) DrillBit

The Report is Generated by DrilIBit Plagiarism Detection Software

Submission I nformation

Author Name

Title

Paper/Submission ID
Submitted by
Submission Date

Total Pages, Total Words
Document type

Result Information

Similarity 10 %

MTSOU
CSM-6252
3643407

librarian@mtsou.edu.in

2025-05-21 12:05:19

63, 10340
Others

-
Sources Type Report Content
Quotes
Journal/ 0.02%
Publicatio
n 3.09%
Internet
6.91% Words <
14,
8.12%
Exclude I nformation Database Selection
Quotes Excluded Language English
References/Bibliography Excluded Student Papers Yes
Source: Excluded < 14 Words Excluded Journals & publishers Yes
Excluded Source 0% Internet or Web Yes
Excluded Phrases Not Excluded Institution Repository Yes

DrillBit Similarity Report

) DrillBit

10

22

A-Satisfactory (0-10%)
B-Upgrade (11-40%)
C-Poor (41-60%)

D-Unacceptable (61-100%)

SIMILARITY % MATCHED SOURCES GRADE

LOCATION MATCHED DOMAIN % SOURCE TYPE
1 admissionskeraauniversity.ac.in q Publication

2 chseacademic.nic.in q Publication

3 skymark.in 1 Internet Data
4 fastercapital.com 1 IntemetData
9 www.blockchain-council.org 1 Internet Data
6 www.imensosoftware.com q 'ntemetData
7 www.jnu.ac.in 1 Internet Data
8 www.linkedin.com { IntemetData
9 new.kuk.ac.in <] Publication

10 www.geeksforgeeks.org <1 'nternetData
11 bcastudyguide.com <1 ImtemetData
12 www.tutorial spoint.com <] 'ntenetData
13 www.linkedin.com <1 'ntenetData
14 dlistapart.com <] 'ntemetData

https://admissions.keralauniversity.ac.in/pdfs/426.pdf
https://cbseacademic.nic.in/web_material/Curriculum25/srsec/803-WebApplication-XI.pdf
https://skymark.in/university/University-of-Hertfordshire-UoH
https://fastercapital.com/startup-topic/sorting-algorithms.html
https://www.blockchain-council.org/development/career-opportunities-and-benefits-of-becoming-a-three-js-developer/
https://www.imensosoftware.com/blog/8-responsive-web-design-principles-you-need-to-know/
https://www.jnu.ac.in/se-cse-syllabus
https://www.linkedin.com/advice/1/what-core-principles-front-end-development-how
https://new.kuk.ac.in/wp-content/uploads/2023/07/annexure-to-item-42.pdf
https://www.geeksforgeeks.org/divide-and-conquer/
https://bcastudyguide.com/unit-4introduction-to-problem-solving-concept/
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_introduction.htm
https://www.linkedin.com/pulse/choosing-between-reactjs-angularjs-twmdc
https://alistapart.com/article/sustainable-web-design-excerpt/

Publication

15 mu.ac.in <1
16 |EEE 2012 Innovative Parallel Computing (InPar) - San Jose, CA, USA 1 Publication
by
17 www.geeksforgeeks.org <] InemetData
18 pdfcookie.com <1 'ntemetData
19 thepostindia.co.in <1 IntemetData
20 homei.iserb.ac.in <] Publication
21 oorwin.com <] IntemetData
. www.linkedin.com <1 'nternetData

https://mu.ac.in/wp-content/uploads/2023/09/6.19-N-FINAL-ENBT.pdf
https://dx.doi.org/10.1109/InPar.2012.6339599
https://dx.doi.org/10.1109/InPar.2012.6339599
https://www.geeksforgeeks.org/z-score-in-statistics/
https://pdfcookie.com/documents/advanced-functions-and-introductory-calculus-rv31gr4ro92d
https://thepostindia.co.in/meet-swathy-sivaraman-the-visionary-behind-indias-premier-interior-design-company-storeyboard-designs/
http://home.iiserb.ac.in/~kashyap/MTH%20307-s18/lp.pdf
https://oorwin.com/blog/job-application-rejection-email-with-examples.html
https://www.linkedin.com/pulse/software-web-development-key-best-pratices-rajoo-jha?trk=pulse-article

CSM -6252 DAA & WEB PROGRAMMINGLAB

COURSE INTRODUCTION
Welcome to the DAA & Web Programming Lab, a key component of the computer science

curriculum. This lab is designed to equip students with essential skills in both algorithm design
and web development. It seamlessly blends the theoretical underpinnings of algorithm analysis
with the practicalities of web programming, offering a thorough learning experience that
ares students for the diverse challenges of the tech industry.
moign and Analysis of Algorithms (DAA) Segment
In this pagt of the lab, students will explore the core principles of algorithmic strategies,
includingagvide and conquer, dynamic programming, and greedy algorithms. A strong focus
is placed on comprehending and evaluating the efficiency of algorithms using Big O notation,
which is vital for optimizing performance in large-scale applications. Students will also gain
hands-on experience implementing various data structures like arrays, linked lists, and trees,
solidifying their theoretical understanding with practical application.
Web Programming Segment
The web programming portion focuses on building robust and interactive web applications.
Students will learn essential web technologies such as HTML, CSS, JavaScript, and server-side
scripting languages. The curriculum covers both front-end and back-end development,
enabling students to construct full-stack web applications. Emphasis will be placed on best
practices in web development, user experience design, and security considerations to ensure the
creation of high-quality web solutions.
Throughout the lab, students will participate in hands-on projects and collaborative exercises,
fostering both individual and team-based problem-solving skills. By integrating the study of
algorithms with practical web development, this course aims to provide a well-rounded
education that bridges the gap between theoretical computer science and real-world applications.
Whether your aspirations lie in algorithmic research or web development, this lab will prove

invaluable in building a strong foundation for your future career.

OVERVIEW

This book presents the DAA & Web Programming Lab, an integrated approach to mastering two
coreareas of computer science: algorithm design and web development.

In éﬂe Design and Analysis of Algorithms (DAA) section, you'll delve into fundamental
algorithmic strategies like divide and conquer, dynamic programming, and greedy algorithms. A
key focus will be on evaluating algorithm efficiency using Big O notation.

The Web Programming segment covers essential web technologies, including HTML, CSS,
JavaScript, and server-side scripting. This will gpower you to build comprehensive full-stack

web applications.

Through a combination of hands-on projects and collaborative exercises, you'll gain practical
experience and sharpen your problem-solving abilities, preparing you for the diverse challenges
of the tech industry. This lab bridges the gap between theoretical knowledge and real-world
application, providing a solid foundation for future careers in both algorithm research and web

development.

What You'll Learn:

Here's a breakdown of what you'll gain from this lab:

e Core Algorithmic Techniques: Master fundamental strategies such as gvide and conquer,
dynamic programming, and greedy algorithms.

e Algorithm Efficiency Analysis: Learn to evaluate algorithm performance using Big O
notation.

e Data Structure Implementation: Get practical experience implementing essential data
structures like arrays, linked lists, and trees.

e Web Technology Mastery: Become proficient in key web technologies, including HTML,
CSS, and JavaScript.

e Full-Stack Web Development: Develop server-side scripts to create complete full-stack
web applications.

e Web Development Best Practices: Understand best practices in web development and
user experience design.

e Web Security Principles: Learn important security considerations in web programming.

e Hands-on Project Experience: Gain practical experience through engaging projects and
collaborative exercises.

e Enhanced Problem-Solving: Improve your problem-solving abilities in both algorithmic
and web development contexts.

e Teamwork and Communication: Develop essential teamwork and communication skills

crucial for success in the tech industry.

How You'll Learn:
In the DAA & Web Programming Lab, you'll learn through a dynamic blend of interactive

lectures and hands-on projects. This approach ensures that theoretical concepts are immediately
reinforced with practical application. Structured lab exercises will guide you step-by-step
through implementing algorithms and building web applications. Meanwhile, collaborative work
will sharpen your teamwork and communication skills. You'll receive valuable feedback through
regular code reviews and assessments, helping you refine your coding practices and improve

solution efficiency.

For deeper insights into complex topics, you'll have access to workshops, tutorials, and peer
learning sessions. Plus, instructor office hours offer personalized support. To further enhance
your learning, quline resources, including video tutorials and forums, are readily available,
ensuring you gin a comprehensive understanding of both algorithm design and web

development.

Who Is This BookFor:

This book is for computer science students and professionals eager to enhance their
understanding of both algorithm design and web development. It's perfect if you're looking for a
balanced approach that merges theoretical knowledge with practical skills.

Whether you're a beginner aiming to build a solid foundation in both fields, or an experienced
developer looking to refine your expertise, this book offers valuable insights and hands-on
experience. It's also well-suited for anyone preparing for technical interviews or striving to

improve their problem-solving abilities and coding efficiency in real-world applications.

onclusion:
é the end of this book, you'll have a strong foundation in both algorithm design and web
development. The DAA & Web Programming Lab offers a comprehensive learning experience,
perfectly blending the theoretical aspects of algorithms with the practical skills needed for web
development.
Through engaging hands-on projects, collaborative exercises, and detailed coding reviews,
you'll gain a solid understanding of how to design efficient algorithms and create dynamic web
applications. This course will not only boost your problem-solving abilities and technical
proficiency but also prepare you for the diverse challenges within the tech industry.
Whether you're looking to deepen your academic knowledge or excel in your professional career,
the skills you acquire in this lab will be incredibly valuable for your future success in the

constantly evolving field of computer science.

SESSION1 DESIGN %D ANALYSIS OF ALGORITHMS

LAB

Basic Structure

1.0 Introduction
1.1 Objectives
1.2 Implementation of Sorting Algorithms
1.2.1 Bubble Sort
1.2.2 Selection Sort
1.2.3 Insertion Sort
1.24 Merge Sort
1.2.5 Quick Sort
1.3 Implementation of Searching Algorithms
1.3.1 Linear Search
1.3.2 Binary Search
1.3.3 Jump Search
1.3.4 Interpolation Search
1.3.5 Exponential Search
1.4 Implementation of Simple Algorithms
1.5 Task Scheduling Algorithm
1.6 Huffman’s Coding Algorithm
1.7 Divide and Conquer Technique
1.8 Single Source Shortest Path Algorithm
1.9 Minimum Cost Spanning Tree
1.10 Implementation of Binomial Coefficient Problem
1.11 Experiments

1.0

INTRODUCTION

This session dives into problem-solving strategies, particularly how they apply to
computer programming. We'll specifically explore ﬁe Design and Analysis of
Algorithms (DAA) Lab, a vital part of computer science education that provides hands-
on experience in creating efficient and effective algorithms.

In this lab, students thoroughly investigate algorithm design, learning to approach
problem-solving with a structured and analytical mindset. A core focus is on
understanding various algorithmic strategies such as divide and conquer, dynamic
programming, greedy algorithms, and backtracking. Through practical exercises,
studentsmgin a deeper appreciation for the theoretical concepts covered in lectures, seeing
firsthand how these principles are applied in real-world scenarios.

Emphasis on Algorithm Efficiency

A key aspect of this lab is its gong emphasis on algorithm efficiency. Students learn to

evaluate algorithm performance using Big O notation, which offers a high-level

understanding of an algorithm’s time and space complexity. This analysis is critical for
determining whether algorithms are feasible for large-scale problems, where even small
inefficiencies can lead to significant performance bottlenecks. By comparing different
algorithms for the same problem, students develop the ability to select the most
appropriate solution based on context and constraints, thereby enhancing their problem-
solving skills and algorithmic thinking.

Implementation of Data Structures

Another crucial element of the DAA Lab is the implementation of various data
structures. Understanding the interplay between algorithms and data structures is
essential, as the choice of data structures can profoundly impact an algorithm's efficiency
and simplicity. Students will implement and manipulate structures like arrays, linked
lists, trees, graphs, and hash tables, learning how these can be leveraged to optimize
algorithm performance. This hands-on experience solidifies their understanding of
theoretical concepts and prepares them for more advanced topics in computer science.
Collaboration and Practical Application

Collaboration and experimentation are highly encouraged in the lab, fostering a
learning environment where students can discuss ideas and troubleshoot challenges
together. This collaborative approach helps develop vital communication and teamwork
skills, which are crucial in professional settings. Additionally, the lab often includes
projects and assignmeats that require students to design, implement, and test their

algorithms, providing & comprehensive learning experience that bridges the gap between

theory and practice.

Overall,“ﬁ: Design and Analysis of Algorithms Lab is an essential part of the computer
science curriculum, equipping students with the practical skills and analytical tools
necessary for ta@ding complex computational problems. This unit will explain the

fundamentals of tiie Design and Analysis of Algorithms Lab to you.

1.1

OBJECTIVES

After completing this unit, you will be able to:
Learn fundamental principles of algorithm design.
Evaluate algorithm efficiency using Big O notation.
Implement core algorithms to reinforce theoretical concepts.
Utilize various data structures to optimize performance.
Enhance problem-solying skills with structured thinking.

Q choose the most efficient solutions.

Compare algorithms

Develop teamwork and effective communication skills.

e Apply theoretical knowledge in practical scenarios.
¢ Encourage innovation and experimentation in algorithm design.

e Prepare for advanced computer science topics and professional development.

1.2

IMPLEMENTATION OF SORTING ALGORITHMS

Sorting algorithms are a cornerstone of computer science, offering essential methods for
organizing data into a specific sequence. students in a Design and Analysis of
Algorithms Lab, comprehending and implementing these algorithms is vital. This
section will elaborate on the implementation of various sorting algorithms, focusing on

their core principles, practical code examples, and performance analysis.

1.2.1 Bubble Sort 9
Bubble Sort is a straightforward, comparison-based algorithm. I¥ works by repeatedly

iterating through a list, comparing adjacent elements, and swapping them if they are not
in the desired order. This iterative process continues until the entire list is sorted.
Code Example (Python):
defbubble_sort(arr):
n = len(arr)
fori in range(n):
for j in range(0, n-i-1):
ifarr[j] >arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]

returnarr

]Eémple
ait = [64, 34, 25, 12, 22, 11, 90]

sorted_arr = bubble_sort(arr)

print("Sorted array:", sorted_arr)

1.2.2 Selection Sort

Selection Sort divides the input list into two parts: the sublist of items already sorted and
the sublist of items remaining to be sorted. It repeatedly selects the smallest (or largest,
depending on the order) element from the unsorted sublist and moves it to the sorted

sublist.

defselection_sort(arr):
n = len(arr)

fori in range(n):

min_idx =1
for j in range(i+1, n):
ifarr[j] <arr[min_idx]:

min_idx =]

arr[i], arr[min_idx] = arr[min_idx], arrf[i]

returnarr

Example

arr = [64, 25, 12,22, 11]
sorted arr = selection_sort(arr)

print("Sorted array:", sorted_arr)

.3 Insertion Sort

sertion Sort constructs the final sorted array by inserting one element at a time into its

correct position. While simple, it's significantly less efficient for large datasets compared to

more advanced algorithms such as Quicksort, Heapsort, or Merge Sort.

defi ion_sort(arr):
fori lm:nge(l, len(arr)):
key = arrf[i]
j=i-1
while j >= 0 and key <arr[j]:
arr[j + 1] = arr[j]
i=1
arr[j + 1] = key
returnarr

Example
arr=[12, 11, 13, 5, 6]
sorted_arr = insertion_sort(arr)

print("Sorted array:", sorted_arr)

1.2.4 Merge Sort

Merge Sort operates on the principle of di

array into two equal halves, recursively

ﬁie and conquer. It works by splitting the input

rting each half, and then combining the two

sorted halves back into a single, sorted array.

Example
defmerge_sort(arr):
iflen(arr) > 1:

mid = len(arr) // 2

L = arr[:mid]

R = arr[mid:]

merge sort(L)
ge_sort(R)

1=j=k=0

whilei<len(L) and j <len(R):

if L[i] <R[j]:

arr[k] = L[i]

i+=1

else:

arr[k] = R[j]

jt=1

k+=1

whilei<len(L):

arr[k] = L[i]

i+=1

k+=1

while j <len(R):

arr[k] = R[j]

jt=1

k+=1

returnarr

Example
arr=[12, 11, 13,5, 6, 7]
sorted_arr = merge_sort(arr)

print("Sorted array:", sorted_arr)

1.2.5 Quick Sort
Q!ﬁk Sort is a highly efficient sorting algorithm that relies on the concept of partﬁning.

It works by selecting a pivot element from the array. Then, it rearranges the other eicments
so that all elements smaller than the pivot are placed to its left, and all elements larger than
the pivot are moved to its right. This partitioning step effectively divides the array into two
sub-arrays. The Quick Sort ggocess is then recursively applied to these smaller sub-arrays
until the entire array is sorted.

defquick_sort(arr):

iflen(arr) <= 1:

returnarr

else:

pivot = arr[len(arr) // 2]

left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]

returnquick_sort(left) + middle + quick_sort(right)

Example
arr=[3,6,8,10, 1,2, 1]
sorted_arr = quick_sort(arr)

print("Sorted array:", sorted_arr)

1.3

IMPLEMENTATION OF SEARCHING
ALGORITHMS

Searching algorithms are fundamental to computer science, serving the crucial purpose of
locating specific elements within various data structures. Implementing these algorithms
offers students a deeper insight into their foundational principles, efficiency, and real-world
utility. This section will detail the implementation of core searching algorithms, providing
code examples and an analysis of their performance.

1.3.1 Linear Search
Linear Search is a simple and direct algorithm. It operates by sequentially

examining each element in a list until the target element is discovered or the

end of the list is reached.

Example
deflinear_search(arr, x):
fori in range(len(arr)):
ifarr[i] == x:

returni

return -1

Example

arr = [2, 3, 4, 10, 40]

x=10

result = linear _search(arr, x)

if result !=-1:

print(f"Element found at index {result}")
else:

print("Element not found")

1.3.2 Binary Search

Binary Search is a highly efficient algorithm for finding an element in a sorted array. It
works by repeatedly dividing the search interval in half, comparing the target value to the
middle element, and narrowing the search range accordingly.

Example

defbinary search(arr, x):

left, right = 0, len(arr) - 1

while left <= right:

mid = (left + right) // 2

ifarr[mid] == x:

return mid

elifarr[mid] < x:

left =mid + 1

else:

right =mid - 1

return -1

Example

arr =2, 3, 4, 10, 40]

x=10

result = binary_search(arr, x)

if result I=-1:

print(f"Element found at index {result}")
else:

print("Element not found")

1.3.3 Jump Search

Jump Search is an algorithm designed for sorted arrays that aims to reduce the number of
comparisons needed to find an element. It achieves this by taking "jumps" of fixed steps
through the array. Once the block containing the target element is identified (or the block
where it should be), a linear search is then performed only within that specific block.
Example

import math

defjump_search(arr, x):

n = len(arr)
step = int(math.sqrt(n))
prev=0
whilearr[min(step, n) - 1] <x:
prev = step
step += int(math.sqrt(n))
ifprev>=n:

return -1

fori in range(prev, min(step, n)):
ifarr[i] == x:
returni

return -1

Example

arr=1[0,1,2,4,5,7,9, 10, 12]

x=10

result = jump_search(arr, x)

if result I=-1:

print(f"Element found at index {result}")
else:

print("Element not found")

1.3.4 Interpolation Search

Interpolation Search offers an enhancement over Binary Search, particularly when dealing
with uniformly distributed data. Instead of simply dividing the search space in half, it
intelligently estimates the probable position of the desired value by considering the values
present at the boundaries of the current search interval.

Example

definterpolation_search(arr, x):

low=0

high = len(arr) - 1

while low <= high and arr[low] <= x <= arr[high]:

if low == high:

ifarr[low] == x:

return low

return -1

pos = low + ((high - low) // (arr[high] - arr[low]) * (x - arr[low]))
ifarr[pos] == x:

return pos

ifarr[pos] < x:

low =pos + 1

else:

high = pos - 1

return -1

Example

arr =[10, 12, 13, 16, 18, 19, 20, 21, 22, 23]
x=18

result = interpolation_search(arr, x)

if result I=-1:

print(f"Element found at index {result}")
else:

print("Element not found")

1.3.5 Exponential Search

Exponential Search is an algorithm that finds the range where the element may be present
and then performs Binary Search within that range. It is particularly useful for unbounded
or infinite lists.

Example

defbinary search(arr, left, right, x):

while left <= right:

mid = (left + right) / 2

ifarr[mid] == x:

return mid

elifarr[mid] < x:

left=mid + 1
else:

right =mid - 1
return -1

defexponential search(arr, x):
ifarr[0] == x:

return 0

n = len(arr)

i=1

whilei< n and arr[i] <= x:
i=i*2

returnbinary_search(arr, i // 2, min(i, n-1), x)

Example

arr =2, 3, 4, 10, 40]

x=10

result = exponential_search(arr, x)

if result |=-1:

print(f"Element found at index {result}")
else:

print("Element not found")

1.4

IMPLEMENTATION OF SIMPLE ALGORITHMS

In this section of the Design and Analysis of Algorithms Lab, we'll dive into
implementing fundamental algorithms. This includes Euclid's algorithm for finding the
Greatest Common Divisor (GCD), polynomial evaluation using Horner's method,
various exponentiation algorithms, and basic sorting techniques.

Key Algorithms Covered

e Euclid's Algorithm for GCD: You'll learn how to efficiently compute the greatest
common divisor of twogumbers by repeatedly applying the modulus operation. This
iterative process finds tA€ largest number that divides two integers without leaving a
remainder.

e Horner's Method for Polynomial Evaluation: This method optimizes polynomial
computation by significantly reducing the number of multiplicative operations through
nested multiplication and addition.

o Exponentiation Algorithms: We'll explore efficient ways to compute powers, utilizing
either recursive or iterative approaches.

e Simple Sorting Algorithms (e.g., Selection Sort): You'll study algorithms like
Selection Sort, which sorts an array by iteratively identifying the smallest element and
placing it in its correct position. This demonstrates foundational principles of sorting
methodologies and how to incrementally sort an entire array.

Learning Outcomes
Each algorithm will be implemented and thoroughly analyzed. This hands-on approach will

deepen your understanding of algorithmic efficiency, performance characteristics, and

their applicability in solving computational challenges. This section focuses on
equipping you with foundational algorithms that serve as essential building blocks in

computational problem-solving.

1.5

TASK SCHEDULING ALGORITHMS

Within the Design and Analysis of Algorithms Lab, a task scheduling problem is framed as
an optimization challenge. The primary goal is to maximize profit by carefully selecting
and scheduling tasks so they are completed within their specified deadlines.

The problem involves identifying a subset of tasks from a given collection and arranging
them in a sequence that respects each task's deadline, all while aiming for the highest
possible total profit. This constitutes a maximization optimization problem, inherently
constrained by the absolute requirement that all chosen tasks must be finished by their
designated deadlines. The lab focuses on investigating algorithms and strategies designed to
efficiently solve these types of optimization problems, ensuring strict adherence to deadline

constraints.

1.6

HUFFMAN’S CODING ALGORITHMS

In the Design aLr% Analysis of Algorithms Lab, Huffman coding is explored as a greedy
algorithm specifically designed for data compression. This method aims to efficiently

reduce data size, particularly for sequences of characters with varying frequencies.

Huffman coding typically achieves compression rates of 70% to 80%. The process begins
by assessing the frequency of each character within the dataset. Based on these frequencies,
a Huffman tree is constructed to generate an optimal binary representation for every
character. This technique, also known as variable-length coding, assigns shorter codes to
characters that appear more frequently and longer codes to those that appear less often. This
strategic assignment ultimately minimizes the total storage or transmission space required

for the data.

1.7

DIVIDE AND CONQUER ALGORITHMS

In the Design and Analysis of Algorithms Lab, tfi€ Divide and Conquer approach is a core
strategy. It involves recursively breaking down a complex problem into smaller, more
manageable sub-problems. This division continues until each sub-problem is simple enough
to be solved directly. Each of these sub-problems represents a smaller, more accessible
piece of the original problem's complexity.

Once solved, the solutions to these individual sub-problems are then combined or merged

to construct the complete solution for the initial, larger problem. This methodical approach
effectively uses recursion to efficiently tackle intricate problems by dissecting them into

simpler parts and then synthesizing the results for a comprehensive solution.

1.8

SINGLE SOURCE SHORTEST PATH ALGORITHMS

In the Design and Analysis of Algorithms Lab, Dijkstra's algorithm is utilized to address
the single-source shortest path problem, with the key constraint that all edge weights must
be non-negative. This algorithm shares some methodological similarities with Prim's

algorithm.

Dijkstra's algorithm operates by consistently choosing paths that are locally optimal at each
step, prioritizing immediate efficiency. It iteratively explores vertices and updates the
shortest known path from the source vertex to every other vertex. This progressive
refinement ensures that the shortest paths are accurately determined for all vertices,
ultimately providing an efficient solution to the shortest path problem in graphs where edge

weights are non-negative.

1.9

MINIMUM COST SPANNING TREE

In the Design and Analysis of Algorithms Lab, a connected subgraph (S) of a graph (G(V,
E)) is defined as a spanning tree if it encompasses all the vertices of (G) and has the
minimum possible total weight of edges from (G). A crucial characteristic of a spanning
tree is that it must be acyclic, meaning it contains no cycles.

Among all the possible spanning trees that can be formed from a graph, the one with the
absolute lowest total edge weight is known as the Minimum Spanning Tree (MST). This
concept is fundamental in optimizing network design, as it ensures that all vertices are
connected using the least possible edge weight, while also preventing the formation of

redundant loops or cycles within the network.

1.10 IMPLEMENTATION OF BINOMIAL COEFFICIENT

PROBLEM

In the Design and Analysis of Algorithms Lab, implementing the binomial coefficient
problem is a crucial exercise. It helps in understanding both combinatorial mathematics and
dynamic programming. The binomial coefficient, often written as $ \binom{n}{k} $ or $
C(n, k) $, tells us the number of ways to choose $ k $ elements from a set of $ n § elements
without considering the order.

This problem can be solved using a recursive method based on Pascal's identity, with base

cases $ \binom{n} {0} = 1 $ and $ \binom{n}{n} = 1 $. While this recursive approach is
intuitive, it becomes highly inefficient for large values of $ n $ and $ k $ due to its
exponential time complexity.

Dynamic Programming for Efficiency

To overcome this inefficiency, the lab explores dynamic programming as a more effective
solution. By storing intermediate results in a two-dimensional array, the dynamic
programming approach significantly reduces the time complexity to $ O(nk) $ and the

space complexity to $ O(k) $ if further optimized.

This method systematically builds the solution from the base cases, ensuring that each
subproblem is solved only once. The implementation involves initializing a table where
each entry represents $ \binom{i}{j} $, and then filling the table using the recursive
relation $ \binom{n} {k} = \binom{n-1} {k-1} + \binom{n-1} {k} $. This hands-on practice
helps students grasp the power of dynamic programming in optimizing combinatorial

problems and reinforces their understanding of algorithmic efficiency.

1.11

EXPERIMENTS

A S

10.
11.
12.
13.
14.
15.

Develop a program to determine the operation count for a given pseudocode.
Implement Bubble Sort for any provided list of numbers.

Implement Insertion Sort for any provided list of numbers.

Write a program to perform Quick Sort on a given list of integer values.

Create a program to find @ maximum and minimum values within a given set of
integers.

Implement Merge Sort on two given lists of integer values.

Develop a program to perform Binary Search on a given set of integer values,
demonstrating both recursive and non-recursive approaches.

Write a program to solve the knapsack problem using the greedy method.

Implement Prim's Algorithm to find the minimum cost spanning tree.

Implement Kruskal's Algorithm to find the minimum cost spanning tree.

Create a program to solve the single-source shortest path problem for a given graph.
Write a program to figd a solution for the job sequencing with deadlines problem.
Develop a program t@olve the all-pairs shortest path problem.

Implement a program to solve the N-QUEENS problem.

Write a program to find a solution for the sum of subsets problem for a given set of

distinct numbers.

Experiment No.1: Develop a program to determine the operation count for a given

pseudocode.

#include<stdio.h>
#include<conio.h>

void main()

{

int count=0,sum=0,n,i,a[50];
clrser();

count=count+1;

printf("\n Enter the n value:");
scanf("%d",&n);
count=count+1;

printf("\n Enter %d values to sum:",n);
for(i=0;i<n;i++)

{

count=count+1;
scanf("%d",&a[i]);

¥

count=count+1;
for(i=0;i<n;i++)

{

count=count+1;
sum=sum-+al[i];
count=count+1;

}

count=count+1;
printf("\n The of %d values is:%d and count is=%d",n,sum,count);
getch();

}

Output:

Enter the n value:5

Enter 5 values to sum:1 2 3 4 5
The of 5 values is:15 and count 1is=19

Experiment No.2: Implement Bubble Sort for any provided list of numbers.

#include<stdio.h>
#include<conio.h>
voidbubblesort(int[],int);
void display(int[],int);
int main()
{
int a[20],n,i;
clrser();
printf("\n Enter the number of elements in array are:");
scanf("%d",&n);
printf("\n Enter %d elements in the array:",n);
for(i=0;i<n;i++)
scanf(“%d”, &ali));
bubblesort(a,n);
printf(“\n The sorted elements in the array are:”);
display(a,n);
getch();
return();
b
voidbubblesort(int a[],int n)
{
inti,j,temp,excg=0;
int last=n-1;
for(i=0;ia[j+1])
{
temp=al[j];
afjl=afj+l1];
a[j+1]=temp;
excgtt;
}
b
}
if(excg==0)
return ;

else

last=last-1;

}

Void display (int a[], int n)
{

inti;

for (i=0;i<n;i++)
printf(“%d\t”, a[i]);

i

Output:

Enter the number of elements in array are:7
Enter 7 elements in the array:7 8 9 5 4 2 1

The sorted elements in the array are:1 2 4 5 7

Experiment No.3: Implement Insertion Sort for any provided list of numbers.
#include<stdio.h>

#include<conio.h>

voidinssort(int[],int);

void display(int[],int);

int main()

{

int a[20],n,i;

clrser();

printf("\n Enter the number of elements in array are:");
scanf("%d",&n);

printf("\n Enter %d elements in the array:",n);
for(i=0;i<n;i++)

scanf(“%d”, &ali]);

inssort(a,n);

printf("\n The sorted elements in the array are:");
display(a,n);

getch();

return 0;

}

voidinssort(int a[],int n)

{

inti,j,index=0;
for(i=1;i<n;it++)

{

Index=a[i];

=L
while((j>0)&&(a[j-1]>index))
{

afjl=a[j-1];

void display(int a[],int n)
{

inti;

for(i=0;i<n;i++)

{

Printf(“%d\t”,a[i]);

H

H

Output:
Enter the number of elements in array are:7
Enter 7 elements in the array:33 56 98 12 34 9 4

The sorted elements in the array are:4 9 12 33 34 5 98

Experiment No.4: Write a program to perform Quick Sort on a given list of integer

values.

#include<stdio.h>
#include<conio.h>

voidgsort(int [],int,int);

int partition(int [],int,int);
voidgsort(int a[],intfirst,int last)
{

int j;

if(first<last)

{

j=partition(a,first,last+1);
gsort(a,first,j-1);
gsort(a,j+1,last);

}

H

int partition(int a[], int first, int last)
{

int v=a[first];

inti=first;

int j=last;

int temp=0;

do

{
do

{
i++;
H
while(a[i]<v);
do

{

=

H
while(a[j]>v);
if(i<j)

{

temp=ali];
alil=aljl;
a[j]=temp;

H

b
while(i>j);

a[first]=a[j];

a[jl=v;

return j;

}

int main()

{

int a[40],i,n;

clrscr();

printf("\n Enter the no of elements (size):");
scanf("%d",&n);

printf("\n Enter the ELements to sort:");
for(i=0;i<n;it+)

scanf(*%d”, &ali]);

gsort(a,0,n-1);

printf("\n The ELements after sorting are:");
for(i=0;i<n;i++)

{

Printf(“%d\t”, a[i]);

}

getch();

return();

}

Output:

Enter the no of elements (size):6
Enter the ELements to sort:98 45 21 34 90 43

The Elements after sorting are:21 34 43 45 90 98

Experiment No.5: Create a program to find the maximum and minimum values within a given set

of integers.

#include<stdio.h>
#include<conio.h>
voidminmax(int,int,int,int);
inti,j,a[50],n,fmax,fmin;

int main()

{

clrser();

printf("\n Enter the number of elements in array are:");
scanf("%d",&n);

printf("\n Enter %d elements in the array:",n);

for(i=0;i<n;i++)

printf(“%d\n”, a[i]);

//fmax=fmin=a[0];

minmax(0, n-1, a[0],a[0]);

printf("\n The minimum Element of the list of elements is:%d",fmin);
printf("\n The maximum Element of the list of elements is:%d",fmax);
getch();

return 0;

}

voidminmax(inti,intj,intmax,int min)

{

intgmax,gmin,hmax,hmin;

gmax=hmax=max;

gmin=hmin=min;

if(i==))

{
fmax=fmin=a[i];
}

else if(i==(j-1))
{

If(ali]>a[j])

{

fmax=al[i];
fmin=a[j];

}

else

{

fmax=a[j];
fmin=al[i];

}

}

else

{

int mid=(i+j)/2;
minmax(i,mid,a[i],a[i]);
gmax=fmax;
gmin=fmin;
minmax(mid+1,j,a[mid+1],a[mid+1]);
hmax=fmax;
hmin=fmin;
if(gmax>hmax)
{

fmax=gmax;

}

else

{

fmax=hmax;

H
if(gmin>hmin)
{

fmin=hmin;

}

else

{

fmin=gmin;

}

}

}

Output:

Enter the number of elements in array are:7
Enter 7 elements in the array:2 5 1 6 88 99 22

The Elements in the array are:2

@ =W

88
99
22

The minimum Element of the list of elements is:1
The maximum Element of the list of elements is:99

Experiment No.6: Implement Merge Sort on two given lists of integer values.

#include<stdio.h>
#include<conio.h>
void merge(int[],int,int,int);
voidmergesort(int[], int,int);
void merge(int a[25], int low, int mid, int high)
{
int b[25],h,1,j,k;
h=low;
i=low;
j=mid+1;
while((h<=mid)&&(j<=high))

{
If(alh]<a[j])

{

b[i]=a[h];
h++;

}
else

{
bli]=a[j];
IR
}
if(h>mid)

{
for(k=j;k<=high;k++)
{
b[i]=alk];
i++;
}

}
else

{
for(k=h;k<=mid;k++)

{
bli]=a[k];

i++;
}

b
for(k=low;k<=high;k++)

voidmergesort(int a[25],intlow,int high)
{
int mid;
if(low<high)
{
mid=(low-+high)/2;
mergesort(a,low,mid);
mergesort(a,mid+1,high);
merge(a, low,mid,high);
}
b
void main()
{
int a[25],i,n;
clrser();
printf("\n Enter the size of the elements to be sorted:");
scanf("%d",&n); printf("\n Enter the elements to sort:");
for(i=0;i<n;i++)
scanf(“d”, &al[i]);
printf("\n The Elements before sorting are:");
for(i=0;i<n;i++)
printf(“%d\t”, a[i]);
mergesort(a, 0, n-1);
printf("\n The elements after sorting are:");
for(i=0;i<n;i++)
printf(“%d\t”, a[i]);
getch();
H

Output:
Enter the size of the elements to be sorted:7

Enter the elements to sorc:33 44 77 22 11 0 9

The Elements before sorting are:33 44 77 22 11 0 9
The elements after sorting are:0 9 11 22 33 44 77

Experiment No.7: Develop a program to perform Binary Search on a given set of integer values,

demonstrating both recursive and non-recursive approaches.

#include<stdio.h>

#include<conio.h>

voidbubblesort(int[],int);
intbinsrch(int[],int,int,int);

void display(int[],int);

inti,j;

int main()

{

int a[20],n,key,pos=-1;

clrser();

printf("\n Enter the number of elements in array are:");
scanf("%d",&n);

printf("\n Enter %d elements in the array:",n);
for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("\n Enter the element to be searched:");
scanf("%d",&key);

bubblesort(a,n);

printf("\n The sorted elements in the array are:");
display(a,n);

pos=binsrch(a,key,0,n-1);

if(pos!=-1)

printf("\n The Element %d is found in position %d" key,pos);
else

printf("\n Element not found");

getch();

return 0;

b
intbinsrch(int a[],intkey,intlow,int high)
{
int mid;
while(low<=high)
{
mid=(low-+high)/2;
if(keya[mid])
high=mid-1;
else if(key>a[mid])
low=mid+1;
else
return mid;
}
return -1;
}
voidbubblesort(int a[],int n)
{
inti,j,temp,excg=0;
int last=n-1;
for(i=0;j<last;j++)

{
If(afj]>a[j+1])

{
temp=al[j];
afjl=afj+1];
a[j+1]=temp;
excgtt;
}
}
}
if(excg==0)
return ;
else
last=last-1;
}

void display(int a[],int n)

{

inti;

for(i=0;i<n;i++)

printf(“%d\t”, a[i]);
}

Output:
L

Enter the number of elements in array are:7

Enter 7 elements in the array:1 793520

Enter the element to be searched:7

The sorted elements in the array are:0 1 2 3 5 7 9§
The Element 7 is found in position 5

2.
Enter the number of elements in array are:7
Enter 7 elements in the array:3 57 9126
Enter the element to be searched:55

The sorted elements in the array are:12 3 5 6 7 9
Element not found

Experiment No.8: Write a program to solve the knapsack problem using the greedy method.

#include<stdio.h>

#include<conio.h>

voidreadf{();

void knapsack(int,int);

voiddsort(int n);

void display(int);

int p[20],w[20],n,m;

double x[20],d[20],temp,res=0.0,sum=0.0;
voidreadf()

{

intm,n,i;

printf("\n Enter the no of Profits and weights:");
scanf("%d",&n);

printf("\n Enter the Maximum Capacity of the Knapsack:");

scanf("%d",&m);

printf("\n Enter %d profits of the weights:",n)

for(i=0;i<n;i++)
scanf(“%d”, &p[i]);
printf(“\n Enter %d Weight:”, n);
for(i=0;i<n;i++)
scanf(“%d”, &wl[i]);
for(i=0;i<n;i++);
d[i]=(double)p[i]/wl[il;
dsort(n);
knapsack(m,n);
display(n);

}

voiddsort(int n)

{

inti,j,t;
for(i=0;i<n;j++)

{

If(d[j]<d[j+1]);
d[j+1]=temp;

t=p[jl;

pll=pli+1];
pli+11=t;

t=wlil;
wjl=wli+1];
w[j+1]=t;

}

b

}

b

void display(int n)

{

inti,m;

5

printf("\n The Required Optimal solution is:\n");

printf("Profits Weights Xvalue\n");
for(i=0;i<n;i++)

{

printf("%d\t%d\t%f\n",p[i],w[i].x[i]);
sum=sum-+(p[i]*x[i]);
res=res+(w[i]*x[i]);

}
printf("\n The Total Resultant Profit is:%f",sum);
printf("\n The total resultant Weight into the knapsack is:%f" res);
b
void knapsack(intm,int n)
{
inti,cu=m,;
for(i=0;i<n;it+)

{
inti,cu=m;
for(i=0;i<n;i++)

{
X[i]=0.0;

H
for(i=0;i<n,i++)

{
if(w[i]<=n)

{
If(w[i]<cu)

{

X[i]=1.0;
cu=cu-wli];

}
else
break;

}
If(i<=n)

{
x[i]=(double)cu/w[i];

}

H
int main()

{

clrser();

readf();
getch();
return 0;

}

Output:
Enter the no of Profits and weights:3
Enter the Haximum Capacity of the Enapsack:28
Enter 3 profits of the objects:25 24 15
Enter 3 Heights:18 15 18

The Required Optimal solutiom is:
Prof its Weights Xualue

24 15 1.
15 10 8, 50008
25 18 6 . GEOEEa

The Total Resultant Prof it is:31.500000
The total resultant Height into the knapsack is:Z28.006808

Experiment No.9: Implement Prim's Algorithm to find the minimum cost spanning tree.

#include<stdio.h>

#include<conio.h>
intn,cost[10][10],temp,nears[10];

voidreadv();

voidprimsalg();

voidreadv()

{

inti,j;

printf("\n Enter the No of nodes or vertices:");
scanf("%d",&n);

printf("\n Enter the Cost Adjacency matrix of the given graph:");
for(i=1;i<=n;i++)

{

for(G=1;j<=njj++)

{

scanf("%d",&cost[i][j]);

if((cost[i][j]==0) && (i!=j))

{

cost[i][j]=999;

}

}

}

}
voidprimsalg()

{
intk,1,min,a,t[10][10],u,1,j,mincost=0;
min=999;
for(i=1;i<=n;i++) //To Find the Minimum Edge E(k,l)
{
for(u=1;u<=n;ut++)

{
if(i!=u)

{
if(cost[i][u]<min)

{
min=cost[i][u];

k=i;

I=u;

}
}

}
}
t[1][1]=k;
t[1][2]=L
printf("\n The Minimum Cost Spanning tree is...");
printf("\n(%d,%d)-->%d" k,l,min);
for(i=1;i<=n;i++)

{
if(i!=k)

{
if(cost[i][1]<cost[i][k])

{
nears[i]=l;

}

else

nears[k]=nears[1]=0;

mincost=min;

for(i=2;i<=n-1;i++)

{

j = findnextindex(cost,nears);

th1l=;

t[i][2]=nears[j];
printf("\n(%d,%d)-->%d",t[i][1],t[i][2],cost[j][nears[j]]);
mincost=mincost+cost[j][nears[j]];

nears[j]=0;

for(k=1;k<=n;k++)

{

if(nears[k]!=0 && cost[k][nears[k]]>cost[k][j])
{

nears[k]=j;

}

}

}

printf("\n The Required Mincost of the Spanning Tree is:%d",mincost);

}

intfindnextindex(int cost[10][10],int nears[10])

{

int min=999,a,k,p;

for(a=1;a<=n;a++)

{

p=nears[a];

if(p!=0)

{

if(cost[a][p]<min)
{
Min=cost[a][p];
K=a;

}

}

}

Return k;

}
void main()

{
clrscr();
readv();
primsalg();

}

Output:
Enter the Mo of nodes or vertices:?

Enter the Cost Ad jacency matrix of the given graph:® 26 6 8 8 18 @

a
a
The Minimm Cost Spanning tree is...

(1,6)—>18

(5.6)—>25

(4,5)—>22

(3,4)—>12

(2,3)—>16

(7,2)-—->14

The Required Mincost of the Spamming Tree is:99

Experiment No.10: Implement Kruskal's Algorithm to find the minimum cost spanning tree.

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>
inti,j,k,a,b,u,v,n,ne=1;
intmin,mincost=0,cost[9][9],parent[9];
int find(int);

intuni(int,int);

void main()

{

clrscr();

printf("\n\tImplementation of Kruskal's algorithm\n");

printf("\nEnter the no. of vertices:");
scanf("%d",&n);

printf("\nEnter the cost adjacency matrix:\n");
for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

scanf("%d",&cost[i][j]);

if(cost[i][j]==0)

cost[i][j]=999;

3

printf("The edges of Minimum Cost Spanning Tree are\n");
while(ne < n)

{

for(i=1,min=999;i<=n;i++)

{

for(j=1;j <= n;j++)

{

if(cost[i][j] < min)

{

min=cost[i][j];

a=u=i;

b=v=j;

}

}

}

u=find(u);

v=tind(v);

if(uni(u,v))

{

printf("%d edge (%d,%d) =%d\n",ne++,a,b,min);
mincost +=min;

}

cost[a][b]=cost[b][a]=999;

}

printf("\n\tMinimum cost = %d\n",mincost);

getch();

b

int find(inti)

{
while(parent[i])
i=parent[i];
returni;

}

intuni(inti,int j)
{

if(i!=)

{

parent[j]=i;
return 1;

}
return 0;

}

Output:
Imp lementation of Kruskal's algoriths

Enter the no. of wvertices:7

]

nter the cost ad jacency mateix:
ZHBeelee

malmeaﬁe
& @O E:-E
=4 -]

¥

edges of Minimm Cost Spanning Tree are
edge (1.6) =180
edge (3.4) =12
edge (2,7) =14
edge (Z.3) =16
edge (4,5) =ZZ
edge (5.6) =25

BN ON o LN e

Hinimim cost = 99

Experiment No.11: Create a program to solve the single-source shortest path problem for a given

graph.

#include<stdio.h>
#include<conio.h>
voidreadf{();

void SP();

int cost[20][20],dist[20],s[20];
intn,u,min,v,w;

voidreadf()

{

inti,j;

printf("\n Enter the no of vertices:");
scanf("%d",&n);

printf("\n Enter the Cost of vertices:");
for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

scanf("%d",&cost[i][j]);
if(cost[i][j]==0)
cost[i][j]1=999;

}

}

}

void SP()

{

inti,j;

printf("\n Enter the source vertex:");
scanf("%d",&v);
for(i=1;i<=n;i++)

{

s[i]=0;

dist[i]=cost[V][i];

}

s[vl=1;

dist[v]=0;

for(i=2;i<=n;i++)

{

min=dist[i];

for(j=2;j<=njj++)

{

if(s[j]==0)

{

if(min>dist[j])

{

min=dist[j];

u=j;

H

H

H

s[u]=1;

for(w=1;w<=n;w++)

{

if(cost[u][w]!=0 && s[w]==0)
{
if(dist[w]>(dist[u]+cost[u][w]))
{

dist[w]=dist[u]+cost[u][w];

H

b

H

H

printf("\n From the Source vertex %d",v);
for(i=1;i<=n;i++)
printf("\n%d->%d",i,dist[i]);
}

void main()

{

clrser();

readf();

SP();

getch();

}

Output:

Enter the no of vertices:6
Enter the Cost of vertices:
050 451000

00101500
0000300
20000150
02035000
000030
Enter the source vertex:]

From the Source vertex 1
1-20
2->45
3->45
4->10
5-»25
6->999

Experiment No.12: Write a program to find a solution for the job sequencing with deadlines

problem.

#include<stdio.h>

#include<conio.h>

intjobseq();

voidpsort();

inttp,j[10],d[10],p[10],n;

void main()

{

inti,k;

clrscr();

printf("\n Enter the n'o of jobs:");
scanf("%d",&n);

printf("\n Enter the %d Deadlines for the jobs:",n);
for(i=1;i<=n;i++)

scanf("%d",&d[i]);

printf("\n Enter the Profits required for jobs:");

for(i=1;i<=n;i++)
scanf("%d",&p[i]);
psort();
for(i=1;i<=k;i++)

{

tp=tp+p[j[i]l;
printf("%d-->",j[i]);
}

printf("\n Profits:%d",tp);
getch();

}

intjobseq()

{

inti,k,q;

d[0]=0;

j[0]=0;

J=L

k=1;
for(i=2;i<=n;i++)

{

int r=k;

while((d[[rT1>dIi]) && (d[rT]1=T))

r=r-1;

f((dj[r]]<=d[i]) && (d[i]>1))

{
for(q=k;q>=r+1;q--)
{
ilgt1]=ilal;
}

1=
k=k+1;

}

}

return k;

}
voidpsort()
{

int i,k ,temp1;
for(i=1;i<=n;i++)
{
for(k=1;k<=n-i;k++)
{

if(p[k]<p[k+1])

{

temp1=p[k];
plk]=plk+1];
plk+1]=templ;
temp1=j[k];
ilkI=jk+1];
jlk+1]=templ;
temp1=d[k];
dlk]=d[k+1];
d[k+1]=temp1;

}

}
}
}

Output:

L Enter the n'oc of jobs:9

Enter the 9 Deadlines for the jobs:5 32234775

Enter the Profits required for jobs:30 25 23 20 18 18 16 15 10
The Required Solution is:3-->4--22--26-->1-->7-->8-->
Profits:147

2. Enter the n'o of jobs:5
Enter the 5 Deadlines for the jobs:2 2 11 3
Enter the Profits required for jobs:100 90 70 50 40

The Required Solution is:1--2--25-->
Profits:230

Experiment No.13: Develop a program to solve the all-pairs shortest path problem.

#include<stdio.h>
#include<conio.h>
voidreadf();

voidamin();

int cost[20][20],a[20][20];
inti,j,k,n;

voidreadf()

{

printf("\n Enter the no of vertices:");
scanf("%d",&n);
printf("\n Enter the Cost of vertices:");
for(i=0;i<n;j++)

{

scanf(*”,&cost[i][j]);
if(cost[i][j]==0 && (i!=j))
cost[i][j]=999;
ali][jl=cost[i][j];

}

I

Void main()

{

for(k=0;k<n;k++)

{

for(i=0:1<n;i++)

{

for(j=0;j<n;J++)

{

if(afi](k]+a[k][j])

{

ali][j]=ali][k]+afk][j];

I

}

}
printf("\n The All pair shortest path is:");

for(i=0;i<n;i++)

{

printf(‘“\n”);
for(j=0;j<n;j++)
{
Printf(“%d\t”,a[i][j]);
}

I

void main()

{

clrser();

readf();

amin();

getch();

}

Output:
Enter the no of vertices:3
Enter the Cost of vertices:

04 11

6 0 2

300

The All pair shortest path is:
0 4 [

5 0 2

3 7 1]

Experiment No.14: Implement a program to solve the N-QUEENS problem.

#include<stdio.h>
#include<conio.h>
#include<math.h>
voidreadv();
voidnqueen(int,int);
int place(int,int);
int x[25],count=0;
voidreadv()

{

int n;

printf("\n Enter the no of Queens to be placed:");

scanf("%d",&n);
printf("\n The Places in which the %d Queens are toplaced in the %dx%dChessBoard is:",n,n);
nqueen(1,n);
printf("\n The No of Solutions for the %d Queens Problem are:%d",n,count);
}
voidnqueen(intk,int n)
{
inti,j;
for(i=1;i<=n;i++)

{
if(place(k,i))

{
x[k]=i;
if(k==n)

{
count++;
if(count%10 == 0)
getch();
printf("\n");
for(j=1;j<=n;j++)

{
printf("%d\t"x[j]);

}

}
else

{
nqueen(k+1,n);

b

b

int place(intk,inti)

{

int j;
for(j=1;j<=k-1;j++)

{
if((x[j]I==1)[/(abs(x[j]-1)==abs(j-k)))
{

return 0;

b

return 1;

}

void main()
{

clrser();
readv();
getch();

H
Output:

Enter the no of Queens to be placed:4

The Places in which the 4 Queens are to placed in the 4 x 4 ChessBoard is:
24 1 3

31 4 2

The Mo of Solutions for the 4 Queens Problem are:2

Experiment No.15: Write a program to find a solution for the sum of subsets problem for a

given set of distinct numbers.

#include<stdio.h>

#include<conio.h>

void Sum ofSub(int,int,int);

int X[25],n,m=0,sum=0,w[25];

voidreadf()

{

inti;

printf("\n Enter the no of values in the set:");
scanf("%d",&n);

printf("\n Enter the %d weights of the values in the set:",n);
for(i=1;i<=n;i++)

{

scanf("%d",&w[i]);

sum=sum-+wl[i];

x[i]=0;

}

printf("\n Enter the required sum of the values in the subset:");

scanf("%d",&m);

printf("\n The Total sum of the weights is:%d",sum);
SumofSub(0,1,sum);

}

voidSumOfSub(ints,intk,int r)
{

inti,j;

x[k]=1;

if(sum>=m)

{

if(stw[k]==m)

{

printf("\n");

for(j=1;j<=n;j++)

{

printf("%d\t",x[j1);

}

printf("\n-->");
for(j=1;j<=k;j++)

{

if(x[jl==1)
printf("%d\t",w[j]);
b

else

if(stw[k]+w[k+1]<=m)
SumofSub(s+w[k],k+1,r-w[k]);
if((str-w[k]>=m) && (s+w[k+1]<=m))
{

x[k]=0;

SumofSub(s,k+1,r-w[k]);

i

else

{

printf("\n No Solutions Available because sum of all weights is %d less than required sum
%d",sum,m);

i

void main()

{

clrser();
readf();
getch();
}

Output:

Enter the no of values in the ser:6
Enter the & weights of the values in the set:5 10 12 13 15 18

Enter the required sum of the values in the subset:30

The Total sum of the weights is:73

1 1 0
--35 10
1 0 1
==3>5 12
o o0 1

-->12 18

0o 1 0
15
1 1 0
13
o o0 1

SESSION 2 WEB DESIGN LAB

Basic Structure

2.0 Introduction
2.1 Objectives
2.2 Introduction to Web Design
2.2.1 Understanding Web Design Principles
2.2.2 Importance of Web Design in the Digital Age
2.3 Tools and Technologies in Web Design
2.3.1 Graphic Design Software
2.3.2 Coding Environment and Languages
2.3.3 Frameworks and Libraries
2.4 Introduction to HTML
2.5 Cascading Style Sheet (CSS)
2.6 Java Script HTML DOM
2.7 Experiments

2.0

INTRODUCTION

This session introduces you to the vital role of Web design labs in @lging the gap
between theoretical knowledge and practical application in web development. These labs
offer a hands-on environment where students and professionals can actively experiment
with various web design principles and technologies. By engaging in real-world projects
and exercises, participants gain a deeper understanding of web design intricacies,
including user interface (UI) and user experience (UX) design, responsive layouts, and
accessibility considerations. This experiential learning approach ensures individuals are
not only well-versed in the latest web design trends but also capable of implementing
them effectively.

Tools and Resources for Web Design

In a web design lab, learners have access to a diverse array of tools and resources that
facilitate website creation and testing. These range from graphic design software like
Adobe Photoshop and Illustrator to robust coding environments such as Visual Studio
Code. Additionally, web design labs often provide access to popular frameworks and
libraries like Bootstrap and jQuery, which streamline the development process. By
leveraging these resources, participants cultivate ﬁmprehensive skill set encompassing
both design aesthetics and technical proficiency, enabling them to build visually
appealing and highly functional websites.

The Power of Collaboration

Collaboration is another crucial aspect of web design labs. Working in a collaborative
setting empowers participants to share ideas, offer constructive feedback, and learn from

each other's experiences. This teamwork is indispensable in web design, as diverse

perspectives often lead to more innovative and user-friendly solutions. Web design labs
frequently simulate real-world scenarios where designers, developers, and clients must
collaborate to achieve a common goal. This collaborative practice effectively prepares
individuals for the dynamic and often team-oriented nature of the web design industry.
Staying Current with Web Technologies

Furthermore, web design labs play a pivotal role in keeping pace with the rapidly
evolving landscape of web technologies. With new tools, techniques, and standards
emerging constantly, staying updated is paramount for anyonenvolved in web design.
Web design labs provide a structured environment for ﬁtinuous learning and
experimentation, ensuring participants remain at the forefront of the industry. By
regularly engaging with the latest advancements, learners can develop adaptable skills
and maintain their competitiveness in the job market.

In essence, web design labs are crucial for developing practical skills, fostering

collaboration, and staying current with technological advancements in web design.

2.1

OBJECTIVES

After the completing this unit, you will be able to:

Develop a comprehensive understanding of UI and UX design principles.
Gain proficiency in using graphic design software and coding environments.
Master the implementation of responsive web design techniques.

Learn to create accessible and inclusive websites.

Utilize frameworks and libraries to streamline the web development process.
Enhance problem-solving skills through real-world web design projects.
Foster collaboration and teamwork among participants.

Stay updated with the latest web design trends and technologies.

Build a portfolio of professional-quality web design projects.

0 Prepare for a successful career in the web design industry by developing practical,

e A Ul o o

hands-on experience.

2.2

INTRODUCTION TO WEB DESIGN

b design is both an art and a science, focused on crafting websites that are not only
ﬁally appealing but also highly functional and user-friendly. At its core, this discipline
relies on three fundamental technologies: HTML, CSS, and JavaScript. HTML
(Hypertext Markup Language) establishes the structural foundation of a web page,
defining its content and overall layout. CSS (Cascading Style Sheets) then enhances this
structure by introducing styling elements like colors, fonts, and sophisticated layouts, all
contributing to a captivating user experience. JavaScript, on the other hand, injects
interactivity and dynamic behavior into web pages, making them responsive and
engaging. Together, these technologies empower designers to build comprehensive web

experiences that effectively meet the diverse needs of both users and clients.

Key Components of Web Design
a). Structure and Semantics with HTML

HTML serves as the essential building block of web design, providing the basic structure
and semantic meaning of a web page. It utilizes a system of tags and attributes to organize
content into fundamental elements such as headings, paragraphs, lists, links, and images.
Understanding the correct usage of these HTML elements is crucial for creating well-
structured and accessible web pages. The concept of semantic HTML, which involves
using tags that clearly convey the meaning of the enclosed content, is particularly
important for improving search engine optimization (SEO) and overall accessibility.

b). Styling and Layout with CSS

CSS ﬁys a pivotal role in transforming the raw structure provided by HTML into a
visually appealing and intuitive user interface. It allows designers extensive control over
the presentation of web pages, including typography, color schemes, spacing, and ovgrall
layout. CSS is also vital for responsive design, ensuring that web pages seamlessly ﬁpt
to various screen sizes §d devices, providing a consistent user experience. Key CSS
concepts like the box model, positioning, and flexbox/grid layouts @er powerful tools
for creating sophisticated and adaptable designs.

¢). Interactivity and Dynamics with JavaScript

JavaScript bgings interactivity and dynamic content t8 web pages, enabling features that
significantly g;ance user engagement and functionality. By manipulating the Document
Object Model (DOM), JavaScript can update content in real-time, respond to user
events, validate forms, and create animations without requiring a full page reload. A solid
grasp of JavaScript fundamentals, including variables, functions, and event handling, is
essential for developing interactive web applications. Furthermore, advanced JavaScript
libraries and frameworks such as jQuery, React, and Angular extend its capabilities,
allowing for the creation of highly complex and performant web applications.

Integrating HTML, CSS, and JavaScript

Effective web design demands a seamless and harmonious integration of HTML, CSS,
and JavaScript. These technologies work in concert to deliver a cohesive user experience,
from the underlying structure and visual styling to interactive elements and dynamic
functionality. In a web design lab setting, students and professionals actively practice this
integration through hands-on projects that mimic real-world scenarios. This practical
approach not only solidifies theoretical knowledge but also cultivates vital problem-
solving skills and creative thinking, both of which are essential for a successful career in
web design. By mastering the combined use of HTML, CSS, and JavaScript, designers

can build robust and engaging websites that cater to diverse user needs.

2.2.1 Understanding Web Design Principles

Web design is both an art and a science, focused on crafting &sites that are not only
visually appealing but also highly functional ang user-friendly. At its core, this discipline
relies on three fundamental technologies: ML, CSS, and JavaScript. HTML
(Hypertext Markup Language) establishes the structural foundation § a web page,
defining its content and overall layout. CSS (Cascading Style Sheets) then enhances this
structure by introducing styling elements like colors, fonts, and sophisticated layouts, all
contributing to a captivating user experience. JavaScript, on the other hand, injects
interactivity and dynamic behavior into web pages, making them responsive and
engaging. Together, these teghnologies empower designers to build comprehensive web
experiences that effectively Eeet the diverse needs of both users and clients.

a). Structure and Semantics with HTML

HTML serves as the essential building block of web design, providing the basic structure
and semantic meaning of a web page. It utilizes a system of tags and attributes to organize
content into fundamental elements such as headings, paragraphs, lists, links, and images.
Understanding the correct usage of these HTML elements is crucial for creating well-
structured and accessible web pages. The concept of semantic HTML, which involves
using tags that clearly convey the meaning of the enclosed content, is particularly
important for improving search engine optimization (SEO) and overall accessibility.

b). Stgg and Layout with CSS

CSS pidys a pivotal role in transforming the raw structure provided by HTML into a
visually appealing and intuitive user interface. It allows designers extensive control over
the presentation of web pages, including typography, color schemes, spacing, and ovygrall
layout. CSS is also vital fgr responsive design, ensuring that web pages seamlessly Qrapt
to various screen sizes §d devices, providing a consistent user experience. Key CSS
concepts like the box model, positioning, and flexbox/grid layouts er powerful tools
for creating sophisticated and adaptable designs.

¢). Interactivity and Dynamics with JavaScript

JavaScript bgings interactivity and dynamic content g web pages, enabling features that
significantly glance user engagement and functionality. By manipulating the Document
Object Model (DOM), JavaScript can update content in real-time, respond to user
events, validate forms, and create animations without requiring a full page reload. A solid
grasp of JavaScript fundamentals, including variables, functions, and event handling, is
essential for developing interactive web applications. Furthermore, advanced JavaScript
libraries and frameworks such as jQuery, React, and Angular extend its capabilities,
allowing for the creation of highly complex and performant web applications.

d). Integrating HTML, CSS, and JavaScript

Effective web design demands a seamless and harmonious integration of HTML, CSS,
and JavaScript. These technologies work in concert to deliver a cohesive user experience,
from the underlying structure and visual styling to interactive elements and dynamic
functionality. In a web design lab setting, students and professionals actively practice this
integration through hands-on projects that mimic real-world scenarios. This practical
approach not only solidifies theoretical knowledge but also cultivates vital problem-
solving skills and creative thinking, both of which are essential for a successful career in
web design. By mastering the combined use of HTML, CSS, and JavaScript, designers

can build robust and engaging websites that cater to diverse user needs.

@2.2 Importance of Web Design in the Digital Age
(S

b design is incredibly important in today's digital world. It's about creating websites
that not only look great but are also easy to use and effective.
a). Enhancing User Engagement and Experience
A well-designed website is crucial for grabbing and holding user attention. It significantly
boosts user engagement by providing an intuitive and enjoyable Browse experience.
Features like simple navigation, fast loading times, and mobile responsivengss ensure
users can access content smoothly across all their devices. By combining HTML for
structure, CSS for styling, and JavaScript for interactivity, designers can create web pages
that not only attract visitors but keep them engaged, reducing bounce rates and increasing
the time they spend on the site.
b). Building Brand Identity and Credibility
Often, a website is the very first interaction a business has with potential customers. This
makes its design vital for establishing a strong brand identity and credibility. Using
consistent colors, fonts, and graphics that align with brand guidelines helps create a
cohesive and professional appearance. Furthermore, incorporating interactive elements
and modern design trends through CSS and JavaScript can convey innovation and
attention to detail. A polished and functional website fosters trust and credibility, making
visitors more inclined to become customers.
¢). Impact on SEO and Online Visibility
Web design also heavily influences a site’s search engine optimization (SEO) and
overall online visibility. Correctly using HTML tags, such as headers, alt texts for
images, and meta descriptions, helps search engines understand the site's content and
context, leading to better indexing and higher rankings. CSS ensures the site is visually
appealing and loads quickly, both of which are factors search engines consider when

ranking pages. Additionally, JavaScript can improve user experience by enabling features

that boost user interaction and time spent on the site, indirectly enhancing SEO
performance.

d). Facilitating Business Growth and Accessibility

In the digital marketplace, a well-designed website is a powerful engine for business
growth. It serves as a comprehensive platform for marketing, sales, and customer
engagement. By ensuring the site is accessible to a wide audience, including individuals
with disabilities, businesses can reach more potential customers. HTML provides the
foundational structure that screen readers and other assistive technologies rely on, while
CSS and JavaScript can be used to enhance accessibility features without comprogising
the user experience. This inclusivity not only expands market reach but also Qures
compliance with legal standards, contributing to a positive brand reputation.

By mastering the principles of HTML, CSS, and JavaScript, web designers can create
sites that are not just visually stunning and highly functional, but also powerful tools for
engagement, branding, SEO, and business growth. In a web design lab, learners can
develop these essential skills through practical, hands-on experience, preparing them for

the dynamic and ever-evolving field of web design.

2.3

TOOLS AND TECHNOLOGIES IN WEB DESIGN

Web design is both an art and a science, focused on crafting sites that are not only
visually appealing but also highly functional angd user-friendly. At its core, this discipline
relies on three fundamental technologies: ML, CSS, and JavaScript. HTML
(Hypertext Markup Language) establishes the structural foundation § a web page,
defining its content and overall layout. CSS (Cascading Style Sheets) then enhances this
structure by introducing styling elements like colors, fonts, and sophisticated layouts, all
contributing to a captivating user experience. JavaScript, on the other hand, injects
interactivity and dynamic behavior into web pages, making them responsive and
engaging. Together, these teghnologies empower designers to build comprehensive web
experiences that effectively Eeet the diverse needs of both users and clients.

The Core Technologies of Web Design

a). HTML (Hypertext Markup Language)

HTML serves as the foundational technology in web design, providing ge structure and
content of a web page. It uses a system of tags and attributes to define various elements,
such as headings, paragraphs, links, images, and multimedia content. By organizing
content into a logical structure, HTML ensures that web pages are accessible and easy to

navigate. Moreover, semantic HTML, which involves using tags that convey the

meaning of the content, enhances search engine optimization (SEO) and accessibility,

making websites more discoverable and usable by a wider audience. Understanding
HTML is crucial for any web designer, as it forms the basis upon which all other web
techgologies are built.

b).lgs (Cascading Style Sheets)

CSS is the technology that brings style and visual appeal to web pages. It allows
designers to control the presentation of HTML elements, including layout, colors, fonts,
and spacing. CSS enables the creation of responsive designs that adapt to different screen
sizes and devices, ensuring a consistent user experience across desktops, tablets, and
smart phones. Key features of CSS igclude the box model, which defines the space
around elements, and advanced layout gchniques such as Flexbox and CSS Grid, which
provide powerful tools for creating complex and adaptable designs. By separating content
(HTML) from presentation (CSS), designers can maintain cleaner code and more flexible

design options.

JavaScript
maScript adds interactivity and dynamic functionality to web pages, making them more
engaging and user-friendly. It allows designers to create real-time updates, form
validations, interactive maps, animations, and other features that enhance user experience.
JavaScript operates on the client side, meaning it runs directly in the user's browser,
which reduces server load and increases the speed of web applications. Understanding
JavaScript fundamentals, such as variables, functions, and event handlin, @ssantial for
creating interactive web applications. Additionally, modern JavaScript ffameworks and
libraries, such as React, Angular, and Vue.js, provide powerful tools for building
complex, scalable, and maintainable web applications.
Essential Tools and Environments for Web Design
d). Integrated Development Environments (IDEs) and Tools
Effective web design requires the use of various tools and environments that streamline
the development process. Integrated Development Environments (IDEs) like Visual
Studio Code, Sublime Text, and Atom provide a robust platform for writing, testing, and
debugging code. These tools often include features such as syntax highlighting, code
completion, and version control integration, which enhance productivity and and reduce
errors. Additionally, graphic design software like Adobe Photoshop and Illustrator are
essential for creating and manipulating visual elements. Version control systems like Git
enable collaborative work by tracking changes and managing code versions. These tools,
when used in conjunction with HTML, CSS, and JavaScript, empower designers to create
high-quality, professional web designs efficiently.

Specialized Design and Development Tools

1.1.1 Graphic Design Software

In addition to HTML, CSS, and JavaScript, graphic design software plays a crucial role
in the web design process. Tools such as Adobe Photoshop, Illustrator, and Sketch are
indispensable for creating and editing visual elements like logos, icons, and custom
graphics. These programs allow designers to craft high-quality visuals that enhance the
overall look and feel of a website. Photoshop is particularly useful for manipulating
images and creating detailed graphics, while Illustrator excels in vector design, making it
ideal for logos and scalable graphics. Sketch, popular among web designers, offers robust
features for UI and UX design, including prototyping and collaboration tools. Proficiency
in these graphic design tools enables designers to produce visually compelling and
cohesive designs, ensuring that every element of a website aligns with the intended user
experience and branding.

1.1.2 Coding Environments and Languages

A robust coding environment is essential for efficient web design and development,
providing the tools and resources needed to write, test, and debug code effectively.
Integrated Development Environments (IDEs) like Visual Studio Code, Sublime Text,
and Atom are popular choices among web designers. These environments offer features
such as syntax highlighting, code completion, and version control integration, which
streamline the coding process and reduce errors. Additionally, familiarity with languages
beyond HTML, CSS, and JavaScript, such as PHP, Python, and SQL, can enhance a
designer’s ability to build more complex and dynamic web applications. Mastery of these
coding environments and languages is critical for web designers, allowing them to
efficiently develop, test, and deploy high-quality web solutions.

233 Eamewcrks and Libraries

Frameworks and libraries are vital tools in web design, gignificantly enhancing the
efficiency and capabilities of HTML, CSS, and JavaScript. Frameworks like Bootstrap
and Foundation provide pre-designed Ul components and responsive grid systems,
allowing designers to quickly create uniform and mobile-friendly layouts. Libraries such
as jQuery simplify JavaScript by offering easy-to-use functions for comgon tasks like
DOM manipulation and event handling. More advanced libraries and eworks like
React, Angular, and Vue.js enable the development of complex, single-page
applications with efficient data binding and state management. By leveraging these
frameworks and libraries, web designers can streamline development processes, ensure
consistency across projects, and focus more on creating unique and engaging user
experiences.

In a web design lab setting, learners have the opportunity to master these tools and

technologies through hands-on practice and real-world projects. This practical experience

is crucial for developing the technical skills and creative problem-solving abilities needed
to succeed in the dynamic field of web design. By becoming proficient @I){TML, CSS,
JavaScript, and the various tools that support them, designers can create sites that are

not only visually appealing but also functional, responsive, and user-friendly.

2.4

INTRODUCTION TO HTML

Understanding Websites and Web Pages

a). Websites and Web Pages

A website is essentially a collection of interconnected web pages, typically hosted on
the same server. It functions as a cohesive unit of information managed by an
individual, group, or organization. The homepage usually acts as the primary entry
point to the site. Each individual web page within a website is a document crafted using
HTML (Hypertext Markup Language) and becomes accessible on the internet when
accessed via its unique web address. HTML is the foundational technology for building

these pages, providing the structure and content that browsers interpret and display.

b). Types of Web Pages

i). Static Web Pages

Static geb pages are delivered to the user exactly as they are stored on the web server.
Their content is fixed and doesn't change in response to user interactions. These pages
are simple to create and host, as they consist of basic HTML files without any server-
side processing. Static web pages are ideal for content that doesn't require frequent

updates or user input.
ii). Dynamic Web Pages

In contrast, dynamic web pages are generated in real-time by web applications driven
by server-side software or client-side scripting. These pages can change content
dynamically based on user interactions, such as form submissions or database queries.
Dynamic web pages enhance the user experience by providing personalized and

interactive content that evolves over time.

‘Web Browsers and the Client-Server Model

¢). Browsers and Their Types

A web browser is a software application used to retrieve, present, and navigate
information on the World Wide Web. Major web browsers include Google Chrome,
Firefox, Microsoft Edge (formerly Internet Explorer), Opera, and Safari. Each browser
interprets and displays HTML, CSS, and JavaScript in slightly different ways, making

cross-browser compatibility an important consideration in web design.

d). Client-Server Model

The client-server model is a computing architecture that divides tasks between servers
(providers of resources or services) and clients (requesters of those resources or
services). In this model, clients and servers communicate over a network. Servers host
web applications or data, while clients access these resources by initiating requests for
content or services. This model is fundamental to web operations, enabling efficient and

scalable interactions between users and web applications.

TespOonse
clisnt
server data

The Role of a Web Server

A web server can refer to either the physical hardware (a computer) or the software
application that delivers web content over the Internet. While hosting websites is their
primary function, web servers also support other applications such as online gaming,
data storage, and enterprise software solutions. Web servers are crucial in web design

because they store and serve the HTML, CSS, and JavaScript files that constitute web
pages.

Different Categories of Web Pages

a). Advocacy Web Pages

Advocacy web pages are created and sponsored by organizations to influence public
opinion or promote specific causes. These sites typically have URLs ending in .org and

aim to raise awareness, support policy changes, or mobilize public action.

b). Business and Marketing Web Pages

Business and marketing web pages are designed by commercial enterprises to sell
products or market services. These pages often feature e-commerce functionality,
promotional content, and customer service information. Their URLs usually end in

.com, reflecting their commercial nature.

c). News Web Pages

News web pages provide timely information about current events, issues, and
developments. These sites are maintained by news organizations and journalists,

offering updates on local, national, and international news.

d). Informational Web Pages

Informational web pages include reports, research findings, and educational content.
These pages are often hosted by educational institutions, research organizations, or
government entities, with URLs typically ending in .edu or .gov. They aim to provide

accurate and detailed information on various topics.

e). Personal Web Pages

Personal web pages are created by individuals for personal use, such as blogs,
portfolios, or online resumes. These pages often have a URL that includes a tilde (~)

and reflect the interests and activities of the individual creator.

2.5

CASCADING STYLE SHEET (CSS)

Cascading Style Sheets (CSS) are an essential technology in web design, providing the
means to control the appearance and layout of HTML elements on a web page. CSS
enables designers § create visually appealing and cohesive designs by defining styles
for elements like text, images, and containers. By separating content from presentation,
CSS allows for more flexible and maintainable web designs. This separation means

developers can change a website's look and feel without altering the underlying HTML

structure, which s@amlines the design process and ensures consistency across multiple
pages.

Responsive Design with CSS

One of the key advantages of gs is its ability tg create responsive web designs.
Responsive design ensures that web pages look Qd function well on a variety of
devices, from desktops to tablets smartphones. CSS media queries allow designers
to specify different styles for %erent screen sizes, orientations, and resolutions,
creating a seamless user experience across devices. This adaptability is crucial in today's
digital landscape, where users access websites from an ever-growing array of devices.
Powerful Layout Tools

CSS also offers powerful layout tools that enable designers to create complex and
adaptive designs. Flexbox and CSS Grid are two advanced CSS features that provide
flexible and efficient ways to arrange elements on a web page. Flexbox allows for the
creation of one-dimensional layouts, making it easy to align and distribute space among
items in a container. CSS Grid, on the other hand, supports two-dimensional layouts,
allowing for more intricate and precise arrangements of elements. These tools empoyer
designers to craft modern, visually appealing, and highly functional layouts bat
enhance the overall user experience.

Mastering CSS in the Lab

In a web design lab, mastering CSS is essential for creating professional and effective
web pages. Through hands-on practice and real-world projects, learners can develop
their skills in using CSS to style and lay out web pages. By understanding and applying
CSS principles, designers can ensure their web pages are not only aesthetically pleasing
but also responsive, accessible, and user-friendly. This proficiency in CSS, combined

with knowledge of HTML and JavaScript, forms a solid foundation for successful web

design and development.

2.6

JAVA SCRIPT HTML DOM

The JavaScript HTML DOM (Document Object Model) is a critical concept in web
design and development, enabling dynamic interaction with the content and structure of
web pages. The DOM essentially represents a web page as a hierarchical tree of objects,
where each node corresponds to an HTML element. JavaScript can then manipulate
these objects to dynamically change a web page's content, structure, and style. This
manipulation allows developers to create interactive and responsive user interfaces,
significantly enhancing the user experience by enabling real-time updates and

interactions without requiring a full page reload.

Accessing and Modifying HTML Elements

One of the key features of the JavaScript HTML DOM is its ability to access and
modify HTML elements and their attributes. Using methods such as getElementByld,
getElementsByClassName, and querySelector, developers can select specific elements
and make changes to their content, style, or properties. This capability is essential for
tasks like form validation, dynamic content updates, and creating interactive
components such as image sliders, modal windows, and more. By leveraging the DOM,
developers can create rich, interactive experiences that respond directly to user input
and behavior.

Understanding Event Handling

Event handling is another crucial aspect of the JavaScript HTML DOM. Events are
actions or occurrences that happen in the browser, such as clicks, key presses, or page
loads. JavaScript can "listen" for these events and execute specific code in response,
allowing for dynamic and interactive functionality. For example, a button click can
trigger a function that changes the text of a paragraph, submits a form, or fetches data
from a server. Understanding and implementing event handling is fundamental for
creating responsive and interactive web applications, as it enables real-time interaction
between the user and the web page.

Mastering DOM in the Lab

In a web design lab, mastering the JavaScript HTML DOM is essential for building
dynamic and engaging web applications. Through practical exercises and projects,
learners can develop their skills in manipulating the DOM to create interactive user
interfaces. By understanding how to access and modify HTML elements, handle events,
and update the DOM dynamically, designers can significantly enhance the functionality
and responsiveness of their web pages. This expertise, combined with a strong
knowledge of HTML and CSS, provides a comprehensive foundation for modern web

development, enabling the creation of sophisticated and user-friendly web applications.

2.7

EXPERIMENTS

1. Designa age having suitable background colour and text colour with title “My First
Web Page” using all the attributes of the Font tag.

2. Create a HTML document giving details of your [Name, Age], [Address, Phone] and
[Register Number, Class] aligned in proper order using alignment attributes of
Paragraph tag.

3. Write HTML c0de to design a page containing some text in a paragraph by giving
suitable heading style.

Create a gge to show different character formatting (B, I, U, SUB, SUP) tags. viz :

4.
logbmp=plogbm.

5. Write HTML code to create a Web Page that contains an Image at its centre.

6. Design a webpage featuring an image positioned on the left side. Configure
this image so that clicking on it opens a completely different webpage in the
browser.

7. Develop a webpage that utilizes anchor tags to create links to external
websites. Ensure you use the appropriate HTML attributes to facilitate these
external navigations.

8. Create a single webpage with multiple distinct sections. Implement internal
links within this page so that when a user clicks on a link, the browser scrolls
smoothly to the corresponding section on the same page.

9. Write a HTML code to create a web page with pink color background and display
moving message in red color.

10. Create a web page, showing an ordered list of all second semester courses (Subjects)
Procedure.

11.Create a web page, showing an unordered list of names of all the Diploma
Programmes (Branches) in your institution.

12. Create a HTML document containing a nested list showing a content page of any
book.

13. Create the following table in HTML with Dummy Data:

Reg. Date of
Number Student Name Year/Semester Admission

14. Create a web page which divides the page in two equal frames and place the audio
and video clips in frame-1 and frame-2 respectively.

FRAME -1 FRAME - 11

15. Create a web page which should generate following output:

FRAME-2
FRAME-3

FRAME-1

CENTRE FOR DISTANCE AND ONLINE EDUCATION

¢

a MANGALAYATAN
U NIV ERSITHY
Wimgata s Learn Today to Lead Tomorrow

Extended NCR, 33rd Milestone, Aligarh-Mathura
Highway, Beswan, Aligarh, UP-202146

|r|j'rr”|..E s
‘ffN g

wWww, mangalayatan in, www.mude ac,in
cdoe@mangalayatan. edu.in

