);
printf("%d...", ...);
Example:
// C Program to illustrate the %c format specifier.
#include <stdio.h>
int main()
{
char c;
// using %c for character input
scanf("Enter some character: %c", &c);
/I using %c for character output
printf("The entered character: %c", &c);
return 0;
}
Input:
Enter some character: A
Output:
The entered character: A

2. Integer Format Specifier (signed) — %d in C:
The signed integer format specifier%d can be used in the scanf() and print() methods, as
well as other functions that employ formatted text for int data type input and output.
Syntax:
scanf("%d...", ...);
printf("%i...", ...);
Example:
// C Program to demonstrate the use of %d and %i
#include <stdio.h>
// Driver code
int main()
{
int X;
// taking integer input
scanf("Enter the two integers: %d", &x);

// printing integer output
printf("Printed using %%d: %d\n", x);
printf("Printed using %%i: %3i\n", x);
return 0;

}
Input:

Enter the integer: 45
Output:

Printed using %d: 45
Printed using %i: 45

3. Unsigned Integer Format Specifier — %u in C:
The format specifier for the unsigned integer data type is %u. When we provide the
%u a negative integer value, it transforms it to its first complement.
Syntax:
printf("%u...", ...);
scanf("%u...", ...);
Example: Write a C program below shows how to the use %u in C.
// C Program to illustrate the how to use %u
#include <stdio.h>
// driver code
int main()
{
unsigned int var;
scanf("Enter an integer: %u", &var);
printf("Entered Unsigned Integer: %u", var);

// trying to print negative value using %u
printf("Printing -10 using %%u: %u\n", -10);
return 0;

H

Input:

Enter an integer: 25

Output:

Entered unsigned integer: 25

Printing -10 using %u: 2494692768

4. Floating-point format specifier — %fin C:

The %f is floating point format specifier in C that can be used inside a formatted
string for float data input and output. In addition to %f, we may use the format
specifiers %e or %E to display the floating point value in exponential form.
Syntax:
printf("%f...", ...);
scanf("%e...", ...);
printf("%E...", ...);
Example:
// Here C program demonstrate to use of %f, %e and %E
#include <stdio.h>
// driver code

int main()
{
float a = 12.67,

printf("Using %%f: %f\n", a);

printf("Using %%e: %e\n", a);
printf("Using %%E, %E", a);
return 0;
}
Output:

Using %f: 12.670000

Using %e: 1.267000e+01

Using %E, 1.267000E+01

5. Unsigned Octal number for integer — %o in C:

In the C program, we may use the%o format specifier to print or accept input for the
unsigned octal integer number.
Syntax:
printf("%o0...", ...);
scanf("%o0...", ...);
Example:
#include <stdio.h>
int main()
{
inta=67,
printf("%o\n", a);
return 0;
}
Output
103

6. Unsigned Hexadecimal for integer — %x in C:

For hexadecimal integers, the format specifier %x is used the prepared text. The
alphabets in the hexadecimal numerals will be as an lowercase in this situation.
Instead of %X, we use %X for uppercase alphabet digits.
Syntax:

printf("%x...", ...);

scanf("%X...", ...);
Example:
// Write a C Program to be demonstrate the use of %x and %X

#include <stdio.h>

int main()
{
int a = 15454,

printf("%x\n", a);
printf("%X", a);
return 0;
}
Output
3cSe
3CSE

7. String Format Specifier — %s in C:
In C, the %s symbol is used to print strings or to accept strings as input.
Syntax:
printf("%s...", ...);
scanf("%s...", ...);
Example:
/I C program to illustrate the use of %s in C
#include <stdio.h>
int main()
{
char a[] = "Hi Raghav";
printf("%s\n", a);
return 0;
}
Example:
The operation of %s with scanf() differs slightly from that of printf(). Let's look
at this with the aid of the C program below.
// C Program to illustrate the working of %s with scanf()
#include <stdio.h>
int main()
{
char str[50];
// taking string as input
scanf("Enter the String: %s", str);
printf("Entered String: %s", str);
return 0;
}
Example:
Input
Enter the string: Hi Raghav
Output
Hi
As we can see, the string is only searched until it encounters whitespace. In C,
we may avoid this by using scan sets.

8. Address Format Specifier — %p in C:
The C programming language also has a format specifier for printing
addresses/pointers. In C, we may use %p to display addresses and pointers.
Syntax
printf("%p...", ...);
Example:
#include <stdio.h>
int main()
{
inta=10;
printf("The Memory Address of a: %p\n",(void*)&a);
return 0;

}

Output
The Memory Address of a: 0x7{fe9645b3fc

Input and Output Formatting:
The C programming language has certain facilities for formatting input and
output. They are often placed between the % sign and the format specifier
symbol. Here are a few examples:
A negative (-) symbol indicates left alignment.
A number after % defines the minimum field width to be printed; if the
characters are fewer than the width, the leftover space is filled with space; if it
is more, it is displayed as is without truncation.
A period (.) sign denotes the separation between field width and accuracy.
Precision specifies the number of digits in an integer, the number of characters
in a string, and the number of digits after the decimal point in a floating value.
Example of I/O Formatting:

// C Program to demonstrate the formatting methods.

#include <stdio.h>

int main()

{

char str[] = "beginner";

printf("%20s\n", str);

printf("%-20s\n", str);

printf("%20.5s\n", str);

printf("%-20.5s\n", str);

return 0;

}

Output:
beginner
beginner
begin
begin

5.1.2 A simple C programming

C Program To Print Your Own Name:
In this case, we have two approaches for printing the name:
o Using printf()
o Using scanf()
Input:
Enter Name: Raghav
Output:

Name = Raghav
Examplel:
In this example, we use the printf() function to print the user name.
/I C program to demonstrate printing of
// our own name using printf()
#include <stdio.h>
int main()
{
// print name
printf("Name : Raghav");

return 0;
}
Output:
Name = Raghav
Example2:

In this example, we use scanf() to accept the user's name and then print
it.

// C program to demonstrate printing of

// our own name using scanf()

#include <stdio.h>

int main()

char name[20];
printf("Enter name: ");
// user input will be taken here
scanf("%s", name);
printf("Your name is %s.", name);
return 0;
}
Output:
Enter Name: Raghav
Name = Raghav

1.6 Creating a C Program:
Creating and Editing a C Program Across Operating Systems
C programs can be written and executed on various platforms such as DOS and UNIX, and
are typically saved with the .c extension. On DOS-based systems, source code can be
entered using any basic text editor like EDIT. For example, to open and edit a file named
testprog.c, the command used would be:
C:\> edit testlprog.c
For those working with Turbo C, the environment includes its own built-in editor. To
launch the Turbo C editor, navigate to the executable using its full path. For instance:
C:\> turboc\bin\tc
This command runs the Turbo C IDE, allowing users to write and save their programs
within its interface. Files saved this way are automatically given a .c extension.
On UNIX systems, C source files are also saved with the .c extension to indicate they are C
programs. Programmers often use editors such as vi, emacs, or xedit to create and modify
code. For example, to edit testprog.c using vi, the following command is used:
$ vi testprog.c
These editors allow programmers to make changes to the code at any time during
development.

1.7 Compilation process in C Program

Once a program is written, it should be saved with a .c extension, indicating that it is
written in the C programming language. While C is considered a high-level language,
computers do not directly understand it. Therefore, the next essential step is to convert the
human-readable source code into machine-readable object code. This conversion is handled
by a specialized tool known as a compiler. Each programming language typically has its
own compiler designed to interpret and translate its syntax into machine code. The compiler
analyzes the source code for any syntax errors and, if none are found, it proceeds to
generate the object code.

However, if the compiler detects any errors in the code, it will not produce the object file.
These errors must be resolved before the program can be successfully compiled. The
process ensures that only syntactically correct code is translated into executable instructions
that the computer can understand and run.

A flowchart can help visualize this process—starting from writing and saving the program,
followed by compilation, and ending either in successful object code generation or an error
report. This structured approach highlights the fundamental steps involved in creating and
preparing a C program for execution.

Writing Program

¥
Save as .c file

¥

Compile using
Compiler

v
Object Code
Generated?

This flowchart represents the sequential steps of writing a program, saving it with the ".c"
extension, using a compiler to compile the code into object code, and then checking
whether the as a object code was successfully generated or not.

1.7.1 The Compiler

On a UNIX-based system, if your program file is named testprog.c, you can compile it
using a simple command in the terminal:

cc testprog.c

This command compiles the source code and, if no syntax errors are present, generates an
executable file by default named a.out. If you prefer a custom name for the output file, you
can use the -o option:

cc testprog.c -o testprog

This command compiles the source file and creates an executable named testprog instead of
the default a.out.

On the other hand, if you're using Turbo C in a DOS environment, the compiler options are
available directly through the graphical menu. Once you compile a program with correct

syntax, it generates an object file with a .obj extension, for example, testprog.qi If there
are syntax errors, they will be displayed on the screen, and the object file not be
created.

1.7.2 Semantic and Syntax Errors

Each programming language has its own defined set of grammatical rules, and any code
written in that language must adhere to those rules. For instance, consider the English
sentence: “Raghav, is playing, with a ball.” This sentence is grammatically incorrect due to
the improper placement of commas. Similarly, in the C programming language, the code
must follow a specific syntax.

When a C program is compiled, the compiler checks whether the syntax of the code is
valid. If the program contains any syntax errors, the compiler will highlight them, usually
displaying the corresponding line numbers to help the programmer identify and fix the
issues.

In addition to syntax errors, a C program may also contain semantic errors. These are
logical inconsistencies or meaningless statements that the compiler may interpret as
warnings rather than errors. Although such programs can still be compiled, it's advisable to
correct these warnings to avoid potential issues during execution.

For example, if you declare a variable but never use it, the compiler may display a warning
such as “code has no effect.” Even though it doesn’t stop compilation, unused variables
consume memory unnecessarily and can clutter the code, potentially leading to confusion or
inefficiencies in larger programs.

1.8

Link and Running C Program

Once the compilation process is complete, the next crucial step in the program execution
cycle is linking. During compilation, the code is translated into an object file with the .obj
extension. However, this file isn't yet ready to run because it may include function calls
from C's standard libraries—functions that the user hasn't defined but are referenced in the
code through header files.

C programming provides a rich set of standard libraries containing predefined functions for
various common operations. When your program references one of these functions, the
compiler notes its presence but doesn’t include its actual implementation in the object file.
The linker’s job is to connect these function references to their actual definitions found in
the standard library.

This linking process is essential for creating a complete, executable program. The linker
merges the user-written code with the compiled versions of the library functions, ensuring
that all external references are resolved properly.

In summary, the linker is a specialized tool that assembles all the required pieces—both
from the user’s code and the standard libraries—into a single executable file, typically with
a .exe extension. This final file is what users can run to see the output of their programs.

1.8.1 Running a Program Using Menu Options

When working with TurboC in a DOS environment, a graphical menu interface appears
once the TurboC executable is launched. This menu offers various options for compiling
and running C programs:

e Link: Performs the linking process after compilation.
e Make: Compiles the program and links it in a single step.
¢ Run: Executes the compiled program.

Each of these options leads to the creation of an executable file. To view the output of the
program, you need to switch to the user screen window.

1.8.2 Executing an Executable File

Once an .exe file is successfully generated, it can be run directly.

In the UNIX environment, a powerful utility named make helps compile complex
programs efficiently using a configuration file known as a make file. For simple programs
stored in a single file, running the following command is sufficient:

make test prog

This command compiles testprog.c, links it with the standard library (e.g., for using
functions like printf), and creates an executable file named testprog.

In the DOS environment, the .exe file created after successful compilation and linking can
be executed directly from the command prompt. For instance, if your program file is test.c,
and it compiles successfully to test.exe, you can run it by typing:

c>test

1.8.3 Linker Errors

Sometimes, a program compiles without syntax errors, but the executable file isn’t
created. This can be due to linker errors. me

a function declared in a header file but cannot locate its actual implementation in the
standard library.

Such mismatches—where the declaration exists but the object code is missing—result in

se errors occur when the compiler recognizes

linker errors. These issues must be resolved for the executable to be generated.

1.8.4 Logical and Runtime Errors

After successful compilation and linking, running the program may result in one of the
following situations:

1. The program runs correctly and displays the expected output.

2. The program runs, but the output is incorrect.

3. The program fails during execution and stops abruptly.

First Case: Indicates that the program is functioning properly.

Second Case: Points to a logical error—an error in the logic of the program that leads to
wrong results even though the code compiles and links without issue. These errors are
challenging to spot and fix. Debugging—the process of examining the program line by
line—is essential to identify and correct them. TurboC provides a tracer tool that assists in
debugging.

Example: Consider a program meant to calculate the average of three numbers:
/* Program to compute average of three numbers
* #include<stdio.h>
main()
{
int a,b,c,sum,avg;
a=10; b=5; ¢=20;
sum = at+b+c; avg = sum/ 3;
printf(“The average is %d\n”, avg);
}
OUTPUT:
The average is 8.

Although the correct average is 8.33, the result shows 8. This discrepancy is because avg is

an integer variable, and integer division truncates the decimal part. This is a logical error

because the program logic fails to handle decimal results.

e Third Case: When the program crashes during execution, it’s a runtime error. These
errors aren't detected during compilation or linking but occur when the program runs.
They often stop the execution and generate an error message on the screen.

Example: Write a program to divide a sum of two numbers by their difference

/* Program to divide a sum of two numbers by their difference*/

#include <stdio.h>
main()

{

int a,b; float c;

a=10; b=10;

c = (atb)/ (a-b);

printf(“The value of the result is %f\n”,c);

}

The program mentioned earlier will compile and link without any issues. When executed, it
will successfully run up to the first printf statement, and the corresponding message will be
displayed on the screen.

However, as soon as the program attempts to execute the next line that involves a division
by zero, it encounters a runtime error. Specifically, the system throws an error message
like "Divide by zero", and the program terminates immediately.

Errors like these, which are not detected during the compilation or linking phases but occur
during execution, are referred to as runtime errors.

1.9 Diagrammatic Illustration

The diagrammatic depiction of the program execution process is shown in the
image below.

Y

Start

Processing/
Manipulation

Input Data Initialization of Execution of Code
(If any) Variables / Algorithm
Processing/ e
Manioulati Loops (for, P Conditional
aniputation while, do while) |~ Statements
of Data

!

End

A flowchart representing the execution process of a, C program is generally composed
of a series of stages. Here's a simple illustration:

In end this flowchart demonstrates the general flow of a, C program. It starts with data
input (if necessary), followed by initializing variables, executing the main code or
algorithm, applying conditional statements or loops as needed, calling functions (if
used), processing data, displaying results, and finally, ending the program. This flow
can vary depending on the specific logic and structure of, the C program being
executed.

1.10

Conclusion

In this unit, you have gained an understanding of what a program and a programming
language are. You explored how programming languages are broadly categorized into
high-level and low-level types. You also learned how to define the C programming
language and identify its key features. The historical development of C was discussed,
including its unique position as a middle-level language that combines aspects of both
high-level and low-level languages.

The advantages of using a high-level language over a low-level one were highlighted.
You practiced converting algorithms and flowcharts into C programs and explored the
steps to write and save a C program in both UNIX and DOS environments.
Additionally, you learned how to compile and execute C programs on these platforms.
The unit also introduced you to different kinds of errors encountered during
programming—such as syntax, semantic, logical, linker, and runtime errors—and the
strategies to correct them. You are now capable of writing basic C programs using
arithmetic operations and the printf() function.

With this foundational knowledge in place, you're now prepared to explore more
advanced concepts in C programming in the upcoming units.

UNIT 2

BUILDING BLOCKS OF C

Function as building blocks

2.0
2.1
2.2
23
2.4
2.5
2.6
2.7

Introduction

Objectives

Character set of C

C Tokens

C Programming Keywords
Identifiers of the C

Conclusion

Unit based Questions /Answers

2.0 INTRODUCTION

8

This unit introduces you to a character set in C programming refers to t@ set of
characters, including letters, digits, symbols, and control characters, that can be used
to write programs. Initially, C used the ASCII (American Standard Code for
Information Interchange) character set, which includes 128 characters mapped to
specific numeric values. Extended character sets like UTF-8 and Unicode
accommodate a broader range of characters. Understanding character sets in C
programming is fundamental as it governs how characters are represented, stored, and
manipulated in programs.

In this unit introduces illustrate that C is a general-purpose programming language
extensively used in games and web development, machine learning, and data mining
applications. Generally, people think that high-level languages like Python, Java, and
JavaScript have surpassed C in popularity and use in recent years. Still, C
Languageapplicationsarefrequentlyutilizedallaroundtheglobe. Theunderstandingofprog
ramming is inadequate without the integration of the C language. Therefore, it tends to
dominate the field of programming.

What you configure out in programming is more important than what you know. With
the technological world constantly changing, problem-solving is the only talent that
allows you to manage advancements while also evolving. Begin with C, the language
from which most modern programming languages are developed, to hone your
fundamental programming skills and problem-solving talents. Despite being
introduced 50 years ago, C is extensively used in almost every sector and is
recognized as the finest language for beginners. This begs the question of what C is
and why it is still so widely used.

The C programming language is a procedural language. It was designed by Dennis
Ritchie as a system programming language for building operating systems. C
language' slow-level memory access, minimal keyword set, and clear style make it
ideal for system programming, such as operating system or compiler development. C
soon established itself as a strong and dependable programming language, with some
of the most well-known names remaining associated with it today. C is the
programming language used to develop Microsoft Windows, Apple's OS X, and
Symbian. Google's Chromium, MySQL, Oracle, and the bulk of Adobe's products all
employ the C programming language. It is also vital in our daily lives, since most
smart gadgets rely on it.

This unit will explain to you the functional as building blocks of the programming
language C.

2.1

OBJECTIVES

After completing this unit, you will be able to:

= Designed to provide complete knowledge of C language applications.

= Help to create programs and applications in C.

= Help to understand the basic to advanced concepts related to Objective — C
Programming languages.

= This unit includes a component that is intended to provide the learner with hands-
on experience with the ideas.

2.2

CHARACTER SET OF C

Understanding character sets in C programming is fundamental as it governs how
characters are represented, stored, and manipulated in programs. Here's an in-depth look
into character sets in C:

Character Set in C Programming:

1. Basics of Character Representation:

i) ASCII (American Standard Code for Information Interchange): ASCII is one of the
earliest and most widely used character encoding schemes. It represents characters using 7
bits (extended ASCII uses 8 bits) and includes control characters, uppercase and lowercase
letters, digits, and special symbols.

Character | ASCII Detail

! 33 Exclamation point or Exclamation mark
«“ 34 Inverted commas, quote marks or quotations
35 Hash, number, pound, octothorpe

$ 36 Doller sign or generic currency
% 37 Percent

& 38 Ampersand or and

¢ 39 Single quote or an apostrophe

(40 Open or left parenthesis

) 41 Right or close parenthesis

* 42 Asterisk, often known as a star

+ 43 Plus

R 44 Comma

- 45 Dash, hyphen or minus sign

. 46 Comma, dot or full stop

/ 47 Forward slash, whack slash
58 Colon
59 Semicolon

Al

60 Angle brackets for less than
61 Equal sign
62 Angle brackets for greater than

63 Inquiry mark
64 Asperand, at, or the at symbol

®| ~| v

91 Enable brackets
92 Backslash
93 Open bracket

>l—| —~|—

94 Circumflex or Caret
_ 95 Underscore
¢ 96 Open quotation, backquote

123 Open brace, curly bracket
125 Close brace, curly bracket
126 Tilde

1=~~~

ii). Unicode: Unicode is a standard for consistent encoding and representation of text across
different languages and platforms. It uses variable bit lengths (UTF-8, UTF-16, UTF-32) to
accommodate a vast array of characters from different languages and symbol sets.

2. Character Constants and Escape Sequences:

i) Character Constants: In C, characters can be represented using single quotes ("). For
example, 'A', 'a', 'l", or '$'. These constants are directly mapped to their ASCII or Unicode
values.

ii). Escape Sequences: C also supports escape sequences (e.g., \n', \t', "\x') to represent special
characters or non-printable characters within strings, enabling easy manipulation of
characters in code.

Character | ASCII Detail
<space> 32 Space
\t 9 Horizontal tab
\n 10 Newline
\v 11 Vertical tab
\f 12 Feed
\r 13 Carriage Return

3. ASCII and Extended ASCII:

i). ASCII Range: Standard ASCII includes characters in the range 0 to 127. Extended ASCII
(using 8 bits) expands this range to include additional characters, symbols, and special
characters.

ii). Platform-Specific Variations: Different platforms might have their own extended ASCII
variations, leading to potential compatibility issues when moving code between systems.

4. Unicode and Multibyte Characters:

i). Unicode Encoding Schemes: UTF-8, UTF-16, and UTF-32 are encoding schemes used to
represent Unicode characters. UTF-8 is widely used due to its compatibility with ASCII
and variable-length encoding.

ii). Multibyte Characters: Characters in Unicode may span multiple bytes, especially in UTF-
16 and UTF-32, leading to complexities in handling and manipulating multibyte characters
in C programs.

5. Locale and Character Set Functions:

i). Locale-Specific Functions: C provides functions like ‘setlocale()' and “wctomb() to handle

locale-specific character sets and encoding conversions.

ii). Character Classification Functions: Functions like “isalpha()’, ‘isdigit()’, and “islower()’
allow programmers to perform character-based operations based on character classes.

6. Wide Characters and Internationalization:

i). Wide Character Representation: C supports wide characters (‘wchar t') to handle
characters beyond the ASCII range, facilitating internationalization and localization efforts.

ii) L10n and 118n: Wide character support allows for localization (L10n) and
internationalization (I18n) of software, enabling the display of text in different languages
and character sets.

7. Challenges and Considerations:

i). Compatibility and Portability: Dealing with different character sets and encoding schemes
can pose challenges, especially when writing code that needs to be portable across various
systems and locales.

ii). Handling Multibyte Characters: Manipulating and processing multibyte characters
requires careful handling to avoid unintended behavior or errors in character manipulation
and string processing functions.

8. Best Practices and Recommendations:

i). Use Standard Functions: Utilize standard C library functions like “isalpha()’, "tolower()’,
and “toupper()" for character manipulation to ensure portability and compatibility.

ii). Avoid Hard-Coding Values: Rely on character constants and escape sequences instead of
hard-coding specific ASCII or Unicode values for improved readability and maintainability.

2.3 CTOKENS

Understanding tokens is fundamental in C programming as they form the building blocks of
C code. Tokens represent the smallest individual units of a C program, aiding in syntax
analysis and code interpretation. Here's an in-depth exploration of C tokens:

1. Definition and Types of Tokens:

i). Definition: Tokens in C programming are the smallest individual units constituting a C
program. They include keywords, identifiers, constants, strings, operators, and special
symbols.

ii). Types of Tokens: C tokens are categorized into keywords (e.g., ‘int’, 'if’, "while’),
identifiers (user-defined names), constants (numeric or character literals), strings
(sequences of characters enclosed in double quotes), operators (arithmetic, relational,
logical), and special symbols (punctuation characters).

2. Keywords and ldentifiers:

i). Keywords: ords are reserved words with predefined meanings in C. Examples
include “if’, “else’, “for’, ‘int’, and "void'. They cannot be used as identifiers.

ii). Identifiers: Identifiers are user-defined names used to represent variables, functions, or

other entities in a C program. They consist of letters, digits, and underscores, beginning
with a letter or underscore.

3. Constants:

i). Numeric Constants: Numeric constants represent fixed numerical values, such as
integers (1237, -45"), floating-point numbers ('3.14°, '0.75"), and scientific notation
("2.5¢3").

ii). Character Constants: Character constants are single characters enclosed in single
quotes ('A", '5", '%""), representing their ASCII or Unicode values.
4. Strings and Escape Sequences:

i). String Constants: Strings are sequences of characters enclosed in double quotes
(""Hello, World!""). They can contain alphanumeric characters, symbols, and escape
sequences ("\n', "\t', "\'"") for special characters.

ii). Escape Sequences: Escape sequences are special combinations of characters that
represent non-printable or special characters within strings.
5. Operators:

i). Arithmetic Operators: Operators such as '+, *-', "*', /", "% perform arithmetic
operations on numeric values.

Operator | Purpose
+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder after integer division
ii). Relational and Logical Operators: '==", '!=", '>", <" "&&", '||" perform comparisons

and logical operations.

Operator | Meaning

== equality
1= not equal to
less than
> ter than
<= ﬁthan or equal to
>= greater than or equal to

iii). Assignment and Increment/Decrement Operators: =", '+=', *-=", "++° *--" modify
variable values.

6. Special Symbols:

Punctuation Characters: Special symbols include punctuation characters like parentheses
(), braces *{}", brackets '[]', commas °,", semicolons ';, and colons ":" used to structure C
code and define blocks, expressions, and statements.

7. Tokenization and Lexical Analysis:

i). Lexical Analysis: The process of breaking down a C program into tokens is called
lexical analysis. Tokenization involves identifying tokens and categorizing them based on
their types.

ii). Tokenization Tools: Lexical analyzers and tokenizers are used to scan source code,
recognize tokens, and pass them to the parser for further syntactic analysis.

8. Role in Syntax Analysis:

Syntax Parsing: Tokens serve as the input for the parser during syntax analysis. The parser
uses tokens to analyze the structure and syntax of the program based on predefined
grammar rules.

24

C PROGRAMMING KEYWORDS

Understanding keywords is crucial in C programming as they @ reserved words with
predefined meanings and specific functionalities. Here's an in-depth exploration of
keywords in C:

1. Definition and Importance:

i). Definition: Keywords are reserved words in C with predefined meanings and
functionalities. They serve specific purposes within the language and cannot be used as
identifiers or variable names.

ii). Importance: Keywords play a crucial role in defining the syntax, structure, and
functionality of C programs. They facilitate control flow, data manipulation, and define the
basic elements of the language.

2. Types of Keywords:

i). Primary Keywords: Primary keywords are fundamental to C programming and include
words like ‘int', “char’, ‘float’, “if", “else’, "while’, “for", ‘switch', and ‘return’.
ii). Additional Keywords: C has a set of additional keywords introduced in various C

standards (e.g., C99, CI11), such as ' Bool’, *_Complex’, ' Imaginary’, and others,
providing additional functionalities or data types.

3. Commonly Used Keywords:

i). Data Type Keywords: "int’, ‘char’, ‘float’, ‘double’, ‘void" define data types used for
variable declaration and manipulation.

character constant consist (@a single character, single digit, or a single
character | special symbol enclosed within a pair of single inverted commas. i.e.
A%’

An integer constant refers to a sequence of digits. There are. Three types of |

integers: decimal, octal and hexadecimal. In octal notation, write (0)
integer immediately before the octal representation. For example: 0.76, -076.

In hexadecimal notation, the constant is preceded by 0x. Example: 0x3E, -
0x3E. No commas or blanks are allowed in integer constants.

A real constants consist of three parts : Sign (+ or 0) , Number portion

real (base), exponent portion i.e. +.72 , +72 , +7.6E+2 , 24.3e-5
A string constant is a sequence of one or more characters enclosed within a
string pair of double quotes (" "). If a single character is enclosed within a pair of
double quotes, it will also be interpreted as a string constant.
Examples: "Welcome To Microtek \ n”, “a”, “123”
logical A logical constant can have either a true value or a false value. In 'C all the

non zero values are treated as true value while 0 is treated as false.

ii). Control Flow Keywords: 'if", ‘else’, ‘switch’, ‘case’, ‘default’, ‘while’, ‘for’, ‘do’,
“break’, “continue’ control the flow of execution within the program.

iii). Function Keywords: ‘return’ specifies the value returned by a function to the calling
code.

iv). Storage Class Keywords: ‘auto’, ‘extern’, 'static’, 'register’ determine the storage
duration and scope of variables.

4. Reserved Status and Restrictions:

i). Reserved Status: Keywords are reserved by the language and cannot be used as
identifiers, function names, or variable names within the code.

ii). Case Sensitivity: Keywords are case-sensitive in C. For instance, "int’ is a keyword, but
‘Int’, "'INT", or "iNt" are not recognized as keywords and can be used as identifiers.

5. Evolving Keyword Set:

i). Standardization and Updates: C standards (e.g., C89, C99, C11) introduce new
keywords or modify the behavior of existing keywords to enhance the language's
capabilities.

ii). Backward Compatibility: C standards strive to maintain backward compatibility,
ensuring that code written in older versions of C remains valid in newer versions.

6. Vendor-Specific Extensions:

Vendor-Specific Keywords: Some C compilers introduce vendor-specific keywords or
extensions to enhance functionality or optimize code for specific platforms. These
keywords might not be standard across different compilers.

7. Best Practices and Usage:

i). Avoiding Keyword Conflicts: Developers should avoid using keywords as variable
names or identifiers to prevent conflicts and maintain code readability.

ii). Consistent Use: Adhering to consistent naming conventions and avoiding ambiguous
identifiers or names that resemble keywords ensures code clarity and avoids potential
errors.

8. Role in Program Structure:
Defining Structure: Keywords play a vital role in defining the structure of C programs,

delineating functions, control flow, variable types, and other essential elements of the
language.

Absolutely, let's delve deeper into the significance and categorization of keywords in C
programming:

Keywords in C Programming: Core Building Blocks

auto break case char continue double float int
short static typedef const default else for long
signed struct union void do enum goto register

sizeof | switch unsigned | volatile while extem if return

1. Significance of Keywords:

i). Precise Functionality: Keywords serve specific purposes and have well-defined
functionalities within the language. They determine how variables are declared, how
control structures function, and how data types are handled.

ii). Syntax Definition: Keywords form the foundation of C's syntax, enabling the creation
of robust and structured programs by providing essential components for defining
operations and control flow.

2. Categorization of Keywords:

i). Data Type Keywords: Keywords like ‘int’, "char’, ‘float’, *double’, and ‘void" specify
the type of data a variable can hold, defining its size, storage, and operations.

ii). Control Flow Keywords: These keywords govern the execution flow within a
program, including conditional statements (‘if’, "else”), looping (‘while’, ‘for’, do"), and
branching (‘switch’, ‘case’).

iii). Storage Class Keywords: Keywords such as ‘auto’, ‘static’, ‘extern’, and ‘register’
define the storage duration, scope, and visibility of variables.

iv). Function Keywords: ‘return’ specifies the value returned by a function to the calling
code.
3. Evolving Nature of Keywords:

i). Standard Evolution: Newer C standards introduce additional keywords or modify the
behavior of existing keywords to improve language capabilities, enhance expressiveness, or
introduce new functionalities.

ii). C11 Additions: C11 introduced keywords like * Bool" for boolean types, *_Noreturn'
to indicate that a function does not return, and ' Thread local® for thread-local storage
duration.

4. Special Uses of Keywords:

i). Sizeof Operator: While not a keyword, ‘sizeof is a special operator used to determine
the size of a data type or variable in bytes.

ii). Typedef" Keyword: "typedef® is used to create new data type names, improving code
readability and abstraction.
5. Avoiding Keyword Misuse:

i). Identifier Naming Conventions: Following consistent naming conventions helps
prevent accidentally using keywords as identifiers or variable names, reducing potential
conflicts and errors.

ii). Compiler Warnings: Modern compilers often provide warnings when keywords are
used inappropriately, alerting developers to potential issues.
6. Platform and Compiler Variations:

i). Platform-Dependent Keywords: Some keywords might behave differently or have
platform-specific implementations based on the C compiler or the target platform.

ii). Standard Compliance: Different compilers may implement different versions of the C
standard, impacting the availability or behavior of certain keywords.

7. Extensibility and Custom Keywords:

Extensibility via Macros: In certain cases, developers use preprocessor macros or naming
conventions to emulate keyword-like behavior, creating custom functionalities or defining
macros to aid in programming tasks.

8. Interplay with Syntax and Program Logic:

i). Syntax Integrity: Keywords provide a framework for ensuring syntax integrity, guiding
the compiler in parsing and understanding the structure and flow of C programs.

ii). Logical Flow Control: The strategic use of control flow keywords helps in designing
logical program structures, enabling complex decision-making and looping functionalities.

2.5

IDENTIFIERS OF THE C

C identifiers represent the name in the C program, for example, variables, functions, arrays,
structures, unions, labels, etc. An identifier can be composed of letters such as uppercase,
lowercase letters, underscore, digits, but the starting letter should be either an alphabet or an
underscore. If the identifier is not used in the external linkage, then it is called as an internal
identifier. If the identifier is used in the external linkage, then it is called as an external
identifier.

We can say that an identifier is a collection of alphanumeric characters that begins either
with an alphabetical character or an underscore, which are used to represent various
programming elements such as variables, functions, arrays, structures, unions, labels, etc.
There are 52 alphabetical characters (uppercase and lowercase), underscore character, and
ten numerical digits (0-9) that represent the identifiers. There is a total of 63 alphanumerical
characters that represent the identifiers.

Rules for constructing C identifiers

* The first character of an identifier should be either an alphabet or an underscore, and
then it can be followed by any of the character, digit, or underscore.

* It should not begin with any numerical digit.

= In identifiers, both uppercase and lowercase letters are distinct. Therefore, we can say
that identifiers are case sensitive.

= Commas or blank spaces cannot be specified within an identifier.
= Keywords cannot be represented as an identifier.
* The length of the identifiers should not be more than 31 characters.

= [dentifiers should be written in such a way that it is meaningful, short, and easy to read.
Example of Identifiers:
Total, sum, average, m_, sum_1, etc.

Example of Invalid Identifiers:

2sum (Starts with a numerical digit)

Types of identifiers
= Internal identifier
= External identifier

Internal Identifier

If the identifier is not used in the external linkage, then it is known as an internal identifier. The
internal identifiers can be local variables.

External Identifier
If the identifier is used in the external linkage, then it is known as an external identifier. The external
identifiers can be function names, global variables.

Differences between Keyword and Identifier

Keyword Identifier

Keyword is a pre-defined word. The identifier is a user-defined word.

It must be written in a lowercase letter.

It can be written in both lowercase and
uppercase letter.

Its meaning is pre-defined in the c compiler. | Its meaning is not defined in the ¢ compiler.

It is a combination of alphabetical It is a combination of alphanumeric
characters. characters.

It does not contain the underscore character. | It can contain the underscore character.

2.6

CONCLUSION

Character sets in C programming are crucial for representing, storing, and processing
characters within programs. Understanding character encoding schemes, escape sequences,
handling wide characters, and addressing localization challenges are essential for writing
robust and portable C programs that effectively handle diverse character sets and language
requirements. ASCII, the fundamental character encoding standard, provided a base for
representing text characters in early computing. Unicode, a comprehensive standard, allows
for the representation of a wide range of characters from different languages and scripts.
Multibyte characters, particularly in UTF-8, enable the representation of characters beyond
the ASCII range, facilitating multilingual support and text processing in modern computing
environments. Locale functions allow C programs to adapt to users' language and cultural
preferences, affecting formatting and text handling. Character set functions enable proper
manipulation and classification of characters based on locale-specific rules, which is crucial
for multilingual text processing. Internationalization is the foundational step in making
software adaptable to diverse languages and cultures, enabling global reach and usability.

UNIT3 APPLICATION AND INFORMATION

Structure

3.0 Introduction
3.1 Objectives
3.2 Applications of C
3.2.1 Operating Systems
3.2.2 Graphical User Interface
3.2.3 Embedded Systems
324 Google
3.2.5 Design of a Compiler
3.2.6 Mozilla Firefox and Thunderbird
3.27 Gamming and Animations
32.8 MySQL
3.3 New Programming Language Platforms
3.4 Translators of high-level languages into machine language
3.5 C Programming Projects
3.5.1 Basic C Projects
3.5.2 Intermediate C Projects with Source Code
3.5.3 Advanced C Projects with Source Code
3.6 Conclusion
3.7 Unit based Questions /Answers

3.0

INTRODUCTION

In this unit introduces illustrate that C is a general-purpose programming language
extensively used in games and web development, machine learning, and data mining
applications. Generally, people think that high-level languages like Python, Java, and
JavaScript have surpassed C in popularity and use in recent years. Still, C Language
applications are frequently utilized all around the globe. The understanding of
programming is inadequate without the integration of the C language. Therefore, it tends
to dominate the field of programming.

What you can figure out in programming is more important than what you know. With
the technological world constantly changing, problem-solving is the only talent that
allows you to manage advancements while also evolving. Begin with C, the language
from which most modern programming languages are developed, to hone your
fundamental programming skills and problem-solving talents. Despite being introduced
50 years ago, C is extensively used in almost every sector and is recognized as the finest
language for beginners. This begs the question of what C is and why it is still so widely
used.

The C programming language is a procedural language. It was designed by Dennis
Ritchie as a system programming language for building operating systems. C language's
low-level memory access, minimal keyword set, and clear style make it ideal for system
programming, such as operating system or compiler development. C soon established
itself as a strong and dependable programming language, with some of the most well-
known names remaining associated with it today. C is the programming language used to
develop Microsoft Windows, Apple's OS X, and Symbian. Google's Chromium, MySQL,
Oracle, and the bulk of Adobe's products all employ the C programming language. It is
also vital in our daily lives, since most smart gadgets rely on it.

This unit will explain to you the applications and information of language C.

3.1 OBJECTIVES

After completing this unit, you will be able to:

= Designed to provide complete knowledge of C language applications.

= Help to create programs and applications in C.

= Help to understand the basic to advanced concepts related to Objective-C Programming
languages.

= This unit includes a component that is intended to provide the learner with hands-on
experience with the ideas.

3.2 APPLICATIONS OF C LANGUAGE

The development of system software and desktop applications is mostly accomplished via the use of
C programming. The following are some examples of C programming applications.

3.2.1 Operating Systems

A high-level programming language built in the C programming language was used to construct the
first operating system, which was UNIX. Later on, the C programming language was used to write
Microsoft Windows and several Android apps.

the influence of C in operating systems (OS) is immense. Here's an exploration of how the C
programming language is integral to the development and functionality of operating systems:

The Role of C in Operating Systems:

C programming language holds a pivotal role in the creation, maintenance, and evolution of
operating systems across diverse computing environments. Its characteristics of efficiency,
portability, and close-to-hardware capabilities make it the language of choice for OS development.
The following are key areas where C is extensively used within operating systems:

1. Kernel Development:

a) Low-Level System Interaction: C's ability to interact directly with hardware and manage
system resources efficiently makes it the language of choice for kernel development. It
allows developers to write code that deals with memory management, process scheduling,
interrupt handling, and device drivers.

b) Portability: C's portability enables developers to write OS kernels that can be easily
adapted to different hardware architectures.

2. Device Drivers:

Hardware Interaction: C is crucial in writing device drivers, which are essential for
enabling communication between hardware devices and the operating system. Its ability to
access and control hardware directly is vital for efficient device operations.

3. System Utilities:

a) Command-Line Tools: Many system utilities, such as command-line interfaces and
system administration tools, are written in C due to its efficiency and ability to manage
system resources effectively.

b) File Systems: C is commonly used in developing file system utilities and functionalities
like file I/O operations, directory management, and file permissions.

N

a).

b).

N

. Portability and Efficiency:

Platform Independence: C's portability allows operating systems written in C to be
compiled and run on different hardware platforms with minimal modifications, making it a
preferred choice for cross-platform development.

Efficient Resource Utilization: The language's efficiency in managing memory and
system resources contributes significantly to the overall performance of the operating
system.

System Libraries and APIs:

Standard C Library: Operating systems often provide a standard C library that offers a set
of functions and utilities for application developers. These libraries are typically written in
C and provide essential functionalities like memory allocation, input/output operations, and
string manipulation.

6. OS Maintenance and Evolution:

|

3.2.2

a).

b).

c).

Ease of Maintenance: C's structured and modular nature simplifies the maintenance and
enhancement of existing operating systems. New features and improvements can be
efficiently added to the codebase without compromising the system's stability.

. Operating System Research and Development:

Experimentation and Prototyping: C is commonly used in academia and research
institutions for experimenting with new OS concepts, prototyping new features, and
understanding the intricacies of OS internals due to its clarity and simplicity.

GUI (Graphical User Interface)

Since the beginning of time, Adobe Photoshop has been one of the most widely used
picture editors. It was created entirely with the aid of the C programming language.
Furthermore, C was used to develop Adobe Illustrator and Adobe Premiere.

The C programming language, known for its efficiency and versatility, also plays a crucial
role in the development of Graphical User Interfaces (GUIs). Here's an exploration of how
C is applied in this domain:

Applications of C in Graphical User Interfaces:

Graphical User Interfaces (GUIs) have become an integral part of modern software
applications, providing users with visually interactive and user-friendly experiences. While
languages like Java and Python are popular for GUI development, C has its own
applications, particularly in scenarios where performance and system-level interactions are
critical.

Window Management:

Windowing Systems: C is often used to develop window management systems that handle
the creation, manipulation, and display of windows on the screen. These systems are
fundamental components of GUIs, allowing users to interact with multiple applications
simultaneously.

Widget Toolkits:

Creation of GUI Elements: C is employed in developing widget toolkits, which are
libraries of graphical components (widgets) such as buttons, textboxes, and sliders. These
toolkits provide the building blocks for constructing GUIs and are often written in C for
efficiency and performance.

Custom Controls and Graphics:

d).

P

e).

g).

h).

i).

3.23

a).

Efficient Rendering: C's low-level capabilities make it suitable for efficient rendering of
graphics and custom controls. It allows developers to have precise control over the
graphical elements and optimize performance for resource-intensive applications like video
editing software or games.

Cross-Platform GUI Development:

Portability: C, with its portability, enables the creation of cross-platform GUI applications.
The same C codebase can be compiled for different operating systems, reducing
development efforts and ensuring a consistent user experience across platforms.

Embedded Systems GUIs:

Resource Constraints:

In embedded systems where resources are limited, C is often preferred for GUI
development due to its efficient use of system resources. Customized graphical interfaces
on devices like medical equipment, industrial control systems, and IoT devices can be
efficiently implemented using C.

. Application Interfaces:

Integration with System APIs:

C is used to create GUI applications that seamlessly integrate with system-level APIs. This
is crucial for applications that require direct interaction with the underlying operating
system for tasks such as file management, process control, and system configuration.

Performance-Critical Applications:

Graphics-Intensive Software:

In applications demanding high performance, such as graphic design software or 3D
modeling tools, C is chosen for its ability to optimize code and efficiently handle complex
calculations and graphics rendering.

Game Development:

Game User Interfaces: C is frequently used in the development of game user interfaces,
where responsiveness and efficiency are critical. Game menus, heads-up displays (HUDs),
and interactive elements are often implemented in C to ensure a smooth gaming experience.

Integration with Hardware:

Device Interaction: C's capability to interact closely with hardware is beneficial for GUI
applications that involve communication with peripherals and external devices. This is
particularly relevant in industrial control systems and scientific instruments.

Embedded Systems

Because it is directly related to the machine hardware, C programming is often regarded as
the best choice for scripting programs and drivers for embedded systems, among other
things.

Embedded systems, found in a wide array of devices from consumer electronics to
industrial machinery, rely heavily on the C programming language due to its efficiency,
close-to-hardware capabilities, and portability. Here's an exploration of how C is applied in
embedded systems:

Applications of C in Embedded Systems:

Embedded systems, characterized by their specialized functionalities and limited resources,
often rely on the efficiency and control offered by the C programming language. These
systems, deeply integrated into various devices and machinery, benefit from C in several
key areas:

i). Device Control and Drivers:

Hardware Interaction: C's ability to directly access and control hardware resources makes it
ideal for writing device drivers and interfacing with sensors, actuators, and other
peripherals commonly found in embedded systems.

ii). Real-time Control: Embedded systems often require real-time control of hardware
components, and C's ability to manage timing and low-level operations efficiently is crucial
in such scenarios.

b). System Boot-up and Initialization:

Bootstrap Code: C is used in writing boot code that initializes the embedded system's
hardware components during the startup process. This includes configuring memory,
setting up interrupts, and initializing essential system components.

¢). Firmware Development:

i). Efficient Code Execution: C's efficiency in utilizing system resources allows
developers to create firmware that operates within the limited memory and processing
power available in embedded systems.

ii). Portability: C's portability enables firmware written in C to be easily adapted to
different hardware architectures, allowing for broader use across various devices.

d). Real-time and Control Systems:

i). Real-time Operations: C is employed in developing control systems that require precise
timing and responsiveness, such as in automotive systems (engine control units), robotics,
and industrial automation.

ii).Predictable Performance: The deterministic behavior of C allows developers to predict
and control system responses, critical in safety-critical applications.

e). Internet of Things (IoT) Devices:

i). Resource Optimization: C's ability to manage resources efficiently is valuable in IoT
devices where power consumption and memory utilization need to be optimized for
extended battery life and cost-effectiveness.

ii). Sensor Data Processing: C is used to process sensor data and control communication
protocols in IoT devices, enabling them to interact with other devices and the internet.

f). Communication Protocols:
i). Low-level Networking: C is utilized in implementing communication protocols such as
Bluetooth, Wi-Fi, and Ethernet, allowing embedded systems to connect and communicate
with other devices or networks.
ii).Peripheral Communication: C facilitates interaction with various communication
interfaces like SPI, 12C, and UART, enabling data exchange with external devices or
modules.

g). Industrial Automation and Control Systems:

i). Reliability and Stability: C's ability to produce code that is stable and reliable is critical
in industrial automation systems where precision and consistent performance are
paramount.

ii).Customization: C allows for the development of customized control systems tailored to
specific industrial applications, providing flexibility and adaptability.

h). Automotive and Aerospace Systems:

Safety-Critical Applications: C is used in safety-critical systems in automotive and
aerospace industries due to its ability to produce predictable and reliable code, essential in
ensuring the safety and functionality of these systems.

3.24

a)

b)

c).

d).

e).

3.25

Google

You can also use the C/C++ programming language to create the Google Chrome web
browser and the Google File System. Furthermore, the Google Open Source community
includes many projects that are maintained with the aid of the C/C++ programming
language.

When it comes to Google, while the primary languages used in their vast infrastructure
might not be directly C due to the complexity and scale, C has had a significant influence
on the technologies and projects developed by Google. Here's a look at some areas where C
has played a role in Google's ecosystem:

Applications of C in Google's Technology Landscape:

Google, renowned for its innovative technologies and services, relies on a diverse array of
programming languages and tools to power its platforms and services. While languages like
Java, Python, and Go are prevalent within Google's infrastructure, C has influenced various
aspects:

Systems Programming and Performance-Critical Components:

i). Low-Level Infrastructure: While not the primary language in Google's services, C is
utilized in critical systems programming, particularly in performance-critical components
of infrastructure, such as parts of the Google File System (GFS) or certain elements of the
networking stack.

ii). Optimized Code: In cases where efficiency and performance are paramount, C's ability
to produce optimized code is invaluable, influencing specific parts of Google's core
infrastructure.

Open Source Projects:

Contributions to Open Source: Google has contributed to various open source projects
written in C. For instance, they've supported and contributed to projects like the Linux
kernel, enhancing its functionality and performance, which indirectly benefits Google's
infrastructure.

Embedded and Hardware Projects:

IoT and Hardware Development: While not always directly associated with Google's
primary services, C has applications in Google's endeavors related to embedded systems,
IoT, and hardware development. Projects like Android Things or hardware-specific
optimizations might involve C programming for firmware and low-level hardware
interactions.

Experimentation and Prototyping:

Research and Development: C might be utilized in Google's research and development
efforts, especially in experimental projects exploring new technologies, algorithms, or
prototypes where performance at a lower level is essential.

Legacy Systems and Optimization:

i). Legacy Codebases:* In certain legacy systems that have been part of Google's
infrastructure for a long time, there might still be components written in C, especially
where rewriting or migrating the code might not be immediately feasible or beneficial.
ii).Performance Optimization: C might be employed in optimizing certain critical
algorithms or functionalities within Google's services to ensure they operate at their peak
performance levels.

Design of a Compiler

You can widely use the C programming language to develop compilers, one of its most
popular applications. Many other languages’ compilers were created with the connection

between C and low-level languages in mind, making it easier for the machine to grasp what
was being written. Many prominent compilers, such as Clang C, Bloodshed Dev-C, Apple
C, and MINGW, were developed with the C programming language.

The development of a compiler involves intricate processes that necessitate efficient
handling of syntax, semantics, and code generation. C, known for its system-level access
and efficiency, is frequently used in the creation of compilers. Here's an exploration of how
C is applied in compiler design:

Applications of C in Compiler Design:

Compilers, vital in translating high-level programming languages into machine-readable
code, require a meticulous design process. C, with its system-level capabilities and
efficiency, is often employed in various aspects of compiler development:

1. Lexical Analysis (Lexers):

Tokenization: C's capability to handle strings and characters efficiently is crucial in
building lexers. Lexical analyzers written in C break down source code into tokens,
identifying keywords, identifiers, literals, and symbols.

2. Syntax Analysis (Parsers):

Parsing Algorithms: C is utilized in implementing parsers that enforce the grammatical
structure of programming languages. Tools like Bison or Yacc generate C code for parsers,
converting context-free grammars into code structures for syntactic analysis.

3. Semantic Analysis:

i). Type Checking: C's ability to manipulate memory and data structures is beneficial in
implementing type systems and performing type checking during the semantic analysis
phase of compilation.

ii). Error Detection: C aids in implementing checks for semantic errors, ensuring the
correctness of the code being compiled.

4. Intermediate Code Generation:

Code Representation: C is used to generate intermediate code representations of source
programs. This involves constructing abstract syntax trees (ASTs) or intermediate code
representations that act as a bridge between the source and target code.

5. Optimization Phase:

Efficient Algorithms: C's efficiency in managing memory and processing power is crucial
in implementing optimization algorithms. Compilers written in C perform various
optimizations like dead code elimination, loop optimizations, and constant folding to
enhance program efficiency.

6. Code Generation:

Target Machine Independence: C allows for the generation of target-independent code.
Compiler backends written in C produce machine code or assembly language specific to the
target architecture while abstracting the complexities of hardware interactions.

7. Integration with System Libraries:

Utilization of Standard C Library: Compiler implementations often rely on the standard
C library to perform various tasks, such as memory allocation, input/output operations, and
string manipulation.

8. Error Handling and Reporting:

Diagnostic Messages: C is used to implement error handling mechanisms, generating
informative diagnostic messages during compilation, aiding developers in debugging their
code.

3.2.6

9. Portability and Maintenance:

Modular Design: C's structured nature allows for modular and maintainable compiler
codebases. This facilitates easier enhancements, bug fixes, and porting the compiler to
different platforms.

Mozilla Firefox and Thunderbird

Because Mozilla Firefox and Thunderbird were free and open-source email client projects,
they were included here. As a result, they were developed in the C/C++ programming
language.

Mozilla Firefox and Thunderbird, as flagship products of the Mozilla Foundation, heavily
rely on various programming languages, including C, for their development. While these
applications predominantly use a mix of languages for different components, C plays a
significant role in their core functionalities and system-level interactions:

Applications of C in Mozilla Firefox and Thunderbird:

Mozilla Firefox, a widely used web browser, and Thunderbird, an email client, are
developed by the Mozilla Foundation. While these applications use multiple languages, C
is instrumental in several key areas:

1. Core Engine Development:

Firefox's Gecko Engine: C is used extensively in the development of Gecko, the rendering
engine that powers Firefox. Gecko handles the display and interpretation of web content,
requiring efficient handling of HTML, CSS, and JavaScript, which C helps facilitate at a
low-level.

2. Performance-Critical Components:

i). Optimization: C is crucial in optimizing critical components of Firefox and
Thunderbird for performance, ensuring smooth and responsive user experiences while
rendering web pages or managing email data.

ii). System Resource Management: C's ability to manage system resources efficiently is
valuable in handling memory and processor usage within these applications.

3. Platform-Specific Implementations:

Cross-Platform Compatibility: While Firefox and Thunderbird are designed to work
across different operating systems, C aids in creating platform-specific implementations for
Windows, macOS, and Linux, allowing for consistent functionality across diverse
environments.

4. Browser and Email Client Interactions:

System Integration: C is used in interfacing with system libraries and APIs, allowing
Firefox and Thunderbird to interact with the underlying operating system for functionalities
like file I/O, networking, and user interface interactions.

5. Extension and Add-on Development:

SDKs and APIs: Mozilla provides SDKs and APIs for developers to create extensions and
add-ons for Firefox and Thunderbird. C may be involved in the core components of these
SDKs, enabling developers to extend the functionalities of these applications.

6. Media Handling and Processing:

Audio/Video Support: C plays a role in handling audio and video codecs, ensuring
compatibility and efficient playback of multimedia content within these applications.

7. Security and Memory Management:

3.2.7

Memory Security: C's low-level capabilities are essential in managing memory securely,
contributing to the overall security and stability of Firefox and Thunderbird against
vulnerabilities like buffer overflows.

8. Browser Engine Architecture:

Gecko Components: Gecko, being a core component of Firefox, relies on C for its
architecture, allowing efficient handling of web content and providing the backbone for
browser functionalities.

Gaming and Animation

Because the C programming language is based on a compiler and is thus far quicker than
Python or Java, it has gained popularity in the game industry. Some of the most basic
games, such as the Dino game, Tic-Tac-Toe, and the Snake game, are written in C
programming languages. In addition, doom3, a first-person shooter horror game developed
by id Software in 2004 for Microsoft Windows and written in C, is one of the most
powerful graphics games ever created.

C programming language holds a significant position in the realm of gaming and
animations due to its performance, system-level access, and ability to interact closely with
hardware. Here's an exploration of how C is applied in gaming and animation industries:

Applications of C in Gaming and Animations:

C serves as a cornerstone in gaming and animations, facilitating the creation of immersive
experiences through its efficiency, direct hardware interaction, and suitability for
performance-critical tasks:

1. Game Engines and Development:

i). Core Game Logic: C is extensively used in game engines to handle the core game logic,
ensuring smooth gameplay by efficiently managing game states, physics, and Al
computations.

ii). Graphics Programming: C, coupled with graphics libraries like OpenGL and DirectX,
powers rendering engines, enabling the creation of visually stunning graphics and effects in
games and animations.

2. Real-Time Rendering and Performance:

i). Graphics Optimization: C's low-level capabilities are crucial in optimizing graphics
rendering pipelines, ensuring real-time performance in displaying complex scenes, textures,
and animations.

ii). Efficient Memory Management: C's control over memory allocation and management
helps in optimizing resource usage, which is crucial in graphics-intensive applications.

3. Animation and Simulation:

Animation Frameworks: C is employed in animation frameworks and tools for creating
lifelike character animations and scene movements, providing the backbone for animation
software.

Physics Simulation: C aids in implementing physics engines used for simulating realistic
interactions between objects, characters, and environments in games and animations.

4. Cross-Platform Development:

Platform Independence: C's portability allows game developers to write code that can be
compiled across multiple platforms, facilitating cross-platform game releases for various
operating systems and devices.

3.2.8

5. Game Al and Scripting:

i). AI Implementation: C is used to develop artificial intelligence algorithms for game
characters, providing them with behaviors, decision-making abilities, and interactive
responses.

ii). Scripting Engines: In game development, C is utilized to create scripting engines that
allow game designers to implement dynamic behaviors and game mechanics without
recompiling the entire game codebase.

6. Embedded Systems and Consoles:

i). Console Game Development: C is prevalent in developing games for gaming consoles
due to its performance optimization and ability to harness the hardware capabilities of
consoles like PlayStation, Xbox, and Nintendo.

ii). IoT and Embedded Gaming: C's efficiency is leveraged in developing games for
embedded systems and IoT devices, catering to gaming experiences on a diverse range of
devices with limited resources.

7. Tools and Middleware Development:

Game Development Tools: C is used to create development tools, middleware, and APIs
that assist game developers in optimizing performance, debugging, and creating game
assets.

8. Custom Hardware Interactions:

Specialized Peripherals: In applications involving specialized gaming peripherals or
hardware-specific interactions, C enables direct communication with hardware, allowing
developers to create tailored experiences.

MySQL
MySQL is another open-source project that is used in relational database management
systems (RDBMS). It was developed in the C/C++ programming language.

MySQL, an open-source relational database management system, extensively uses C and
C++ in its development for various critical components. Here's an exploration of how C is
applied in MySQL:

Applications of C in MySQL:

MySQL, a popular RDBMS known for its reliability, performance, and scalability,
leverages the C programming language in several key areas:

1. Core Database Engine:

C Codebase: The core of MySQL's database engine is primarily written in C. This includes
fundamental functionalities like query parsing, query optimization, data manipulation,
indexing, and transaction handling.

2. Performance Optimization:

i). Efficient Algorithms: C allows developers to implement high-performance algorithms
for data storage, retrieval, and processing, ensuring the database engine operates swiftly
even with large datasets.

ii). Memory Management: C's control over memory allocation and management is crucial
in optimizing MySQL's memory usage, leading to better performance and reduced
overhead.

3. System Interaction and Portability:

System-Level Interactions: C enables MySQL to interact closely with the underlying
operating system, facilitating efficient I/O operations, process management, and system
calls.

Platform Independence: While MySQL supports various operating systems, C allows for
the development of a codebase that can be compiled and run across different platforms with
minimal modifications.

4. Custom Extensions and Plugins:

Plugin Architecture: MySQL's plugin architecture, enabling the development of custom
extensions, storage engines, and functionalities, is often implemented in C to ensure
compatibility and performance.

5. Database Drivers and Connectors:

Native Drivers: C is used in developing native drivers and connectors (e.g., C API) that
enable various programming languages and applications to interact seamlessly with the
MySQL database.

6. Memory Management and Optimization:

Resource Utilization: C's efficiency in managing resources aids in optimizing memory
allocation and utilization within the database system, contributing to improved performance
and stability.

7. Query Optimization and Execution:

Query Processing: C's capabilities are harnessed in optimizing and executing SQL queries
efficiently, ensuring that complex queries are processed swiftly and accurately.

8. Security and Stability:

Codebase Robustness: C's structured nature assists in creating a robust and secure codebase
for MySQL, enhancing the database's stability and resistance to vulnerabilities.

9. Open-Source Contributions:

Community Development: MySQL being an open-source project welcomes contributions
from developers worldwide, many of whom contribute in C to enhance and extend its
functionalities.

3.3

NEW PROGRAMMING LANGUAGE PLATFORMS

It is not only C that gave rise to C++. This programming language incorporates all the
features of C while also incorporating the concept of object-oriented programming. Still, it
has also given rise to many other programming languages widely used in today’s world,
such as MATLAB and Mathematica. It makes it possible for applications to run more
quickly on a computer.

New programming language platforms are constantly emerging, aiming to address modern
challenges, enhance developer productivity, and cater to evolving computing paradigms.
Here's a look at some of the trends and new platforms in the programming language
landscape:

1. Rust:

i). Safety and Performance: Rust has gained attention for its emphasis on memory safety
without sacrificing performance. It offers a strong type system and ownership model,
enabling safer concurrent programming.

ii). Systems Programming: Rust is favored for system-level programming, replacing

languages like C/C++ in certain scenarios due to its safety guarantees and efficiency.

2. Swift:

i). I0OS Development: Swift, developed by Apple, has become the primary language for
10S and macOS app development. Known for its readability and modern syntax, it aims to
make programming for Apple platforms more accessible.

ii). Server-Side Development: Swift is also making headway in server-side development,
offering a concise and powerful language for building web applications.

3. Kotlin:

i). Android Development: Kotlin has gained popularity as a modern language for Android
app development. Its interoperability with Java and concise syntax has led to increased
adoption within the Android development community.

ii). Multiplatform Development: Kotlin's multiplatform capabilities enable developers to
write shared code across multiple platforms, including JVM, Android, iOS, and web.

4. WebAssembly (Wasm):

i). Universal Binary Format: WebAssembly is not a programming language but a binary
instruction format for a stack-based virtual machine. It enables running code written in
multiple languages on web browsers at near-native speeds.

ii). Cross-Platform Execution: Wasm allows code written in languages like C/C++, Rust,
and others to be compiled and executed across various platforms beyond the web, including
edge computing and IoT devices.

5. Julia:

i). Scientific Computing: Julia has gained traction in scientific and numerical computing
due to its high performance, easy syntax, and powerful features for mathematical modeling,
data analysis, and machine learning.

ii).Parallelism and Concurrency: Julia's design includes built-in support for parallelism
and concurrent programming, making it suitable for computationally intensive tasks.

6. Golang (Go):

i). Concurrent Programming: Go has gained popularity for its simplicity and built-in
support for concurrent programming through goroutines and channels. It's well-suited for
building scalable and concurrent systems.

ii).Cloud-Native Development: Go is commonly used in cloud-native development for its
efficiency in creating microservices and distributed systems.

7. Elixir:

i). Functional Programming: Elixir, built on the Erlang VM, combines the functional
programming paradigm with a focus on fault-tolerance and concurrency. It's used in
building highly scalable and fault-tolerant systems.

ii). Real-Time Applications: Elixir is favored for real-time applications, such as messaging
platforms and IoT systems, where high concurrency and reliability are essential.

8. Haskell and Functional Languages:

Functional Programming Paradigm: Haskell and other functional languages continue to
be influential due to their emphasis on immutability, higher-order functions, and type
safety. They're used in academia, research, and niche domains requiring strong guarantees.

9. Blockchain and Smart Contracts:

Smart Contract Development: Solidity, for Ethereum, and other domain-specific

languages (DSLs) are used in writing smart contracts for blockchain platforms, facilitating
decentralized applications (dApps) and decentralized finance (DeF1i).

10. Low-Code/No-Code Platforms:

Simplifying Development: Low-code/no-code platforms like Bubble, OutSystems, and
others aim to democratize software development, allowing users with limited coding
experience to create applications using visual interfaces and pre-built components.

3.4

TRANSLATORS OF HIGH-LEVEL LANGUAGES
INTO MACHINE LANGUAGE

Interpreters are also computer programs that are used to translate high-level languages into
machine language. You may write language interpreters in the C programming language. C
language is used to write several computer language interpreters, such as the Python
Interpreter, the MATLAB Interpreter, etc.

C plays a crucial role in the development of translators, such as compilers and interpreters,
responsible for translating high-level languages into machine-readable code. Here's an
exploration of how C is applied in creating these essential language translators:

Applications of C in Translators of High-Level Languages:

Translators, including compilers and interpreters, are instrumental in converting human-
readable high-level code into machine-executable instructions. C programming language is
widely used in various aspects of developing these language translators:

1. Compiler Development:

i). Frontend Processing: C is utilized in building the frontend of compilers responsible for
lexical analysis (scanning), syntax analysis (parsing), and semantic analysis of the source
code.

ii). Intermediate Code Generation: Compilers often use C for generating intermediate
representations of code (e.g., abstract syntax trees - ASTs) before translating them into
target machine code.

2. Interpreter Implementation:

i). Interpreter Loop: C is employed in constructing interpreter loops, which execute high-
level code directly without prior translation to machine code, interpreting and executing
instructions on-the-fly.

ii). Runtime Environment: Interpreters written in C establish the runtime environment
required to execute high-level language instructions efficiently.

3. Code Optimization and Generation:

i). Backend Processing: C aids in the backend of compilers, where it performs code
optimization and translation of intermediate representations into target machine code or
bytecode.

ii). Target-Dependent Optimizations: Compilers written in C often implement
optimizations specific to the target architecture, leveraging C's ability to interact closely
with hardware.

4. Development Tools and Utilities:

i). Language-Specific Tools: C is used in creating language-specific tools and utilities for
debugging, profiling, and analyzing high-level code during translation processes.

ii). Parser Generators: Tools like Bison or Yacc generate C code for parsers, enabling the
implementation of parsers for various high-level languages.

5. Portability and Cross-Language Support:

i). Portability: C's portability allows for the development of translators that can be
compiled and executed across different platforms, facilitating cross-platform language
translation.

ii). Multilingual Translators: C-based translators can handle multiple high-level
languages, allowing developers to create compilers or interpreters that support diverse
programming languages.

6. Frameworks and Libraries:

Compiler Frameworks: C provides the groundwork for developing frameworks and
libraries that aid in building translators, offering reusable components for lexical analysis,
parsing, and code generation.

7. Low-Level System Interactions:

System Calls and Hardware Interaction: C's capability to interact closely with the
underlying system and hardware resources is valuable in translators needing low-level
access for optimization or system-specific functionality.

8. Open Source Contributions:

Community Development: Many open-source compilers, interpreters, and related tools are
written in C, fostering contributions from a global community of developers to enhance and
extend these language translators.

3.5

C PROGRAMMING PROJECTS

3.5.1

C programming projects are programs or tools that generate, plan, and manage various
tasks or applications using the C programming language. Projects can assist you in learning
and practicing C skills like file handling, command line parsing, and make files. Projects
can also combine many applications into a single executable or library. C projects may be
created for a variety of objectives, including financial management, artistic work, and
teaching.

Basic C Projects
There are some basic C Projects which can be simply build:
a). Calculator:

You can build a simple calculator with C using switch cases or if-else statements. This
calculator takes two operands and an arithmetic operator (+, -, *, /) from the user, however,
you can expand the program to accept more than two operands and one operator by adding
logic. Then, based on the operator entered by the user, it conducts the computation on the

two operands. The input, however, must be in the format “number] operator]l number2”
(i.e. 2+4).

b). Student Record management system:

Using C language, you can also create a student management system. To handle students’
records (like Student’s roll number, Name, Subject, etc.) it employs files as a database to
conduct file handling activities such as add, search, change, and remove entries. It appears
a simple project but can be handy for schools or colleges that have to store records of

3.5.2

thousands of students.

¢). Calendar:

If you have ever lost track of which day of the week is today or the number of days in that
particular month, you should build a calendar yourself. The Calendar is written in the C
programming language, and this Calendar assists you in determining the date and day you
require. We can implement it using simple if-else logic and switch-case statements. The
display() function is used to display the calendar and it can be modified accordingly. It also
has some additional functions. The GitHub link of the calendar has been provided below.

d). Phone Book:

This Phone book Project generates an external file to permanently store the user’s data
(Name and phone number). The phone book is a very simple C project that will help you
understand the core concepts of capacity, record keeping, and data structure. This program
will show you how to add, list, edit or alter, look at, and delete data from a record.

e). Unit Converter Project:

Forgot how to convert degree Fahrenheit to Celsius? Don’t worry. We have a solution for
you. This unit converter converts basic units such as temperature, currency, and mass.

Intermediate C Projects with Source Code

a). Mini Voting System:

An online voting system is a software platform that enables organizations to conduct votes
and elections securely. A high-quality online voting system strikes a balance between ballot
security, convenience, and the overall needs of a voting event. By collecting the input of
your group in a systematic and verifiable manner, online voting tools and online election
voting systems assist you in making crucial decisions. These decisions are frequently taken
on a yearly basis — either during an event (such as your organization’s AGM) or at a
specific time of the year. Alternatively, you may conduct regular polls among your
colleagues (e.g. anonymous employee feedback surveys).

b). Voting System:

With this voting system, users can enter their preferences and the total votes and leading
candidate can be calculated. It’s a straightforward C project that’s simple to grasp. Small-
scale election efforts can benefit from this.

¢). Tic-tac-toe Game:

Tic-tac-toe, also known as noughts and crosses or Xs and Os, is a two-person paper and
pencil game in which each player alternates marking squares in a three-by-three grid with
an X or an O. The winner is the player who successfully places three of their markers in a
horizontal, vertical, or diagonal row. You can implement this fun game using 2D arrays in
the C programming language. It is important to use arrays while creating a Tic Tac Toe
game in the C programming language. The Xs and Os are stored in separate arrays and
passed across various functions in the code to maintain track of the game’s progress. You
can play the game against the computer by entering the code here and selecting either X or
O. The source code for the project is given below.

d). Matrix Calculator:

Mathematical operations are an everyday part of our life. Every day, we will connect with
many forms of calculations in our environment. Matrices are mathematical structures in
which integers are arranged in columns and rows. In actual life, matrices are used in many
applications. The most common application is in the software sector, where pathfinder

3.5.3

algorithms, image processing algorithms, and other algorithms are developed. Some
fundamental matrix operations are performed in this project, with the user selecting the
operation to be performed on the matrix. The matrices and their sizes are then entered. It’s
worth noting that the project only considers square matrices.

e). Library Management System:

Library management is a project that manages and preserves electronic book data based on
the demands of students. Both students and library administrators can use the system to
keep track of all the books available in the library. It allows both the administrator and the
student to look for the desired book. The C files used to implement the system are: main.c,
searchbook.c, issuebook.c, viewbook.c, and more.

f). Electricity Bill Calculator

The Electricity Cost Calculator project is an application-based micro project that predicts
the following month’s electricity bill based on the appliances or loads used. Visual studio
code was used to write the code for this project. This project employs a multi-file and
multi-platform strategy (Linux and Windows). People who do not have a technical
understanding of calculating power bills can use this program to forecast their electricity
bills for the coming months; however, an electricity bill calculator must have the following
features:

= All loads’ power rating

= Unit consumed per day

= Units consumed per month, and
= Total load calculation

g). Movie Ticket Booking System

The project’s goal is to inform a consumer about the MOVIE TICKET BOOKING
SYSTEM so that they can order tickets. The project was created with the goal of making
the process as simple and quick as possible. The user can book tickets, cancel tickets, and
view all booking records using the system. Our project’s major purpose is to supply various
forms of client facilities as well as excellent customer service. It should meet nearly all the
conditions for reserving a ticket.

Advanced C Projects with Source Code
a). Snakes and Ladders Game:

Snakes and ladders, also known as Moksha Patam, is an ancient Indian board game for two
or more players that is still considered a worldwide classic today. It’s played on a gridded
game board with numbered squares. On the board, there are several “ladders” and “snakes,”
each linking two distinct board squares. The dice value can either be provided by the user
or it can be generated randomly. If after moving, the pointer points to the block where the
ladder is, the pointer is directed to the top of the ladder. If unfortunately, the pointer points
to the mouth of a snake after moving, the pointer is redirected to the tail of the snake. The
objectives and rules of the game can be summarized as-

Objective — Given a snake and ladder game, write a function that returns the minimum
number of jumps to take the top or destination position.

You can assume the dice you throw results in always favor of you, which means you can
control the dice.

b). Lexical Analyzer:

The Lexical Analyzer program translates a stream of individual letters, which are generally
grouped as lines, into a stream of lexical tokens. Tokenization, for example, of source code
words and punctuation symbols. The project’s main goal/purpose is to take a C file and

generate a sequence of tokens that can be utilized in the next stage of compilation. This
should also account for any error handling requirements that may arise during tokenization.

¢). Bus Reservation System:

This system is built on the concept of booking bus tickets in advance. The user can check
the bus schedule, book tickets, cancel reservations, and check the bus status board using
this system. When purchasing tickets, the user must first enter the bus number, after which
the system will display the entire number of bus seats along with the passengers’ names,
and the user must then enter the number of tickets, seat number, and person’s name.

We will be using arrays, if-else logic, loop statements, and various functions like login(),
cancel(), etc. to implement the project.

d). Dino Game:

This little project is a modest recreation of the Offline Google Chrome game Dinosaur
Jump. The game can be played at any moment by the user. The entire project is written in
the C programming language. The X key is used to exit the game, and the Space bar is used
to leap. play and score as many points as you can; this is a fun, simple game designed
specifically for novices, and it’s simple to use and understand.

e). Pac-Man Game:

Pacman, like other classic games, is simple to play. In this game, you must consume as
many small dots as possible to earn as many points as possible. The entire game was
created using the C programming language. Graphics were employed in the creation of this
game. To create the game, you have to first define the grid function to manage the grid
structure. To control the movement, you can define functions such as move right(),
move_left(), move up() and move down(). C files to add ghosts and their functionalities,
positions check, etc. can be added to make the game more fun. The customers will find this
C Programming game to be simple to comprehend and manage.

3.6

CONCLUSION

C is clearly not an obsolete programming language, as evidenced by the fact that many of
the world's greatest businesses use it for their profession or company. On the contrary, it
remains the most popular programming language for developers and back-end developers
throughout the world. This event taught us about the practical use of C programming. Our
research revealed that C is used in all hardware and software technologies, making it
advantageous for both aspiring software developers and seasoned software specialists with
a good command of C and the ability to construct sophisticated interfaces.

In this unit, we've gathered several C language projects and ideas for you. As the world's
largest software development community, GitHub has amassed a massive collection of
projects from programmers who constantly study and evaluate each other's work.
Furthermore, because the platform supports a wide range of programming languages, there
is a wealth of C project ideas on GitHub for anybody to draw inspiration from. It is your
responsibility as a developer to think outside the box, devise imaginative solutions utilizing
available resources, and contribute to the future of software. The projects/software are
organized under various topics for the sake of clarity. So, if you're new to project
development, begin by comprehending and evaluating a little project before moving on to a
larger project scope and application.

UNIT4 FUNDAMENTAL ELEMENTS OF ‘C’

Structure

4.0 Introduction

4.1 Objectives

4.2 Data Typesin C
4.2.1 Primitive Data Types
4.2.2 User Defined Data Types
4.2.3 Derived Data Types
424 Lvalues and Rvalues in C

4.3 Variables
4.3.1 Variable definition in C
4.3.2 Declaring Variables
4.3.3 Initialising Variables

44 Conclusion

4.5 Unit based Questions /Answers

4.0

INTRODUCTION

In this unit introduces Computer programs usually work with different types of data and
need a way to store the values being used. These values can be numbers. C language has
two ways of storing number values—Data types and Variables—with many options for
each. Data types and variables are the fundamental elements of each program. Simply
speaking, a program is nothing else than defining them and manipulating them. A variable
is a data storage location that has a value that can change during program execution. In
contrast, a constant has a fixed value that can’t change.

This unit is concerned with the basic elements used to construct simple C program
statements. These elements include the C character set, identifiers and keywords, data
types, constants, variables and arrays, declaration and naming conventions of variables.

This unit will explain to you the fundamental elements of language C.

4.1

OBJECTIVES

After completing this unit, you will be able to:
define identifiers and data types in C;

know name the identifiers as per the conventions;

describe memory requirements for different types of variables; and
define constants, symbolic constants and their use in programs.

4.2

DATA TYPES IN ‘C’

Each variable in C has an associated data type. It specifies the type of data that the
variable can store like integer, character, floating, double, etc. Each data type requires
different amounts of memory and has some specific operations which can be performed
over it. The data type is a collection of data with values having fixed values, meaning
as well as its characteristics.

The data types in C can be classified as follows:

Types Description

Primitive = Data | Primitive data types are the most basic data types that are used for

Types representing simple values such as integers, float, characters etc.
User Defined | The user-defined data types are defined by the user himself.
Data Types

Derived Types The data types that are derived from the primitive or built-in data
types are referred to as derived data types.

Types Data Types

Basic Data Type Int, char, float, double

Derived Data Type Array, Pointer, Structure, Union
Enumeration Data Type Enum

Void Data Type Void

4.2.1 Primitive Data Types (Basic Data Types)

The basic data types are integer-based and floating-point based. C language supports both
signed and unsigned literals.

The memory size of the basic data types may change according to 32 or 64-bit operating
system.

Data Types in C

v v y

Basic Derived User Defined
I I I
Integer Function Class
[I [
Character Array Structure
[[[
Floating Pointer Union
Point [I
| Reference Enum

Double [
Floating Point

Void

Typedef

Different data types also have different ranges up to which they can store numbers. These
ranges may vary from compiler to compiler. Below is a list of ranges along with the memory
requirement and format specifiers on the 32-bit GCC compiler.

i) Data Types and Storage

To store data inside the computer we need to first identify the type of data elements we need in

our program. There are several different types of data, which may be represented differently
within the computer memory. The data type specifies two things:

1. Permissible range of values that it can store.

2. Memory requirement to store a data type.

C Language provides four basic data types viz. int, char, float and double. Using these, we can
store data in simple ways as single elements or we can group them together and use different
ways (to be discussed later) to store them as per requirement.

ii). Integer Types

Integers are entire numbers without any fractional or decimal parts, and the int data type is used
to represent them.

It is frequently applied to variables that include values, such as counts, indices, or other
numerical numbers. Theint data typemay represent both positive and negative
numbers because it is signed by default.

An int takes up 4 bytes of memory on most devices, allowing it to store values between around -
2 billion and +2 billion.

Data Types Memory Size Range

Char 1 byte -128 to 127

Signed char 1 byte -128 to 127

Unsigned char 1 byte 0 to 255

Short 2 byte -32,768 to 32,767

Signed short 2 byte -32,768 to 32,767

Unsigned short 2 byte 0 to 65,535

Int 2 byte -32,768 to 32,767

Signed int 2 byte -32,768 to 32,767

Unsigned int 2 byte 0 to 65,535

Short int 2 byte -32,768 to 32,767

Signed short int 2 byte -32,768 to 32,767

Unsigned short int 2 byte 0 to 65,535

Long int 4 byte -2,147,483,648 to 2,147,483,647
Signed long int 4 byte -2,147,483,648 to 2,147,483,647
Unsigned long int 4 byte 0to0 4,294,967,295

Float 4 byte

double 8 byte

Long double 10 byte

Short, long, signed, unsigned are called the data type qualifiers and can be used with any data
type. A short int requires less space than int and long int may require more space than int. If int
and short int takes 2 bytes, then long int takes 4 bytes.

Unsigned bits use all bits for magnitude; therefore, this type of number can be larger. For
example signed int ranges from —32768 to +32767 and unsigned int ranges from 0 to 65,535.
Similarly, char data type of data is used to store a character. It requires 1 byte. Signed char
values range from —128 to 127 and unsigned char value range from 0 to 255.

To get the exact size of a type or a variable on a particular platform, you can use the sizeof
operator. The expressions sizeof(type) yields the storage size of the object or type in bytes.
Given below is an example to get the size of int type on any machine:

#include <stdio.h>
#include <limits.h>
Int main()

{

Printf(“‘Storage size for int: %d \n”, sizeof(int));
Return 0;
}

When you compile and execute the above program, it produces the following result on Linux:
Storage size for int: 4

4.2.2 User Defined Data Types

i). Character

Individual characters are represented by thechar data type. Typically used to
hold ASCII or UTF-8 encoding scheme characters, such as letters, numbers, symbols,
or commas. There are 256 characters that can be represented by a single char, which takes up one
byte of memory. Characters such as 'A', 'b', '5', or '$' are enclosed in single quotes.

Data Type Storage Space Format Range of Values
Char 1 byte Y%c ASCII character set (-128 to 127)
Unsigned char 1 byte %c ASCII character set (0 to 255)

ii). Floating-Point Types

To represent integers, use the floating data type. Floating numbers can be used to represent
fractional units or numbers with decimal places.

The float type is usually used for variables that require very good precision but may not be very
precise. It can store values with an accuracy of about 6 decimal places and a range of about 3.4 x
1038 in 4 bytes of memory.

Type Storage Size Value Range Precision
Float 4 byte 1.2E-38 to 3.4E+38 6 decimal places
Double 8 byte 2.3E-308 to 1.7E+308 15 decimal places
Long double | 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

The header file float.h defines macros that allow you to use these values and other details about
the binary representation of real numbers in your programs. The following example prints the
storage space taken by a float type and its range values:

#include <stdio.h>
#include <float.h>
int main()

{

printf(""Storage size for float : %d Wi, size of (float));
printf("Minimum float positive value: %E\n", FLT MIN);
printf("Maximum float positive value: %E\n", FLT MAX);
printf("Precision value: %d\n", FLT DIG);

return 0;

}

iii). Double:

Use two data types to represent two floating integers. When additional precision is needed, such
as in scientific calculations or financial applications, it provides greater accuracy compared to
float.

Double type, which uses 8 bytes of memory and has an accuracy of about 15 decimal places,
yields larger values. C treats floating point numbers as doubles by default if no explicit type is
supplied.

Int age = 25;

Char grade = ‘A’;

Flaot temperature = 98.6;

Double pi = 3.14159265359;

In the example above, we declare four variables: an int variable for the person's age, a char
variable for the student's grade, a float variable for the temperature reading, and two variables for
the number pi.

4.2.3 Derived Data Type

Beyond the fundamental data types, C also supports derived data types, including arrays,
pointers, structures, and unions. These data types give programmers the ability to handle
heterogeneous data, directly modify memory, and build complicated data structures.

Array

An array, a derived data type, lets you store @equence of fixed-size elements of the same type.
It provides a mechanism for joining multiple targets of the same data under the same name.

The index is used to access the elements of the array, with a 0 index for the first entry. The size
of the array is fixed at declaration time and cannot be changed during program execution. The
array components are placed in adjacent memory regions.

Here is an example of declaring and utilizing an array:

#include <stdio.h>
int main() {
int numbers[5]; / Declares an integer array with a size of 5 elements

/I Assign values to the array elements
numbers[0] = 10;
numbers[1] = 20;

numbers[2] = 30;

numbers[3] = 40;

numbers[4] = 50;

// Display the values stored in the array

printf("Values in the array: ");
for (inti=0;1<5;i++) {
printf("%d ", numbers][i]);

}

printf("\n");
return 0;

}

Output:

Values in the array: 10 20 30 40 50

The void Type

S.No.

Type and Description

Functions returning void

In C programming, some functions are designed not to return any value. Such functions
are declared with a return type of void. This indicates that the function performs a task
but does not send any result back to the caller.

Example: void exit (int status);

Functions with void Parameters

Some functions in C do not require any input arguments. When no parameters are
needed, void can be specified in the parameter list to explicitly indicate this.

Example: int rand(void);

Void Pointers

A void * pointer 15 a special type of pointer in C that can hold the address of any data
type, though it does not have a specific type itself. It is commonly used in functions
dealing with raw memory, such as memory allocation routines.

Example: void *malloc(size t size);

4.3 VARIABLES

Understanding Variables in C
In C programming, a variable serves as a label for a memory location that can hold data to be used
and modified by a program. Each variable has a data type, which defines:

¢ The amount of memory allocated,

e The range of values it can store, and

e The operations that can be performed on it.
Naming Rules for Variables

e Variable names can consist of letters (A-Z, a-z), digits (0-9), and the underscore ()
character.

e A variable name must start with %er a letter or an underscore.

e C is a case-sensitive language, so Value and value would be treated as two different

variables.
Types of Variables
Based on the fundamental data types introduced earlier, the basic types of variables include:

e int — for integers,

e float — for floating-point numbers,

e char — for characters,

e double — for double-precision floating-point numbers.

These types dictate the kind of data the variable can store and how much memory it occupies.

Type Description

Char Typically a single octet (one byte). This is an integer type.
Int The most natural size of integer for the machine.

Float A single-precision floating point value.

Double A double-precision floating point value.

void Represents the absence of type.

C programming language also allows to define various other types of variables, which we
will cover in subsequent chapters like Enumeration, Pointer, Array, Structure, Union, etc.
For this chapter, let us study only basic variable types.

Rules for declaring variable name
= Variable name may be a combination of alphabet, digits, or underscores and its
length should not exceed eight characters.
= First character must be an alphabet.
= No commas or blank spaces are allowed in variable name.
® Among the special symbols, only underscore can be used in variable name.
* Example: emp_age and item_ 4e

44 CONCLUSION

@rogramming language because they define the kinds of information that variables can hold.
They provide the data's size and format, enabling the compiler to allot memory and carry out the
necessary actions. Data types supported by C include void, enumeration, derived, and basic
types. In addition to floating-point types like float and double, basic data types in C also include
integer-based kinds like int, char, and short. These forms can be signed or unsigned, and they
fluctuate in size and range. To create dependable and efficient code, it is crucial to comprehend
the memory size and scope of these types.

A few examples of derived data types are unions, pointers, structures, and arrays. Multiple
elements of the same kind can be stored together in contiguous memory due to
arrays. Pointers keep track of memory addresses, allowing for fast data structure operations and
dynamic memory allocation. While unions allow numerous variables to share the same memory
space, structures group relevant variables together.

Code becomes more legible and maintainable when named constants are defined using
enumeration data types. Enumerations give named constants integer values to enable the
meaningful representation of related data. The void data type indicates the lack of a particular
type. It is used as a return type for both functions and function parameters that don't take any
arguments and don't return a value. The void* pointer also functions as a general pointer that
can store addresses of various types.

C programming requires a solid understanding of data types. Programmers can ensure adequate
memory allocation, avoid data overflow or truncation, and enhance the readability and

maintainability of their code by selecting the rightdata type. C programmers may
create effective, dependable, and well-structured code that satisfies the requirements of their
applications by having a firm understanding of data types.

UNITS OPERATOR AND EXPRESSIONS OF ‘C°

Structure

5.0 Introduction
5.1 Objectives
5.2 Operators in ‘C’

52.1 Assignment Operators

5.2.2 Arithmetic Operators

5.2.3 Relational Operators

524 Logical Operators

5.2.5 Increment and Decrement Operators

52.6 Conditional Operators

5.2.7 Special Operators

5.2.8 Size of Operator

529 °C’ Short Hand

5.2.10 Priority of Operators

5.3 Expressions in ‘C’

5.3.1 Types Conversion in Expressions
53.1.1 Automatic Type Conversion
5.3.1.2 Casting a Value

5.4 Conclusion
5.5 Unit based Questions /Answers

5.0 INTRODUCTION

This unit explores the fundamental building blocks of C programming: variables,
constants, and datatypes, along with their declaration. We'll then move on to using these
declared elements within expressions. An expression combines operators and operands to
achieve one or more of the following:

. Calculate@value.
o Identify alr object or function.

e Produce side effects.

Essentially, an operator performs an action (or evaluation) on one or more operands,
where an operand is a sub-expression that the operator acts upon.

This unit will detail the various types of operators available in C, covering their syntax
and usage within the language. Unlike a basic calculator, computers can also solve logical
expressions. Therefore, in addition to arithmetic operators, C also includes logical
operators, which will be discussed in this unit.

This unit will explain to you the expressions and operators of language C.

5.1 OBJECTIVES

After @npleting this unit, you will be able to:

te and evaluate arithmetic expressions;

= express and evaluate relational expressions;

= write and evaluate logical expressions;

= write and solve compute complex expressions (containing arithmetic, relational and
logical operators), and

= check simple conditions using conditional operators.

5.2 OPERATORS IN ‘C°

In programming, an operator is a special symbol used to perform operations on variables,
operands, or constants. Some operators require two operands to execute their function,
while others can perform an operation with just a single operand. Operators come in
various forms, including arithmetic, assignment, increment, decrement, logical,
conditional, comma, sizeof, and bitwise operators, among others. Essentially, an operator
acts as an instruction to the computer, prompting it to carry out specific mathematical or
logical manipulations on data stored in variabl hich are then referred to as operands.
The C programming language, in particular, 15 rich in built-in operators, providing a
comprehensive set of these symbols for diverse operations. C language is rich in built-in
operators and provides the following types of operators:

. Assignment Operators

. Arithmetic Operators

. Relational Operators

= Logical Operators

. Increment and decrement Operators
. Conditional Operators

. Special Operators

5.2.1 Assignment Operators

In this unit, we've come to understand that variables are essentially named
locations within a computer's memory, designated to store various pieces of data.
The fundamental question then arises: how do we actually place values into these
variables? The C programming language provides a crucial mechanism for this
purpose: the assignment operator. This operator's core function is quite
straightforward yet powerful: it takes a value or the result of an expression found
on the right-hand side of an operation and efficiently stores that information into
the designated variable located on the left-hand side.

The standard syntax for an assignment Qression in C follows a clear pattern:
*Variable = constant / variable / expression;'. A critical consideration here is data
type compatibility. Generally, the data type of the variable on the left-hand side
should align with the data type of the constant, variable, or expression on the right-
hand side. This ensures that the data being assigned can be properly understood
and stored. However, it's worth noting that C does offer some flexibility; in certain
scenarios, automatic type conversions are possible, allowing for assignments
between slightly different data types without explicit intervention. For example,
you might assign an integer value to a floating-point variable, and the system
would handle the conversion.

At their heart, assignment operators are indispensable tools used to effectively
transfer the outcome of an operation or a direct value into a variable for later use.
While there are various assignment operators in C (such as '+=", *-=", etc.), the
most commonly and frequently used is the simple equals sign ('="). This
foundational operator is integral to nearly every C program, enabling the dynamic
manipulation and storage of data as a program executes.

An expression with assignment operator is of the following form:

Identifier = expression;

5.2.2

Example:

#include<stdio.h>
void main()

{
int i;
i=5;
printf ("%d", 1);
i=1i+10;
printf ("\n%d", 1);
¥
Output will be: 5

10

Expressions like i =i+10; ,1=1-5; ,1=1*2; ,1=1/6, and i = 1% 10 can be rewritten
using shorthand assignment operators.

The shorthand assignment operators are of following type:

V op = expression;

This is equivalent to

V =V op expression;

Example:
[=1+5: is equivalent to i+=5;
[=1%*(y+5); is equivalent to i* = (y+5);

Arithmetic Operators

The basic arithmetic operators in C are the same as in most other computer
languages, and correspond to our usual mathematical/algebraic symbolism. The
following arithmetic operators are present in C:

Operator Purpose
i Addition
- Subtraction
W Multiplication
/ Division
% Remainder after integer division |

The division operator (/) in C requires that its second operand is not zero, even
when dealing with non-integer values. Relatedly, the modulus operator (%)
calculates the remainder after the division of two operands. Like the division
operator, its second operand must also be non-zero. Attempting to divide by zero is
an undefined operation in computer systems and will typically lead to a run-time
error. In C, arithmetic expressions are usually written in a straightforward, linear
fashion; for example, "a divided by b" is simply expressed as a/b.

The operands used in C's arithmetic expressions can be of various data types,
including integer, float, and double. To effectively develop C programs, it's
essential to grasp the rules governing the implicit conversion of floating-point and
integer values, which are outlined below:

e When an arithmetic operation occurs between two integers, the result will always
be an integer.

e If an operator acts between two float values, the outcome will be a float result.

e When an operation involves an integer and a float, the result will be a float.

o If'the data type is double instead of float, then we get a result of double data type.

Example:
ifa=25b=4
then atb=29
a- b=21
a*b=100
a/b=6 (decimal parts truncated)
a%b =1
Example:

#include<stdio.h>

main()

{

inta=21;

intb=.10;

intc;

c=a+tb;

printf("Value of ¢ is %d\n", ¢); /* Line 1 */
c=a-b;

printf("Value of ¢ is %d\n", ¢); /* Line 2 */
c=a*b;

printf("Value of ¢ is %d\n", ¢); /* Line 3 */
c=a/b;

printf("Value of ¢ is %d\n", ¢); /* Line 4 */
c=a%b;

printf("Value @ is %d\n", ¢); /* Line 5 */
c=att

printf("Value of ¢ is %d\n", ¢); /* Line 6 */
c=a-;

printf("Value of ¢ is %d\n", ¢); /* Line 7 */
}

Output will be:

5.2.3

Value of ¢ is 31 /* Line 1 */

Value of cis 11 /* Line 2 */
Value of ¢ is 210 /* Line 3 */
Value of ¢ is 2 /* Line 4 */
Value of ¢ isl /* Line 5 */
Value of ¢ is 21 /* Line 6 */
Value of ¢ is 22 /* Line 7 */

Relational Operators

In C programming, executable statements are designed to perform actions like
calculations or data input/output, or to facilitate decision-making within a
program. We can compare variables using relational operators. The various C
relational operators and their meanings are summarized below. It's crucial to note
that the equality operator uses two equal signs (‘=="), not just one, which is
distinct from the assignment operator (‘="). This section also introduces a basic
form of C's ‘if" control structure, enabling a program to make decisions based on
the outcome of a given condition. If the con(@n evaluates to true, the statement
within the “if" body is executed. Conversely, 1T the condition is false, the statement
is skipped. Regardless of wheth e body statement is executed, program
execution always continues with tfic statement immediately following the 'if’
structure once it completes.

A relational operator is employed to compare two operands, determining if they
are equal, unequal, or if one is greater or less than the other. These operands can be
variables, constants, or expressions, and the comparison yields a numerical result.
There are six distinct relational operators available in C.

[Operator | Description Example
== | If the values of two operands are equal | (A == B) is not true. |
or not. If yes, then the condition
becomes true.

1= | If the values of two operands are equal | (A !=B) is true.
or not. If the values are not equal, then
the condition becomes true.

> If the value of left operand is greater | (A > B) is not true.
than the value of right operand. If yes,
then the condition becomes true.

< If the value of left operand is less than | (A < B) is true.
the value of right operand. If yes, then
the condition becomes true.

>= If the value of left operand is greater | (A >= B) is not true.
than or equal to the value of right
operand. If yes, then the condition

becomes true.

<= If the value of left operand is less than | (A <= B) is true.
or equal to the value of right operand.
If yes, then the condition becomes

true. |

A simple relation contains only one relational operator and takes the following
form:

ae-1 relational operator ae-2

@elational operators usually appear in statements which are inquiring about the
truth of some particular relationship between variables. Normally, the relational
operators in C are the operators in the expressions that appear between the
parentheses.

For example,

6) if (this num < minimum sofar) minimum sofar = this num
(i1) if (job == Teacher) salary == minimum wage

(iii) if (number of legs != 8) this bug = insect

@iv) if (degree of polynomial <2) polynomial = linear

Let a simple C program containing the If statement (will be introduced in detail in
the next unit). It displays the relationship between two numbers read from the
keyboard.

Example:
/*Program to find relationship between two numbers*/

#include<stdio.h>

main ()

{

int a, b;

printf (“Please enter two integers: ”);

scanf (“%d%d”, &a, &b);

if (a <=b) printf (“ %d <= %d\n”,a,b);

else

printf (“%d > %d\n”,a,b);

}

OUTPUT:

Please enter two integers: 12 17
12<=17

Example:

/*Program to understand all the operators available in C*/

#include<stdio.h>

main ()

{
inta=%

{printf("a is equal to b\n");
}

else

{

printf("a is not equal to b\n");

}

if(a<b)

{

printf("a is less than b\n");

}

else

{

printf("a is not less than b\n");

b

if(a>b)

{

printf("a is greater than b\n");

}

else

{

printf(""a iis not greater than b\n");
}
/* @s change value of a and b

a=5;

b=20;

if(a<=b)

{

printf(""a i either less than or equal to bin");

}

if(b>=a)

{

printf("'b is either greater than or equal to b\n");
}

}

/* Line 1 */

/* Line 1 */

/* Line 2 */

/* Line 2 */

/* Line 3 */

/* Line 3 */

/* Line 4 */

/* Line 5 */

5.24

OUTPUT:

a is not equal to b /* Line 1 */
is not less than b /* Line 2 */
greater than b /* Line 3 */
either less than or equal to b /* Line 4 */

b is either greater than or equal to b /* Line 5 */

Logical Operators

In C, much like other programming languages, logical operators are key for
evaluating expressions that can either be true or false. When an expression
involves these logical operations, it's assessed to determine one of those two
Boolean outcomes. While we've only covered simple conditions so far, there's a
good chance you'll need to test multiple conditions when making decisions. If
that's the case, you could string together a bunch of separate if statements (we'll
dive deeper into those later). Luckily, C gives us logical operators to make things

ier, allowing us to combine those simple conditions into more complex gges.

@lowing table shows all the logical operators supported by C language. @ume
variable A holds 1 and variable B holds 0, then:

Operator Description Example

&& Called Logical AND operator. If both the | (A && B) is false.” |
operands are non-zero, then the condition
becomes true.

| Called Logical OR Operator. If any of | (A || B) is true.
the two operands is non-zero, then the

condition becomes true.

! Called Logical NOT Operator. Tt is used | !(A && B)is true. |
to reverse the logical state of its operand.
If a condition is true, then Logical NOT

operator will make it false.

Qms logical operators (AND and OR) combine two conditions and logical NOT is
used to negate the condition i.e. if the condition is true, NOT negates it to false
and vice versa. Let us consider the following examples:
(i) Suppose the grade of the student is ‘B’ only if his marks lie within the range 65
to 75,if the condition would be:

if ((marks >=65) && (marks <= 75))

printf (“Grade is B\n”);
(i1) Suppose we want to check that a student is eligible for admission if his PCM is
greater than 85% or his aggregate is greater than 90%, then,

if (PCM >=85) ||(aggregate >=90))

printf (“Eligible for admission\n”);
Logical negation (!) enables the programmer to reverse the meaning of the
condition. Unlike the && and || operators, which combines two conditions (and
are therefore Binary operators), the logical negation operator is a unary operator
and has one single condition as an operand. Let us consider an example:

if !(grade=="A")

printf (“the next grade is %c\n”, grade);
The parentheses around the condition grade==A are needed because the logical
operator has higher precedence than equality operator. In a condition if all the
operators are present then the order of evaluation and associativity is provided in
the table. The truth table of the logical AND (&&), OR (||) and NOT (!) are given
below.

These table show the possible combinations of zero (false) and nonzero (true)
values of X (expressionl) and Y (expression2) and only one expression in case of
NOT operator.

The following table is the truth table for && operator.

Truth table for && operator

X Y X&&Y
0 0 0
1 0 0
0 1 0
1 1 1

The following table is the truth table for | | operator.

Truth table for && operator

X Y XY
0 0 0
1 0 1
0 1 1
1 1 1

The following table is the truth table for | | operator.

Truth table for ! operator

X
0 1
1 0

The following table is the operator precedence and associativity.

Truth table for (Logical operator precedence and associativity)

Operator Associativity

! Right to left

&& Left to right

[Left to right
Example:

/*Program %nderstand all the logical operators available in C*/

#include<stdio.h>

main ()
{
inta=>5;
int b = 20;
intc;
if(a&&b)
{
printf("Line 1 - Condition is true\n");
}
if Cal'b)
{
printf("Line 2 - Condition is true\n");
}
/* change the value of a and b */
a=0;
b=10;
if(a&&b)
{
printf("Line 3 - Condition is true\n");
}
else
{
printf("Line 3 - Condition is not true\n");
}
if (!(a && b))
{
printf("Line 4 - Condition is true\n");
}
¥
OUTPUT:
Condition is true /* Line 1 */
Condition is true /* Line 2 */

Condition is not true /* Line 3 */

Condition is true /* Line 4 */

5.2.5 Increment and decrement Operators

C boasts two incredibly handy operators, "++' and --', known as the increment
and decrement operators, respectively. You won't typically find these quite as
prevalent in many other programming languages, making them a distinctive
feature of C. Because they operate on just one piece of data, they're classified as
unary operators. It's important to remember that these operators must be applied to
variables; you can't use them directly on constants.

At their core, the '++ (increment) operator simply adds one to the value of its
operand, while the '--* (decrement) operator does the opposite, subtracting one
from the operand's value. What's more, these operators can be employed in a
couple of different ways, which offers flexibility in how they're used within your
code.

1) Prefix: When the operator used before the operand, it is termed as prefix.
e.g. ++A , --B
in this case the value of operand follow First Change Then Use (
F.C.T.U) concept.
2) Postfix: When the operator used before the operand, it is termed as prefix.
e.g. A++,B—
in this case the value of operand follow First Use Then Change (
F.U.T.C) concept.
Example:
Postfix int N=10, R;
R = N++; // post increment
printf(“R=%d \n N=%d ”, R, N);

it will produce output:
R=11 (Because value will increment first, then
value will assign)
N=11
Example:

#include<stdio.h>
Void main ()
{
int R, N=10;
clrser();
R=+N+--N+--N+N+++--N;
printf(“ R=%d \n N=%d” , R,N);
getch();
}
The output will be:
R=40
N=9
Explanation:
In this example there are for than one increment or decrement expressions are

used, so that it follows the execution order (postfix = operation > prefix).

In this statement (++N + --N + --N + N++ + --N ;) all prefix expression execute
first ,then it perform operations like addition/subtraction or assignment etc. and
after that it perform all postfix operations. In the operation the value of all operand
will give last modified value by prefix operations.

5.2.6 Conditional or Ternary Operators

In C programming, the conditional operator (?:) offers a compact alternative to the
traditional if/else statement. It is the only ary operator in C, meaning it
operates on three operands. These operands a conditional expression where
the first part is a condition that is evaluated. Ifghis condition is true, the second
operand becomes the result of the expression; IT the condition is false, the third
operand is returned instead. This operator is especially useful for writing short
decision-making expressions in a more concise and readable format.

The syntax is as follows:
(condition)? (expressionl): (expression2);

If condition is true, expressionl is evaluated else expression2 is evaluated.
Expressionl/Expression2 can also be further conditional expression i.e. the case of
nested if statement.

Let us see the following examples:

1) x= (y<20) ? 9:10;
This means, if(y<20), then x=9 else x=10;

(ii) printf(“%s\n”, grade>=50? “Passed”: “failed”);
The above statement will print “passed” grade>=50 else it will print
“failed”.

(iii) (a>b) ? printf (“a is greater than b \n”): printf (“b is greater than a \n”); If
a is greater than b, then first printf statement is executed else second
printf statement is executed.

mmple 1:
=10;

15;
=(@>b?a:b);
In this expression value of b will be assigned to x.

Emple 2:
=10;

b=15;

x=(a>b)?

printf (“First value is Greater*);
printf (“Second value is greater”);
In this expression the result will be-

5.2.7 Special Operators

5.2.8

5.2.9

The C language provides several special operators, including the comma operator,
the ‘sizeof’ operator, pointer operators (‘&' and '*'), and member selection
operators (*." and *->"). The pointer operators will be explained in detail when the
concept of pointers is introduced, while the member selection operators will be
covered during the discussion of structures and unions. For now, the focus will be
on understanding the comma operator and the “sizeof” operator.

“Amma Operator
1s operator is used to link the related expressions together.
Example:
Int val, x, y;
value = (x= 10, y =5, x+y);
it first assigns 10 to x then 5 to y finally sum x + y to value.

Size of Operator
The sizeof operator in C is evaluated at compile time and is used to determine the
amount of memory (in bytes) that a given operand occupies. This operand can be a
variable, a constant, or even a data type qualifier. It helps in understanding the
memory requirements of different data types and expressions during program
development.
Example:

int n;

n = size of (int);

printf(‘“n=%d,\n”,n);

n = size of (double);

printf(“n=%d”,n);

Output:
n=2
n=3_
éize of Operators

provides a compile-time unary operator called size of that can be used to
compute the size of any object. The expressions such as:

Size of object and size of (type name)

result in an unsigned integer value equal to the size of the specified object or type
in bytes. The result of the sizeof operator is an integer that represents the number
of bytes needed to store an object of the operand's type. This object could be a
variable, an array, or a structure. Arrays and structures are examples of data
structures in C, which will be introduced in later units. The operand can be a basic
data type such as int or double, or a derived type like a pointer or a structure.

Example:
Size of(char) = 1bytes
Size of(int) =2 bytes

C Short Hand

C has a special shorthand that simplifies coding of certain type of assignment
statements.

Example:
a=at2;
can be written as:
at=2;
The operator +=tells the compiler that a is assigned the value of a + 2; This
shorthand works for all binary operators in C. The general form is:
variable operator = variable / constant / expression
These operators are listed below:

Operators Examples Meaning
4= at+=2 a=a+t2
-= a-=2 a=a-2
= a*=2 a=a*2
/= a/=2 a=a/2
Y%= a%=2 a=a%?2

Operators Examples Meaning

&&= a&&=c a=a&&ec
= all=c a=allc

5.2.10 Priority Operators

Since all the operators we have studied in this unit can be used together in an
expression, C uses a certain hierarchy to solve such kind of mixed expressions.
The hierarchy and associatively of the operators discussed so far is summarized in
Table 6. The operators written in the same line have the same priority. The higher
precedence operators are written first.

Table: Precedence of the operators

Operators Associativity

() Left to right
! ++ -- (type) size of Right to left
1% Left to right
+- Left to right
<<=>>= Left to right
== Left to right
&& Left to right

| Left to right
?: Right to left
=t=="*= /=% &&=|= Left to right
, Left to right

5.3 EXPRESSIONS IN ‘C’

An expression is a combination of variables, constants, and operators arranged
according to syntax of the language. Some examples of expressions are:

e.g.
c=(m+n)* (a-b);

temp=(a+b+'c)/(d-c)

Expression is evaluated by using assignment statement.

Such a statement is of the form

Variable = expression ;

The expression is evaluated first, then the value is assigned to the variable left
hand side. But all the relevant variables must be assigned the values before
evaluation of the expression.

5.3.1 Type conversion in Expressions

Type conversion in expressions refers to the process where values of one data type
are transformed into another to ensure compatibility within operations. This
conversion can be implicit, where the programming language automatically
handles the conversion, or explicit, where the programmer must manually convert
the types using specific functions or methods. Implicit conversions usually occur
in expressions involving mixed data types, ensuring that operations such as
arithmetic or comparisons are performed correctly. Explicit conversions, often
called type casting, are necessary when the automatic conversions do not yield the
desired outcome or when precision and control over the data transformation are
required. Both types of conversions are crucial for writing robust and error-free
code, ensuring that expressions evaluate as intended.

5.3.1.1 Automatic Type conversion:

If the operands are different types, the lower type is automatically converted to the
higher type before the operation proceeds. The result is of the higher type.
Given below is the sequence of rules that are applied while evaluating expressions.

Op-1 Op-2 Result

long double any long double
double any double

float any float

unsigned long int any unsigned long int
long int any long int
unsigned int any unsigned int

The final result of an expression is converted to the type of the variable on the left
of the assignment sign before 'assigning value to it.

However, the following changes are introduced during the final assignment.
= float to int causes truncation of the fractional part.
® double to float causes rounding of digits.
= long int to int causes dropping of the excess higher order bits.

5.3.1.2 Casting a value:

Casting a value is forcing a type conversion in a way that is different from the auto
conversion. The process is called type cast. The general form of casting is

(type_desired) expression;

where type desired: standard C data types and expression : constant, variable or
expression.

Example:
#include<stdio.h>
void main()
{
int total marks=500,0b_marks=234;
float perl , per2;
perl = (ob_marks / total marks) * 100;
per2 = (float) (ob_marks / total _marks) * 100;
printf(*“ Percentage without type casting = %.2f”,per1);
printf(“ Percentage After type casting = %.2f”,per2);
getch();
}

Output:
Percentage without type casting = 0.00
Percentage After type casting = 46.80

In expression per2 = (float) (ob_marks / total _marks) * 100; division is converted
to float, otherwise decimal part of the result of division would be lost and perl
would represent a wrong figure or zero.

5.4 CONCLUSION

In this unit, we really dug into the various kinds of operators C offers—think
arithmetic, relational, and logical—and, more importantly, how they're put to use.
As we move forward, you'll see just how crucial these operators become when we
tackle C's other core building blocks, like control statements and arrays.

We also spent a good deal of time on type conversions. Seriously, understanding
these is absolutely vital! So often, programmers get those head-scratching,
unexpected results (what we call logical errors), and more often than not, they
trace back to improper type conversions or simply forgetting to explicitly "type
cast" to the desired format. It's a subtle but significant detail that can save a lot of
debugging time.

On top of that, this unit gave us a peek into C's famous shorthand. C earns its
reputation as a compact language precisely because it lets us write lengthy
expressions in a much shorter, more efficient way. The conditional operator is a
perfect example, offering a neat, condensed alternative to writing out a full if/else

statement (something we'll dive into next). And let's not forget those
increment/decrement operators; they're little gems that really trim down your code
when embedded within expressions.

Given that logical operators are foundational and pop up everywhere—from all
sorts of looping constructs to those crucial if/else statements we're about to
explore—making sure you've got a solid grasp on them is, frankly, non-negotiable.

UNIT6 CONTROL FLOW MECHANISMS

Structure

6.0 Introduction

6.1 Objectives

6.2 Decision Control Statements
6.2.1 The if Statement
6.2.2 The if else Statement
6.2.3 The switch Statement

6.3 Loop Control Statements
6.3.1 The while Loop
6.3.2 The do-while Statement
6.3.3 The for Loop
6.3.4 The Nested Loop

6.4 The Goto Statement

6.5 The Break Statement

6.6 The Continue Statement

6.7 The Exit Function

6.8 Conclusion

6.9 Unit based Questions /Answers

6.0

INTRODUCTION

In any computer program, you've got a sm of instructions meant to be carried out. But
here's the thing: most programs don't just straight through from start to finish. Often, a
C program needs to make a logical check at a certain point. Depending on what that test
reveals, the program will then take one of several possible actions—this is what we call
branching. Similarly, in a selection process, the program picks and execute: pecific
block of statements from a few available options. And if you ever need a~group of
statements to keep running repeatedly until a certain condition is met, that's where
looping comes in handy. All these dynamic behaviors are managed through various
control statements.

These control statements are essentially what dictate the "flow of control" in your
program. They let us specify the exact order in which the computer should execute each
instruction. Generally, most high-level procedural programming languages rely on three
fundamental types of control statements:

e Sequence instructions
e Selection (or decision) instructions
e Repetition (or loop) instructions

Sequence instruction is pretty straightforward: it just means executing one instruction
after another, exactly in the order they appear in your code file. This sequential execution
is actually C's default behavior; unless you explicitly tell it otherwise with a control
statement, the computer will simply move from one instruction to the very next one in
line.

Selection, on the other hand, is all about making choices. It means running different
sections of code based on whether a specific condition is true or false, or based on the
value of a variable. This capability is what allows a program to adapt and take different
actions depending on various situations. C, for its part, offers three distinct structures
specifically designed for these selection processes.

= if

. Q else

. tch

Repetition/Looping means executing the same section of code more than once. A section

of code may either be executed a fixed number of times, or while some condition is true.
C provides three looping statements:

. while
= do...while
= for

This unit introduces you the decision and loop control statements that are available in C
programming language along with some of the example programs.

This unit will explain to you the expressions and operators of language C.

6.1

OBJECTIVES

After Qﬂpleting this unit, you will be able to:

rk with different control statements;

= know the appropriate use of the various control statements in programming;
= transfer the control from within the loops;

= use the goto, break and continue statements in the programs; and

= write programs using branching, looping statements.

6.2

DECISION CONTROL STATEMENT

In a C program, making a decision essentially means the code can, at a specific point, jump
to a different section of the program, all based on the outcome of an expression. C offers
several ways to implement these decisions. The if...else statement is arguably the most
crucial, as it allows the program to choose between two distinct courses of action.
Interestingly, you can also use this statement without the else part, making it a simpler if
statement for conditional executigiyFor situations where you need to branch to multiple
alternative code sections based the value of a single variable, C provides another
powerful decision control statement: the switch statement.

6.2.1 The if Statement

This control structure serves a clear purpose: to execute an instruction, or even a
whole block of instructions, *only* if a specific condition is met. When you use an
‘if” statement, the program first evaluates an expression. Then, depending on
whether that expression (which could be a relational check or any other condition)
turns out to be "true" or "false," it directs the program's flow to a particular
statement or a designated group of statements.

Different forms of implementation if-statement are:

] ple if statement

= [f-else statement

= Nested if-else statement
= Else if statement

6.2.2

Simple if statement @ used to execute an instruction or block of instructions only
if a condition is fulfilled.

The syntax is as follows:

if (condition)

statement;

where condition is the expression that is to be evaluated. If this condition is true,
statement is executed. If it is false, statement is ignored (not executed) and the
program continues on the next instruction after the conditional statement.

If we want more than one statement to be executed, then we can specify a block of
statements within the curly bracets { }.

The syntax is as follows:

if (condition)

{

block of statements;

}

@lmple:

Write a program to calculate the net salary of an employee, if a tax of 15% is
levied on his gross-salary if it exceeds Rs. 10,000/~ per month.

/*Program to calculate the net salary of an employee */

#include<stdio.h>
main()

@t gross_salary, net_salary;

printf(“Enter gross salary of an employee\n”);
scanf(“%f ”,&gross_salary);
if(gross_salary<10000)

net_salary = gross_salary;
net_salary=gross_salary - 0.15*gross_salary;
printf(“\nNet salary is Rs.%.2f\n”, net_salary);
H

The if_else Statement

If...else statement is used when a different sequence of instructions is to be
executed depending on the logical value (True / False) of the condition evaluated.

Its form used in conjunction with if and the syntax is as follows:

if (condition)
Statement 1;
else
Statement 2;
statement 3;

Or

if (condition)

{

Statements_1_Block;
}

else

{

Statements_2 Block;

}

Statements 3 Block;

If the initial @dition turns out to be true, the set of instructions within the first
block (let's call it ‘Statements 1 Block') will run. However, if that condition is
false, then the program will skip that first block and instead execute the
‘Statements_2_Block" that follows the “else’ part of the statement. Regardless of
which block was executed, the program's control then seamlessly moves on to
‘Statements 3", continuing the regular, sequential flow of the program.

Example:

#include<stdio.h>
#include<conio.h>
void main()

{

int no;

clrscr();

printf("\n Enter Number :");
scanf("%d",&no);

if(no>0)

{

printf("\n\n Number is greater than 0 !");

}

else

{

if(no==0)

{

printf("in\n Itis 0 !"); }
else

{

printf("Number is less than 0 !");

}

)
geteh();

}

Output:

Enter Number: 0
Itis 0!

6.2.3 The switch Statement

This is a fantastic tool for creating multiple or multiway branches within your

program's decision-making process. You see, when you start using a bunch of
nested if-else statements to check many different conditions, your code can
quickly become a tangled mess. It gets harder to read, and maintaining it becomes
1 headache. To neatly sidestep this problem, C offers the switch statement.
maswitch statement works by taking the value of an expression and comparing it
against a series of predefined "case" values. If it finds a match, the ram's
control is then neatly transferred to that specific point, executing @code

associated with that particular case.
Syntax:

switch(expression)

{

case exprl:
statements;
break;

case expr2:
statements;
break;

case exprn:
statements;
break;
default:
statements;

Switch case, break are keywords.

exprl, expr2 are known as 'case labels.'

Statements inside case expression need not to be closed in braces.

break statement causes an exit from switch statement.

default case is optional case. When neither any match found, it executes.

#include<stdio.h>

#include<conio.h>

void main()

{

int no;

clrser();

printf("\n Enter any number from 1 to 3 :");

scanf("%d",&no);

switch(no)

{

case 1:
printf("\n\n It is 1 !");
break;

case 2:

printf("\n\n It is 2 !");
break;
case 3:
printf("\n\n It is 3 !");
break;
default:
printf("\n\n Invalid number !");
b
getch();

}
Output:

Enter any number from 1 to 3 : 3
Itis 3!

a). Rules for declaring switch case:
® The case label should be integer or character constant.
= Each compound statement of a switch case should contain break statement
to exit from case.
= (Case labels must end with (:) colon.

b). Advantages of switch case:
= Easy to use.
= Easy to find out errors.
= Debugging is made easy in switch case.
= Complexity of a program is minimized.

6.3

LOOP CONTROL mATEMENTS

Loop control statements are used when a section of code may either be executed a fixed
number of times, or while some condition is true. C gives you a choice of three types of
loop statements, while, do- while and for.

= The while loop keeps repeating an action until an associated condition returns false.
This is useful where the programmer does not know in advance how many times the
loop will be traversed.

= The do while loop is similar, but the condition is checked after the loop body is
executed. This ensures that the loop body is run at least once.

= The for loop is frequently used, usually where the loop will be traversed a fixed
number of times.

6.3.1 The while Loop

When in a program a single statement or a certain group of statements are to be
executed repeatedly depending upon certain test condition, then while statement is
used.

The syntax is as follows:
while (test condition)

{
body_of the loop;

}

Here, that test condition is essentially an expression that dictates how long the loop
will keep running. The actual body of the loop—which is a single statement or a group
of statements tucked inside braces—gets executed repeatedly as long as this test
condition evaluates to true. But the moment that condition turns false, the program's
control immediately jumps out of the loop and moves on to the very first statement
that follows the while loop.

It’s worth noting that if the condition happens to be false right from the very
beginning, the loop's body won't ever execute at all. That's why the while loop is
sometimes called an entry-control loop; it always checks the condition before letting
you into the loop's body..

Out of Loop
Execute Bc:ld-f of Loop
o
Example:
#include<stdio.h>
#include<conio.h>
void main()
{
int a;
clrscr();
a=1;
while(a<=5)
{
printf("MCMT \t");
at+=1 /lie.a=a+1
}
getch();
}
Output:

MCMT MCMT MCMT MCMT MCMT

6.3.2 The do-while Statement

There's another loop structure that's quite similar to the while statement, and that's
the do...while loop. The main distinction between the two is that in a do...while
loop, the condition that determines whether to keep looping is checked at the very
end of each cycle, not at the beginning.

This difference has a crucial implication: the body of a do...while loop is
guaranteed to execute at least once before the condition is even evaluated. After
that initial run, the loop continues to repeat its body as longg#y the condition
remains true. This is in contrast to a regular while loop, where 1T"the condition is
false from the start, the loop's body won't execute even once. That's precisely why
they do...while loop is also known as an exit-control loop—it checks the condition
as it's trying to exit the loop.

l

‘ Execute Body of Loop ‘

|

Qut of Loop

Example:

#include<stdio.h>
#include<conio.h>
void main()

{
int a;
clrser();
a=1;

do

printf("MCMT\t"); //'5 times
at+=1; /lie.a=a+1
}

while(a<=5);

getch();

}

Output:
MCMT MCMT MCMT MCMT MCMT

Infinite loop:

A looping process, in general, includes the following four steps:

" @ing of a counter.

] ecution of the statements in the loop.

= Testing of a condition for loop execution.
= Incrementing the counter.

Ideally, that test condition is designed to eventually signal the loop to stop and
transfer control to the next part of the program. However, sometimes, for various
reasons, it doesn't. When that happens, the program gets stuck in what's known as
an infinite loop, where the loop's body just keeps executing endlessly. Obviously,
you want to avoid these at all costs! If your program ever gets caught in such a
loop, you can usually force it to stop by pressing Ctrl + C or Ctrl + Break on your
keyboard.

Example:

#include<stdio.h>
void main()

{
int i=1;
while(i<=10)
{
Printf(“ i= %d\n”,1);
}
¥

This program will never terminate as variable i will always be less than 10. To get
the loop terminated, an increment operation (i + +) will be required in the loop.

6.3.3 The for Loop

for statement makes it more convenient to count iterations of a loop and works
well where the number of iterations of the loop is known before the loop is
entered. The syntax is:

for (initialization; test condition; increment or decrement)
{

Statement(s);

}

The primary goal of the for loop is much like the while loop: to repeatedly execute
a statement or a block of code as long as a certain condition remains true.
However, the for loop offers a neat advantage. It's specifically designed with built-
in sections where you can easily handle the loop's setup (like initializing a counter
variable) and its ongoing maintenance (such as incrementing or decrementing that
control variable). This makes it perfectly suited for performing actions that involve
a counter or a fixed number of repetitions.

Here's how the for loop executes its actions:
o 1. Initialization: This is the very first thing that happens. You typically set up

your counter variable here (e.g., int i = 0;). Crucially, this step only executes once
when the loop begins.

e 2. Condition Check: After initialization, the loop immediately checks its

specified condition.

o Ifthe condition is true, the loop will continue its operations.

o If the condition is false, the loop stops right then and there, and the
program skips over the loop's body, moving on to whatever code comes after the
loop.

e 3. Execute Loop Body: If the condition from step 2 was true, the statement or
block of statements inside the loop (those curly braces {}) gets executed.

e 4. Update (Increment/Decrement): Once the loop's body has finished executing,
the update expression (where you usually increment or decrement your counter
variable, e.g., i++ or i--) is performed.

e 5. Loop Back: After the update, the c@ol then jumps back to step 2 (the

1

condition check), and the cycle repeats 1 the condition eventually becomes

false.
| Csunter indtalizatian |
(R
Teat . Terminate Laop
Cond|tho
L trae
| Esacite body of loop]
)
| Modify Courdir
Features:
More concise
Easy to use
Highly flexible

More than one variable can be initialized.
More than one increments can be applied.
More than two conditions can be used.

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

int a;

clrscr();

for(i=0; i<5; i++);

{

Printf(“MCMT!\t”); //'5 times
}

getch();

}
Output:

MCMT MCMT MCMT MCMT MCMT
More About for Loop:

for loop in C has several capabilities that are not found in other loop constructs.
re than one variable can be initialized at a time in the for statement.

The Statement

p=1
formn=0;n<17;++n)
can be rewritten as for
(p=1,n=0;n<17;++n)

The increment section may also have more than one part as given in the following

Example:
for(n=1, m=50; n <=m; n=n+1, m = m-j)

p=m/n;
printf ("%d %d %d\n", n, m, p):

6.3.4 The Nested Loop

Loops within loops are called nested loops. An overview of nested while, for and
do .. while loops is given below:

Nested while:
It is required when multiple conditions are to be tested.
The syntax is:

while (condition 1)

}
}
}

Example:

@te a program to generate the following pattern:

_ = =
SN SR S}

3
3 4

/* Program to print the pattern */
#include<stdio.h>

main()

{

int i,j;

for (i=1;i<=4;++i);

{

printf("%d\n",1);
for(j=1;j<=i;++j);
printf("%d\t",j);

i

}

Here, an inner for loop is written inside the outer for loop. For every value of i, j takes the
value from 1 to i and then value of i is incremented and next iteration of outer loop starts
ranging j value from 1 to i.

Example:

#include<stdio.h>
#include<conio.h>

main()

{

Inti=1,N;

Clrscr();

While(i<=5)

{

N=1;

While(N<=5)

Printf(“%d”, N);

}

printf(*\n”);

}

}

Ouput:
12345
12345
12345
12345
12345

Nested for:

It is used when multiple set of iterations are required.

The syntax is:

[SUUINGVINGS)

Example:

#include

#include

main()

{

inti, N;

clrscr();
for(i=1;i<=5;it++);

{

for(N=1 ;N<=5; N++);
{

printf(“ %d ” , N);

}
printf(“\n”);
}
b

Ouput:

—_ e =
(NS NS \O R \S 2 \9)
W W W W W
B
W L L L

6.4 THE GOTO STATEMENT

The goto statement in C provides a way to unconditionally branch from one point in your program
to another. Essentially, it breaks the normal, step-by-step sequential execution flow. To make this
jump, the goto statement needs a label to pinpoint exactly where it should transfer control. A label is
simply any valid variable name, and it must always be followed by a colon (:). You place this label
immediately before the statement where you want the program's execution to resume.

This statement is often referred to as a "jumping statement" because of its direct, non-sequential

nature. While generally advised to be used sparingly, it can be quite useful for certain specific
situations, particularly when you need to jump out of deeply nested loops. If an error occurs deep
within multiple layers of loops, a simple break statement might only exit the innermost loop. In such

complex scenarios, the goto statement offers a powerful way to make a clean, immediate exit from

the entire structure.

The general forms of goto and label statements are:

goto label;

===8tatementa--

Figure:
while {condition)
i
for{ : i :)
{
goto err;
}
2rr:
H
Example:

#include<stdio.h>
#include<conio.h>
main()

{

int i=1, j;

clrser();
while(i<=3)

{

for(j=1;

i<=3551)

{

printf(" I=%d \t J=%d \n", 1, j);
if(j==2) goto stop;

@+1;

}
getch();

}

Output:

J=1

I=1
I=1 J=2

6.5

THE BREAK @‘ATEMENT

Sometimes, it is required to jump out of a loop irrespective of the conditional test value.
Break statement is used inside any loop to allow the control jump to the immediate
statement following the loop.

The syntax is: break;

When you're dealing with nested loops, the break statement acts specifically to exit only the
innermost loop in which it's placed. It effectively jumps control out of that immediate loop.
You'll find the break statement useful across all types of loops—whether it's a while, do-
while, or for loop—and #pyalso commonly used within switch statements. Let's take a look
at a program to see how tfic break statement works in action.

Example:

#include<stdio.h>
#include<conio.h>
main()

{

int i;

clrser();

for(i=1; i<=20 ; i++);

{

if(i>5)

break;

printf("%d",i); // 5 times only
¥

printf(““ \nOut of loop”);
getch();

b
Output:

12345
Out of loop

6.6

THE CONTINUE STATEMENT

Sometimes, you'll find yourself in a situation where you need to bypass a specific section of
a loop's body, but only when certain conditions are met. To handle this kind of scenario, C
provides the "continue’ statement.

While the ‘continue’ statement operates similarly to the ‘break’ statement in terms of
altering loop flow, there's a key distinction: "continue’ doesn't actually terminate the loop.
Instead, when “continue’ is encountered, it causes the current iteration to immediately stop,

skipping any remaining statements within that iteration, and then jumps directly t8"the
beginning of the “next” iteration. Essentially, it lets you "skip over" a part of the loop's
body and move right on to the next cycle.

The syntax is: continue;

Figure:

while {condition)

{

continue;

1
4

Example:

#include<stdio.h>
#include<conio.h>

main()

{
int 1;
clrser();
for(i=1; i<=10; i++)

{
if(i>=6 && 1 <=8)
continue;
printf("\t%d",i); // 6 to 8 is omitted
}
getch();
}
Output: 12345910

6.7 THE EXIT() FUNCTION

The exit() function is used to terminate the execution of 'C' program. It is a standard library
function and uses header file stdlib.h.

The general form of exit() function is
exit (int status);

The difference between break and exit() is that former terminates the execution of loop in
with it is written while exit() terminates the execution of program itself.

The status (in the general form of exit) is a value returned to the operation system after the
termination. of the program.

The value zero “0” indicates that the termination is normal while value one “1” (Non-Zero)
indicates different types of errors.

Example:

#include<stdio.h>
#include<conio.h>

main()
{
int i;
clrser();
for(i=1; ; i++)
{
if(i>5)
exit(0);
printf("%d",i); // 5 times only
}
printf(“ \nOut of loop”); // control will not reached here
getch();
}
Output:
12345

6.8

CONCLUSION

Programs rarely just follow a straight, linear path of gfj\{tructions from start to finish. More
often than not, they need the ability to either repeat a~section of code multiple times based
on requirements or make crucial decisions to alter their flow. This is precisely why C
equips us with powerful control and looping statements. In this unit, we've explored the
different looping structures C offers: the ‘while" loop, the *do...while" loop, and the “for’
loop.

Beyond just repeating code, we also looked at statements that give us finer control. The
‘break’ statement, for instance, gives us the power to exit a loop even if its natural
termination condition hasn't been met. This can be super handy for ending an infinite loop
or simply forcing an early exit when needed. Then there's the ‘continue’ statement, which
causes the program to skip the remainder of the “current” iteration of a loop and
immediately jump to the start of the ‘next’ one. And finally, the ‘goto" statement allows for
an unconditional jump to any other point within your program. While it offers direct
control, it's a feature you should use with great care, as its execution ignores any structural
nesting, which can sometimes make code harder to follow or debug..

UNIT7 ARRAYS AND STRINGS

Structure

7.0 Introduction
7.1 Objectives
7.2 Array Declaration
7.2.1 Syntax of Array Declaration
7.2.2 Size Specification
7.2.3 Accessing Array Elements
7.3 Array Initialization
7.3.1 Initialization of Array Elements in the Declaration
7.3.2 Character Array Initialization
7.4 Subscript
7.5 Passing Arrays to Functions
7.6 Processing the Arrays
7.7 Multi-Dimensional Arrays
7.6.1 Multi-Dimensional Arrays Declaration
7.6.2 Initialization Two-Dimensional Arrays
7.8 Declaration and Initialization of Strings
7.9 Display of Strings Using Different Formatting Techniques
7.10 Array of Strings
7.11 Built-in String Functions and Applications
7.11.1 Strlen Function
7.11.2 Strepy Function
7.11.3 Stremp Function
7.11.4 Strcat Function
7.11.5 Strlwr Function
7.11.6 Strrev Function
7.11.7 Strspn Function
7.12 Other String Functions
7.13 Conclusion
7.14 Unit based Questions /Answers

7.0 INTRODUCTION

Let's face it, as programs grow larger and more complex, managing all that data can
quickly become a real headache. Variable names might get longer just to stay unique, and
frankly, dealing with an ever-increasing list of distinct variable names can make it tough
for a programmer to focus on the truly important task of writing correct and efficient
code. This is where arrays come in as a lifesaver. They offer a neat mechanism for
grouping several related data items under a single identifier, which dramatically
simplifies the whole data management process.

Think about it: many programming challenges involve working with multiple, related
pieces of data that share common traits—like a list of student marks, a series of
temperatures, or a collection of enrollment numbers. While you could create individual
variables for each item, that would be a tedious and cumbersome approach. Arrays
provide the perfect solution for handling these collections efficiently.

Now, let's talk about character arrays, which we commonly refer to as strings. In C, a

string is fundamentally just a single-dimensional array designed to hold characters. C
doesn't actually have an inherent "string" data type built-in; it relies on these character
arrays. Sometimes, you'll need to process individual characters within a string. However,
for many other problems, you'll want to manipulate strings as complete, cohesive entities.
Luckily, C provides a powerful set of string-oriented library functions for just this
purpose. Most C compilers include these functions (for tasks like comparing strings,
copying them, or concatenating them) within the ‘<string.h>" header file. It's important to
remember that these string functions typically operate on character arrays that are null-
terminated—meaning they have a special null character ("\0") at the very end to mark
where the string finishes.

This unit will explain to you the Array elements and String Functions of language C.

7.1

OBJECTIVES

After gmpleting this unit, you will be able to:

. clare and use arrays of one dimension;

" initialize arrays;

= use subscripts to access individual array elements;

= write programs involving arrays;

® do searching and sorting; and

. le multi-dimensional arrays.

= ne, declare and initialize a string;

= discuss various formatting techniques to display the strings; and

= discuss various built-in string functions and their use in manipulation of strings.

7.2

ARRAY DECLARATION

An array is essentially a specific kind of data structure that allows you to store a fixed-
size, ordered collection of items, all of which must be of the same type. While it's used for
holding a collection of data, it's often more helpful to simply think of an array as a group
of variables, all sharing the same data type.

Instead of going through the tedious process of declaring many individual variables—like
‘number0°, ‘numberl’, and so on, all the way up to ‘'number99'—you can just declare one
single array variable, perhaps named ‘numbers’. Then, to refer to each individual spot,
you simply use an index (like ‘numbers[0]’, ‘numbers[1]’, and so forth, up to
‘numbers[99]"). This way, you access a specific element in the array using its position, or
index.

Under the hood, all the elements within an array are stored in memory locations that are
right next to each other, or contiguous. The very first element always sits at the lowest
memory address, and the last element resides at the highest address within that allocated
block..

e characteristic features of an array.
= Array is a data structure storing a group of elements, all of which are of the same
data type.
= All the elements of an array share the same name, and they are distinguished from

one another with the help of an index.
= Random access to every element using a numeric index (subscript).
= A simple data structure, used for decades, which is extremely useful.
= Abstract Data type list is frequently associated with the array data structure.

The declaration of an array is just like any variable declaration with additional size part,
indicating the number of elements of the array.

First Element Last Element

Numbers[0] Numbers[1] Numbers[2] Numbers[3] |

7.2.1 Syntax of Array Declaration

To declare an array in C, a programmer specifies the type of the elements and the
number of elements required by an array as follows:
data_type arrayName [arraySize |;

This particular setup is what we refer to as a single-dimensional array. When
you're declaring one, remember that the ‘arraySize' (how big it is) absolutely has
to be a whole number, a constant, and larger than zero. As for the "type" of data it
holds, that can be any of the valid data types C supports.

The following are some of declarations for arrays:

int char [80];
float farr [500];
static int iarr [80];
char charray [40];

There are two restrictions for using arrays in C:

= The amount of storage for a declared array has to be specified at compile
time before execution. This means that an array has a fixed size.

= The data type of an array applies uniformly to all the elements; for this
reason, an array is called a homogeneous data structure.

7.2.2 Size Specification

When declaring the size of an array, it's a really good practice to use a symbolic
constant (like a "#define''d value) instead of just punching in a fixed integer
number. Why? Because it makes modifying your program much, much easier
down the line. If you ever need to change the maximum size of that array, you can
simply update the value of that one symbolic constant, and every place in your
code that refers to it will automatically adjust. It saves a lot of hassle!.

To declare size as 50 use the following symbolic constant, SIZE, defined:
#define SIZE 50

This example shows how to declare and read values in an array to store marks of
the students of a class.

Example:
Write a program to declare and read values in an array and display them.

/* Program to read values in an array*/
include < stdio.h >

define SIZE 5 /* SIZE is a symbolic constant */
main ()

{

inti=0; /* Loop variable */

int stud marks[SIZE]; /* array declaration */

/* enter the values of the elements */

for(1= 0;i<size;it+)

{

printf (“Element no. =%d”,i+1);

printf(* Enter the value of the element:”);
scanf(“%d”,&stud_marks[i]); } printf(‘“\nFollowing are the values stored in the
corresponding array elements: \n\n”); for(i = 0; i<size;i++)
{

printf(‘“Value stored in a[%d] is %d\n™i, stud marks[i]);

H

}

OUTPUT:

Element no. = 1 Enter the value of the element = 11
Element no. = 2 Enter the value of the element = 12
Element no. = 3 Enter the value of the element = 13
Element no. = 4 Enter the value of the element = 14
Element no. = 5 Enter the value of the element = 15

Following are the values stored in the corresponding array elements:

Value stored in a[0] is 11
Value stored in a[1] is 12
Value stored in a[2] is 13
Value stored in a[3] is 14
Value stored in a[4] is 15

7.2.3 Accessing Array Elements

To get to a specific item within an array, you essentially "index" the array's name.
This means you put the index number of the element you want right inside square
brackets, immediately following the array's name.

Example:

double salary = balance[9];

The above statement will take the 10th element from the array and assign the value
to salary variable.

Example:

To use concepts viz. declaration, assignment, and accessing arrays:
#include<stdio.h>

int main ()

{

intn[10]; /* n is an array of 10 integers */

int i,j; /* initialize elements of array n to 0 */
for (1=0;1<10;i++) {n[i]=1+100; /* set element at location i to i + 100 */
}

/* output each array element's value */
for j=0;j<10;j++)

{

printf("Element[%d] = %d\n", j, n[j]);
H

return 0;

}

The following Result:

Element[0] = 100
Element[1] =101
Element[2] = 102
Element[3] =103
Element[4] = 104
Element[5] = 105
Element[6] = 106
Element[7] = 107
Element[8] = 108
Element[9] = 109

7.3

ARRAY INITIALIZATION

Arrays can be initialized at the time of declaration. The initial values must appear in the
order in which they will be assigned to the individual array elements, enclosed within the
braces and separated by commas.

7.3.1 Initialization of Array Elements in the Declaration

The values are assigned to individual array elements enclosed within the braces and
separated by comma.

Syntax of array initialization is:

data type array-name [size | = {val 1, val 2, val n};

val 1 is the value for the first array element, val 2 is the value for the second element, and

val n is the value for the n array element.

Note: When initializing the values at the time of declaration, then there is no need to
specify the size. Let the given example:

int digits [10] = {1,2,3,4,5,6,7,8,9,10};

int digits[] = {1,2,3,4,5,6,7,8,9,10};

int vector[5] = {12,-2,33,21,13};

float temperature[10] ={ 31.2, 22.3, 41.4, 33.2, 23.3, 32.3, 41.1, 10.8, 11.3, 42.3};
double width[] = { 17.33333456, -1.212121213,222.191345 };

int height[10] = { 60, 70, 68, 72, 68 };

7.3.2 Character Array Initialization

In C, strings are essentially implemented as arrays of characters. What's interesting is that
they're initialized a bit differently than other arrays. There's a special little character,
called the null characiggy(*\0"), which C *automatically* places at the very end of every
string. So, when you asSign a string constant to an external or static character array, you
often don't need to specify the array's size yourself. The compiler is smart enough to
figure it out automatically, and that calculated size will always include room for that
crucial "\0" character tacked on at the end.

Example:

ar thing [3] =“TIN”;
char thing []=“TIN”;

The above two statements the assignments are done differently. The first statement is not
a string but simply an array storing three characters ‘T’, ‘I’ and ‘N’ and is same as
writing: char thing [3] = {‘T’, ‘I’, ‘N’}; whereas, the second one is a four character
string TIN\O.

7.4

SUB SCRIPT

To the individual element in an array, a subscript is used. to the statement used in
Example:
scanf (“ % d”, &stud_marks[@

Subscript is an integer type constant or variable name whose value ranges from 0 to SIZE
- 1 where SIZE is the total number of elements in the array.

individual elements of an array of size 5: Consider the following declarations: char
country[] = “India”; int stud[] = {1, 2, 3, 4, 5}; Here both arrays are of size 5. This is
because the country is a char array and initialized by a string constant “India” and every
string constant is terminated by a null character \0°.

Example:

/* Program to find the maximum marks among the marks of 10 students*/
include < stdio.h >

define SIZE 10 /* SIZE is a symbolic constant */

main ()

{

inti=0;

int max = 0;

int stud_marks[SIZE]; /* array declaration */

/* enter the values of the elements */
for(1= 0;i<size;i++)

{

printf(“Student no.=%d”,i+1);
printf(“ Enter the marks out of 50:”);
scanf(“%d”,&stud_marks[i]);

@md maximum */

for(i = 0;i<size;i++)

{

gstud_marks [i]>max)
ax = stud_marks[i];

¥

printf(“\n\nThe maximum of the marks obtained among all the 10 students is: %d ”,max);

i
OUTPUT:

Student no. = 1 Enter the marks out of 50: 10
Student no. =2 Enter the marks out of 50: 17
Student no. = 3 Enter the marks out of 50: 23
Student no. =4 Enter the marks out of 50: 40
Student no. =5 Enter the marks out of 50: 49
Student no. = 6 Enter the marks out of 50: 34
Student no. = 7 Enter the marks out of 50: 37
Student no. = 8 Enter the marks out of 50: 16
Student no. =9 Enter the marks out of 50: 08
Student no. = 10 Enter the marks out of 50: 37

7.5

PASSING ARRAYS TO FUNCTIONS

When you need to send a single-dimensional array as an argument to a function, C gives
you a few options for how you declare that formal parameter inside the function.
Interestingly, all three common declaration methods end up achieving the same result:
they each signal to the compiler that the function is expecting to receive an integer
pointer. The good news is, you can apply a similar approach when passing multi-
dimensional arrays as formal parameters as well.

Way-1

Formal parameters as a pointer:

void myFunction(int *param)

{

}
Way-2
Formal parameters as a sized array:

void myFunction(int param[10])

}
Way-3
Formal parameters as an unsized array:

void myFunction(int param[])

{

}

Example:

Okay, let's look at an example. Imagine a function designed to calculate an average: it
takes an array as input, along with one other argument, and then uses those inputs to

figure out and return the average of the numbers provided in that array. Here's how it
would generally work:

double getAverage(int arr[], int size)

{
int i;
double avg;
double sum;
for (1= 0; i < size; ++i)
{
sum += arr[i];
}
avg = sum/ size;
return avg;
}

Now, let us call the function:

#include<stdio.h>
/* function declaration */

double getAverage(int arr[], int size);
int main ()

{

/* an int array with 5 elements */
int balance[5] = {1000, 2, 3, 17, 50};
double avg;

/* pass pointer to the array as an argument */
avg = getAverage(balance, 5) ;

/* output the returned value */
printf("Average value is: %f ", avg);
return 0;

}

When the code is compiled together and executed, it produces the following result:
Average value is: 214.400000

7.6

PROCESSING THE ARRAYS

For certain applications the assignment of initial values to elements of an array is
required. This means that the array be defined globally (extern) or locally as a static array.

Example:

Write a program to display the average marks of each student, given the marks in 2
subjects for 3 students.

/* Program to display the average marks of 3 students */

include < stdio.h >

define SIZE 3

main()

{

inti=0;

float stud marks1[SIZE]; /* subject larray declaration */
float stud_marks2[SIZE]; /*subject 2 array declaration */
float total marks[SIZE];

float avg[SIZE];

printf(“\n Enter the marks in subject-1 out of 50 marks: \n”);

for(1= 0;i<size;i++)

printf(“Student no. =%d”,i+1);
printf(* Please enter the marks= “);
scanf(“%f”,&stud_marks2[i]);

}

for(i=0;i<size;i++)

total marks[i]=stud marks1[i]+ stud marks2[i];
avg[i]=total marks[i]/2;

printf(“Student no.=%d, Average= %f\n”,i+1, avg[i]);
)

)

OUTPUT:

Enter the marks in subject-1out of 50 marks:
Student no. = 1 Enter the marks= 23
Student no. = 2 Enter the marks= 35
Student no. = 3 Enter the marks= 42

Enter the marks in subject-2 out of 50 marks:
Student no. = 1 Enter the marks= 31
Student no. = 2 Enter the marks= 35
Student no. = 3 Enter the marks= 40

Student no. = 1 Average= 27.000000
Student no. = 2 Average= 35.000000
Student no. = 3 Average=41.000000

7.7

MULTI-DIMENSIONAL ARRAYS

C programming language allows multidimensional arrays. Here is the general form of a
multidimensional array declaration:

type name|sizel][size2]...[sizeN];
Example:

The following declaration creates a three-dimensional integer array:

int three dim|[5][10][4];

Imagine you're diving into the world of programming a chess game. A standard
chessboard, as we know, is an 8-by-8 grid. So, what's the best way to digitally represent
that? You'd likely turn to a two-dimensional array. This structure perfectly mirrors the
chessboard, allowing you to store the positions of all the chess pieces. With a two-
dimensional array, you use two indices to pinpoint any single square, which is actually
quite similar to how "algebraic notation" works in chess circles to record games and
problems. It's a pretty intuitive fit!

Here's a cool principle: in theory, there's absolutely no limit to how many subscripts (or
dimensions) an array can have. Any array with more than one dimension falls under the
umbrella of multi-dimensional arrays. While we humans might struggle to visualize
objects beyond three dimensions, representing and working with highly multi-
dimensional arrays poses no problem whatsoever for computers. They handle it with ease!

7.7.1 Multi-Dimensional Arrays Declaration

To declare an array of two dimensions as follows:

datatype array_namefsizel[[size2];

In the example of, variable type is the name of some type of variable, such as int. Also,
sizel and size2 are the sizes of the array’s first and second dimensions, respectively.

Example:

Remember, because C arrays are zero-based, the indices on each side of the chessboard
array run O through 7, rather than 1 through 8. The effect is the same: a two-dimensional

array of 64 elements. int chessboard [8][8];

7.7.2 Initialization Two-Dimensional Arrays

The simplest kind of multi-dimensional array you'll encounter is the two-dimensional
array. You can essentially think of it as a list, where each item on that list is actually
another one-dimensional array.

To declare a two-dimensional integer array of size [x][y], To write something as:

type arrayName [x [[y |;

For an 'm x n' array, you're looking at a total of 'm * n" individual elements. To figure
out how mucgspace it will take up in memory, you simply multiply that total number of
elements by tlie size of each individual element. This calculated amount is precisely how
much memory needs to be set aside, or "reserved," for your array. When these elements

are actually stored, they're typically laid out in memory row by row.
inttable[2][3]={1,2,3,4,5,6 };

It means that element

table [0][0

table [O][1

table [0][2
[
[
[

L
2.
3.
table [1][0] = 4;
table [1][1]=5
6

table [1][2

The neutral order in which the initial values are assigned can be altered by including the
groups in { } inside main enclosing brackets, the initialization as:

inttable [2][3]={ {1,2,3},36
14,5,6} 1

When you're initializing multi-dimensional arrays, the values placed within the innermost
set of braces are assigned to the array elements where the last subscript (or index)
changes most quickly. If you provide fewer values than a row can hold, the remaining
elements in that row will automatically be filled with zeros. It's important to remember,
though, that you can't supply more values than the defined size of the row; you must stick
within its specified capacity.

inttable[2][3]={{1,2,3},{4}};

It assigns as

table [0][0] = 1;
table [0][1] =2;
table [0][2] = 3;
table [1][0] = 4;
table [1][1]=0;

table [1][2] = 0

7.8

DECLARATION gN D INITIALIZATION OF
STRINGS

Strings in C are essentially just one-dimensional arrays made up of characters, with one
crucial difference: they're always ended by a special null character, written as \0'. This "\0'
acts like a sentinel, signaling the very end of the string.

So, when you declare and initialize a string, say, with the word "Hello," you're actually
creating a null-terminated string that contains those five letters followed immediately by
the "\0'. This means that the character array you use to hold "Hello" needs to be one slot
larger than the number of characters in the word itself, just to make room for that essential

ﬁ terminator.
r greeting[6] = {'H", 'e', 'l','I', o', "\0'};
The rule of array initialization, they can write the statement as:

char greeting[] = "Hello";

In C, strings are essentially collections of characters, digits, and symbols, all bundled
together and enclosed within quotation marks. Simply put, you can think of a string as a
"character array." A crucial detail is that the very end of every string is always marked by
a special null character, represented as "\0'.

The memory of the string in C/C++:

Index 0 1 2 3 . .
Variable H e | | 0 \o
Address 0x23451 | Ox23452 0x23453 0x23454 | ox23455 | Ox23456

The null character at the end of a string constant. The C compiler automatically places the
\0' at the end of the string when it initializes the array.

string:

sclude
int mai
{ charlgeting[ﬂ ={H,"'e,'T,'T,'s,"\0'};
printf("Greeting message: %s\n", greeting);
return 0;

}

Result:
Greeting message: Hello

Initialization of Strings:

tring in C is stinply a sequence of characters. To declare a string, specify the data type
as char and place the number of characters in the array in square brackets after the string
name.

The syntax is:

char string-name([size];

Example:

char name[20];
char address[25];
char city[15];

The string can be initialized as:

rname[8] — {‘P’, ‘R,, cov’ ‘G’, ‘R’, ‘A’, ‘M’, ‘\O’};

Each character of string occupies 1 byte of memory (on 16 bit computing). The size of
character is machine dependent, and varies from 16 bit computers to 64 bit computers.
The characters of strings are stored in the contiguous (adjacent) memory locations.

1byte 1byte 1 byte 1 byte 1 byte 1 byte 1 byte 1b

P|R|O|G|R|A|M|\
1001 1002 1003 1004 1005 1006 1007 1008

The good news is that the C compiler is smart enough to automatically insert the null
character ("\0") at the end of every string literal you use. This means you generally don't
have to manually initialize that null terminator yourself.

When working with string constants (those bits of text enclosed in double quotes), you
have a couple of straightforward ways to handle them. You can directly assign them to
‘char’ pointers. Alternatively, you can assign a string constant to a ‘char’ array—you
might even omit the size specification and let the compiler figure it out, or you can
explicitly define the size. Just remember, if you specify the size, always make sure to
leave that extra spot for the essential null character! Now, let's look at a couple of code
examples to see this in action:

/* Fragment 1 */
{

char *s;
s=hello”;
printf(“%s\n”,s);
}

/* Fragment 2 */

@r s[100];

strepy(s, “ hello”);
printf(“%s\n”,s);
}

&se two fragments produce the same qm, but their internal behaviour is quite
different. In fragment 2, you cannot say s = hello";. To understand the differences, you
have to understand how the string constant table works in C.

Example:

ite a program to read a Q’le from the keyboard and display message Hello onto the
monitor Program.
/*Program that reads the name and display the hello along with your name*/
#include main()
{
char name[10];
printf(“\nEnter Your Name : @
scanf(“%s”, name);
printf(“Hello %s\n”, name);
}

OUTPUT:

Enter Your Name: Raghav
Hello Raghav

7.9

TRRAY OF STRINGS

Array of strings are multiple strings, stored in the form of table. Declaring array of strings
is same as strings, except it will have additional dimension to store the number of strings.
Syntax is:

char array-name[size][size];
Example:

char names[5][10];

where names is the name of the character array and the constant in first square brackets
will gives number of string we are going to store, and the value in second square bracket
will gives the maximum length of the string.

7.10

BUILT-IN STRING FUNCTION AND
APPLICATIONS

The header file contains some string manipulation functions. The following is a list of the
common string managing functions in C.

7.10.1 Strlen Function

The strlen function returns the length of a string. It takes the string name as argument.
The syntax is as follows:

n =strlen (str);

where str is name of the string and n is the length of the string, returned by strlen
function.

7.10.2 m*cpy Function

In C, you cannot simply assign one character array to another. You have to copy element
by element. The string library contains a function called strcpy for this purpose. The
strepy function is used to copy one string to another.

The syntax is:
strepy(strl, str2);

where strl, str2 are two strings. The content of string str2 is copied on to string str1.

7.10.3 Stremp Function

The stremp function, found within C's standard string library, is specifically designed to
compare two strings. It does this by checking them character by character, starting from
the beginning. The comparison halts either when it finds a difference in the ASCII values
of corresponding characters, or when it reaches the end of either string.

What it returns is an integer value. This integer tells you about the relationship between

the two strings:

e If stremp returns zero (0), it means the two strings are identical.

e A negative value indicates that the first string is "less than" the second string
(alphabetically, based on ASCII values).

e A positive value signifies that the first string is "greater than" the second string.

The syntax is:
= stremp(strl, str2);

where strl and str2 are two strings to be compared and n is returned value of differed
characters.

7.10.4 m"cat Function

The strcat function is used to join one string to another. It takes two strings as arguments;
the characters of the second string will be appended to the first string.

The syntax is:
strcat(strl, str2);

where strl and str2 are two string arguments, string str2 is appended to string strl.

7.10.5 Striwr Function

The strlwr function converts upper case characters of string to lower case characters.
The syntax is:

strlwr(strl);

where strl is string to be converted into lower case characters.

7.10.6 Strrev Function

The strrev funtion reverses the given string.

The syntax is:

strrev(str);

where string str will be reversed.

7.10.7 Strspn Function

The strspn function returns the position of the string, where first string mismatches with
second string.

The syntax is:
@ strspn (first, second);

where first and second are two strings to be compared, n is the number of character from
which first string does not match with second string.

7.11

OTHER STRING mJNCTIONS

strncpy function

The strncpy function same as strcpy. It copies characters of one string to another string
up to the specified length.

The syntax is:

strnepy(strl, str2, 10);

where strl and str2 are two strings. The 10 characters of string str2 are copied onto string
strl.

stricmp function

The stricmp function is same as stremp, except it compares two strings ignoring the case
(lower and upper case).

% syntax is:
= stricmp(str1, str2);

strncmp function The strnemp function is same as stremp, except it compares two strings
up to a specified length.

The syntax is:

n = strnemp(strl, str2, 10);

where 10 characters of strl and str2 are compared and n is returned value of differed
characters.

strchr function

The strchr funtion takes two arguments (the string and the character whose address is to
be specified) and returns the address of first occurrence of the character in the given
string.

The syntax is:
cp = strchr (str, ¢);

where str is string and c is character and cp is character pointer.

7.12 CONCLUSION

In this unit, we've learned that as programs expand in size and complexity, effectively
managing data becomes increasingly challenging. Relying solely on unique, often lengthy
variable names for every piece of data can quickly overwhelm a programmer and divert
focus from the critical task of accurate coding. This is where arrays prove invaluable.
They provide a unified name for a collection of data items, allowing individual members
to be accessed simply by their index. We've explored the fundamental purpose of arrays,
how to declare them, and how to assign values. A key characteristic is that all array
elements are stored in sequentj emory locations, and without exception, C arrays are
indexed starting from 0, going Up to one less than their declared size.

A crucial point about array declarations is their rigidity regarding size: the dimensions
you specify must be constant expressions that can be determined when the program is
compiled, not during runtime. Regarding initialization, global and static array elements
are automatically set to 0 by default, whereas elements in automatic (local) arrays will
contain whatever "garbage" values were previously in those memory locations. Within C,
a character array is specifically employed to represent a character string, with its end
explicitly marked by a byte set to 0, commonly known as a NULL character ('\0").

At their heart, strings are simply sequences of characters. For them to behave correctly
and be usable with C's string functions, they absolutely *must* be null-terminated. This
means you always need to account for that \0' when dealing with strings, especially if
you're allocating memory dynamically for them. The ‘string.h’ library provides a wealth
of useful functions for string manipulation. However, losing that crucial "\0" character can
lead to significant and hard-to-track bugs. Therefore, it's vital to ensure you always copy
the "\0' when duplicating strings, include it when creating new ones, and verify that any
receiving string is adequately sized to hold the source string plus its "\0'. Lastly, if you're
pointing a character pointer to a sequence of characters, confirm that those characters are
properly terminated with a "\0".

UNIT8 FUNCTIONS

Tools for Modular Programming

8.0 Introduction
8.1 Objectives
8.2 Definition of a Function
8.3 Declaration of a Function
8.4 @ction Prototypes
O
8.5 ing a Function
8.6 Function Arguments
8.7 The Return Statement
8.7.1 Call by Value
%2 Call by Reference
8.8 es of Variables and Storage Classes
8.8.1 Automatic Variables
8.8.2 External Variables
8.8.3 Static Variables
8.8.4 Register Variables
8.9 Types of Function Invoking
8.10 Recursion

8.11 Conclusion
8.12 Unit based Questions /Answers

8.0

INTRODUCTION

To make programming simple and easy to debug, we break a larger program into smaller
subprograms which perform ‘well defined tasks’. These subprograms are called functions.
So far we have defined a single function main ().

After reading this unit you will be able to define many other functions and the main()
function can call up these functions from several different places within the program, to
carry out the required processing.

Functions are very important tools for Modular Programming, where we break large
programs into small subprograms or modules (functions in case of C). The use of
functions reduces complexity and makes programming simple and easy to understand.

In this unit, we will discuss how functions are defined and how are they accessed from the
main program? We will also discuss various types of functions and how to invoke them.
And finally you will learn an interesting and important programming technique known as

Recursion, in which a function calls within itself.

This unit will explain to you the functions of language C.

8.1

OBJECTIVES

After completing this unit, you will be able to:

= the need of functions in the programming;

= how to define and declare functions in ‘C’ Language;

= different types of functions and their purpose;

= how the functions are called from other functions;

= how data is transferred through parameter passing, to functions and the Return
statement; recursive functions; and

= the concept of ‘Call by Value’ and its drawbacks.

= understand the concept and use pointers;

= address and use of indirection operators;

= make pointer type declaration, assignment and initialization;

= use null pointer assignment;

= use the pointer arithmetic;

= handle pointers to functions;

= see the underlying unit of arrays and pointers; and

= understand the concept of dynamic memory allocation

8.2

DEFINITION OF A FUNCTION

A function is a group of statements that together perform a task. Every C program has at
least one function, which is main(), and all the most trivial programs can define additional
functions.

You can divide up your code into separate functions. How you divide up your code
among different functions is up to you, but logically the division is such that each
function performs a specific task.

A function declaration tells the compiler about a function's name, return type, and
parameters. A function definition provides the actual body of the function.

The C standard library provides numerous built-in functions that your program can call.
For example, strcat() to concatenate two strings, memcpy() to copy one memory location
to another location, and many more functions. A function can also be referred as a method
or a sub-routine or a procedure, etc.

Functions are the C building blocks where every program activity occurs. It is a self
contained program segment that carries out some specific, well-defined task. Every C

program must have a function. One of the function must be main().

The general form of a function definition in C programming language is as follows:
return_type function_name(parameter list)

{
body of the function

C functions can be classified into two categories.

Library functions: Predefined in the standard library of C. Need is just to include the
library.

User defined functions: It has to be-developed by the user at the time of program

writing.

Need of user Defined Functions

If a program is divided into functional parts, then each part may be independently coded
and later combined into a single unit. This approach clearly results in a number of
advantages.

= Length of program can be reduced by using function.

= Reusability of function increases.

. It is easy to use.

= Debugging is more suitable (easier) for programs.

= [tis easy to understand the actual logic of a program.

= Highly suited in case of large programs.

= By using functions in a program, it is possible to construct modular and structured

programs.
Example:

/* function returning the max between two numbers */
int max(int numl, int num2)
{
/* local variable declaration */
int result;
if (num1 > num?2)
result = numl;
else
result = num?2;

return result;

8.3

DECLARATION OF A FUNCTION

Before defining the function, it is appropriate to declare the function along with its
prototype. In function prototype, the return value of function, type, and number of

arguments are specified. The declaration of all functions statement should be first

statements in main() or we can also declare globally for accessing all function within

program. The general form of function declaration is
<return_type> <function_name> ([<argument_list>]);

A function declaration tells the compiler about a function name and how to call the
function. The actual body of the function can be defined separately. A function

declaration has the following parts:

return_type function_name(parameter list);

For the above defined function max(),the function declaration is as follows:

int max(int num1, int num2);

Parameter names are not important in function declaration, only their type is required, so
the following is also a valid declaration:

int max(int , int);

Function declaration is required when you define a function in one source file and you
call that function in another file. In such case, you should declare the function at the top

of the file calling the function.

FUNCTION PROTOTYPES

Function prototypes are desirable because they facilitate error checking between calls to a
function and corresponding function definition. They also help the compiler to perform
automatic type conversions on function parameters. When a function is called, actual
arguments are automatically converted to the types in function definition using normal
rules of assignment.

The function Definition is, the task assigned to the function, that user declare. The general

form of a function definition is:

return_type function_name (declarations of formal argument list)
{

local variable declarations;

executable statement 1;

executable statement 2;

executable statement n;

return (expression);

Where return_type represents the data type of the value which is returned. The type
specification can be omitted if the function returns an integer or a character. The formal
argument list is a list of variables separated by commas that receive the values from main
program when function is called.

The last statement in the body of function is return (expression). It is used to return the

computed result, if any, to the calling program.

8.5

CALLING A FUNCTION

A function can be called by specifying its name followed by a list of arguments enclosed
in parentheses and separated by commas. If a function call does not require any
arguments, an empty pair of parenthesis must follow the function name.

While creating a C function, you give a definition of what the function has to do. To use a
function, you will have to call that function to perform the defined task.

When a program calls a function, the program control is transferred to the called function.
A called function performs a defined task and when its return statement is executed or
when its function-ending closing brace is reached, it returns the program control back to
the main program.

To call a function, you simply need to pass the required parameters along with the
function name, and if the function returns a value, then you can store the returned value.

Example:

#include<stdio.h>
/* function declaration */

int max(int num1, int num2);

int main ()
{
/* local variable definition */
inta=100;
int b =200;
int ret;

/* calling a function to get max value */
ret = max(a, b);

printf("Max value is : %d\n", ret);

return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num?2)

{

/* local variable declaration */

int result;

if (num1 > num?2)

result = numl;

else

result = num2;

return result;

}

The following result:

Max value is: 200

8.6 FUNCTION ARGUMENTS

If a function is to use arguments, it must declare variables that accept the values of the arguments.

These variables are called the formal parameters of the function.

Formal parameters behave like other local variables inside the function and are created upon entry

into the function and destroyed upon exit.

While calling a function, there are two ways in which arguments can be passed to a function:

Call Type Description
This method copies the actual value of an argument into the formal parameter
Call by value of the function. In this case, changes made to the parameter inside the

function have no effect on the argument.

Call by reference

This method copies the address of an argument into the formal parameter.
Inside the function, the address is used to access the actual argument used in

the call. This means that changes made to the parameter affect the argument.

8.7 THE RETURN STATEMENT

Information is returned from the function to the calling portion of the program via return

statement. Its uses control to be returned to the point from where the function was

accessed. The return statement can take one of the following forms:

return;
or

return (expression);

In the return (expression); statement, the value of the expression is returned to the calling
of the program.

A function can have multiple return statements, each containing different expression.
Example:

/* Program to convert lowercase character to uppercase */
include
main()
{
char lower, upper;
char Lower to_upper (char Lower);
printf("\n Enter the lowercase character:");
scanf("%c", & Lower);
upper = Lower_to_upper (lower);

printf ("\n The upper case Equivalent is % c", upper);

}
char lower_to_upper (char ch);
{
char c2;
c2=(cl >="a' && cl <='7") ? (ch-32) : cl;
return (c2);
¥

8.7.1 Call by Value

Call by value means sending the values of the arguments to functions. When a Single
value is passed to a function via-an actual argument, the value of the actual argument is
copied into the function in formal argument, and no matter what the function does with
that value, the value stored in actual argument remains unchanged. This procedure to pass
the value of an argument to a function is known as passing by value or call by value.

By default, C programming uses call by value to pass arguments. In general, it means the
code within a function cannot alter the arguments used to call the function. Consider the

function swap() definition as follows.

Example:

/* function definition to swap the values */
#include<stdio.h>

void swap(int x, int y)

{
int temp;
temp = X;

/* save the value of x */

X=y;

/* put 'y into x */

y = temp;

/* put temp into y */

return,

¥

Now, let us call the function swap() by passing actual values as in the following
Example:

#include<stdio.h>

/* function declaration */

void swap(int X, int y);

int main ()

{

/* local variable definition */

int a = 100;

int b= 200;

printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);
/* calling a function to swap the values */
swap(a, b);

printf("After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);
return 0;

}

The following Result:

Before swap, value of a: 100
Before swap, value of b: 200
After swap, value ofa: 100
After swap, value of b: 200

It shows that there are no changes in the values, though they had been changed inside the

function.

8.7.2 Call by Reference

The call by reference method of passing arguments to a function copies the address of an
argument into the formal parameter. Inside the function, the address is used to access the
actual argument used in the call. It means the changes made to the parameter affect the
passed argument.

To pass a value by reference, argument pointers are passed to the functions just like any
other value. So accordingly, you need to declare the function parameters as pointer types
as in the following function swap(), which exchanges the values of the two integer

variables pointed to, by their arguments.

/* function definition to swap the values */
#include<stdio.h>

void swap(int *x, int *y)

{

int temp;

temp = *x; /* save the value at address x */

*x = *y; /* put y into x */

y = temp; / put temp into y */

return;

}

Let us now call the function swap() by passing values by reference as in the following:
Example:

#include<stdio.h> /* function declaration */

void swap(int *x, int *y);

int main ()

{

/* local variable definition */

int a = 100;

int b =200;

printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);
/* calling a function to swap the values.

* &a indicates pointer to a i.e. address of variable a and

* &b indicates pointer to b i.e. address of variable b. */
swap(&a, &b);

printf("After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);

return 0;

}
The following Result:

Before swap, value of a: 100
Before swap, value of b: 200
After swap, value of a: 200
After swap, value of b: 100

It shows that the change has reflected outside the function as well, unlike call by value
where the changes do not reflect outside the function.
By default, C uses call by value to pass arguments. In general, it means the code within a

function cannot alter the arguments used to call the function.

8.8

TYPES OF VARIABLES AND STORAGE CLASSES

In a program consisting of a number of functions a number of different types of variables

can be found.

Global vs. Static variables: Global variables are recognized through out the program
whereas local valuables are recognized only within the

function where they are defined.

Static vs. Dynamic variables: Retention of value by a local variable means, that in static,
retention of the variable value is lost once the function is
completely executed whereas in certain conditions the
value of the variable has to be retained from the earlier

execution and the execution retained.

The variables can be characterized by their data type and by their storage class. One way
to classify a variable is according to its data type and the other can be through its storage
class. Data type refers to the type of value represented by a variable whereas storage class
refers to the permanence of a variable and its scope within the program i.e. portion of the

program over which variable is recognized.

Storage Classes

There are four different storage classes specified in C:
1. Auto (matic)

2. Extern (al)

3. Static

4. Register

The storage class associated with a variable can sometimes be established by the location
of the variable declaration within the program or by prefixing keywords to variables

declarations.

A variable storage class tells us

1) Where the variable would be stored.

2) What will be the initial value of the variable, if the initial value is not specifically
assigned (i.e. the default initial value).

3) What is the scope of the variable, i.e., in which functions the value of the variable
would be available.

4) What is the life of the variables; i.e., how long would the variable exist.

Example:
auto int a, b;
static int a, b;

extern float f;

8.8.1 Automatic Variables

These variables comes into existence whenever and wherever the variable is
declared. These variables are also called as local variables, because these are
available local to a function. The storage is in the memory and it has a default
value, which is a garbage value. It is local to the block in which it has been
declared and it life is till the control remains within the block in which the variable

is defined. The key word used is 'auto'.

By default..a variable declared inside a function with storage class specification is

an automatic.

Declaration:
int N;
or

auto int N;

Example:
main()

{

auto int i=10;
printf(“%d”,i);
b

The following Result:
10

8.8.2 External Variables

These are not confined to a single function. Their scope ranges from the point of
declaration to the entire remaining program. Therefore, their scope may be the

entire program or two or more functions depending upon where they are declared.
Points to remember:

= These are global and can be accessed by any function within its scope.

= Therefore value may be assigned in one and can be written in another.

= There is difference in external variable definition and declaration.

= External Definition is the same as any variable declaration:
= Usually lies outside or before the function accessing it.

= [t allocates storage space required.

= [Initial values can be assigned.

* The external specifier is not required in external variable definition.

* A declaration is required if the external variable definition comes after the
function definition.

® A declaration begins with an external specifier.

* Only when external variable is defined is the storage space allocated.

* External variables can be assigned initial values as a part of variable
definitions, but the values must be constants rather than expressions.

= If initial value is not included then it is automatically assigned a value of
ZEro.

Declaration: extern int N;

int i=10; // global variable main()
main() {
{ int i=2;
int i=2; printf(“%d”,i);
printf(“%d”,1); display();
display();
} display();
display(); {
{ extern int i;
printf(“\n%d”,1); printf(“\n%d”,i);
The following Result: int i=10; //global variable
2 The following Result:
10 2

10

In the following example, Variable “ i ” is a global variable. If the global variable
declared outside (before function definition), there is no need to use extern
declaration in function that use global variable. Whereas, if global variable
declared outside (after function definition), it has to be extern declaration within

function that use global variable.

8.8.3 Static Variables

The storage is in the memory and default initial value is zero. It is local to the
block in which it has been defined. The value of the variable persists between
different function calls. The value will not disappear once the function in which it
has been declared becomes inactive. It is unavailable only when you come out the

program. The key word used is 'static'.

Declaration:

static int N;
Example:

void value()

{

static int a=5;
a=at2;
printf("\t%d",a);
}

void main()

{ value();

value ();

value();

getch();

b

The output of the program isnot7 7 7
butitis7 9 11

8.8.4 Register Variables

The storage of this type of variables is in the CPU registers. It has a garbage value
initially. The scope of the variable is it is local to the block in which the variable is
defined. Its life is till the control remains in the block in which it is defined. A
value stored in a CPU register cal always be accessed faster than the one which is
stored in memory. Therefore, if a variable is used at many places in a program it is
better to declare its storage class as register. A good example of frequently used

variables is loop counters. The key word used is 'register'.

Declaration:

register int N;
Example:

main()

{

register int i=10;
printf(“%d”,1);

}

Output: 10

8.9

TYPES OF FUNCTION INVOKING

We categorize a function’s invoking (calling) depending on arguments or parameters and

their returning a value. In simple words we can divide a function’s invoking into four

types depending on whether parameters are passed to a function or not and whether a

function returns some value or not.

The various types of invoking functions are:

With no arguments and with no return value.
With no arguments and with return value
With arguments and with no return value

With arguments and with return value.

Let us discuss each category with some examples:
TYPE-1: With no arguments and have no return value

As the name suggests, any function which has no arguments and does not return any
values to the calling function, falls in this category. These type of functions are confined
to themselves i.e. neither do they receive any data from the calling function nor do they
transfer any data to the calling function. So there is no data communication between the

calling and the called function are only program control will be transferred.
Example:

/* Program for illustration of the function with no arguments and no return value*/
/* Function with no arguments and no return value*/
#include<stdio.h>
main()

{
void message();
printf(“Control is in main\n”);
message(); /* Type 1 Function */
printf(“Control is again in main\n”);

)
void message()

{
printf(“Control is in message function\n”);

} /* does not return anything */
OUTPUT:

Control is in main
Control is in message function

Control is again in main
TYPE-2: With no arguments and with return value

Suppose if a function does not receive any data from calling function but does send some

value to the calling function, then it falls in this category.
Example:

Write a program to find the sum of the first ten natural numbers.

/* Program to find sum of first ten natural numbers */
#include<stdio.h>

int cal_sum()

{

int 1, s=0;

for (i=0; i<=10; it++) s=s + i;

return(s); /* function returning sum of first ten natural numbers */
}

main()

{

int sum;

sum = cal_sum();

printf(“Sum of first ten natural numbers is % d\n”, sum);

}

OUTPUT:

Sum of first ten natural numbers is 55
TYPE-3: With Arguments and have no return value

If a function includes arguments but does not return anything, it falls in this category. One
way communication takes place between the calling and the called function.

Before proceeding further, first we discuss the type of arguments or parameters here.
There are two types of arguments:

Actual arguments

Formal arguments

Let us take an example to make this concept clear:
Example:

Write a program to calculate sum of any three given numbers.
#include<stdio.h>

main()

{

intal, a2, a3;

void sum(int, int, int);

printf(“Enter three numbers: “);

scanf (“%d%d%d”,&al,&a2,&a3);

sum (al,a2,a3); /* Type 3 function */

+ /* function to calculate sum of three numbers */
void sum (int f1, int f2, int 3)

{

int s;

s =f1+ 2+ f3;

printf (“\nThe sum of the three numbers is %d\n”,s);

i
OUTPUT:

Enter three numbers: 23 34 45 The sum of the three numbers is 102 Here f1, f2, f3 are

formal arguments and al, a2, a3 are actual arguments.

TYPE-4: With arguments function and with return value
In this category two-way communication takes place between the calling and called
function i.e. a function returns a value and also arguments are passed to it. We modify

above Example according to this category.
Example:

Write a program to calculate sum of three numbers.
/*Program to calculate the sum of three numbers*/

#include<stdio.h>

main()

{

intal, a2, a3, result;

int sum(int, int, int);

printf(“Please enter any 3 numbers:\n”);

scanf (“%d %d %d”, & al, &a2, &a3);

result = sum (al,a2,a3); /* function call */

printf (“Sum of the given numbers is : %d\n”, result); } /* Function to calculate the
sum of three numbers */

int sum (int f1, int {2, int £3)

{ return(f1+ 2 + 3); /* function returns a value */

}

OUTPUT:
Please enter any 3 numbers: 34 5

Sum of the given numbers is: 12

8.10 RECURSION

Recursion is a process by which function calls itself repeatedly, until some specified
condition has been satisfied. The process is used for repetitive computation in which each

action is stated in terms of previous result.

In order to solve a problem recursively, two conditions must be satisfied:
= Problem must be written in recursive form.

= Problem statement must include a stopping condition.

Recursive Function Definition:

Recursive function is a function that contains a call to itself. C supports creating recursive
function with ease and efficient.

Recursive function must have at least one exit condition that can be satisfied. Otherwise,
the recursive function will call itself repeatedly until the runtime stack overflows.
Recursive function allows you to divide your complex problem into identical single simple
cases which can handle easily. This is also a well-known computer programming

technique.
Example:

include<stdio.h>

long unsigned int factorial(long unsigned int number)
{

if(number <= 1)

return 1;

else

return number * factorial(number - 1);

}

void main()

{

long unsigned int N,F;

clrscr();

printf(“Enter any Number for Calculate Factorial : ”);
scanf(“%lu”,&N); F=factorial(N);

printf(“\nFactorial of %lu is : %lu”,N,F);

getch();

}

Output:

Enter any Number for Calculate Factorial : 5

Factorial of 5is: 120

Process diagram of Program:

main()
v
3 Il
F = factorial(3) (call)
factorial
n taconal]_
* 3
ifinumber <=1}
return 1; 2 (call) factorial()
) else
b return 3*2 ~F 2
[return) factorial()
if{number <=1) number
return 1; :
2 ebe | (call) :I 1
return 2% 1 e | iffnumber <=1}
(return) | T ~return 1;
else
[return) return 34—

Example2:

/* display numbers from 1 to 10 using recursive function */
include<stdio.h>

void display(int n)

{

If (number > 10)

return;

else

printf(“%d\n”,n);

display(n+1);

}

void main()

{

clrser();

printf(‘“Numbers from 1 to 10 \n”);

display(1); //1 is a starting number
getch();

8.11

CONCLUSION

In this unit, we learnt about “Functions”: definition, declaration, prototypes, types,
function calls datatypes and storage classes, types function invoking and lastly Recursion.
All these subtopics must have given you a clear idea of how to create and call functions
from other functions, how to send values through arguments, and how to return values to
the called function. We have seen that the functions, which do not return any value, must
be declared as “void”, return type.

A function can return only one value at a time, although it can have many return
statements. A function can return any of the data type specified in ‘C’. Any variable
declared in functions are local to it and are created with function call and destroyed with
function return. The actual and formal arguments should match in type, order and
number. A recursive function should have a terminating condition i.e. function should

return a value instead of a repetitive function call.

UNIT9 POINTERS

Structure

9.0 Introduction

9.1 Objectives

9.2 Pointer and their Characteristics

9.3 Address and Indirection Operators

9.4 Pointer Type Declaration and Assignment
9.4.1 Pointer to a Pointer
9.4.2 Null Pointer Assignment

9.5 Pointer Arithmetic

9.6 Passing Pointers to Functions
9.6.1 A Function returning more than one value
9.6.2 Function returning a Pointer

9.7 Arrays and Pointers

9.8 Array of Pointer

9.9 Pointers and Strings

9.10 Conclusion

9.11 Unit based Questions /Answers

9.0

INTRODUCTION

If you want to be proficient in the writing of code in the C programming language, you
must have a thorough working knowledge of how to use pointers. One of those things,
beginners in C find difficult is the concept of pointers. The purpose of this unit is to
provide an introduction to pointers and their efficient use in the C programming. Actually,
the main difficulty lies with the C’s pointer terminology than the actual concept.

C uses pointers in three main ways. First, they are used to create dynamic data structures:
data structures built up from blocks of memory allocated from the heap at run-time.
Second, C uses pointers to handle variable parameters passed to functions. And third,
pointers in C provide an alternative means of accessing information stored in arrays,
which is especially valuable when you work with strings.

A normal variable is a location in memory that can hold a value. For example, when you
declare a variable i as an integer, four bytes of memory is set aside for it. In your
program, you refer to that location in memory by the name i. At the machine level, that
location has a memory address, at which the four bytes can hold one integer value. A
pointer is a variable that points to another variable. This means that it holds the memory
address of another variable. Put another way, the pointer does not hold a value in the
traditional sense; instead, it holds the address of another variable. It points to that other
variable by holding its address.

Because a pointer holds an address rather than a value, it has two parts. The pointer itself
holds the address. That addresses points to a value. There is the pointer and the value
pointed to. As long as you’re careful to ensure that the pointers in your programs always
point to valid memory locations, pointers can be useful, powerful, and relatively trouble-
free tools.

We will start this unit with a basic introduction to pointers and the concepts surrounding
pointers, and then move on to the three techniques described above. Thorough knowledge

of the pointers is very much essential for your future courses like the data structures,
design and analysis of algorithms etc.

This unit will explain to you the expressions and operators of language C.

9.1

OBJECTIVES

After completing this unit, you will be able to:

® understand the concept and use pointers;

= address and use of indirection operators;

= make pointer type declaration, assignment and initialization;
= use null pointer assignment;

= use the pointer arithmetic;

= handle pointers to functions;

= see the underlying unit of arrays and pointers; and

= understand the concept of dynamic memory allocation

9.2

POINTER AND THEIR CHARACTERISTICS

Pointers in C are easy and fun to learn. Some C programming tasks are performed more
easily with pointers, and other tasks, such as dynamic memory allocation, cannot be
performed without using pointers. So it becomes necessary to learn pointers to become a
perfect C programmer. Let's start learning them in simple and easy steps.

As you know, every variable is a memory location and every memory location has its
address defined which can be accessed using ampersand (&) operator, which denotes an
address in memory. Consider the following example, which prints the address of the
variables defined:

Example:

#include<stdio.h>

int main ()

{

int varl;

char var2[10];

printf("Address of varl variable: %x\n", &varl);
printf("Address of var2 variable: %x\n", &var2);
return 0;

H
The following Result:

Address of varl variable: bff5a400
Address of var2 variable: bff5a3f6

Define Pointers:

A pointer is a variable whose value is the address of another variable, i.e., direct address
of the memory location. Like any variable or constant, you must declare a pointer before
using it to store any variable address. The general form of a pointer variable declaration
is:

Type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the
name of the pointer variable. The asterisk * used to declare a pointer is the same asterisk
used for multiplication. However, in this statement, the asterisk is being used to designate
a variable as a pointer. Take a look at some of the valid pointer declarations:

int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */
float *fp; /* pointer to a float */
char *ch; /* pointer to a character */

The actual data type of the value of all pointers, whether integer, float, character, or
otherwise, is the same, a long hexadecimal number that represents a memory address. The
only difference between pointers of different data types is the data type of the variable or
constant that the pointer points to.

An ordinary variable is a location in memory that can hold a value. For example, when
you declare a variable num as an integer, the compiler sets aside 2 bytes of memory
(depends up the PC) to hold the value of the integer. In your program, you refer to that
location in memory by the name num. At the machine level that location has a memory
address.

int num = 100;

We can access the value 100 either by the name num or by its memory address. Since
addresses are simply digits, they can be stored in any other variable. Such variables that
hold addresses of other variables are called Pointers. In other words, a pointer is simply a
variable that contains an address, which is a location of another variable in memory. A
pointer variable “points to” another variable by holding its address. Since a pointer holds
an address rather than a value, it has two parts. The pointer itself holds the address. That
addresses points to a value. There is a pointer and the value pointed to. This fact can be a
little confusing until you get comfortable with it, but once you get familiar with it, then it
is extremely easy and very powerful. One good way to visualize this concept is to
examine the figure.

. nunk

ch

lemp

pirl

Mra

Concept of Pointer Variables

Characteristic features of Pointers:
With the use of pointers in programming,
= The program execution time will be faster as the data is manipulated with the help of
addresses directly.
= Will save the memory space.
= The memory access will be very efficient.

= Dynamic memory is allocated.

9.3 ADDRESS AND INDIRECTION OPERATORS

Now we will consider how to determine the address of a variable. The operator that is

available in C for this purpose is “&” (address of) operator. The operator & and the
immediately preceding variable returns the address of the variable associated with it. C’s
other unary pointer operator is the “*”, also called as value at address or indirection
operator. It returns a value stored at that address. Let us look into the illustrative example

given below to understand how they are useful.
Example:

Write a program to print the address associated with a variable and value stored at that

address.

/*Program to print the address associated with a variable and value stored at that
address*/

include<stdio.h>

main()

{

int qty = 5;

printf ("Address of qty = %u\n",&qty);
printf ("Value of qty = %d \n",qty);
printf("Value of qty = %d",*(&qty));

}

OUTPUT:

Address of qty = 65524

Value of qty =5

Value of qty =5

9.4 POINTER TYPES DECLARATION AND
ASSIGNMENT

We have seen in the previous section that &qty returns the address of qty and this address
can be stored in a variable as shown below:

ptr = &qty;

In C, every variable must be declared for its data type before it is used. Even this holds
good for the pointers too. We know that ptr is not an ordinary variable like any integer
variable. We declare the data type of the pointer variable as that of the type of the data
that will be stored at the address to which it is pointing to. Since ptr is a variable, which
contains the address of an integer variable qty, it can be declared as:

int *ptr;

where ptr is called a pointer variable. In C, we define a pointer variable by preceding its
name with an asterisk(*). The “*” informs the compiler that we want a pointer variable,
i.e. to set aside the bytes that are required to store the address in memory. The int says
that we intend to use our pointer variable to store the address of an integer. Consider the
following memory map:

pir qiy e Variahle
65524] " 111 Value
05512 63524 s Adiress

Example:

/* Program below demonstrates the relationships we have discussed so far */
include<stdio.h>

main()

{

int qty = 5;

int *ptr; /* declares ptr as a pointer variable that points to an integer variable */
ptr = &qty; /* assigning qty’s address to ptr -> Pointer Assignment */
printf ("Address of qty = %u \n", &qty);

printf ("Address of qty = %u \n", ptr);

printf ("Address of ptr = %u \n", &ptr);

printf ("Value of ptr = %d \n", ptr);

printf ("Value of qty = %d \n", qty);

printf ("Value of qty = %d \n", *(&qty));

printf ("Value of qty = %d", *ptr);

}

OUTPUT:

Address of qty = 65524
Address of ptr = 65522
Value of ptr = 65524
Value of qty =5

Value of qty =5

Value of gty =5

Example:

/* Program that tries to reference the value of a pointer even though the pointer is
uninitialized */

include<stdio.h>

main()

{

int *p; /* a pointer to an integer */

*p=10;

printf(“the value is %d”, *p);

printf(“the value is %u”,p);

}
9.4.1 Pointer to a Pointer

The concept of pointer can be extended further. As we have seen earlier, a
pointer variable can be assigned the address of an ordinary variable. Now, this
variable itself could be another pointer. This means that a pointer can contain
address of another pointer. The following program will makes you the concept
clear.

Example:
/* Program that declares a pointer to a pointer */

include<stdio.h>

main()

{

int i=100;

int *pi;

int **pii;

pi= &i;

pii = π

printf ("Address of i = %u \n", &i);
printf ("Address of i = %u \n", pi);
printf ("Address of i = %u \n", *pii);
printf ("Address of pi = %u \n", &pi);
printf ("Address of pi = %u \n", pii);
printf ("Address of pii = %u \n", &pii);
printf ("Value of i = %d \n", 1);

printf ("Value of i = %d \n", *(&i));
printf ("Value of i = %d \n", *pi);
printf ("Value of i = %d", **pii);

}

OUTPUT:

Address of i = 65524
Address of i = 65524
Address of i = 65524
Address of pi = 65522

Address of pi = 65522
Address of pii = 65520

Value of i =100
Value of i =100
Value of i = 100
Value of i = 100

Consider the following memory map for the above shown example:

pii pi i 4———— Variable
#5522 65524 110 .
» | S— 4 Vilue
65520 65522 65524 o Address

9.4.2 Null Pointer Assignment

It does make sense to assign an integer value to a pointer variable. An exception
is an assignment of 0, which is sometimes used to indicate some special
condition. A macro is used to represent a null pointer. That macro goes under the
name NULL.

Thus, setting the value of a pointer using the NULL, as with an assignment
statement such as ptr = NULL, tells that the pointer has become a null pointer.
Similarly, as one can test the condition for an integer value as zero or not, like if
(1 == 0), as well we can test the condition for a null pointer using if (ptr ==
NULL) or you can even set a pointer to NULL to indicate that it’s no longer in
use.

Example:

include<stdio.h>
define NULL 0

main()

{

int *pi = NULL;

printf(“The value of pi is %u”, pi);
}

OUTPUT:

The value of piis 0

9.5

POINTER ARITHMETIC

A pointer in C is an address, which is a numeric value. Therefore, you can perform
arithmetic operations on a pointer just as you can on a numeric value. There are four

arithmetic operators that can be used on pointers: ++, --, +, and —.

To understand pointer arithmetic, let us consider that ptr is an integer pointer which points

to the address 1000. Assuming 32-bit integers, let us perform the following arithmetic

operation on the pointer:

ptr++

The ptr will point to the location 1004 because each time ptr is incremented, it will point
to the next integer location which is 4 bytes next to the current location. This operation

will move the pointer to the next memory location without impacting the actual value at
the memory location.

If ptr points to a character whose address is 1000, then the above operation will point to
the location 1001 because the next character will be available at 1001.

a) Incrementing a Pointer:
We prefer using a pointer in our program instead of an array because the variable
pointer can be incremented, unlike the array name which cannot be incremented
because it is a constant pointer. The following program increments the variable
pointer to access each succeeding element of the array:
Example:
#include<stdio.h>
const int MAX = 3;
int main ()
{
int var[] = {10, 100, 200};
int i, *ptr;

/* let us have array address in pointer */

ptr = var;
for (i=0; i <MAX; it++)
{

printf("" Address of var[%d] = %x\n", i, ptr);
printf("Value of var[%d] = %d\n", i, *ptr);
/* move to the next location */ ptr++;
b
return 0;
H
The following result:
Address of var[0] = bf882b30
Value of var[0] = 10
Address of var[1] = bf882b34
Value of var[1] = 100

Address of var[2] = bf§82b38
Value of var[2] =200

b) Incrementing a Pointer:
The same considerations apply to decrementing a pointer, which decreases its
value by the number of bytes of its data type as shown below:
Example:
#include<stdio.h>
const int MAX = 3;
int main ()
{
int var[] = {10, 100, 200};

int i, *ptr;

/* let us have array address in pointer */
ptr = &var[MAX-1];
for (i=MAX;i>0;i--)
{
printf("Address of var[%d] = %x\n", i, ptr);
printf("Value of var[%d] = %d\n", i, *ptr);
/* move to the previous location */
ptr--;
}
return 0;
b
The following result:
Address of var[3] = bfedbcd8
Value of var[3] =200
Address of var[2] = bfedbcd4
Value of var[2] = 100
Address of var[1] = bfedbcd0
Value of var[1] =10

9.6 PASSING POINTERS TO FUNCTIONS

C programming allows in the FUNCITONS that arguments can generally be passed to

functions in one of the two following ways:

1. Pass by value method

2. Pass by reference method

In the first method, when arguments are passed by value, a copy of the values of actual
arguments is passed to the calling function. Thus, any changes made to the variables
inside the function will have no effect on variables used in the actual argument list.
However, when arguments are passed by reference (i.e. when a pointer is passed as an
argument to a function), the address of a variable is passed. The contents of that address
can be accessed freely, either in the called or calling function. Therefore, the function

called by reference can change the value of the variable used in the call.

Example:
Write a program to swap the values using the pass by value and pass by reference
methods.

/* Program that illustrates the difference between ordinary arguments, which are passed
by value, and pointer arguments, which are passed by reference */
include<stdio.h>

main()

{

intx=10;

inty = 20;

void swapVal (int, int); /* function prototype */

void swapRef (int*, int*); /*function prototype*/

printf("PASS BY VALUE METHODn");

printf ("Before calling function swapVal x=%d y=%d",x,y);

swapVal (x, y); /* copy of the arguments are passed */
printf("\n After calling function swapVal x=%d y=%d",x,y);

printf("\n\n PASS BY REFERENCE METHOD");

printf ("\n Before calling function swapRef x=%d y=%d",x,y);

swapRef (&x,&y); /*address of arguments are passed */
printf("\nAfter calling function swapRef x=%d y=%d",x,y);

}

/* Function using the pass by value method */

void swapVal (int x, int y)

{

int temp;
temp = X;
X=Yy;

y = temp;

printf ("\nWithin function swapVal x=%d y=%d",x,y);
return;
}
/*Function using the pass by reference method*/
void swapRef (int *px, int *py)
{
int temp;
temp = *px;
PX =py;
*py = temp;
printf ("\nWithin function swapRef *px=%d *py=%d",*px,*py);
return;

H
OUTPUT

PASS BY VALUE METHOD

Before calling function swapVal x=10 y=20
Within function swapVal x=20 y=10
After calling function swapVal x=10 y=20

PASS BY REFERENCE METHOD

Before calling function swapRef x=10 y=20
Within function swapRef *px=20 *py=10
After calling function swapRef x=20 y=10

In the function swapVal, arguments x and y are passed by value. So, any changes to the
arguments are local to the function in which the changes occur. Note the values of x and y
remain unchanged even after exchanging the values of x and y inside the function

swapVal.

9.6.1 A Function returning more than one value

Using call by reference method we can make a function return more than one
value at a time, which is not possible in the call by value method. The
following program will makes you the concept very clear.

Example:

Write a program to find the perimeter and area of a rectangle, if length and

breadth are given by the user.

9.6.2

/* Program to find the perimeter and area of a rectangle*/
#include<stdio.h>

void main()

{

float len,br;

float peri, ar;

void periarea(float length, float breadth, float *, float *);
printf("\nEnter the length and breadth of a rectangle in metres: \n");
scanf("%f %t",&len,&br); periarea(len,br,&peri,&ar);
printf("\nPerimeter of the rectangle is %f metres", peri);
printf("\nArea of the rectangle is %f sq. metres", ar);

}

void periarea(float length, float breadth, float *perimeter, float *area)
{

*perimeter = 2 * (length +breadth);

*area = length * breadth;

}

OUTPUT:

Enter the length and breadth of a rectangle in metres: 23.0 3.0
Perimeter of the rectangle is 52.000000 metres

Area of the rectangle is 69.000000 sq. metres

Function returning a Pointer

A function can also return a pointer to the calling program, the way it returns
an int, a float or any other data type. To return a pointer, a function must
explicitly mention in the calling program as well as in the function prototype.
To declare a function returning a pointer as

Example:

int * myFunction()

{

}

Second point to remember is that, it is to return the address of a local variable

outside the function, so you would have to define the local variable as static

variable.

Now, consider the following function which will generate 10 random numbers
and return them using an array name which represents a pointer, i.e., address of

first array element.

#include<stdio.h>

#include<time.h>

/* function to generate and retrun random numbers. */
int * getRandom()

{

static int r[10];

int i;

/* set the seed */
srand((unsigned)time(NULL));

for (1=0;1<10; ++i)

{

r[i] = rand();

printf("%d\n", t[i]);

}

return r;

}

/* main function to call above defined function */
int main ()

{

/* a pointer to an int */

int *p;

int i;

p = getRandom();

for (1=10;1<10;i++)

{

printf("*(p + [%d]) : %d\n", i, *(p +1));
b

return 0;

}

The following result:

1523198053
1187214107

1108300978
430494959
1421301276
930971084
123250484
106932140
1604461820
149169022

*(p + [0]) : 1523198053
*(p+[1]) : 1187214107
*(p +[2]) : 1108300978
*(p + [3]) : 430494959
*(p + [4]) : 1421301276
*(p +[5]) : 930971084
*(p + [6]) : 123250484
*(p + [7]) : 106932140
*(p +[8]) : 1604461820

]
]
]
]
]
]
]
]
]
*(p +[9]) : 149169022

9.7

ARRAYS AND POINTER

Pointers and arrays are so closely related. An array declaration such as int arr[5] will
lead the compiler to pick an address to store a sequence of 5 integers, and arr is a name
for that address. The array name in this case is the address where the sequence of integers
starts. Note that the value is not the first integer in the sequence, nor is it the sequence in
its entirety. The value is just an address.

Now, if arr is a one-dimensional array, then the address of the first array element can be
written as & arr[0] or simply arr. Moreover, the address of the second array element can
be written as & arr[1] or simply (arr+1). In general, address of array element (i+1) can be
expressed as either &arr[i] or as (arr+ i). Thus, we have two different ways for writing
the address of an array element. In the latter case i.e, expression (arr+ i) is a symbolic
representation for an address rather than an arithmetic expression. Since &arr][i] and (ar+
i) both represent the address of the ith element of arr, so arr[i] and *(ar + i) both represent
the contents of that address i.e., the value of i th element of arr.

Note that it is not possible to assign an arbitrary address to an array name or to an array

element. Thus, expressions such as arr, (arr+ 1) and arr| i] cannot appear on the left side of

an assignment statement. Thus we cannot write a statement such as:

&arr[0] = &arr[1]; /* Invalid */

However, we can assign the value of one array element to another through a pointer, for
example,

ptr = &arr[0]; /* ptr is a pointer to arr[0] */

arr[1] = *ptr; /* Assigning the value stored at address to arr[1] */
Example:

/* Program that accesses array elements of a one-dimensional array using pointers */
include<stdio.h>

main()

{

int arr[5 1= {10, 20, 30, 40, 50};

int i;

for (i=0;1<5;i++)

{

printf ("i=%d\t arr[i]=%d\t *(arr+i)=%d\t", i, arr[i], *(arr+i));
printf ("&arr[i]=%u\t arr+i=%u\n", &arr[i], (arr+i));

}

)

OUTPUT:

5516 arr+i=65516
5518 arr+i=65518

i]=6
6
65520 arr+i=65520
6
6

i=1 arr[i]=20 *(arr+i)=20 &arr[i

1=10 *(arr+i)=10 &arr[i]
] (]
i=2 arr[i]=30 *(arr+i)=30 &arr][i]
I= (1]
] (1]

i=0 arr[i

i=3 arr[i]=40 *(arr+i)=40 &arr[i
i=4 arr[i]=50 *(arr+i)=50 &arr[i

5522 arr+i=65522
5524 arr+i=65524

Note that i1 is added to a pointer value (address) pointing to integer data type (i.e., the
array name) the result is the pointer is increased by i times the size (in bytes) of integer
data type. Observe the addresses 65516, 65518 and so on. So if ptr is a char pointer,

containing addresses a, then ptr+1 is a+1. If ptr is a float pointer, then ptr+ 1 is a+ 4.

Pointers and Multidimensional Arrays C allows multidimensional arrays, lays them out in
memory as contiguous locations, and does more behind the scenes address arithmetic.
Consider a 2-dimensional array.

intarr[3][3]={{1, 2,3}, {4,5, 6}, {7, 8,9}};

The compiler treats a 2 dimensional array as an array of arrays. As you know, an array

name is a pointer to the first element within the array. So, arr points to the first 3-element

array, which is actually the first row (i.e., row 0) of the two-dimensional array. Similarly,
(arr + 1) points to the second 3-element array (i.e., row 1) and so on. The value of this
pointer, *(arr + 1), refers to the entire row. Since row 1 is a one[]dimensional array, (arr +
1) is actually a pointer to the first element in row 1. Now add 2 to this pointer. Hence,
(*(arr + 1) + 2) is a pointer to element 2 (i.e., the third element) in row 1. The value of
this pointer, *(*(arr + 1) + 2), refers to the element in column 2 of row 1. These

relationships are illustrated below:

arr—————— .
Firsl 1= array
{1} —— 4 5 6 Second 1-d array
e 7 B 9 Third 1. areay
*arr + 1) *{*(arr+2)+ 2)

9.8 ARRAY OF POINTER

The way there can be an array of integers, or an array of float numbers, similarly, there
can be array of pointers too. Since a pointer contains an address, an array of pointers
would be a collection of addresses. For example, a multidimensional array can be
expressed in terms of an array of pointers rather than a pointer to a group of contiguous
arrays.

Two-dimensional array can be defined as a one-dimensional array of integer pointers by
writing:

int *arr[3];
rather than the conventional array definition,
int arr[3][5];

Similarly, an n-dimensional array can be defined as (n-1)-dimensional array of pointers
by writing

data-type *arr[subscript 1] [subscript 2].... [subscript n-1];

The subscriptl, subscript2 indicate the maximum number of elements associated with
each subscript.

Example:

#include<stdio.h>

const int MAX = 3;

int main ()

{

int var[] = {10, 100, 200};

int i;

for (i=0; 1 < MAX; i++)

{

printf("Value of var[%d] = %d\n", i, var[i]);
}

return 0;

}

The following result:

Value of var[0] = 10
Value of var[1] =100
Value of var[2] =200

There may be a situation when we want to maintain an array, which can store pointers to
an int or char or any other data type available. Following is the declaration of an array of

pointers to an integer:

int *ptr[MAX(;

It declares ptr as an array of MAX integer pointers. Thus, each element in ptr holds a
pointer to an int value. The following example uses three integers, which are stored in an

array of pointers, as follows:

#include<stdio.h>

const int MAX = 3;

int main ()

{

int var[] = {10, 100, 200};

int i, *ptrfMAX];

for (1= 0;1<MAX; i++)

{

ptr[i] = &var[i]; /* assign the address of integer. */

}
for (1=0;1<MAX; it+)

{
printf("Value of var[%d] = %d\n", i, *ptr[i]);

}

return 0;

}

The following result:
Value of var[0] = 10
Value of var[1] =100

Value of var[2] =200

9.9

POINTERS AND STRINGS

As we have seen in strings, a string in C is an array of characters ending in the null
character (written as "\0'), which specifies where the string terminates in memory. Like in
one-dimensional arrays, a string can be accessed via a pointer to the first character in the
string. The value of a string is the (constant) address of its first character. Thus, it is
appropriate to say that a string is a constant pointer. A string can be declared as a

character array or a variable of type char *. The declarations can be done as shown below:

char country[] = "INDIA";
char *country = "INDIA";

Each initialize a variable to the string “INDIA”. The second declaration creates a pointer

variable country that points to the letter I in the string "INDIA" somewhere in memory.

Once the base address is obtained in the pointer variable country, *country would yield

the value at this address, which gets printed through,

printf ("%s", *country);

Here is a program that dynamically allocates memory to a character pointer using the
library function malloc at run-time. An advantage of doing this way is that a fixed block
of memory need not be reserved in advance, as is done when initializing a conventional

character array.
Example:
Write a program to test whether the given string is a palindrome or not.

/* Program tests a string for a palindrome using pointer notation */
#include<stdio.h>

include<conio.h>

include<stdlib.h>

main()

{

char *palin, c;

int i, count;

short int palindrome(char,int); /*Function Prototype */
palin = (char *) malloc (20 * sizeof(char));

printf("\nEnter a word: ");

do

{

¢ = getchar();

palin[i]=c;

i+t
}

while (c !="\n");

i=i-1;

palin[i] ="\0'"; count = i;

if (palindrome(palin,count) == 1);

printf ("\nEntered word is not a palindrome.");
else

printf ("\nEntered word is a palindrome");

H

short int palindrome(char *palin, int len)
{

shortinti=0,j=0;
for(i=0 , j=len-1;
i<len/2;i++,j--);

{

if (palin[i] == palin[j]);
continue;

else

return(1);

}

return(0);

}

OUTPUT:

Enter a word: malayalam
Entered word is a palindrome.
Enter a word: abcdba

Entered word is not a palindrome.

9.10

CONCLUSION

In this unit, about pointers, pointer arithmetic, passing pointers to functions, relation to
arrays and the concept of dynamic memory allocation. A pointer is simply a variable that
contains an address which is a location of another variable in memory. The unary operator
&, when preceded by any variable returns its address. C’s other unary pointer operator is

* when preceded by a pointer variable returns a value stored at that address.

Pointers are often passed to a function as arguments by reference. This allows data items
within the calling function to be accessed, altered by the called function, and then
returned to the calling function in the altered form. There is an intimate relationship
between pointers and arrays as an array name is really a pointer to the first element in the
array. Access to the elements of array using pointers is enabled by adding the respective
subscript to the pointer value (i.e. address of zeroth element) and the expression preceded

with an indirection operator.

As pointer declaration does not allocate memory to store the objects it points at, therefore,
memory is allocated at run time known as dynamic memory allocation. The library

routine malloc can be used for this purpose.

UNIT 10 STRUCTURES AND UNIONS

Multiple Data Elements

9.0 Introduction

9.1 Objectives

9.2 Declaration of Structures

9.3 Accessing the Members of a Structure
9.4 Initializing Structures

9.5 Structures as Function Arguments
9.6 Structures and Arrays

9.7 Pointers to Structures

9.8 Unions

9.9 Initializing an Union

9.10 Accessing the Members of an Union
9.11 Conclusion

9.12 Unit based Questions /Answers

10.0

INTRODUCTION

To store numbers, characters, strings, and even large sets of these primitives using arrays,
but what if we want to store collections of different kinds of data that are somehow
related.

For example, a file about an employee will probably have his/her name, age, the hours of
work, salary, etc. Physically, all of that is usually stored in someone’s filing cabinet. In
programming, Let’s say you have a group of employees, and you want to make a
database! It just wouldn’t do to have tons of loose variables hanging all over the place.
Then we need to have a single data entity where we will be able to store all the related
information together. But this can’t be achieved by using the arrays alone, as in the case
of arrays, we can group multiple data elements that are of the same data type, and is
stored in consecutive memory locations, and is individually accessed by a subscript.

The Structure is commonly referred to as a user-defined data type. C’s structures allow
you to store multiple variables of any type in one place (the structure). A structure can
contain any of C’s data types, including arrays and other structures. Each variable within
a structure is called a member of the structure. They can hold any number of variables,
and you can make arrays of structures. This flexibility makes structures ideally useful for
creating databases in C. Similar to the structure there is another user defined data type
called Union which allows the programmer to view a single storage in more than one way
i.e., a variable declared as union can store within its storage space, the data of different
types, at different times. In this unit, we will be discussing the user-defined data type
structures and unions.

This unit will be discussing the user-defined data type Structures and Unions of
language C.

10.1

OBJECTIVES

After completing this unit, you will be able to:

= declare and initialize the members of the structures;

= access the members of the structures;

= pass the structures as function arguments;

= declare the array of structures;

= declare and define union; and

= perform all operations on the variables of type Union.

10.2

DECLARATION OF STRUCTURES

Arrays allow to define type of variables that can hold several data items of the same kind.
Similarly, structure is another user-defined data type available in C that allows to
combine data items of different kinds.

To declare a structure you must start with the keyword struct followed by the structure
name or structure tag and within the braces the list of the structure’s member variables.
Note that the structure declaration does not actually create any variables.

The syntax for the structure declaration is:

Struct structure-tag

{

datatype variablel;
datatype variable2;
dataype variable 3;

|5
The structure tag is optional and each member definition is a normal variable definition,
such as int i; or float f; or any other valid variable definition. At the end of the structure's

definition, before the final semicolon, you can specify one or more structure variables but
it is optional. Here is the way you would declare the Book structure:

Example:

struct Books

{

char title[50];

char author[50];
char subject[100];
int book _id; } book;

This defines a structure which can be referred to either as struct books or Books,
whichever you prefer. Strictly speaking, you don’t need a tag name both before and after
the braces if you are not going to use one or the other. But it is a standard practice to put
them both in and to give them the same name, but the one after the braces starts with an
uppercase letter. The typedef statement doesn’t occupy storage: it simply defines a new
type. Variables that are declared with the typedef above will be of type struct book.

10.3

ACCESSING THE MEMBERS OF A STRUCTURE

To access any member of a structure, we use the member access operator (.). The member
access operator is coded as a period between the structure variable name and the structure

member that we wish to access. You would use the keyword struct to define variables of
structure type.

The following syntax shows how to use a structure:

structurevariable. member-name;

struct coordinate

{
int x;
inty;

¥

Thus, to have the structure named first refer to a screen location that has coordinates
x=50, y=100, write as:

first.x = 50;
first.y = 100;

To display the screen locations stored in the structure second, to write,
printf (" %d,%d", second.x, second.y);

The individual members of the structure behave like ordinary date elements and can be
accessed accordingly.

Example:

#include<stdio.h>
#include<string.h>

struct Books

{

char title[50];
char author[50];
char subject[100];
int book id;

¥

int main()

{
struct Books Book1; /* Declare Book! of type Book */

struct Books Book?2; /* Declare Book2 of type Book */
/* book 1 specification */

strepy(Bookl.title, "C Programming");

strepy(Book1.author, "Nuha Ali");

strepy(Book1.subject, "C Programming Tutorial");
Book1.book id = 6495407,

/* book 2 specification */

strepy(Book2.title, "Telecom Billing");

strepy(Book2.author, "Zara Ali");

strepy(Book2.subject, "Telecom Billing Tutorial");
Book2.book _id = 6495700;

/* print Book1 info */

printf("Book 1 title : %s\n", Bookl.title);

printf("Book 1 author : %s\n", Book1.author);
printf("Book 1 subject : %s\n", Book1.subject);
printf("Book 1 book_id : %d\n", Book1.book _id);

/* print Book2 info */

printf("Book 2 title : %s\n", Book2.title);

printf("Book 2 author : %s\n", Book2.author);
printf("Book 2 subject : %s\n", Book2.subject);
printf("Book 2 book id : %d\n", Book2.book id);
return 0;

H

The following result:

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial
Book 1 book _id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial
Book 2 book_id : 6495700

10.4 INITIALIZING STRUCTURES

C variable types, structures can be initialized when they’re declared. This procedure is
similar to that for initializing arrays. The structure declaration is followed by an equal
sign and a list of initialization values is separated by commas and enclosed in braces.

Example:

struct customer

{
char firm[20];

char contact[25];

}

struct sale

{

struct customer buyerl;
char item [20];

float amt;

}

mysale = {

{ "XYZ Industries", "Tyran Adams"};
"toolskit";

600.00

b
These statements perform the following initializations:

= the structure member mysale.buyerl.firm is initialized to the string “XYZ Industries”.

= the structure member mysale.buyerl.contact is initialized to the string “Tyran
Adams”.

= the structure member mysale.item is initialized to the string "toolskit".

= the structure member mysale.amount is initialized to the amount 600.00.

10.5 STRUCTURES AS FUNCTION ARGUMENTS

C is a structured programming language and the basic concept in it is the modularity of
the programs. This concept is supported by the functions in C language. Let us look into
the techniques of passing the structures to the functions. This can be achieved in primarily
two ways: Firstly, to pass them as simple parameter values by passing the structure name
and secondly, through pointers. We will be concentrating on the first method in this unit
and passing using pointers will be taken up in the next unit. Like other data types, a
structure can be passed as an argument to a function. The program listing given below
shows how to do this. It uses a function to display data on the screen.

Example:

#include<stdio.h>
#include<string.h>
struct Books

{

char title[50];

char author[50];
char subject[100];
int book id; };

/* function declaration */

void printBook(struct Books book);

int main()

{

struct Books Book1; /* Declare Book1 of type Book */
struct Books Book2; /* Declare Book2 of type Book */

/* book 1 specification */
strepy(Bookl. title, "C Programming");
strepy(Book1.author, "Nuha Ali");

strepy(Book1.subject, "C Programming Tutorial");
Book1.book id = 6495407,

/* book 2 specification */

strepy(Book?2.title, "Telecom Billing");

strepy(Book2.author, "Zara Ali");

strepy(Book2.subject, "Telecom Billing Tutorial");
Book2.book id = 6495700;

/* print Book1 info */
printBook(Book1);

/* Print Book2 info */
printBook(Book?2);
return 0;

}

void printBook(struct Books book);

{

printf("Book title : %s\n", book title);

printf("Book author : %s\n", book.author);
printf("Book subject : %s\n", book.subject);
printf("Book book id : %d\n", book.book id);
}

The following result:

Book title : C Programming

Book author : Nuha Ali Book

subject : C Programming Tutorial Book
book id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial
Book book id : 6495700

10.7

POINTERS TO STRUCTURES

To define pointers to structures in the same way as you define pointer to any other
variable:

struct Books *struct_pointer;

Now, you can store the address of a structure variable in the above-defined pointer
variable. To find the address of a structure variable, place the ‘&’ operator before the
structure's name as:

struct_pointer = &Bookl;

To access the members of a structure using a pointer to that structure, to operator as:

struct_pointer -> title;

Let us rewrite the example using structure pointer.
#include<stdio.h>

#include<string.h>
struct Books

{

char title[50];

char author[50];
char subject[100];
int book_id;

b

/* function declaration */
void printBook(struct Books *book);

int main()

{

struct Books Book1; /* Declare Book1 of type Book */
struct Books Book?2; /* Declare Book2 of type Book */

/* book 1 specification */

strepy(Bookl. title, "C Programming");

strepy(Book1.author, "Nuha Ali");

strepy(Book1.subject, "C Programming Tutorial");
Book1.book id = 6495407,

/* book 2 specification */

strepy(Book2.title, "Telecom Billing");

strepy(Book2.author, "Zara Ali");

strepy(Book2.subject, "Telecom Billing Tutorial");
Book2.book _id = 6495700;

/* print Book1 info by passing address of Book1 */
printBook(&Book1);

/* print Book?2 info by passing address of Book2 */
printBook(&Book?2);

return 0;

}

void printBook(struct Books *book)

{

printf("Book title : %s\n", book->title);

printf("Book author : %s\n", book->author);
printf("Book subject : %s\n", book->subject);
printf("Book book_id : %d\n", book->book_id);
}

The following result:

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial
Book book id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial
Book book id : 6495700

10.8

UNIONS

A union is a special data type available in C that allows storing different data types in the
same memory location. You can define a union with many members, but only one
member can contain a value at any given time. Unions provide an efficient way of using
the same memory location for multiple purposes.

Example:

In case of the support price of shares you require only the latest quotations. And only the
ones that have changed need to be stored. So if we declare a structure for all the scripts, it
will only lead to crowding of the memory space. Hence it is beneficial if we allocate
space to only one of the members. This is achieved with the concepts of the UNIONS.

UNIONS are similar to STRUCTURES in all respects but differ in the concept of storage
space. A UNION is declared and used in the same way as the structures.

A union can be declared using the syntax:

union union-tag {
datatype variablel;
datatype variable2;

Example:

union temp{
int x;
chary;

float z;

¥

In this case a float is the member which requires the largest space to store its value hence
the space required for float (4 bytes) is allocated to the union.

10.9

INITIALIZING AN UNION

Initializing a union in programming involves declaring a union variable and assigning
initial values to its members. A union is a data structure that allows storing different data
types in the same memory location.

Example:

union date_tag {

char complete date [9];
struct part_date tag {
char month[2];

char break valuel;
char day[2];

char break_value2;
char year[2];

}

parrt_date;

}
date = {*01/01/05”};

Example:

MyUnion {
intValue;
floatValue;
stringValue[0]

data.intValue =

printEy , data.intValue);

data.floatValue =

printf(, data.floatValue);

strepy{data, stringValue, Vi

printi{ , data.stringValue);

10.10 ACCESSING THE MEMBERS OF AN UNION

To access any member of a union, we use the member access operator (.). The member access
operator is coded as a period between the union variable name and the union member that we wish
to access. You would use the keyword union to define variables of union type.

The following example to use unions in a program:

#include<stdio.h>
#include<string.h>

union Data

{

int i;

float f;

char str[20];
b

int main()

{

union Data data;
data.i = 10;
data.f=220.5;

strepy(data.str, "C Programming");
printf("data.i : %d\n", data.i);
printf("data.f: %f\n", data.f);
printf("data.str : %s\n", data.str);
return 0;

}

The following result:

data.i: 1917853763
data.f: 4122360580327794860452759994368.000000
data.str : C Programming

Here, the values of i and f members of union got corrupted because the final value assigned to the
variable has occupied the memory location and this is the reason that the value of str member is
getting printed very well.

Now, use one variable at a time which is the main purpose of having unions:

#include<stdio.h>
#include<string.h>

union Data

{

int i;

float f;

char str[20];

35

int main()

{

union Data data;
data.i = 10;

printf("data.i : %d\n", data.i);
data.f=220.5;

printf("data.f : %f\n", data.f);
strepy(data.str, "C Programming");
printf("data.str : %s\n", data.str);
return 0;

}

The following result:
data.i: 10
data.f: 220.500000

data.str : C Programming

10.11 CONCLUSION

In this unit, we have learnt how to use structures, a data type that you design to meet the
needs of a program. A structure can contain any of C’s data types, including other
structures, pointers, and arrays. Each data item within a structure, called a member, is
accessed using the structure member operator (.) between the structure name and the
member name. Structures can be used individually, and can also be used in arrays.

Unions were presented as being similar to structures. The main difference between a
union and a structure is that the union stores all its members in the same area. This means
that only one member of a union can be used at a time.

UNIT 11 PREPROCESSORS DIRECTIVES

Structure

11.0 Introduction

11.1 Objectives

11.2 “C’ Preprocessor
11.2.1 # Description of Pre-Processors
11.2.2 Pre-Processors Examples

11.3 # define to Implement Constants

11.4 # define to Create Functional Macros
11.4.1 Caution is using Macros

11.5 Pre-Processor Operators
11.5.1 The Macro Continuation (\) Operator
11.5.2 The Stringize (#) Operator
11.5.3 The Token Passing (##) Operator
11.5.4 The Defined () Operator

11.6 Reading from other Files using #include

11.7 Conditional Selection of Code using #ifdef
11.7.1 Using #ifdef for different computer types
11.7.2 Using #ifdef to temporarily remove program statements

11.8 Other Pre-Processor Commands

11.9 Pre-defined Names defined by Pre-Processor

11.10 Macros Vs Functions

11.11 Conclusion

11.12 Unit based Questions /Answers

11.0

INTRODUCTION

This unit discusses theoretically, the “preprocessor” is a translation phase that is applied
to the source code before the compiler gets its hands on it. The C Preprocessor is not part
of the compiler, but is a separate step in the compilation process. C Preprocessor is just a
text substitution tool, which filters your source code before it is compiled. The
preprocessor more or less provides its own language, which can be a very powerful tool
for the programmer. All preprocessor directives or commands begin with the symbol #.
The preprocessor makes programs easier to develop, read and modify. The preprocessor
makes C code portable between different machine architectures & customizes the
language.

The preprocessor performs textual substitutions on your source code in three ways:

File inclusion: Inserting the contents of another file into your source file, as if you had
typed it all in there.

Macro substitution: Replacing instances of one piece of text with another. Conditional
compilation: Arranging that, depending on various circumstances, certain parts of your
source code are seen or not seen by the compiler at all. The next three sections will
introduce these three preprocessing functions.

The syntax of the preprocessor is different from the syntax of the rest of C program in
several respects. The C preprocessor is not restricted to use with C programs, and
programmers who use other languages may also find it useful. However, it is tuned to

recognize features of the C language like comments and strings.
This unit will be discussing the separate step compilation process of language C.

11.1 OBJECTIVES
After completing this unit, you will be able to:
= define, declare preprocessor directives;
= discuss various preprocessing directives, for example file inclusion, macro
substitution, and conditional compilation; and
= discuss various syntaxes of preprocessor directives and their applications.
11.2 ‘C’ Pre-Processors

The C Preprocessor is not a part of the compiler, but is a separate step in the compilation
process. In simple terms, a C Preprocessor is just a text substitution tool and it instructs
the compiler to do required preprocessing before the actual compilation. We'll refer to the

C Preprocessor as CPP.

11.2.1 # Description of Pre-Processors

All preprocessor commands begin with a hash symbol (#). It must be the first nonblank
character, and for readability, a preprocessor directive should begin in the first column.

The following section lists down all the important preprocessor directives:

Directive Description
#define Substitutes a preprocessor macro.
#include Inserts a particular header from another file.
#undef Undefines a preprocessor macro.
#ifdef Returns true if this macro is defined.
#ifndef Returns true if this macro is not defined.
#if Tests if a compile time condition is true.
#else The alternative for #if.

#elif #else and #if in one statement.

#endif Ends preprocessor conditional.

#error Prints error message on stderr.

#pragma Issues special commands to the compiler, using a standardized method.

11.2.2 Pre-Processors Examples

Analyze the following examples to understand various directives.

#define MAX_ARRAY_LENGTH 20

This directive tells the CPP to replace instances of MAX_ARRAY_LENGTH with 20.
Use #define for constants to increase readability.

#include <stdio.h>

#include "myheader.h"

These directives tell the CPP to get stdio.h from System Libraries and add the text to the
current source file. The next line tells CPP to get myheader.h from the local directory
and add the content to the current source file.

#undef FILE_SIZE

#define FILE_SIZE 42

It tells the CPP to undefine existing FILE SIZE and define it as 42.

#ifndef MESSAGE
#define MESSAGE "You wish!"
#endif

It tells the CPP to define MESSAGE only if MESSAGE isn't already defined.

#ifdef DEBUG
/* Your debugging statements here */
#endif

It tells the CPP to process the statements enclosed if DEBUG is defined. This is useful if
you pass the -DDEBUG flag to the gcc compiler at the time of compilation. This will
define DEBUG, so you can turn debugging on and off on[Jthe-fly during compilation.

11.3

define To IMPLEMENT CONSTANTS

The preprocessor allows us to customize the language. For example to replace { and } of
C language to begin and end as block-statement delimiters (as like the case in PASCAL)
we can achieve this by writing:

define begin {

define end }

During compilation all occurrences of begin and end get replaced by corresponding { and
}. So the subsequent C compilation stage does not know any difference!

#define is used to define constants.

The syntax is:

define <literal> <replacement-value>

literal is identifier which is replaced with replacement-value in the program.

Example:
#define MAXSIZE 256
#define PI 3.142857

The C preprocessor simply searches through the C code before it is compiled and replaces

every instance of MAXSIZE with 256.

define FALSE 0
define TRUE !FALSE

The literal TRUE is substituted by !FALSE and FALSE is substituted by the value 0 at
every occurrence, before compilation of the program. Since the values of the literal are

constant throughout the program, they are called as constant.

define can be rewritten as:

define <constant-name> <replacement-value>

Let us consider few examples:

define M 5

define SUBJECTS 6

define PI 3.142857
define COUNTRY INDIA

Note that no semicolon (;) need to be placed as the delimiter at the end of a # define line.
This is just one of the ways that the syntax of the preprocessor is different from the rest of
C statements (commands).

If you unintentionally place the semicolon at the end as below:

#define MAXLINE 100; /* WRONG */

and if you declare as shown below in the declaration section,

char linefMAXLINE];

the preprocessor will expand it to:

char line[100;]; /* WRONG */

114

define to Create Functional Macros

One of the powerful functions of the CPP is the ability to simulate functions using
parameterized macros.

For example, we might have some code to square a number as follows:

int square(int x)
{

return x * x;

}

We can rewrite the above code using a macro as follows:

#define square(x) ((x) * (x))

Macros with arguments must be defined using the #define directive before they can be
used.
The argument list is enclosed in parentheses and must immediately follow the macro

name. Spaces are not allowed between the macro name and open parenthesis.

Example-1:
#include <stdio.h>

#define MAX(x,y) (x) > (y) ? (%) : ()

int main(void)
{
printf("Max between 20 and 10 is %d\n", MAX(10, 20));

return 0;

H

The following result:

Max between 20 and 10 is 20.

Example-2:

/* Program to find the square of a number using marco*/
#include <stdio.h>

define SQUARE(x) (x*x)

main()

{

int v,y;

printf("Enter any number to find its square: ");
scanf("%d", &v);

y =SQUARE(v);

printf("\nThe square of %d is %d", v, y);

b

The following result:
Enter any number to find its square: 10
The square of 10 is 100.

11.4.1 Caution is using Macros

It should be very careful in using Macros. In particular the textual substitution means that
arithmetic expressions are liable to be corrupted by the order of evaluation rules
(precedence rules). Here is an example of a macro, which won’t work.

#define DOUBLE(n) n+n

Now if we have a statement,

z=DOUBLE(p) * q;

This will be expanded to

z=p*tp*q

And since * has a higher priority than +, the compiler will treat it as:
z=p+({*a;

The problem can be solved using a more robust definition of DOUBLE.
#define DOUBLE(n) (n+n)

Here, the braces around the definition force the expression to be evaluated before any

surrounding operators are applied. This should make the macro more reliable.

11.5

Pre-Processor Operators

The C preprocessor offers the following operators to help create macros:
11.5.1 The Macro Continuation (\)Operator

A macro is normally confined to a single line. The macro continuation operator (\) is used
to continue a macro that is too long for a single line.

Example:

#define message for(a, b) \
printf(#a " and " #b ": We love you!\n")

11.5.2 The Stringize (#)Operator

The stringize or number-sign operator (#), when used within a macro definition, converts
a macro parameter into a string constant. This operator may be used only in a macro
having a specified argument or parameter list.

Example:

#include #define message for(a, b) \

printf(#a " and " #b ": We love you!\n")

int main(void)

{

message for(Carole, Debra);
return 0;

¥
The following result:

Carole and Debra: We love you!

11.5.3 The Token Passing (##)Operator

The token-pasting operator (##) within a macro definition combines two arguments. It

permits two separate tokens in the macro definition to be joined into a single token.

Example:
#include <stdio.h>
#define tokenpaster(n) printf ("token" #n " = %d", token##n)

int main(void)

{

int token34 = 40;
tokenpaster(34);
return 0;

}

The following result:

token34 =40

It happened so because this example results in the following actual output from the
preprocessor:

printf ("token34 = %d", token34);

This example shows the concatenation of token##n into token34 and here we have used

both stringize and token-pasting.
11.5.4 The Defined() Operator

The preprocessor defined operator is used in constant expressions to determine if an
identifier is defined using #define. If the specified identifier is defined, the value is true

(non-zero). If the symbol is not defined, the value is false (zero).
The defined operator is:

#include <stdio.h>

#if !defined (MESSAGE)

#define MESSAGE "Well-done!"

#endif

int main(void)

{

printf("Here is the message: %s\n", MESSAGE);

return 0;

}

The following result:

Here is the message: Well-done!

11.6 Reading from other Files using #include

The preprocessor directive #include is an instruction to read in the entire contents of
another file at that point. This is generally used to read in header files for library
functions. Header files contain details of functions and types used within the library. They
must be included before the program can make use of the library functions. The syntax is:
#include <filename.h>

or

#include “filename.h”

The contents of the file “filename.h” to be read, parsed, and compiled at that point. The
difference between the suing of # and ““ ” is that, where the preprocessor searches for the
filename.h. For the files enclosed in < > (less than and greater than symbols) the search
will be done in standard directories (include directory) where the libraries are stored. And

[T

in case of files enclosed in “ ” (double quotes) search will be done in “current directory”

(T3 1}

or the directory containing the source file. Therefore, “ ” is normally used for header files
you’ve written, and # is normally used for headers which are provided for you (which
someone else has written).

Library header file names are enclosed in angle brackets, < >. These tell the preprocessor
to look for the header file in the standard location for library definitions. This is
/usr/include for most UNIX systems. And c:/tc/include for turbo compilers on DOS /
WINDOWS based systems.

Use of #include for the programmer in multi-file programs, where certain information is

required at the beginning of each program file. This can be put into a file by name

“globals.h” and included in each program file by the following line:

#include ""globals.h"

If we want to make use of inbuilt functions related to input and output operations, no
need to write the prototype and definition of the functions. We can simply include the file
by writing:

#include <stdio.h>

Placing common declarations and definitions into header files means that if they always

change, they only have to be changed in one place, which is a much more feasible system.

What should you put in header files?
= External declarations of global variables and functions.
= Structure definitions.

= Typedef declarations

11.7

Conditional Selection of Code using #ifdef

The preprocessor has a conditional statement similar to C’s if-else. It can be used to
selectively include statements in a program. The commands for conditional selection are;
#ifdef, #else and #endif.

#ifdef

The syntax is:

#ifdef IDENTIFIER NAME

{

statements;

/

This will accept a name as an argument, and returns true if the name has a current
definition. The name may be defined using a # define, the -d option of the compiler, or
certain names which are automatically defined by the UNIX environment. If the identifier
is defined then the statements below #ifdef will be executed

#Helse

The syntax is:

#else

{

Statements;

}

#else is optional and ends the block started with #ifdef. It is used to create a 2 way

optional selection. If the identifier is not defined then the statements below #else will be

executed.

#endif

Ends the block started by #ifdef or #else.

Where the #ifdef is true, statements between it and a following #else or #endif are
included in the program. Where it is false, and there is a following #else, statements

between the #else and the following #endif are included.

Example:

Define a macro to find maximum of 3 or 2 numbers using #ifdef , #else
/* Program to find maximum of 2 numbers using #ifdef*/
#include <stdio.h>

#define TWO

main()

{

inta, b, c;

clrscr();

#ifdef TWO

{

printf("\n Enter two numbers: \n");

scanf("%d %d", &a,&b);

if(a>b)

printf("\n Maximum of two numbers is %d", a);

else

printf("\n Maximum is of two numbers is %d", b);

}
#endif

}

/* end of main*/

The following result:

Enter two numbers: 33 22

Maximum of two numbers is 33

11.7.1 Using #ifdef for different computer type

Conditional selection is rarely performed using #define values. This is often used where
two different computer types implement a feature in different ways. It allows the
programmer to produce a program, which will run on either type.

#include <stdio.h>
main()

{
#ifdef HP

{
printf("This is a HP system \n");

......................... /* code for HP systems*/
#endif

#ifdef SUN

{
printf("This is a SUN system \n");

......................... /* code for SUN Systems */

11.7.2 Using #ifdef to temporarily remove program statements

#ifdef also provides a useful means of temporarily “blanking out” lines of a program. The
lines in the program are preceded by #ifdef NEVER and followed by #endif. Of course,
you should ensure that the name NEVER isn’t defined anywhere.

#include <stdio.h>

main()

......................... /* code is skipped */

11.8

Other Pre-Processor Commands

Other preprocessor commands are:

#ifndef If this macro is not defined
#if Test if a compile time condition is true
#else The alternative for #if. This is part of an #if preprocessor statement and

works in the same way with #if that the regular C else does with the
regular if.

#elif enables us to establish an “if...else...if ..” sequence for testing multiple

line

#pragma

conditions.

#line number "string" — informs the preprocessor that the number is the
next number of line of input. "string" is optional and names the next line
of input. This is most often used with programs that translate other
languages to C. For example, error messages produced by the C compiler
can reference the file name and line numbers of the original source files
instead of the intermediate C (translated) source files.

It is used to turn on or off certain features. Pragmas vary from compiler to
compiler. Pragmas available with Microsoft C compilers deals with
formatting source listing and placing comments in the object file
generated by the compiler. Pragmas available with Turbo C compilers

allows to write assembly language statements in C program.

A control line of the form

#pragma

token-sequence

This causes the processor to perform an implementation-dependent action. An

unrecognized pragma is ignored.

11.9

Pre-defined Names defined by Pre-Processor

ANSI C defines a number of macros. Although each one is available for use in

programming, the predefined macros should not be directly modified.

Macro Description
_DATE The current date as a character literal in "MMM DD YYYY"
format.
_TIME _ The current time as a character literal in "HH:MM:SS" format.
_FILE This contains the current filename as a string literal.
_LINE This contains the current line number as a decimal constant.
_STDC _ Defined as 1 when the compiler complies with the ANSI standard.
Example:

#include <stdio.h>

main()

{

printf("File :%s\n", FILE);
printf("Date :%s\n", _ DATE__);
printf("Time :%s\n", _TIME__);
printf("Line :%d\n", LINE);
printf("ANSI :%d\n", _STDC_);

¥

When the file test.c is compiled and executed, it produces the following result:

File :test.c

Date :Dec 04 2023
Time :13:26:14
Line :8 ANSI:1

11.10

Macros Vs Functions

We have discussed about macros, any computations that can be done on macros can also
be done on functions. But there is a difference in implementations and in some cases it
will be appropriate to use macros than function and vice versa.

Macros Functions

Macro calls are replaced with macro | In function call, the control is passed to a
expansions (meaning). function definition along with arguments,
and definition is processed and value may
be returned to call.

Macros run programs faster but increase | Functions make program size smaller and

the program size. compact.

If macro is called 100 numbers of times, | If function is called 100 numbers of

the size of the program will increase. times, the program size will not increase.

It is better to use Macros, when the | It is better to use functions, when the

definition is very small in size. definition is bigger in size.

11.11

Conclusion

The preprocessor makes programs easier to develop and modify. The preprocessor makes
C code more portable between different machine architectures and customize the
language. The C Preprocessor is not part of the compiler, but is a separate step in the
compilation process. All preprocessor lines begin with #. C Preprocessor is just a text
substitution tool on your source code in three ways: File inclusion, Macro substitution,
and Conditional compilation. File inclusion - inserts the contents of another file into your
source file. Macro Substitution - replaces instances of one piece of text with another.

Conditional Compilation - arranges source code depending on various circumstances.

UNIT 12 DYNAMIC MEMORY ALLOCATIONS

Allocation and De-allocation of Memory

12.0 Introduction
12.1 Objectives
12.2 Dynamic Memory Allocation
12.3 Resizing and Releasing Memory
12.4 Introduction to Memory Allocation in ‘C’
12.4.1 Static Memory Allocation
12.4.2 Dynamic Memory Allocation
12.4.3 Difference Static & Dynamic Memory Allocation
12.5 malloc() stands for “memory allocation”
12.6 calloc() stands for “contiguous allocation”
12.7 realloc() stands for “reallocate allocation”
12.8 free() stands for release allocation
12.9 Conclusion
12.10 Unit based Questions /Answers

12.0

INTRODUCTION

This unit discusses dynamic memory allocation in the C programming language is a
crucial aspect of managing memory resources during program execution. Unlike static
memory allocation, which occurs at compile time, dynamic memory allocation allows for
the allocation and deallocation of memory at runtime, offering flexibility in memory
usage. Much of the power of pointers stems from their ability to track dynamically
allocated memory. The management of this memory through pointers forms the basis for
many operations, including those used to manipulate complex data structures.

C program executes within a runtime system. This is typically the environment provided
by an operating system. The runtime system supports the stack and heap along with other
program behavior.

Memory management is central to all programs. Sometimes memory is managed by the
runtime system implicitly, such as when memory is allocated for automatic variables. In
this case, variables are allocated to the enclosing function’s stack frame. In the case of
static and global variables, memory is placed in the application’s data segment, where it is
zeroed out. This is a separate area from executable code and other data managed by the
runtime system. Instead of having to allocate memory to accommodate the largest
possible size for a data structure, only the actual amount required needs to be allocated.

This unit will be discussing the dynamic memory allocation process of language C.

12.1

OBJECTIVES

After completing this unit, you will be able to:
= Learn how to allocate and free memory, and to control dynamic arrays of any type

of data in general and structures in particular.

= Practice and train with dynamic memory in the world of work oriented applications.

= To know about the pointer arithmetic

= How to create and use array of pointers.

12.2

DYNAMIC MEMORY ALLOCATION

The Creating and maintaining dynamic structures requires dynamic memory allocation
the ability for a program to obtain more memory space at execution time to hold new
values, and to release space no longer needed. While doing programming, if you are
aware about the size of an array, then it is easy and you can define it as an array.
Example:

To store a name of any person, it can go max 100 characters as follows:

char name[100]

But now let us consider a situation where you have no idea about the length of the text
you need to store, for example you want to store a detailed description about a topic. Here
we need to define a pointer to character without defining how much memory is required
and later based on requirement we can allocate memory.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{

char name[100];

char *description;

strcpy(name, "Raghav Rai");

/* allocate memory dynamically */

description = malloc(200 * sizeof(char));

if(description == NULL)

{

fprintf(stderr, "Error - unable to allocate required memory\n");

}

else

{
strepy(description, "Raghav Rai a MVM student in class 11th");

}

printf("Name = %s\n", name);
printf("Description: %s\n", description);

}

The following result:
Name = Raghav Rai
Description: Raghav Rai a MVM student in class 11t

In case this program can be written using calloc(); only thing is you need to replace
malloc with calloc as follows:

calloc(200, sizeof(char));

The complete control and pass any size value while allocating memory, unlike arrays

where once the size is defined, then after you cannot change it.

12.3 RESIZING AND RELEASING MEMORY

When your program comes out, operating system automatically release all the memory
allocated by your program but as a good practice when you are not in need of memory
anymore then you should release that memory by calling the function free().

Alternatively, you can increase or decrease the size of an allocated memory block by
calling the function realloc().
Lets the program once again and make use of realloc() and free() functions:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{
char name[100];
char *description;
strepy(name, "Raghav Rai");

/* allocate memory dynamically */

description = malloc(30 * sizeof(char));

if(description == NULL)

{

fprintf(stderr, "Error - unable to allocate required memory\n");

}

else

{
strepy(description, " Raghav Rai a MVM student in class 11th.");

H

/* suppose you want to store bigger description */
description = realloc(description, 100 * sizeof{char));
if(description == NULL)

{

fprintf(stderr, "Error - unable to allocate required memory\n");

}

else

{

strcat(description, "He is in class 11th");

b

printf("Name = %s\n", name);
printf("Description: %s\n", description);
/* release memory using free() function */
free(description);

}

The following result:
Name = Raghav Rai
Description: Raghav Rai a MVM student. He is in class 11t

This example without re-allocating extra memory, and strcat() function will give an error
due to lack of available memory in description.

124 INTRODUCTION TO MEMORY ALLOCATION IN
6C7

Memory allocations, in general, mean where computer programs and services are
executed to reserve partially or complete space or virtual memory of a computer, this
process is known as memory allocation.

This process is hardware operation and is achieved by memory management through
Operating systems and software applications. In general, there are static and dynamic
memory allocations, whereas, in C programming language, we will see about dynamic
memory allocation where programs are allocated during run time in memory and static
memory allocation is a process of allocating memory while writing the C program which
means memory is allocated at compile time.

12.4.1 Static Memory Allocation in ‘C’

As we discussed static memory allocation is the allocation of memory for the data
variables when the computer programs start. This type of allocation is applied to only
global variables, file scope variables and also to those variables that are declared as static.
This type of allocation is having a drawback when you are allocating memory we should
know the exact memory before allocating as this process allocates fixed memory and
cannot be changed after allocating.

There are a few features of static memory allocation. They are: this type of allocation
allocates variables permanently; hence the memory in this type of allocation cannot be
reused and is, therefore, less efficient. This allocation uses the stack for implementing the

allocation process.
Example:
#include <stdio.h>
void play
{

int X;
}

int main()
{

inty;

int c[10];

return 1;
H

A variable can internally or externally be declared as static in which its value persists
until the end of the program, where this can be done using the keyword static before the
variable declaration. There can be internal or external static variables that are declared
inside or outside the function.

Example:

#include<stdio.h>
void stat(void);

int main()

{
int i;
for(i=1; i<=3 ; i++)
stat();
return 1;
}
void stat(void)
{
static int n = 0;
n=n+l;
printf("n = %d""\n", n);
¥
The following result:
n=1
n=2
n=3

12.4.2 Dynamic Memory Allocation in ‘C’

As discussed above dynamic memory allocation is allocation of memory during runtime
or during program execution. Dynamic memory allocation provides different functions in
the C programming language.

High Address

Stack
Dynamic
Heap } Memory
Allocation
Executable

Instructions

Static Variable /

Automatic Variable
Low Address

a). Stack: In this section, local variable or automatic variable and information regarding
the address of function call are stored such as stack pointer.

b). Heap: This is the part of memory where dynamic memory allocation take place. Now
for dynamic memory allocation following standard library functions are

essential that are defined in the standard library.
12.4.3 Difference Static & Dynamic Memory Allocation

Let's understand the difference between static memory allocation and dynamic memory

allocation.

Static Memory Allocation Dynamic Memory Allocation

Memory is allocated at compile time. Memory is allocated at run time.

Memory cannot be increased while | Memory can be increased while executing

executing program. program.

Used in array. Used in linked list.

Methods used for dynamic memory allocation.

malloc() allocates single block of requested memory.

calloc() allocates multiple block of requested memory.

realloc() reallocates the memory occupied by malloc() or calloc() function.
rree() free the dynamically allocated memory.

12.5

malloc() stands for memory allocation

The malloc() function allocates single block of requested memory at runtime. This
function reserves a block of memory of given size and returns a pointer of type void. This
means that we can assign it to any type of pointer using typecasting. It doesn't initialize
memory at execution time, so it has garbage value initially. If it fails to locate enough
space (memory) it returns a NULL pointer.

Syntax:

ptr=(cast-type*)malloc(byte-size)

Example:

int *x; x = (int*)malloc(100 * sizeof(int)); //memory space allocated to variable x
free(x); //releases the memory allocated to variable x

This statement will allocate either 200 or 400 according to size of int 2 or 4 bytes
respectively and the pointer points to the address of first byte of memory.

Example:

#include <stdio.h>

#include <stdlib.h>

int main()

{
int num, i,
*ptr, sum = 0;
printf("Enter number of elements: ");
scanf("%d", &num);
ptr = (int*) malloc(num * sizeof(int)); //memory allocated using malloc
if(ptr == NULL)

printf("Error! memory not allocated.");
exit(0);

printf("Enter elements of array: ");
for(i = 0; 1 < num; ++i)

{
scanf("%d", ptr + 1);
sum += *(ptr + i);
}
printf("Sum = %d", sum);
free(ptr);
return 0;
}

12.6 calloc() stands for memory allocation

Calloc() is another memory allocation function that is used for allocating memory at
runtime. calloc function is normally used for allocating memory to derived data types
such as arrays and structures. The calloc() function allocates multiple block of requested
memory.
It initially initialize (sets) all bytes to zero.If it fails to locate enough space(memory) it
returns a NULL pointer. The only difference between malloc() and calloc() is that,
malloc() allocates single block of memory whereas calloc() allocates multiple blocks of
memory each of same size.
Syntax:
ptr = (cast-type*)calloc(n/number, element-size);
calloc() required 2 arguments of type count, size-type.
Count will provide number of elements; size-type is data type size
Example:

int*arr;

arr=(int*)calloc(10, sizeof(int)); /120 byte

cahr*str; str=(char*)calloc(50, siceof(char)); // 50 byte
Example:

struct employee

{

char *name;

int salary;

IR

typedef struct employee emp;

emp *el;

el = (emp*)calloc(30,sizeof(emp));
Example:
#include <stdio.h>
#include <stdlib.h>

int main()

{

int num, i, *ptr, sum = 0;

printf("Enter number of elements: ");

scanf("%d", &num);

ptr = (int*) calloc(num, sizeof{(int));

if(ptr == NULL)

{

printf("Error! memory not allocated.");
exit(0);

}

printf("Enter elements of array: ");
for(i = 0; i < num; ++i)

{

scanf("%d", ptr + 1);

sum += *(ptr + i);

}

printf("Sum = %d", sum);
free(ptr);

return 0;

}

12.7 realloc() stands for memory allocation

Changes memory size that is already allocated to a variable. Or If the previously allocated
memory is insufficient or more than required, you can change the previously allocated
memory size using realloc().

If memory is not sufficient for malloc() or calloc(), you can reallocate the memory by
realloc() function. In short, it changes the memory size. By using realloc() we can create
the memory dynamically at middle stage. Generally by using realloc() we can reallocation
the memory. Realloc() required 2 arguments of type void*, size type. Void* will
indicates previous block base address, size-type is data type size. Realloc() will creates
the memory in bytes format and initial value is garbage.

Syntax:

ptr=realloc(ptr, new-size)

Example:

int *x;

x=(int*)malloc(50 * sizeof(int));

x=(int*)realloc(x,100); //allocated a new memory to variable x

Example:

void*realloc(void*, size-type);
int *arr;

arr=(int*)calloc(5, sizeof(int));

arr=(int*)realloc(arr,sizeof(int)*10);

Example:

#include <stdio.h>

#include <stdlib.h>
int main()

int *ptr, i, nl, n2;
printf("Enter size of array: ");
scanf("%d", &nl);
ptr = (int*) malloc(nl * sizeof(int));
printf(" Address of previously allocated memory: ");
for(i=0;1<nl; ++i)
printf("%u\t",ptr + 1);
printf("\nEnter new size of array: ");
scanf("%d", &n2);
ptr = realloc(ptr, n2);
for(i=0; 1 <n2; ++i)
printf("%u\t", ptr + 1);

return 0;

}

12.8 free() stands for memory allocation

When your program comes out, operating system automatically release all the memory
allocated by your program but as a good practice when you are not in need of memory
anymore then you should release that memory by calling the function free().

The memory occupied by malloc() or calloc() functions must be released by calling free()
function. Otherwise, it will consume memory until program exit. Or Dynamically
allocated memory created with either calloc() or malloc() doesn't get freed on its own.
You must explicitly use free() to release the space.

Syntax:

free(ptr);

Example:

#include

#include

int main()

{

int num, i, *ptr, sum = 0;
printf("Enter number of elements: ");
scanf("%d", &num);

ptr = (int*) malloc(num * sizeof(int)); //memory allocated using malloc
if(ptr == NULL)

{

printf("Error! memory not allocated.");

exit(0);

H

printf("Enter elements of array: ");
for(i = 0; 1 < num; ++i)

{

scanf("%d", ptr + 1);

sum += *(ptr + 1);

}

printf("Sum = %d", sum);

free(ptr);
return 0;

}

12.9

CONCLUSION

Memory allocation in C programming language is simple using static memory allocation
which allocates memory during compile time or we can say before the program execution
and it also has another type known as dynamic memory allocation which allocates
memory during run time or allocating memory during program execution which uses four
different functions such as malloc(), calloc(), free() and realloc(). There are different pros
and cons of both methods.

UNIT 13 ERROR HANDLING TECHNIQUES

Structure

13.0 Introduction
13.1 Objectives
13.2 Error Handling in ‘C’
13.2.1 NSError
13.2.2 Patterns for error handling
13.2.3 Errno values and meaning
13.3 Different types of errors exit in ‘C’
13.4 The Perror () Function
13.5 The Sterror () Function
13.6 Uses of Ferror Function
13.7 The uses of clearer () Function
13.8 Divide by Zero Errors
13.9 Program Exit Status
13.10 Conclusion
13.11 Unit based Questions /Answers

13.0

INTRODUCTION

This unit discusses as such, C programming does not provide direct support for error
handling but being a sytem programming language, it provides you access at lower level
in the form of return values. Most of the C or even Unix function calls return -1 or NULL
in case of any error and set an error code errno. It is set as a global variable and indicates
an error occurred during any function call. You can find various error codes defined in
header file. So a C programmer can check the returned values and can take appropriate
action depending on the return value. It is a good practice to set errno to 0 at the time of
initializing a program. A value of 0 indicates that there is no error in the program.

This unit will be discussing the error handling system process of language C.

13.1

OBJECTIVES

After completing this unit, you will be able to:
] ‘C’ programming error handling is provided with NSError class available
in Foundation framework.

= An NSError object encapsulates richer and more extensible error information than
is possible using only an error code or error string.

] An NSError object are an error domain (represented by a string)

= A domain-specific error code and a user info dictionary containing application
specific information.

13.2

ERROR HANDLING IN ‘C’

Error handling is a big part of writing software, and when it is done poorly, the software
becomes difficult to extend and to maintain. Programming languages like C++ or Java
provide an exceptions and destructors that make error handling easier. Such mechanisms

are not natively available for C, and literature on good error handling in C is widely
scattered over the internet.

Errors are the problems or the faults that occur in the program, which makes the behavior
of the program abnormal, and experienced developers can also make these faults.
Programming errors are also known as the bugs or faults, and the process of removing
these bugs is known as debugging.

13.2.1 NSError

C programs use NSError objects to convey information about runtime errors that users
need to be informed about. In most cases, a program displays this error information in a
dialog or sheet. But it may also interpret the information and either ask the user to attempt
to recover from the error or attempt to correct the error on its own.

NSError Object consists of —

Domain: The Error domain can be one of the predefined NSError domains an arbitrary
string describing a custom domain and domain must not be nil.

Code: The error code for the error.

User Info: The User Info dictionary for the error and user Info may be nil.

Example:

NSString *domain = @"com.MyCompany.MyApplication.ErrorDomain";

NSString *desc = NSLocalizedString(@"Unable to complete the process", @"");
NSDictionary *userlnfo = @{ NSLocalizedDescriptionKey : desc };

NSError *error = [NSError errorWithDomain:domain code: 101 userInfo:userInfo];

13.2.2 Pattern for Error Handling

A collected knowledge on good error handling in the form of C error-handling patterns
and a running example that applies the patterns. The patterns provide good practice
design decisions and elaborate on when to apply them and which consequences they
bring. For a programmer, these patterns remove the burden of making many fine-grained
decisions. Instead, a programmer can rely on the knowledge presented in these patterns
and use them as a starting point to write good code.

Tzader Retum Retum
Files Relevent Emmor Status Codes

Handle

Figure: An overview of the patterns and their relationships

Pattern_Name Description

Function Split The function has several responsibilities, which makes the
function hard to read and maintain. Therefore, split it up. Take a
part of a function that seems useful on its own, create a new
function with that, and call that function.

Guard Clause The function is hard to read and maintain because it mixes pre-
condition checks with the main program logic of the function.
Therefore, check whether you have mandatory pre-conditions and
immediately return from the function if these pre-conditions are
not met.

Samurai Principle | When returning error information, you assume that the caller
checks for this information. However, the caller can simply omit
this check and the error might go unnoticed. Therefore, return
from a function victorious or not at all. If there is a situation for
which you know that an error cannot be handled, then abort the

program.
Goto Error | Code gets difficult to read and maintain if it acquires and cleans
Handling up multiple resources at different places within a function.

Therefore, have all resource cleanup and error handling at the end
of the function. If a resource cannot be acquired, use
the goto statement to jump to the resource cleanup code.

Cleanup Record It is difficult to make a piece of code easy to read and maintain if
this code acquires and cleans up multiple resources, particularly if
those resources depend on one another. Therefore, call resource
acquisition functions as long as they succeed, and store which
functions require cleanup. Call the cleanup functions depending
on these stored values.

Object-Based Having multiple responsibilities in one function, such as resource
Error Handling acquisition, resource cleanup, and usage of that resource, makes
that code difficult to implement, read, maintain, and test.
Therefore, put initialization and cleanup into separate functions,
similar to the concept of constructors and destructors in object-

oriented programming.

13.2.3 Errno Values and Meaning

errno is a global variable indicating the error occurred during any function call and it is
defined inside <errno.h> header file. When a function is called in C, a variable named
errno is automatically assigned a code (value) which can be used to identify the type of
error that has been encountered. Different codes values for errno mean different types of
eITorS.

error value Error

1 Operation not permitted
2 No such file or directory
3 No such process

4 Interrupted system call

5 1/0 error

6 No such device or address

7 The argument list is too long
8 Exec format error

9 Bad file number

10 No child processes

11 Try again

12 Out of memory

13 Permission denied

Example:

#include <errno.h>
#include <stdio.h>

int main()

{
// If a file is opened which does not exist,
// then it will be an error and corresponding
// errno value will be set
FILE* fp;
// opening a file which does not exist
fp = fopen("Error Handling.txt", "t");
printf("Value of errno: %d\n", errno);
return 0;

}

13.3 DIFFERENT TYPES OF ERRORS EXIT IN ‘C’

These errors are detected either during the time of compilation or execution. Thus, the
errors must be removed from the program for the successful execution of the program.
There are mainly five types of errors exist in C programming:

= Syntax error

= Run-time error

= Linker error

= Logical error

" Semantic error
a). Syntax error:
Syntax errors are also known as the compilation errors as they occurred at the compilation
time, or we can say that the syntax errors are thrown by the compilers. These errors are
mainly occurred due to the mistakes while typing or do not follow the syntax of the
specified programming language. These mistakes are generally made by beginners only
because they are new to the language. These errors can be easily debugged or corrected.
The syntax errors are:

* If miss the parenthesis (}) while writing the code.

= Displaying the value of a variable without its declaration.

. If miss the semicolon (;) at the end of the statement.
Example:
#include <stdio.h>

int main()

{
a=10;
printf("The value of a is : %d", a);
return O;

H
The following result:

main.c: In function "main®:

a = la;

Example:

#include <stdio.h>

int main()

{
a=2;
if(.) // syntax error
printf("a is greater than 17);
return O;

}
The following result:

main.c: In function “main’:

if(.)

A

b). Run-time error:

Sometimes the errors exist during the execution-time even after the successful
compilation known as run-time errors. When the program is running, and it is not able to
perform the operation is the main cause of the run-time error. The division by zero is the
common example of the run-time error. These errors are very difficult to find, as the
compiler does not point to these errors.
#include <stdio.h>
int main()
{

int a=2;

int b=2/0;

printf("The value of b is : %d", b);

return 0;

}

The following result:

main.c:14:12: warning: division by zero [-Wdiv-by-zero]

Floating point exception

¢). Linker error:

Linker errors are mainly generated when the executable file of the program is not created.
This can be happened either due to the wrong function prototyping or usage of the wrong
header file. For example, the main.c file contains the sub() function whose declaration
and definition is done in some other file such as func.c. During the compilation, the
compiler finds the sub() function in func.c file, so it generates two object files,
i.e., main.o and func.0. At the execution time, if the definition of sub() function is not
found in the func.o file, then the linker error will be thrown. The most common linker
error that occurs is that we use Main() instead of main().
#include <stdio.h>
int Main()
{

int a=78;

printf("The value of a is : %d", a);

return O;

}

The following result:

Logical error:

The logical error is an error that leads to an undesired output. These errors produce the
incorrect output, but they are error-free, known as logical errors. These types of mistakes
are mainly done by beginners. The occurrence of these errors mainly depends upon the
logical thinking of the developer. If the programmers sound logically good, then there
will be fewer chances of these errors.

#include <stdio.h>

int main()
{
int sum=0; // variable initialization
int k=1;
for(int i=1;i<=10;i++); // logical error, as we put the semicolon after loop
{
sum=sum-+k;
k++;
}

printf("The value of sum is %d", sum);
return 0O;

The following result:

The wvalue of sum is 1

Semantic error:
Semantic errors are the errors that occurred when the statements are not understandable
by the compiler.
The following can be the cases for the semantic error:
Use of a un-initialized variable.
int i;
i=it+2;
Type compatibility
int b = "Error Handling";
Errors in expressions
inta, b, c;
atb=c;
Array index out of bound
int a[10];
a[10] = 34,
#include <stdio.h>
int main()
{
int a,b,c;
a=2;
b=3;
c=1;
atb=c; // semantic error
return O;

}

The following result:

main.c: In function “main®:

ath=c;

e

13.4 THE perror () FUNCTION

The perror() function is used to show the error description. It displays the string you pass
to it, followed by a colon, a space, and then the textual representation of the current errno
value.

Syntax
void perror(const char *str);

Parameters
str: It is a string containing a custom message to be printed before the error message
itself.
Example
/I C implementation to see how perror() function is used to
// print the error messages.
#include <errno.h>
#include <stdio.h>
#include <string.h>
int main()
{
FILE* fp;
//'If a file is opened which does not exist,
// then it will be an error and corresponding
// errno value will be set
fp = fopen(" Error Handling.txt ", "r");
/I opening a file which does
// not exist.
printf("Value of errno: %d\n ", errno);
perror("Message from perror");

return 0;

The following result:
Value of errno: 2
Message from perror: No such file or directory

13.5 THE sterror () FUNCTION

The strerror() function is also used to show the error description. This function returns a
pointer to the textual representation of the current errno value.
Syntax
char *strerror(int errnum);
Parameters
errnum: It is the error number (errno).
Example:
/I C implementation to see how strerror() function is used
// to print the error messages.
#include <errno.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE* fp;
//'If a file is opened which does not exist,

// then it will be an error and corresponding
/I errno value will be set
fp = fopen(" Error Handling.txt ", "r");
/I opening a file which does
// not exist.
printf("Value of errno: %d\n", errno);
printf("The error message is : %s\n", strerror(errno));
return 0;

H

The following result:
Value of errno: 2
The error message is: No such file or directory

13.6

USES OF ferror () FUNCTION

The ferror() function is used to check whether an error occurred during a file operation.
Syntax
int ferror(FILE *stream);
Parameters
stream: It is the pointer that points to the FILE for which we want to check the error.
Return Value
It returns a non-zero value if an error occurred, otherwise it returns 0.
Example
/I C program to demonstrate the ferror() function
#include <stdio.h>
int main()
{
// Open the file in read mode
FILE* file = fopen("nonexistent_file.txt", "r");
if (file == NULL)
{
// Print an error message
/1 if file opening fails
perror("Error opening file");
// Return with non-zero exit status to
// indicate an error
return 1;
¥
int c;
// Process the character
/I Add your code here to perform operations on each
// character read from the file
while ((c = fgetc(file)) != EOF) {
}
if (ferror(file)) {
// Print an error message if an error occurred
// during file reading
printf(

"An error occurred while reading the file.\n");
}
else {
// Print success message if file reading completed
// without errors
printf("File read successfully.\n");
}
// Close the file
fclose(file);
// Return with zero exit status to indicate successful
// execution
return 0;
}
The following result:
Error opening file: No such file or directory

13.7

THE USES OF clearer () FUNCTION

The clearerr() function is used to clear both end-of-file and error indicators for a file
stream.
Syntax
void clearerr(FILE *stream);
Parameters
stream: It is the pointer that points to the FILE for which we want to check the error.
Example
#include <stdio.h>
int main()
{
FILE* file = fopen("file.txt", "r");
// Open the file in read mode
if (file == NULL)
{
// Print an error message
/1 if file opening fails
perror("Error opening file");
// Return with non-zero exit status to
// indicate an error
return 1;
}
// Perform file operations
/I Add your code here to perform operations on the
// opened file
if (ferror(file)) {
// Print an error message
// if an error occurred
// during file operations
printf("An error occurred while performing file "
"operations.\n");

b
// Clear the error indicators for the
// file stream
clearerr(file);
// Continue with file operations
// Add your code here to continue with further
// operations on the file
/I Close the file
fclose(file);
return 0;

}

13.8 DIVIDE BY ZERO ERRORS FUNCTION

A common pitfall made by C programmers is not checking if a divisor is zero before a
division command. Division by zero leads to undefined behavior, there is no C language
construct that can do anything about it. Your best bet is to not divide by zero in the first
place, by checking the denominator.

Example:
// C program to check and rectify
// divide by zero condition
#include <stdio.h>
#include <stdlib.h>
void function(int);
int main()
{
intx=0;
function(x);
return 0;
}

void function(int x)

{
float fx;
if x==0) {
printf("Division by Zero is not allowed");
fprintf(stderr, "Division by zero! Exiting...\n");
exit(EXIT_FAILURE);
}

else

fx=10/x;

printf("f(x) is: %.5f", fx);
}
}

The following result:
Division by zero! Exiting

13.9

PROGRAM EXIT STATUS

Exit status is the value returned by the program after its execution is completed which
tells the status of the execution of the program.
The C standard specifies two constants: EXIT SUCCESS and EXIT FAILURE, that
may be passed to exit() to indicate successful or unsuccessful termination, respectively.
These are macros defined in <stdlib.h> header file.
Example:
// C implementation which shows the
// use of EXIT SUCCESS and EXIT FAILURE.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main ()

FILE* fp;
fp = fopen("filedoesnotexist.txt", "rb");
if (fp == NULL)

printf("Value of errno: %d\n", errno);
printf("Error opening the file: %s\n",
strerror(errno));
perror("Error printed by perror");
exit(EXIT_FAILURE);
printf("I will not be printed\n");
¥
else
{
fclose(fp);
exit(EXIT_SUCCESS);
printf("I will not be printed\n");
¥
return 0;
}
The following result:
Value of errno: 2
Error opening the file: No such file or directory
Error printed by perror: No such file or directory

13.9

CONCLUSION

This chapter showed you how to perform error handling in C. Function Split tells you to
split your functions into smaller parts to make error handling of these parts easier. A
Guard Clause for your functions checks pre-conditions of your function and returns
immediately if they are not met. This leaves fewer error-handling obligations for the rest
of that function. Instead of returning from the function, you could also abort the program,

adhering to the Samurai Principle. When it comes to more complex error handling
a€’particularly in combination with acquiring and releasing resources a€’you have
several options. Goto Error Handling makes it possible to jump forward in your function
to an error-handling section. Instead of jumping, Cleanup Record stores the info, which
resources require cleanup, and performs it by the end of the function. A method of
resource acquisition that is closer to object-oriented programming is Object-Based Error
Handling, which uses separate initialization and cleanup functions similar to the concept
of constructors and destructors.

With these error-handling patterns in your repertoire, you now have the skill to write
small programs that handle error situations in a way that ensures the code stays
maintainable.

UNIT 14 STANDARDS I/O OPERATIONS

Methods of working with Files

14.0 Introduction
14.1 Objectives
14.2 Introduction to Input and Output
14.3 Standard Input/Output System
14.3.1 A File using the Function fopen()
14.3.2 A File using the Function fclose()
14.4 Character Input and Output in Files
14.4.1 The getchar() Function
14.4.2 The putchar() Function
14.4.3 Printf(format, values)
14.4.4 Printf Substitution Types
14.4.5 Printf Substitution Modifier
14.5 String Input/Output Functions
14.6 Block Input/Output Functions
14.7 Sequential Vs Random Access Files
14.8 Positioning the File Pointer
14.9 The Unbuffered I/O
14.10 Conclusion
14.11 Unit based Questions /Answers

14.0

INTRODUCTION

This unit discusses The examples we have seen so far in the previous units deal with
standard input and output. When data is stored using variables, the data is lost when the
program exits unless something is done to save it. This unit discusses methods of working
with files, and a data structure to store data. C views file simply as a sequential stream of
bytes. Each file ends either with an end-of-file marker or at a specified byte number
recorded in a system maintained, administrative data structure. C supports two types of
files called binary files and text files. The difference between these two files is in terms of
storage. In text files, everything is stored in terms of text i.e. even if we store an integer
54; it will be stored as a 3-byte string - “54\0”. In a text file certain character translations
may occur. For example a newline(\n) character may be converted to a carriage return,
linefeed pair. This is what Turbo C does. Therefore, there may not be one to one
relationship between the characters that are read or written and those in the external
device. A binary file contains data that was written in the same format used to store
internally in main memory.

The fact that a numeric value is in a standard length makes binary files easier to handle.
No special string to numeric conversions is necessary. The disk I/O in C is accomplished
through the use of library functions. The ANSI standard, which is followed by TURBO C,
defines one complete set of I/O functions. But since originally C was written for the
UNIX operating system, UNIX standard defines a second system of routines that handles
I/O operations. The first method, defined by both standards, is called a buffered file
system. The second is the unbuffered file system.

This unit will be discussing the buffered file functions of language C.

14.1 OBJECTIVES
After completing this unit, you will be able to:
. define the concept of file pointer and file storage in C;
. create text and binary files in C;
. read and write from text and binary files;
. deal with large set of Data such as File of Records; and
= perform operations on files such as count number of words in a file, search a word
in a file, compare two files etc.
14.2 INTRODUCTION TO INPUT AND OUTPUT
There are no in-built input or output statements in the C language. This means that all
input and output must be done by calling functions, at least some of which must be
written in a language other than C. There is, however, a standard library of functions that
allow 1/O to be done in a relatively uniform manner for all C implementations without the
need to know how it is being done in any particular case.
This standard library is known as the "stdio" library and can be considered to be an
extension to the C language itself. To be able to use the functions within this library it is
necessary to insert the following prellprocessor statement at the start of the program
source code:
#include <stdio.h>
The following functions are part of the "stdio" library
getchar for reading single characters from the standard input, usually the keyboard.
gets for reading a whole line of characters from the standard input, usually the
keyboard.
putchar for writing single characters to the standard output, usually the screen.
printf for writing more complex, formatted output to the standard output.
Functions getchar, putchar and printf are used extensively in the program and the many
other input and output.
14.3 STANDARD INPUT/OUTPUT SYSTEM

A sequential stream of bytes ending with an end-of-file marker is what is called a file.
When the file is opened the stream is associated with the file. By default, three files and
their streams are automatically opened when program execution begins - the standard
input, standard output, and the standard error. Streams provide communication channels
between files and programs. For example, the standard input stream enables a program to
read data from the keyboard, and the standard output stream enables to write data on the
screen. Opening a file returns a pointer to a FILE structure (defined in <stdio.h>) that
contains information, such as size, current file pointer position, type of file etc., to
perform operations on the file. This structure also contains an integer called a file
descriptor which is an index into the table maintained by the operating system namely, the
open file table. Each element of this table contains a block called file control block (FCB)

used by the operating system to administer a particular file.

The standard input, standard output and the standard error are manipulated using file
pointers stdin, stdout and stderr. The set of functions which we are now going to discuss
come under the category of buffered file system. This file system is referred to as
buffered because, the routines maintain all the disk buffers required for reading / writing
automatically. To access any file, we need to declare a pointer to FILE structure and then
associate it with the particular file.

It is declared as follows:

FILE *fp;

14.3.1 A File using the Function fopen()

Once a file pointer variables has been declared, the next step is to open a file. The fopen()
function opens a stream for use and links a file with that stream. This function returns a
file pointer, described in the previous section.

The syntax is:

FILE *fopen(char *filename,*mode);

where mode is a string, containing the desired open status. The filename must be a string
of characters that provide a valid file name for the operating system and may include a
path specification.

Example:

#include <stdio.h>

main ()

{

FILE *fp;

if ((fp=fopen(“filel.dat”, “r”’))==NULL)
{

printf(“FILE DOES NOT EXIST\n");
exit(0);

¥

}

14.3.2 A File using the Function fclose()

When the processing of the file is finished, the file should be closed using the fclose()
function,

The syntax is:

int fclose(FILE *fptr);

This function flushes any unwritten data for stream, discards any unread buffered input,
frees any automatically allocated buffer, and then closes the stream. The return value is 0
if the file is closed successfully or a constant EOF, an end-of file marker, if an error
occurred. This constant is also defined in. If the function fclose() is not called explicitly,
the operating system normally will close the file when the program execution terminates.
Example:

#include <stdio.h>

main ()

{

FILE *fp;

if ((fp=fopen(“filel.dat”, “r”’))==NULL)
{

printf(“FILE DOES NOT EXIST\n");
exit(0);

/* close the file */
fclose(fp);
}

14.4

CHARACTER INPUT AND OUTPUT IN FILES

ANSI C provides a set of functions for reading and writing character by character or one
byte at a time. These functions are defined in the standard library. They are:

= The getchar() Function

= The putchar() Function

= The Printf() Function

= The Scanf() Function

= Printf Substitution Types

= Printf Substitution Modifier

14.4.1 The getchar() Function

This will get a character from the keyboard, waiting as long as required for a key to be
pressed. When the character is found it's corresponding bit pattern (usually the ASCII
value) is assigned to abc.

This function is:

abc = getchar();

getc() is used to read a character from a file and putc() is used to write a character to a
file.

Their syntax is:

int putc(int ch, FILE *stream);

int getc(FILE *stream);

If the function encounters an error, such as an end of file marker, it returns the value EOF
(this type of error is unusual from a keyboard!). EOF is a constant defined in the stdio.h
header file described in section C

EOF is equivalent to -1 on most systems.

It is possible to use getchar without assigning the resulting value to any variable, such as
in the statement:

getchar();

14.4.2 The putchar() Function

putchar outputs a character to the screen as follows:

putchar(character_expression);

This will output to the screen whatever character has a bit pattern that corresponds to the
value of the specified parameter in the ().

Example:

int fred = 65;

putchar('x"); /* outputs character 'x' */
putchar(fred); /* outputs character 'A' */

1. putchar('x"); is not the same as putchar(x);

The former outputs the character 'x'.

The latter looks at the variable called x and prints the character with a bit pattern that
corresponds to the value stored in x.

2.'x" is not the same as "x".

"x" is a string as used in printf.

3. putchar(2); will not put a 2 onto the screen.

The bit pattern of the number 2 does not correspond to the ASCII value of a character that
is "printable".

i.e. Nothing will appear on the screen.

Their syntax is:

int fgetc(FILE *stream);

int fputc(int ¢, FILE *stream);

14.4.3 The Printf() Function

printf outputs a string of characters to the
eg. printf("\nHello World");

1. A string is a collection of one or more characters with a hidden zero byte at the end.
2. A string with one character in it is not the same as a single character. Double quotes, " "
enclose a string, single quotes ' ' enclose a character.

3. The \n in the above example makes sure the output is on a new line otherwise it
would have continued where it previously left off.

4. If the string contains a %d then the output is modified by substituting the value of the
next parameter in place of the %d.

For each further %d another parameter value is substituted.
eg. printf("Add %d and %d to get %d.",a,b,a+b);
An expression can be used for a printf parameter as in a+b .

14.4.4 The Scanf() Function

The int scanf(const char *format, ...) function reads the input from the standard input
stream stdin and scans that input according to the format provided.

The format can be a simple constant string, but you can specify %s, %d, %c, %f, etc., to
print or read strings, integer, character, or float, respectively. There are many other
formatting options available which can be used based on requirements.

Example:

#include <stdio.h>

int main()

{

char str[100];

inti;

printf("Enter a value :");

scanf("%s %d", str, &i);

printf("\nYou entered: %s %d ", str, 1);
return 0;

}
14.4.5 Printf Substitution Types

Wherever a % is found in the printf output string the next character will be

%d will substitute the decimal value of the next parameter.

Other % character substitutions cause the next parameter to be interpreted in different

forms.

%u output as an unsigned decimal number

%o output as an octal number %x output as a hexadecimal number

%c output as a character %s output as a string

%f output as a real number with 6 decimal places

%e output as a real number in scientific notation

%g output as a real number in ordinary or scientific notation, whichever takes the least
space

%% output a '%' character

14.4.6 Printf Substitution Modifier

The normal %d output will substitute the minimum number of digits with a leading - if it
is negative.

This may not be neat or convenient if, say, a table of figures is to be output, but, a field
width modifier can be used to specify how many character positions the substituted value
will take up.

eg. printf(""Height is %5d metres' size);

There will always be five characters substituted for the %5d, if the value is between -999
and 9999 then the output will be padded with spaces on the left.
Any print type can have a field width modifier.

eg. printf(""Gender:%5c\n", sex);

A further modifier can alter the number of decimal places output for real numbers printed
with a %f, %e or %g, in the form:

printf("Average is %10.5f\n", xyz);

Where: 10 gives the total width of the field including digits, the decimal point and
possible - sign.

.5 gives the number of digits after the decimal point.

14.5 STRING INPUT/OUTPUT FUNCTIONS

The file then each time we will need to call character input function, instead C provides
some string input/output functions with the help of which we can read/write a set of

characters at one time.
These are defined in the standard library:

= fgets()
= fputs()

These functions are used to read and write strings.
The syntax is:

int fputs(char *str, FILE *stream);
char *fgets(char *str, int num, FILE *stream);

The integer parameter in fgets() is used to indicate that at most num-1 characters are to
be read, terminating at end-of-file or end-of-line. The end-of-line character will be placed
in the string str before the string terminator, if it is read. If end-of-file is encountered as
the first character, EOF is returned, otherwise str is returned. The fputs() function returns
a non-negative number or EOF if unsuccessful.

Example:

/*Program to read a file and count the number of lines in the file */

#include <stdio.h>

#include <conio.h>

#include <process.h>

void main()

{

FILE *fp;

int cnt=0;

char str[80];

/* open a file in read mode */

if ((fp=fopen("lines.dat","r"))== NULL)

{

printf("File does not exist\n");

exit(0);

}

/* read the file till end of file is encountered */

while(!(feof(fp)))

{ fgets(str,80,p); /*reads at most 80 characters in str */

cnt++; /* increment the counter after reading a line */
}

}

/* print the number of lines */

printf(“The number of lines in the file is :%d\n”,cnt);
fclose(fp);

}

14.6 BLOCK INPUT/OUTPUT FUNCTIONS

Block Input / Output functions read/write a block from to a file. A block can be a record,
a set of records or an array. These functions are also defined in standard library.

= fread()

= fwrite()

These two functions allow reading and writing of blocks of data.
The syntax is:

int fread(void *buf, int num_bytes, int count, FILE *fp);
int fwrite(void *buf, int num_bytes, int count, FILE *fp);

In case of fread(), buf is the pointer to a memory area that receives the data from the file
and in fwrite(), it is the pointer to the information to be written to the file. These functions
are quite helpful in case of binary files. Generally these functions are used to read or write
array of records from or to a file.

/* Program to illustrate the fread() and fwrite() functions*/
#include <stdio.h>

#include <conio.h>

#include <process.h>

#include <string.h>

void main()

{

struct stud

{

char name[30];

int age;

int roll_no;

}

s[30],st;

int i;

FILE *fp;

/*opening the file in write mode*/
if((fp=fopen("sud.dat","w"))== NULL)

{

printf("Error while creating a file\n");

exit(0);

H

/* reading an array of students */
for(i=0;i<30:i++)

scanf("%s %d %d",s[i].name,s[i].age,s[i].roll_no);
/* writing to a file*/

fwrite(s,sizeof(struct stud),30,fp);

fclose(fp);

/* opening a file in read mode */
fp=fopen("stud.dat","r");

/* reading from a file and writing on the screen */
while(!feof(fp))

{

fread(&st,sizeof(struct stud),1,fp);

fprintf("%s %d %d",st.name,st.age,st.roll_no);
}

fclose(fp);

}

Example:

Give the output of the following code fragment:
#include <stdio.h>

#include <process.h>

#include <conio.h>

main()

{

FILE * fpl, * fp2;

double a,b,c;

fpl=fopen(“filel”, “w”);
fp2=fopen(“file2”, “w”);
fprintf(fpl,”1 5.34 —4E02”);
fprintf(fp2,”-2\n1.245\n3.234e02\n”);
fclose(fpl);

fclose(fp2);

fpl=fopen(“filel”, “r”);
fp2=fopen(“file2”,“r”);
fscanf(fp1,“%lf %lf %l1f”,&a,&b,&c);
printf(“%101f %101f %101f”,a,b,c);
fscanf(fp2,”%lf %lf %lf”,&a,&b,&c);
printf(“%10.1e %101f %101f”,a,b,c);

fclose(fpl);
fclose(fp2);
}

14.7 SEQUENTIAL Vs RANDOM ACCESS FILES
C supports two type of files — text and binary files, also two types of file systems —
buffered and unbuffered file system. It can also differentiate in terms of the type of file
access as Sequential access files and random access files. Sequential access files allow
reading the data from the file in sequential manner which means that data can only be
read in sequence.
Example: We have considered till now in this unit are performing sequential access.
Random access files allow reading data from any location in the file. To achieve this
purpose, C defines a set of functions to manipulate the position of the file pointer.

14.8 POINTIONING THE FILE POINTER

To random access files, C requires a function with the help of which the file pointer can
be positioned at any random location in the file. Such a function defined in the standard
library is:

The function fseek() is used to set the file position. Its prototype is:

int fseek(FILE *fp, long offset, int pos);

The first argument is the pointer to a file. The second argument is the number of bytes to
move the file pointer, counting from zero. This argument can be positive, negative or zero
depending on the desired movement. The third parameter is a flag indicating from where

in the file to compute the offset.
It can have three values:

SEEK SET(or value 0) the beginning of the file,
SEEK CUR(or value 1) the current position and
SEEK END(or value 2) the end of the file

These three constants are defined in <sstdio.h>. If successful fseek() returns zero.
Another function rewind() is used to reset the file position to the beginning of the file.

Its prototype is:

void rewind(FILE *fp);

fseek(fp,0,SEEK _SET);

Another function ftell() is used to tell the position of the file pointer.

Its prototype is:

long ftell(FILE *fp);

It returns —1 on error and the position of the file pointer if successful.

14.9 THE UNBUFFERED 1/O

The buffered I/O system uses buffered input and output, that is, the operating system
handles the details of data retrieval and storage, the system stores data temporarily
(buffers it) in order to optimize file system access. The buffered I/O functions are handled
directly as system calls without buffering by the operating system. That is why they are
also known as low level functions. This is referred to as unbuffered I/O system because
the programmer must provide and maintain all disk buffers, the routines do not do it
automatically.

The low level functions are defined in the header file <io.h>.

These functions do not use file pointer of type FILE to access a particular file, but they
use directly the file descriptors, as explained earlier, of type integer. They are also called
handles.

a). Opening and closing of files

The function used to open a file is open(). Its prototype is:

int open(char *filename, int mode, int access);

Here mode indicates one of the following macros in <fcntl.h>.

Mode:

O_RDONLY Read only
O_WRONLY Write only
O_RDWR Read / Write

The access parameter is used in UNIX environment for providing the access to particular
users and is just included here for compatibility and can be set to zero. open() function
returns —1 on failure.

int fd;

if ((fd=open(filename,mode,0)) == -1)

{

printf(“cannot open file\n”);

exit(1);

H

If the file does not exist, open() the function will not create it. The function creat() is used
which will create new files and re-write old ones. The prototype is:
int creat(char *filename, int access);

It returns a file descriptor; if successful else it returns —1. It is not an error to create an
already existing file, the function will just truncate its length to zero. The access
parameter is used to provide permissions to the users in the UNIX environment. The
function close() is used to close a file.

The prototype is:

int close(int fd);
It returns zero if successful and —1 if not.

b). Reading, Writing and Positioning in File

The functions read() and write() are used to read from and write to a file. The prototypes
is:

int read(int fd, void *buf, int size);

int write(int fd, void *buf, int size);

The first parameter is the file descriptor returned by open(), the second parameter holds
the data which must be typecast to the format needed by the program, the third parameter
indicates the number of bytes to transferred. The return value tells how many bytes are
actually transferred. If this value is —1, then an error must have occurred.

/* Program to copy one file to another file to illustrate the functions*/
include <stdio.h>

include <io.h>

#include <process.h>

typedef char arr[80];

typedef char name[30];

main()

{

arr buf;

name fname, sname;

int fd1,fd2,size;

/* check for the command line arguments */
if (argc!=3)

{

printf("Invalid number of arguments\n");
exit(0);

}

if ((fd1=open(argv[1],0 RDONLY))0)

{

printf("Error in opening file %s \n",argv[1]);
exit(0);

H

if ((fd2=creat(argv[2],0))<0)

printf("Error in opening file %s \n",argv[2]);
exit(0);

}

open(argv[2],0_WRONLY);

size=read(fd1,buf,80); /* read till end of file */
while (size>0)

{

write(fd2,buf,80);

size=read(fd1,buf,80);

}

close(fdl);

close(fd2);

}

14.10 CONCLUSION

In this unit, we have learnt about files and how C handles them. We have discussed the
buffered as well as unbuffered file systems. The available functions in the standard library
have been discussed. This unit provided you an ample set of programs to start with. We
have also tried to differentiate between sequential access as well as random access file.

The file pointers assigned to standard input, standard output and standard error are stdin,
stdout, and stderr respectively. The unit clearly explains the different Files type of modes
oof opening the file. As seen there are several functions available to read/write from the
file. The usage of a particular function depends on the application. After reading this unit
one must be able to handle large data bases in the form of files.

CSM - 6151: PROGRAMMING WITH ‘C’ LAB

Programming Lab

Introduction (Overview of the Lab)

Objectives

Overall Directions

Structure of ‘C’ Program

Salient Features of C

‘C’ Program development Environment
Phase-I: Creating a Program
Phase-1I1&I11: Preprocessing and Compiling a ‘C’ Program
Install Visual Studio Code on Windows

How to design/develop Program

Structure of ‘C’ Program

Compile and Run ‘C’ Program

Lab Exercise ‘C’ Program Session-wise

OVERVIEW OF THE LAB

This lab course offers hands-on experience aimed at practical application. Participants have
finished the BCA-151 Programming Principles and Algorithms Labs support course, which

covers C programming examples across Windows, UNIX, and DOS systems. Each session
concludes with a series of programming problems for practice. It's essential to thoroughly
review the program documentation regulations and adhere to the general guidelines
provided.
Program development steps:
This program development involves a series of sequential steps essential for creating in a
high-level language and converting it into machine-level language:

1. Drafting and refining the software design.

2. Linking the application with required library modules.

3. Compiling the software.

4. Executing the program for operation.

This lab course will be discussing the separate step compilation process of language C.

OBJECTIVES

After completing this lab course, you will be able to:

= The goal is to guide learners in comprehending the problem-solving rationale and
algorithm formulation process.

® This includes crafting a corresponding flowchart and comprehending the syntax and
framework of C programming.

= Proficiency in procedural language programming is emphasized, covering the methods
for assembling, connecting, and resolving issues in C code.

= The primary aim is to impart a foundational comprehension of C language
programming to students. This encompasses teaching them problem-solving strategies
and proficient writing techniques in C programming.

= The curriculum covers fundamental concepts such as functions, pointers, file
handling, structures, loops, and arrays, ensuring a comprehensive understanding of
these key components in programming.

OVERALL DIRECTIONS

To try each of the tasks and challenges listed in the list, session by session.

You can ask the responsible lab teacher for help completing the lab exercises. The lab
teacher is clearly not expected to provide you solutions to the assignments as they are
credit-based, but you are welcome to ask questions about the C language or any technical
issues.

You should put comments (text in between /*... */ delimiters) above every function in the
code, including the main function, for every application. A description of the function that
has been developed, its goal, the significance of the parameter it uses, and the meaning of
the return result, if any, should also be included.

Prior to the primary function’s source code, comprehensive explanations outlining the
purpose of the program will be incorporated within the comment block. These explanations
will elucidate the program's objectives and functionalities. Throughout the code, relevant
comments will be strategically placed to enhance readability and understanding.

The C program will strictly adhere to the ANSI standard for the language, ensuring
compatibility and conformity. It will be developed as a generic and interactive application,
meticulously documented with real input and output data to facilitate comprehension.

To maintain integrity, submissions that appear derivative, stemming from multiple sources
but exhibiting remarkable similarities, will not be considered. It is strongly advised against
replicating or mimicking someone else's work to ensure individuality and authenticity in
submissions.

Your responsibility includes creating a separate directory inaccessible to others for storing
all programs to ensure confidentiality. Keeping an Observation Book and Lab Record is
mandatory. The lab manual provides a session-wise list of programs, and it's essential to
prepare algorithms and record programs in the Observation Book prior to each session.
During lab hours, dedicate time to executing, testing, and enhancing programs for desired
outputs. Upon completing a lab exercise, approach a lab instructor or in-charge for
evaluation and signature in the Observation Book.

Lab assignments should be submitted in the form of a comprehensive Lab Record. This
record should encompass algorithms, program codes with comments, and outputs for
various inputs provided, ensuring a thorough documentation of the work completed.

STRUCTURE OF ‘C’ PROGRAM

A 'C' program is constructed from multiple instructions, each written as an individual
statement. It commences with the main function enclosed in opening braces, signifying its
initiation. This is succeeded by variable and constant declarations, succeeded by statements
encompassing input and output operations.

The structure of a 'C' program typically involves several sections, as outlined below:

1. Initialization: Begins with the 'main' function, the entry point of execution.

2. Variable and Constant Declarations: Defines variables and constants necessary for the
program.

3. Statements: Includes instructions for data processing, involving input/output operations
and logic implementation.
These sections collectively form the structure of a 'C' program, organizing the flow of
operations:
DOCUMENTATION SECTION
LINK SECTION
DEFINITION SECTION
GLOBAL DECLARATION SECTION
Main() Function Section
{
Declaration part
Executable part
}
SUBPROGRAM SECTION
User defined function

SALIENT FEATURES OF C

C language boasts several defining characteristics that have propelled its popularity
within the programming landscape, many of which were thoroughly covered during the
BCA-151 Problem Solving and Programming course:

1. Small Size: C's concise nature allows for efficient coding without unnecessary
overheads.

2. Extensive Use of Function Calls: Its modular approach leverages functions for code
organization and reusability.

3. Structured Language: Encourages organized and systematic programming practices,
enhancing readability and maintenance.

4. Low-Level (Bitwise) Programming Availability: Offers direct access to memory and
bitwise operations for optimized code implementation.

5. Pointer Implementation: Extensively employs pointers for memory management,
arrays, structures, and functions, enabling intricate data manipulation.

6. High-Level Constructs: Provides high-level constructs for abstraction, simplifying
complex operations.

7. Handling Low-Level Activities: Allows direct manipulation of hardware, making it
suitable for system programming and embedded systems.

8. Efficient Program Output: Produces highly efficient programs due to its close-to-
hardware approach.

9. Cross-Platform Compilation: Offers portability, allowing compilation on various
computer architectures, contributing to its versatility and widespread use."

These features collectively contribute to C's robustness, flexibility, and efficiency, making
it a prominent choice for diverse programming needs.

‘C’ PROGRAM DEVELOPMENT ENVIRONMENT

C systems generally consist of several parts: a program-development environment, the
language and the C Standard Library. Explain the following typical C development
environment:

=S Phase |
|, Projpramemier creates program

[Edibar - o= =
Disk n the editor and stores it an
chasks,
. E": y Phase 2:
Preprocessor - - Tk Preprocessor peagiam
pEnmesses the code
S) Phase 3:
Coampiler - . | Coenpier creabes
Disk ahiject code and stoms
J itan disk.
- " Phase 4:
Linker links the object
Lintker I ik oo wath the Rbranes,

cranes an exerusabke file and
siores it on disk.

g

Primary
Pelermaay

Loader 00—

Phase 5:
Loader puls program
i memary

Primary

Phase 6.

CPU fakes gach

instnuctson and
rEeotes i possibly

sinnrg new data

walles as the program

e,

C programs typically go through six phases to be executed. These are: edit, preprocess,
compile, link, load and execute.

Phase — I: Creating a Program

Visual Studio Code stands out as one of the most widely utilized code editors and
integrated development environments (IDEs) developed by Microsoft. It serves as a
versatile platform for coding in various programming languages, fostering the creation
and optimization of codebases while facilitating efficient debugging. Notably, Visual
Studio Code boasts cross-platform compatibility, running seamlessly on Windows,
macOS, and Linux operating systems.

The editor's popularity extends globally, including in India, where it has gained
widespread adoption. Its user-friendly interface and extensive language support,
encompassing languages such as C, C++, Java, Python, JavaScript, React, and Node.js,
contribute to its broad appeal. Visual Studio Code distinguishes itself by offering a rich
ecosystem of in-app extensions tailored for diverse programming languages, enabling
users to tailor their coding environment to specific needs.

One of the noteworthy features of Visual Studio Code is its visually appealing and
dynamic user interface, complemented by a sophisticated night mode that enhances the
coding experience. The editor facilitates a smooth coding process by providing users with

auto-complete code suggestions, streamlining the writing of code and enhancing overall
productivity.

In conclusion, Visual Studio Code has secured its position as a premier code editor and
IDE due to its versatility, extensive language support, user-friendly interface, and a
plethora of features, making it a top choice for programmers across the globe, including
in India.

Phase—II&III: Preprocessing and Compiling a ‘C’ Program

The compiler translates the C program into machine-language code, also known as object
code. Before the translation phase, a preprocessor program in the C system automatically
executes. This preprocessor adheres to special commands known as preprocessor
directives, instructing specific manipulations to be carried out on the program before
compilation. These manipulations commonly involve including other files within the file
being compiled and performing text replacements.

The compiler converts the C program into machine-language code. Syntax errors occur
when the compiler encounters a statement that violates the language's rules and cannot be
recognized. In response, the compiler issues an error message, aiding in locating and
rectifying the erroneous statement. It's worth noting that the wording for error messages
issued by the compiler isn't standardized by the C Standard, leading to potential variations
in error messages across different systems. These errors are commonly referred to as
compile errors or compile-time errors.

Install Visual Studio Code on Windows
To Install Visual Studio Code on a Windows System, follow these steps:

1. Download Visual Studio Code:

- Open your web browser and navigate to the official Visual Studio Code website:
https://code.visualstudio.com/.

- Click on the "Download for Windows" button.
2. Run the Installer:

- Once the installer executable (.exe) is downloaded, locate the file (usually in the
Downloads folder) and double-click on it to run the installer.

ul -
N y

4 Windows 4 deb 4 pm 4 Mac

Wirclows 7 8,00, 11 Dirbaian, L buming R Hasl, oo, SUSE a0 BTN+

s st (1D ERED D v D) ORED e i
Systar st I) G v CIDD) G
v CDEDE [[o

3. Begin Installation:

- The installer will prompt you to confirm that you want to install Visual Studio Code.

Click "Yes" or "Run" to proceed.

4. Choose Setup Options:

- The installer will provide various setup options. You can choose the default settings or
customize them according to your preferences. For most users, the default options are

sufficient.

5. Select Additional Tasks:

- The installer may offer additional tasks, such as creating desktop shortcuts or adding
entries to the PATH environment variable. Choose the options that suit your preferences.

Licemse Agreement
P read Fe follovery smuoriend informabon before contnueg

Piease read the follovwang Loense greement, Tou must accept the: terms of s sgreement before
ovtrung with e netalsson

This license appilees Lo bhe Voouol Studio Code product Source Code for Viswo|

Stugho Code is ovailobie ot htfpe/igithub com MigrosoRtrsoade under the M

licenee agresment of
&/ Edpdmoun/ LA ENSE (. Addclionol
aur FALY at

1fsupnorting fag
MICROSOFT SOFTWARE LICENSE TERMS
MICROSOFT VISUAL STUDIO CODE

(W T acreed Ihe agreement

f.' | dw rot aczept the apgreement

)

-

6. Install:

- Click the "Install" button to initiate the installation process. The installer will copy the
necessary files and set up Visual Studio Code on your system.

‘ - |

Sl Al wnield Toarndin

Which adcitoral 2shs shouke 2 performed? ﬂ

Lot e stk fonal Leses vos woud bie Zolup 5 par fom whi oelalng v Sluds Code, ther ok
Meat

Acfinnal s

[creses & cestiop con
e

D Aadd "ipemn wwth Coce” schion b Windoss Seplorer fle combewt menu

[] dd "Dinen with Cade” action b Windomes Swplorer dreciony conisat menu
M‘lepﬂz‘ Conde an o ek Tor magioeeted B lypes
Fl acd s PaTH (requres shel restart)

7. Complete Installation:

- Once the installation is complete, you will see a confirmation message. You can

choose to launch Visual Studio Code immediately by leaving the corresponding option
checked.

ﬂ f al B B T

Hesdy to Instsll
St mow reacly o begn relaling Vs Shacke Code on pour compuier

Click Iresttall o corvbrs mith e rstalation, o chck Back (7 you et o reviews o change aney peltings

Dt atio b2cansr
CiUsersanam_ugrvzAscData Lol Prog ome Marosa ft vE Code

Samrt Mary foider:
Vil Fudie Code

Acdortorl tacke-
e
Regpster Corle an an el for supmor bed S boes
Aghi] b PATH o sl st I

=

8. Launch Visual Studio Code:
- If you didn't choose to launch it during the installation, you can find the Visual Studio
Code shortcut on your desktop or in the Start menu. Double-click on the shortcut to open

Visual Studio Code.

o sesup
Instalimg
Firarw et bl S b eetale fmasl Shicen Cooe on s omou e

Extractng fies. ..
2 s e e 2 Ao ats ool P ngnems Wioroes WS Code i nce, mae

9. Update Extensions (Optional):
- After launching Visual Studio Code, you may want to explore and install extensions
based on your programming needs. You can access the Extensions view by clicking on

the Extensions icon in the Activity Bar on the side.

W] Setup - Micrassh Visasi 5 e {Uiss

Completing the Visual Studio Code Sctup
Wizard

S lup e Preled redslog Vil Gludo Code or yous cegeler, The
apuiwato may e leunlved by sdelly the ratsed shotiuls,

Ok P S S

n B Launcty Vil S Code

That's it! You have successfully installed Visual Studio Code on your Windows system,

=1

and ready to start coding in your preferred programming languages.

Visual Studio

successfully installed Visual Studio Code on our Windows system.

HOW TO DESIGN/DEVELOP PROGRAM

Steps involved in program development:

To develop the program in high level language and translate it into machine level
language following steps have to be practised.

1. Writing and editing the program.

2. Linking the program with the required library modules.

3. Compiling the program.

4. Executing the program.

Algorithm:

It is a method of representing the step by step process for solving a problem. Each step is
called an instruction.

Characteristics of algorithm are:

Finiteness: It terminates with finite number of steps.

Definiteness: Each step of algorithm is exactly defined.

Effectiveness: All the operations used in the algorithm can be performed exactly in a
fixed duration of time.

Input: An algorithm must have an input before the execution of program begins.

Output: An algorithm has one or more outputs after the execution of the program.

Example of algorithm to find sum of two numbers:
Stepl: BEGIN

Step2: READ a, b

Step3: ADD a and b and store in variable ¢

Step4: DISPLAY ¢

Step5: STOP

STRUCTURE OF ‘C’ PROGRAM

C program is a collection of several instructions where each instruction is written as a
separate statement. The C program starts with a main function followed by the opening
braces which indicates the start of the function. Then follows the variable and constant
declarations which are followed by the statements that include input and output
statements.
C program may contain one or more sections as:
DOCUMENTATION SECTION
LINK SECTION
DEFINITION SECTION
GLOBAL DECLARATION SECTION
Main() Function section
{
Declaration part
Executable part
}
SUBPROGRAM SECTION

User defined functions

Example:

Write a C program to find the sum and average of three numbers.
Algorithm:

Step 1: Start

Step 2: Declare variables num1, num2, num3 and sum, average.

Step 3: Read values num1, num2, num3.

Step 4: Add num1, num2, num3 and assign the result to sum.

sum 4—— numl + num?2 + num3

average #—— sum/3

Step 5: Display sum and average

Step 6: Stop

Flow Chart:

Read n1, n2, n3

¥

Sum «+—nl, n2,n3
Avg +— sum/3

¥

Print Avg, sum

Program:

#include<stdio.h>

void main()

{

int a,b,c;

int sum,average;

printf("Enter any three integers: ");

scanf("%d%d %d",&a,&b,&c);

sum = a+b+c;

average=sum/3;

printf("Sum and average of three integers: %d %d",sum,average);
return 0;

}

INPUT: Enter any three integers:2 4 5
OUTPUT: Sum and average of three integers: 11 3

Example:
Write a C program to find the sum of individual digits of positive integer.
Algorithm:
Step 1: Start
Step 2: Read
Step 3: Initialize sum 4+——0
Step 4: while(n!=0)
Begin
Step 5: 1 4——n%10
Step 6: Sum #—— Sum-+r
Step 7: n 4——n/10
End
Step 8: Print “sum”
Step 9: Stop

Flow Chart:

Sum =1

r=n% 10
A=A
n=n/ 1}

Program:

#include<stdio.h>

#include<conio.h>

void main()

{

int n,r,sum=0;

clrscr();

printf("ENTER A POSITIVE INTEGER \n");

scanf("%d",&n);

while(n!=0)

{

=n%10;

sum=sum-r;

n=n/10;

}

printf("THE SUMOF INDIVIDUAL DIGITS OF A POSITIVE INTEGER 1IS..%d",sum);
getch();

}

INPUT: ENTER A POSITIVE INTEGER 532 1

OUTPUT: THE SUM OF INDIVIDUAL DIGITS OF A POSITIVE INTEGER IS..11

Example:
Write a C program to check whether given number is Armstrong Number or Not.

Algorithm:
Step 1: Start

Step 2: Read n
Step 3: assign sum
Step 4: if m>0 repeat
Step 4.1: m ¢#—— m/10
Step 4.2: count++
Step 4.3: until the condition fail
Step5: if I>0 repeat step 4 until condition fail
Step 5.1:rem 4#——1%10
Step 5.2:sum #4—— sum-+pow(rem,count)
Step 5.3:1 «+—1I/10
Step 6:if n=sum print Armstrong otherwise print not armstrong
Step 7:stop

Flow Chart:

Rem=m % 10
Sum = Sum + Pow | Rem, Count)
md=m 10

Program:

#include<stdio.h>

void main()

{

int n, nl, rem, num=0;
printf("Enter a positive integer: ");
scanf("%d", &n); nl=n;
while(n1!=0)

{

rem=n1%10;
num+=rem*rem*rem,;
nl/=10;

}

if(num==n)

printf("%d is an Armstrong number.",n);

else printf("%d is not an Armstrong number.",n);
)

Input: Enter a positive integer: 371

Output: 371 is an Armstrong number.

COMPILE AND RUN ‘C’ PROGRAM

To compile and run a C language program, you need a C compiler. A compiler is software

that is used to compile and execute programs. To set up a C language compiler on your

Computer/laptop, there are two ways:

1. Download a full-fledged IDE like Turbo C++ or Microsoft Visual C++ or DevC+t,
which comes along with a C language compiler.

2. Or, you can use any text editor to edit the program files and download the C compiler
separately and then run the C program using the command line.

If you haven't already installed an IDE for the C language - Follow this step-by-step guide
to Install Turbo C++ for C Language

L —— — l
B Turbo C++ IDE (= | =]

220 S
Change dir...

n
shell
Quit Alt+X

L}

Using an IDE - Turbo C

We will recommend you to use Turbo C or Turbo C++ IDE, which is the oldest IDE for
C programming. It is freely available over the Internet and is good for a beginner.

Step 1: Open turbo C IDE(Integrated Development Environment), click on File, and then
click on New

Step 2: Write a Hello World program that we created in the previous article - C Hello
World program.

This page is extracted due to viral text or high resolution image or graph.

Step 3: Click on Compile menu and then on Compile option, or press the keys and
press Alt + F9 to compile the code.

Step 4: Click on Run or press Ctrl + F9 to run the code. Yes, C programs are first
compiled to generate the object code and then that object code is Run.

This page is extracted due to viral text or high resclution image or graph.

Step 5: Output is

Run C Program Without using any IDE

* If you do not wish to set up an IDE and prefer the old-school way, then download the
C compiler which is called gce from the GCC website https://gcc.gnu.org/install/

* Once you have downloaded and installed the gcc compiler, all you have to do

is, open any text editor, copy and paste the C program code for C Hello World
Program, and save it with the name the helloworld.c like any other file you save with

a name.

* Now, Open the Command prompt or Terminal(if you use Ubuntu or Mac OS), and
go to the directory where you have saved the helloworld.c program file.

e Type the command gcc hello.c to compile the code. This will compile the code,
and if there are no errors then it will produce an output file with name a.out(default
name)

e Now, to run the program, type in . /a.out and you will see Hello, World displayed
on your screen.

LAB EXERCISE ‘C’ PROGRAM SESSION WISE

Session 1

1-

a). Write a C program to find sum and average of three numbers.

b). Write a C program to check whether a year is a leap year or not.

¢). Write a program in ¢ to find even or odd numbers.

d). Write a C program to find the sum of individual digits of a given positive integer.
e). Write a C program to generate the first n terms of the Fibonacci sequence.

Session 2

2-

a). Write a C program to generate prime numbers between 1 to n.

b). Write a C program to Check whether given number is Armstrong Number or Not.
¢). Write a program in c to calculate power using recursion.

d). Write a program in c to function to check lowercase letter.

). Write program to display number 1 to 10 in octal, decimal and hexadecimal system.

Session 3

3
a). Write a C program to generate following pattern:
1

12

123

1234

b). Write a C program to generate following pattern:
*

* %k

* %k ok %k

¢). Write a C program to generate following pattern:

1

11
111
1111

d). Write a program to multiplication of two matrix.

¢). Write a program to demonstrate multiplication table input from user till 10.

CENTRE FOR DISTANCE AND ONLINE EDUCATION

b

% MANGALAYATAN
=Y NV [y

5 |

vinigiithas Learn Today to Lead Tomorrow

Extended NCR, 33ed Milestone, Aligarh-Mathura
Highway, Beswan, Aligarh, UP-202146

nr_!!:”q,‘. =
iffEE

www. mangalayatan.in, www.mude.ac.in
cdos@mangalayatan.edu.in

