

 The Report is Generated by DrillBit Plagiarism Detection Software

 Submission Information

 Result Information

 Exclude Information Database Selection

 Author Name MTSOU

 Title CSM-6252

 Paper/Submission ID 3643407

 Submitted by librarian@mtsou.edu.in

 Submission Date 2025-05-21 12:05:19

 Total Pages, Total Words 63, 10340

 Document type Others

 Similarity 10 %
1 10 20 30 40 50 60 70 80 90

Sources Type

Journal/
Publicatio
n 3.09%

Internet
6.91%

Report Content

Words <
14,

8.12%

Quotes
0.02%

 Quotes Excluded Language English

 References/Bibliography Excluded Student Papers Yes

 Source: Excluded < 14 Words Excluded Journals & publishers Yes

 Excluded Source 0 % Internet or Web Yes

 Excluded Phrases Not Excluded Institution Repository Yes

 A Unique QR Code use to View/Download/Share Pdf File

DrillBit Similarity Report

 SIMILARITY % MATCHED SOURCES GRADE

LOCATION MATCHED DOMAIN % SOURCE TYPE

10 22 A

A-Satisfactory (0-10%)
B-Upgrade (11-40%)
C-Poor (41-60%)
D-Unacceptable (61-100%)

1 admissions.keralauniversity.ac.in 1 Publication

2 cbseacademic.nic.in 1 Publication

3 skymark.in 1 Internet Data

4 fastercapital.com 1 Internet Data

5 www.blockchain-council.org 1 Internet Data

6 www.imensosoftware.com 1 Internet Data

7 www.jnu.ac.in 1 Internet Data

8 www.linkedin.com 1 Internet Data

9 new.kuk.ac.in <1 Publication

10 www.geeksforgeeks.org <1 Internet Data

11 bcastudyguide.com <1 Internet Data

12 www.tutorialspoint.com <1 Internet Data

13 www.linkedin.com <1 Internet Data

14 alistapart.com <1 Internet Data

https://admissions.keralauniversity.ac.in/pdfs/426.pdf
https://cbseacademic.nic.in/web_material/Curriculum25/srsec/803-WebApplication-XI.pdf
https://skymark.in/university/University-of-Hertfordshire-UoH
https://fastercapital.com/startup-topic/sorting-algorithms.html
https://www.blockchain-council.org/development/career-opportunities-and-benefits-of-becoming-a-three-js-developer/
https://www.imensosoftware.com/blog/8-responsive-web-design-principles-you-need-to-know/
https://www.jnu.ac.in/se-cse-syllabus
https://www.linkedin.com/advice/1/what-core-principles-front-end-development-how
https://new.kuk.ac.in/wp-content/uploads/2023/07/annexure-to-item-42.pdf
https://www.geeksforgeeks.org/divide-and-conquer/
https://bcastudyguide.com/unit-4introduction-to-problem-solving-concept/
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_introduction.htm
https://www.linkedin.com/pulse/choosing-between-reactjs-angularjs-twmdc
https://alistapart.com/article/sustainable-web-design-excerpt/

15 mu.ac.in <1 Publication

16 IEEE 2012 Innovative Parallel Computing (InPar) - San Jose, CA, USA

by
 <1 Publication

17 www.geeksforgeeks.org <1 Internet Data

18 pdfcookie.com <1 Internet Data

19 thepostindia.co.in <1 Internet Data

20 home.iiserb.ac.in <1 Publication

21 oorwin.com <1 Internet Data

22 www.linkedin.com <1 Internet Data

https://mu.ac.in/wp-content/uploads/2023/09/6.19-N-FINAL-ENBT.pdf
https://dx.doi.org/10.1109/InPar.2012.6339599
https://dx.doi.org/10.1109/InPar.2012.6339599
https://www.geeksforgeeks.org/z-score-in-statistics/
https://pdfcookie.com/documents/advanced-functions-and-introductory-calculus-rv31gr4ro92d
https://thepostindia.co.in/meet-swathy-sivaraman-the-visionary-behind-indias-premier-interior-design-company-storeyboard-designs/
http://home.iiserb.ac.in/~kashyap/MTH%20307-s18/lp.pdf
https://oorwin.com/blog/job-application-rejection-email-with-examples.html
https://www.linkedin.com/pulse/software-web-development-key-best-pratices-rajoo-jha?trk=pulse-article

CSM -6252 DAA & WEB PROGRAMMINGLAB

COURSE INTRODUCTION
Welcome to the DAA & Web Programming Lab, a key component of the computer science

curriculum. This lab is designed to equip students with essential skills in both algorithm design

and web development. It seamlessly blends the theoretical underpinnings of algorithm analysis

with the practicalities of web programming, offering a thorough learning experience that

prepares students for the diverse challenges of the tech industry.

Design and Analysis of Algorithms (DAA) Segment
10101010

In this part of the lab, students will explore the core principles of algorithmic strategies,

including divide and conquer, dynamic programming, and greedy algorithms. A strong focus
777777

is placed on comprehending and evaluating the efficiency of algorithms using Big O notation,

which is vital for optimizing performance in large-scale applications. Students will also gain

hands-on experience implementing various data structures like arrays, linked lists, and trees,

solidifying their theoretical understanding with practical application.

Web Programming Segment

The web programming portion focuses on building robust and interactive web applications.

Students will learn essential web technologies such as HTML, CSS, JavaScript, and server-side

scripting languages. The curriculum covers both front-end and back-end development,

enabling students to construct full-stack web applications. Emphasis will be placed on best

practices in web development, user experience design, and security considerations to ensure the

creation of high-quality web solutions.

Throughout the lab, students will participate in hands-on projects and collaborative exercises,

fostering both individual and team-based problem-solving skills. By integrating the study of

algorithms with practical web development, this course aims to provide a well-rounded

education that bridges the gap between theoretical computer science and real-world applications.

Whether your aspirations lie in algorithmic research or web development, this lab will prove

invaluable in building a strong foundation for your future career.

OVERVIEW
This book presents the DAA & Web Programming Lab, an integrated approach to mastering two

core areas of computer science: algorithm design and web development.

In the Design and Analysis of Algorithms (DAA) section, you'll delve into fundamental
777777

algorithmic strategies like divide and conquer, dynamic programming, and greedy algorithms. A

key focus will be on evaluating algorithm efficiency using Big O notation.

The Web Programming segment covers essential web technologies, including HTML, CSS,

JavaScript, and server-side scripting. This will empower you to build comprehensive full-stack
333333

web applications.

Through a combination of hands-on projects and collaborative exercises, you'll gain practical

experience and sharpen your problem-solving abilities, preparing you for the diverse challenges

of the tech industry. This lab bridges the gap between theoretical knowledge and real-world

application, providing a solid foundation for future careers in both algorithm research and web

development.

What You'll Learn:

Here's a breakdown of what you'll gain from this lab:

•

•

•

•

•

•

Core Algorithmic Techniques: Master fundamental strategies such as divide and conquer,
777777

dynamic programming, and greedy algorithms.

Algorithm Efficiency Analysis: Learn to evaluate algorithm performance using Big O

notation.

Data Structure Implementation: Get practical experience implementing essential data

structures like arrays, linked lists, and trees.

Web Technology Mastery: Become proficient in key web technologies, including HTML,

CSS, and JavaScript.

Full-Stack Web Development: Develop server-side scripts to create complete full-stack

web applications.

Web Development Best Practices: Understand best practices in web development and

user experience design.

•

•

Web Security Principles: Learn important security considerations in web programming.

Hands-on Project Experience: Gain practical experience through engaging projects and

collaborative exercises.

•

•

Enhanced Problem-Solving: Improve your problem-solving abilities in both algorithmic

and web development contexts.

Teamwork and Communication: Develop essential teamwork and communication skills

crucial for success in the tech industry.

How You'll Learn:
In the DAA & Web Programming Lab, you'll learn through a dynamic blend of interactive

lectures and hands-on projects. This approach ensures that theoretical concepts are immediately

reinforced with practical application. Structured lab exercises will guide you step-by-step

through implementing algorithms and building web applications. Meanwhile, collaborative work

will sharpen your teamwork and communication skills. You'll receive valuable feedback through

regular code reviews and assessments, helping you refine your coding practices and improve

solution efficiency.

For deeper insights into complex topics, you'll have access to workshops, tutorials, and peer

learning sessions. Plus, instructor office hours offer personalized support. To further enhance

your learning, online resources, including video tutorials and forums, are readily available,

ensuring you gain a comprehensive understanding of both algorithm design and web
333333

development.

Who Is This BookFor:
This book is for computer science students and professionals eager to enhance their

understanding of both algorithm design and web development. It's perfect if you're looking for a

balanced approach that merges theoretical knowledge with practical skills.

Whether you're a beginner aiming to build a solid foundation in both fields, or an experienced

developer looking to refine your expertise, this book offers valuable insights and hands-on

experience. It's also well-suited for anyone preparing for technical interviews or striving to

improve their problem-solving abilities and coding efficiency in real-world applications.

Conclusion:
By the end of this book, you'll have a strong foundation in both algorithm design and web
333333

development. The DAA & Web Programming Lab offers a comprehensive learning experience,

perfectly blending the theoretical aspects of algorithms with the practical skills needed for web

development.

Through engaging hands-on projects, collaborative exercises, and detailed coding reviews,

you'll gain a solid understanding of how to design efficient algorithms and create dynamic web

applications. This course will not only boost your problem-solving abilities and technical

proficiency but also prepare you for the diverse challenges within the tech industry.

Whether you're looking to deepen your academic knowledge or excel in your professional career,

the skills you acquire in this lab will be incredibly valuable for your future success in the

constantly evolving field of computer science.

SESSION 1 DESIGN AND ANALYSIS OF ALGORITHMS 10101010

LAB
Basic Structure

1.0
1.1
1.2

Introduction
Objectives
Implementation of Sorting Algorithms
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5

Bubble Sort
Selection Sort
Insertion Sort
Merge Sort
Quick Sort

1.3 Implementation of Searching Algorithms
1.3.1 Linear Search
1.3.2 Binary Search
1.3.3 Jump Search
1.3.4 Interpolation Search
1.3.5 Exponential Search

1.4
1.5
1.6
1.7
1.8
1.9

Implementation of Simple Algorithms
Task Scheduling Algorithm
Huffman’s Coding Algorithm
Divide and Conquer Technique
Single Source Shortest Path Algorithm
Minimum Cost Spanning Tree

1.10 Implementation of Binomial Coefficient Problem
1.11 Experiments

1.0 INTRODUCTION
This session dives into problem-solving strategies, particularly how they apply to

computer programming. We'll specifically explore the Design and Analysis of
777777

Algorithms (DAA) Lab, a vital part of computer science education that provides hands-

on experience in creating efficient and effective algorithms.

In this lab, students thoroughly investigate algorithm design, learning to approach

problem-solving with a structured and analytical mindset. A core focus is on

understanding various algorithmic strategies such as divide and conquer, dynamic

programming, greedy algorithms, and backtracking. Through practical exercises,

students gain a deeper appreciation for the theoretical concepts covered in lectures, seeing
333333

firsthand how these principles are applied in real-world scenarios.

Emphasis on Algorithm Efficiency

A key aspect of this lab is its strong emphasis on algorithm efficiency. Students learn to
333333

evaluate algorithm performance using Big O notation, which offers a high-level

understanding of an algorithm’s time and space complexity. This analysis is critical for

determining whether algorithms are feasible for large-scale problems, where even small

inefficiencies can lead to significant performance bottlenecks. By comparing different

algorithms for the same problem, students develop the ability to select the most

appropriate solution based on context and constraints, thereby enhancing their problem-

solving skills and algorithmic thinking.

Implementation of Data Structures

Another crucial element of the DAA Lab is the implementation of various data

structures. Understanding the interplay between algorithms and data structures is

essential, as the choice of data structures can profoundly impact an algorithm's efficiency

and simplicity. Students will implement and manipulate structures like arrays, linked

lists, trees, graphs, and hash tables, learning how these can be leveraged to optimize

algorithm performance. This hands-on experience solidifies their understanding of

theoretical concepts and prepares them for more advanced topics in computer science.

Collaboration and Practical Application

Collaboration and experimentation are highly encouraged in the lab, fostering a

learning environment where students can discuss ideas and troubleshoot challenges

together. This collaborative approach helps develop vital communication and teamwork

skills, which are crucial in professional settings. Additionally, the lab often includes

projects and assignments that require students to design, implement, and test their

algorithms, providing a comprehensive learning experience that bridges the gap between
333333

theory and practice.

Overall, the Design and Analysis of Algorithms Lab is an essential part of the computer
777777

science curriculum, equipping students with the practical skills and analytical tools

necessary for tackling complex computational problems. This unit will explain the

fundamentals of the Design and Analysis of Algorithms Lab to you.
777777

1.1 OBJECTIVES
After completing this unit, you will be able to:

Learn fundamental principles of algorithm design.

Evaluate algorithm efficiency using Big O notation.

Implement core algorithms to reinforce theoretical concepts.

Utilize various data structures to optimize performance.

Enhance problem-solving skills with structured thinking.

Compare algorithms to choose the most efficient solutions.
444444

Develop teamwork and effective communication skills.

•

•

•

•

•

•

•

•

•

•

Apply theoretical knowledge in practical scenarios.

Encourage innovation and experimentation in algorithm design.

Prepare for advanced computer science topics and professional development.

1.2 IMPLEMENTATION OF SORTING ALGORITHMS
Sorting algorithms are a cornerstone of computer science, offering essential methods for

organizing data into a specific sequence. For students in a Design and Analysis of
10101010

Algorithms Lab, comprehending and implementing these algorithms is vital. This

section will elaborate on the implementation of various sorting algorithms, focusing on

their core principles, practical code examples, and performance analysis.

1.2.1 Bubble Sort
Bubble Sort is a straightforward, comparison-based algorithm. It works by repeatedly

444444

iterating through a list, comparing adjacent elements, and swapping them if they are not

in the desired order. This iterative process continues until the entire list is sorted.

Code Example (Python):

defbubble_sort(arr):

n = len(arr)

fori in range(n):

for j in range(0, n-i-1):

ifarr[j] >arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]

returnarr

Example

arr = [64, 34, 25, 12, 22, 11, 90]
1212

sorted_arr = bubble_sort(arr)

print("Sorted array:", sorted_arr)

1.2.2 Selection Sort
Selection Sort divides the input list into two parts: the sublist of items already sorted and

the sublist of items remaining to be sorted. It repeatedly selects the smallest (or largest,

depending on the order) element from the unsorted sublist and moves it to the sorted

sublist.

defselection_sort(arr):

n = len(arr)

fori in range(n):

min_idx = i

for j in range(i+1, n):

ifarr[j] <arr[min_idx]:

min_idx = j

arr[i], arr[min_idx] = arr[min_idx], arr[i]

returnarr

Example

arr = [64, 25, 12, 22, 11]

sorted_arr = selection_sort(arr)

print("Sorted array:", sorted_arr)

1.2.3 Insertion Sort
Insertion Sort constructs the final sorted array by inserting one element at a time into its
444444

correct position. While simple, it's significantly less efficient for large datasets compared to

more advanced algorithms such as Quicksort, Heapsort, or Merge Sort.

definsertion_sort(arr):

fori in range(1, len(arr)):
1212

key = arr[i]

j = i-1

while j >= 0 and key <arr[j]:

arr[j + 1] = arr[j]

j -= 1

arr[j + 1] = key

returnarr

Example

arr = [12, 11, 13, 5, 6]

sorted_arr = insertion_sort(arr)

print("Sorted array:", sorted_arr)

1.2.4 Merge Sort
Merge Sort operates on the principle of divide and conquer. It works by splitting the input

array into two equal halves, recursively sorting each half, and then combining the two
444444

sorted halves back into a single, sorted array.

Example

defmerge_sort(arr):

iflen(arr) > 1:

mid = len(arr) // 2

L = arr[:mid]

R = arr[mid:]

merge_sort(L)

merge_sort(R)

i = j = k = 0
20

whilei<len(L) and j <len(R):

if L[i] < R[j]:

arr[k] = L[i]

i += 1

else:

arr[k] = R[j]

j += 1

k += 1

whilei<len(L):

arr[k] = L[i]

i += 1

k += 1

while j <len(R):

arr[k] = R[j]

j += 1

k += 1

returnarr

Example

arr = [12, 11, 13, 5, 6, 7]

sorted_arr = merge_sort(arr)

print("Sorted array:", sorted_arr)

1.2.5 Quick Sort
Quick Sort is a highly efficient sorting algorithm that relies on the concept of partitioning.

It works by selecting a pivot element from the array. Then, it rearranges the other elements
444444 10101010

so that all elements smaller than the pivot are placed to its left, and all elements larger than

the pivot are moved to its right. This partitioning step effectively divides the array into two

sub-arrays. The Quick Sort process is then recursively applied to these smaller sub-arrays
444444

until the entire array is sorted.

defquick_sort(arr):

iflen(arr) <= 1:

returnarr

else:

pivot = arr[len(arr) // 2]

left = [x for x in arr if x < pivot]

middle = [x for x in arr if x == pivot]

right = [x for x in arr if x > pivot]

returnquick_sort(left) + middle + quick_sort(right)

Example

arr = [3, 6, 8, 10, 1, 2, 1]

sorted_arr = quick_sort(arr)

print("Sorted array:", sorted_arr)

1.3 IMPLEMENTATION
ALGORITHMS

OF SEARCHING

Searching algorithms are fundamental to computer science, serving the crucial purpose of

locating specific elements within various data structures. Implementing these algorithms

offers students a deeper insight into their foundational principles, efficiency, and real-world

utility. This section will detail the implementation of core searching algorithms, providing

code examples and an analysis of their performance.

1.3.1 Linear Search
Linear Search is a simple and direct algorithm. It operates by sequentially

examining each element in a list until the target element is discovered or the

end of the list is reached.

Example

deflinear_search(arr, x):

fori in range(len(arr)):

ifarr[i] == x:

returni

return -1

Example

arr = [2, 3, 4, 10, 40]

x = 10

result = linear_search(arr, x)

if result != -1:

print(f"Element found at index {result}")

else:

print("Element not found")

1.3.2 Binary Search
Binary Search is a highly efficient algorithm for finding an element in a sorted array. It
works by repeatedly dividing the search interval in half, comparing the target value to the
middle element, and narrowing the search range accordingly.

Example

defbinary_search(arr, x):

left, right = 0, len(arr) - 1

while left <= right:

mid = (left + right) // 2

ifarr[mid] == x:

return mid

elifarr[mid] < x:

left = mid + 1

else:

right = mid - 1

return -1

Example

arr = [2, 3, 4, 10, 40]

x = 10

result = binary_search(arr, x)

if result != -1:

print(f"Element found at index {result}")

else:

print("Element not found")

1.3.3 Jump Search
Jump Search is an algorithm designed for sorted arrays that aims to reduce the number of

comparisons needed to find an element. It achieves this by taking "jumps" of fixed steps

through the array. Once the block containing the target element is identified (or the block

where it should be), a linear search is then performed only within that specific block.

Example

import math

defjump_search(arr, x):

n = len(arr)

step = int(math.sqrt(n))

prev = 0

whilearr[min(step, n) - 1] < x:

prev = step

step += int(math.sqrt(n))

ifprev>= n:

return -1

fori in range(prev, min(step, n)):

ifarr[i] == x:

returni

return -1

Example

arr = [0, 1, 2, 4, 5, 7, 9, 10, 12]

x = 10

result = jump_search(arr, x)

if result != -1:

print(f"Element found at index {result}")

else:

print("Element not found")

1.3.4 Interpolation Search
Interpolation Search offers an enhancement over Binary Search, particularly when dealing

with uniformly distributed data. Instead of simply dividing the search space in half, it

intelligently estimates the probable position of the desired value by considering the values

present at the boundaries of the current search interval.

Example

definterpolation_search(arr, x):

low = 0

high = len(arr) - 1

while low <= high and arr[low] <= x <= arr[high]:

if low == high:

ifarr[low] == x:

return low

return -1

pos = low + ((high - low) // (arr[high] - arr[low]) * (x - arr[low]))

ifarr[pos] == x:

return pos

ifarr[pos] < x:

low = pos + 1

else:

high = pos - 1

return -1

Example

arr = [10, 12, 13, 16, 18, 19, 20, 21, 22, 23]

x = 18

result = interpolation_search(arr, x)

if result != -1:

print(f"Element found at index {result}")

else:

print("Element not found")

1.3.5 Exponential Search
Exponential Search is an algorithm that finds the range where the element may be present

and then performs Binary Search within that range. It is particularly useful for unbounded

or infinite lists.

Example

defbinary_search(arr, left, right, x):

while left <= right:

mid = (left + right) // 2

ifarr[mid] == x:

return mid

elifarr[mid] < x:

left = mid + 1

else:

right = mid - 1

return -1

defexponential_search(arr, x):

ifarr[0] == x:

return 0

n = len(arr)

i = 1

whilei< n and arr[i] <= x:

i = i * 2

returnbinary_search(arr, i // 2, min(i, n-1), x)

Example

arr = [2, 3, 4, 10, 40]

x = 10

result = exponential_search(arr, x)

if result != -1:

print(f"Element found at index {result}")

else:

print("Element not found")

1.4 IMPLEMENTATION OF SIMPLE ALGORITHMS
In this section of the Design and Analysis of Algorithms Lab, we'll dive into

implementing fundamental algorithms. This includes Euclid's algorithm for finding the

Greatest Common Divisor (GCD), polynomial evaluation using Horner's method,

various exponentiation algorithms, and basic sorting techniques.

Key Algorithms Covered

• Euclid's Algorithm for GCD: You'll learn how to efficiently compute the greatest

common divisor of two numbers by repeatedly applying the modulus operation. This

iterative process finds the largest number that divides two integers without leaving a
1818

remainder.

• Horner's Method for Polynomial Evaluation: This method optimizes polynomial

computation by significantly reducing the number of multiplicative operations through

nested multiplication and addition.

•

•

Exponentiation Algorithms: We'll explore efficient ways to compute powers, utilizing

either recursive or iterative approaches.

Simple Sorting Algorithms (e.g., Selection Sort): You'll study algorithms like

Selection Sort, which sorts an array by iteratively identifying the smallest element and

placing it in its correct position. This demonstrates foundational principles of sorting

methodologies and how to incrementally sort an entire array.

Learning Outcomes

Each algorithm will be implemented and thoroughly analyzed. This hands-on approach will

deepen your understanding of algorithmic efficiency, performance characteristics, and

their applicability in solving computational challenges. This section focuses on

equipping you with foundational algorithms that serve as essential building blocks in

computational problem-solving.

1.5 TASK SCHEDULING ALGORITHMS
Within the Design and Analysis of Algorithms Lab, a task scheduling problem is framed as

an optimization challenge. The primary goal is to maximize profit by carefully selecting

and scheduling tasks so they are completed within their specified deadlines.

The problem involves identifying a subset of tasks from a given collection and arranging

them in a sequence that respects each task's deadline, all while aiming for the highest

possible total profit. This constitutes a maximization optimization problem, inherently

constrained by the absolute requirement that all chosen tasks must be finished by their

designated deadlines. The lab focuses on investigating algorithms and strategies designed to

efficiently solve these types of optimization problems, ensuring strict adherence to deadline

constraints.

1.6 HUFFMAN’S CODING ALGORITHMS
In the Design and Analysis of Algorithms Lab, Huffman coding is explored as a greedy

16

algorithm specifically designed for data compression. This method aims to efficiently

reduce data size, particularly for sequences of characters with varying frequencies.

Huffman coding typically achieves compression rates of 70% to 80%. The process begins

by assessing the frequency of each character within the dataset. Based on these frequencies,

a Huffman tree is constructed to generate an optimal binary representation for every

character. This technique, also known as variable-length coding, assigns shorter codes to

characters that appear more frequently and longer codes to those that appear less often. This

strategic assignment ultimately minimizes the total storage or transmission space required

for the data.

1.7 DIVIDE AND CONQUER ALGORITHMS
In the Design and Analysis of Algorithms Lab, the Divide and Conquer approach is a core

1111

strategy. It involves recursively breaking down a complex problem into smaller, more

manageable sub-problems. This division continues until each sub-problem is simple enough

to be solved directly. Each of these sub-problems represents a smaller, more accessible

piece of the original problem's complexity.

Once solved, the solutions to these individual sub-problems are then combined or merged

to construct the complete solution for the initial, larger problem. This methodical approach

effectively uses recursion to efficiently tackle intricate problems by dissecting them into

simpler parts and then synthesizing the results for a comprehensive solution.

1.8 SINGLE SOURCE SHORTEST PATH ALGORITHMS
In the Design and Analysis of Algorithms Lab, Dijkstra's algorithm is utilized to address

the single-source shortest path problem, with the key constraint that all edge weights must

be non-negative. This algorithm shares some methodological similarities with Prim's

algorithm.

Dijkstra's algorithm operates by consistently choosing paths that are locally optimal at each

step, prioritizing immediate efficiency. It iteratively explores vertices and updates the

shortest known path from the source vertex to every other vertex. This progressive

refinement ensures that the shortest paths are accurately determined for all vertices,

ultimately providing an efficient solution to the shortest path problem in graphs where edge

weights are non-negative.

1.9 MINIMUM COST SPANNING TREE
In the Design and Analysis of Algorithms Lab, a connected subgraph (S) of a graph (G(V,

E)) is defined as a spanning tree if it encompasses all the vertices of (G) and has the

minimum possible total weight of edges from (G). A crucial characteristic of a spanning

tree is that it must be acyclic, meaning it contains no cycles.

Among all the possible spanning trees that can be formed from a graph, the one with the

absolute lowest total edge weight is known as the Minimum Spanning Tree (MST). This

concept is fundamental in optimizing network design, as it ensures that all vertices are

connected using the least possible edge weight, while also preventing the formation of

redundant loops or cycles within the network.

1.10 IMPLEMENTATION OF BINOMIAL COEFFICIENT
PROBLEM
In the Design and Analysis of Algorithms Lab, implementing the binomial coefficient

problem is a crucial exercise. It helps in understanding both combinatorial mathematics and

dynamic programming. The binomial coefficient, often written as $ \binom{n}{k} $ or $

C(n, k) $, tells us the number of ways to choose $ k $ elements from a set of $ n $ elements

without considering the order.

This problem can be solved using a recursive method based on Pascal's identity, with base

cases $ \binom{n}{0} = 1 $ and $ \binom{n}{n} = 1 $. While this recursive approach is

intuitive, it becomes highly inefficient for large values of $ n $ and $ k $ due to its

exponential time complexity.

Dynamic Programming for Efficiency

To overcome this inefficiency, the lab explores dynamic programming as a more effective

solution. By storing intermediate results in a two-dimensional array, the dynamic

programming approach significantly reduces the time complexity to $ O(nk) $ and the

space complexity to $ O(k) $ if further optimized.

This method systematically builds the solution from the base cases, ensuring that each

subproblem is solved only once. The implementation involves initializing a table where

each entry represents $ \binom{i}{j} $, and then filling the table using the recursive

relation $ \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} $. This hands-on practice

helps students grasp the power of dynamic programming in optimizing combinatorial

problems and reinforces their understanding of algorithmic efficiency.

1.11 EXPERIMENTS
1. Develop a program to determine the operation count for a given pseudocode.

2. Implement Bubble Sort for any provided list of numbers.

3. Implement Insertion Sort for any provided list of numbers.

4. Write a program to perform Quick Sort on a given list of integer values.

5. Create a program to find the maximum and minimum values within a given set of
1818

integers.

6. Implement Merge Sort on two given lists of integer values.

7. Develop a program to perform Binary Search on a given set of integer values,

demonstrating both recursive and non-recursive approaches.

8. Write a program to solve the knapsack problem using the greedy method.

9. Implement Prim's Algorithm to find the minimum cost spanning tree.

10. Implement Kruskal's Algorithm to find the minimum cost spanning tree.

11. Create a program to solve the single-source shortest path problem for a given graph.

12. Write a program to find a solution for the job sequencing with deadlines problem.

13. Develop a program to solve the all-pairs shortest path problem.
1111

14. Implement a program to solve the N-QUEENS problem.

15. Write a program to find a solution for the sum of subsets problem for a given set of
17

distinct numbers.

Experiment No.1: Develop a program to determine the operation count for a given

pseudocode.

#include<stdio.h>
#include<conio.h>
void main()
{
int count=0,sum=0,n,i,a[50];
clrscr();
count=count+1;
printf("\n Enter the n value:");
scanf("%d",&n);
count=count+1;
printf("\n Enter %d values to sum:",n);
for(i=0;i<n;i++)
{
count=count+1;
scanf("%d",&a[i]);
}
count=count+1;
for(i=0;i<n;i++)

{
count=count+1;
sum=sum+a[i];
count=count+1;
}
count=count+1;
printf("\n The of %d values is:%d and count is=%d",n,sum,count);
getch();
}

Output:

Experiment No.2: Implement Bubble Sort for any provided list of numbers.

#include<stdio.h>

#include<conio.h>

voidbubblesort(int[],int);

void display(int[],int);

int main()

{

int a[20],n,i;

clrscr();

printf("\n Enter the number of elements in array are:");

scanf("%d",&n);

printf("\n Enter %d elements in the array:",n);

for(i=0;i<n;i++)

scanf(“%d”, &a[i]);

bubblesort(a,n);

printf(“\n The sorted elements in the array are:”);

display(a,n);

getch();

return();

}

voidbubblesort(int a[],int n)

{

inti,j,temp,excg=0;

int last=n-1;

for(i=0;ia[j+1])

{

temp=a[j];

a[j]=a[j+1];

a[j+1]=temp;

excg++;

}

}

}

if(excg==0)

return ;

else

last=last-1;

}

Void display (int a[], int n)

{

inti;

for (i=0;i<n;i++)

printf(“%d\t”, a[i]);

}

Output:

Experiment No.3: Implement Insertion Sort for any provided list of numbers.

#include<stdio.h>

#include<conio.h>

voidinssort(int[],int);

void display(int[],int);

int main()

{

int a[20],n,i;

clrscr();

printf("\n Enter the number of elements in array are:");

scanf("%d",&n);

printf("\n Enter %d elements in the array:",n);

for(i=0;i<n;i++)

scanf(“%d”, &a[i]);

inssort(a,n);

printf("\n The sorted elements in the array are:");

display(a,n);

getch();

return 0;

}

voidinssort(int a[],int n)

{

inti,j,index=0;

for(i=1;i<n;i++)

{

Index=a[i];

j=1;

while((j>0)&&(a[j-1]>index))

{

a[j]=a[j-1];

j--;

}

a[j]=index;

}

}

void display(int a[],int n)

{

inti;

for(i=0;i<n;i++)

{

Printf(“%d\t”,a[i]);

}

}

Output:

Experiment No.4: Write a program to perform Quick Sort on a given list of integer

values.

#include<stdio.h>

#include<conio.h>

voidqsort(int [],int,int);

int partition(int [],int,int);

voidqsort(int a[],intfirst,int last)

{

int j;

if(first<last)

{

j=partition(a,first,last+1);

qsort(a,first,j-1);

qsort(a,j+1,last);

}

}

int partition(int a[], int first, int last)

{

int v=a[first];

inti=first;

int j=last;

int temp=0;

do

{

do

{

i++;

}

while(a[i]<v);

do

{

j--;

}

while(a[j]>v);

if(i<j)

{

temp=a[i];

a[i]=a[j];

a[j]=temp;

}

}

while(i>j);

a[first]=a[j];

a[j]=v;

return j;

}

int main()

{

int a[40],i,n;

clrscr();

printf("\n Enter the no of elements (size):");

scanf("%d",&n);

printf("\n Enter the ELements to sort:");

for(i=0;i<n;i++)

scanf(“%d”, &a[i]);

qsort(a,0,n-1);

printf("\n The ELements after sorting are:");

for(i=0;i<n;i++)

{

Printf(“%d\t”, a[i]);

}

getch();

return();

}

Output:

Experiment No.5: Create a program to find the maximum and minimum values within a given set

of integers.

#include<stdio.h>

#include<conio.h>

voidminmax(int,int,int,int);

inti,j,a[50],n,fmax,fmin;

int main()

{

clrscr();

printf("\n Enter the number of elements in array are:");

scanf("%d",&n);

printf("\n Enter %d elements in the array:",n);

for(i=0;i<n;i++)

printf(“%d\n”, a[i]);

//fmax=fmin=a[0];

minmax(0, n-1, a[0],a[0]);

printf("\n The minimum Element of the list of elements is:%d",fmin);

printf("\n The maximum Element of the list of elements is:%d",fmax);

getch();

return 0;

}

voidminmax(inti,intj,intmax,int min)

{

intgmax,gmin,hmax,hmin;

gmax=hmax=max;

gmin=hmin=min;

if(i==j)

{

fmax=fmin=a[i];

}

else if(i==(j-1))

{

If(a[i]>a[j])

{

fmax=a[i];

fmin=a[j];

}

else

{

fmax=a[j];

fmin=a[i];

}

}

else

{

int mid=(i+j)/2;

minmax(i,mid,a[i],a[i]);

gmax=fmax;

gmin=fmin;

minmax(mid+1,j,a[mid+1],a[mid+1]);

hmax=fmax;

hmin=fmin;

if(gmax>hmax)

{

fmax=gmax;

}

else

{

fmax=hmax;

}

if(gmin>hmin)

{

fmin=hmin;

}

else

{

fmin=gmin;

}

}

}

Output:

Experiment No.6: Implement Merge Sort on two given lists of integer values.

#include<stdio.h>

#include<conio.h>

void merge(int[],int,int,int);

voidmergesort(int[], int,int);

void merge(int a[25], int low, int mid, int high)

{

int b[25],h,i,j,k;

h=low;

i=low;

j=mid+1;

while((h<=mid)&&(j<=high))

{

If(a[h]<a[j])

{

b[i]=a[h];

h++;

}

else

{

b[i]=a[j];

j++;

}

if(h>mid)

{

for(k=j;k<=high;k++)

{

b[i]=a[k];

i++;

}

}

else

{

for(k=h;k<=mid;k++)

{

b[i]=a[k];

i++;

}

}

for(k=low;k<=high;k++)

{

a[k]=b[k];

}

}

voidmergesort(int a[25],intlow,int high)

{

int mid;

if(low<high)

{

mid=(low+high)/2;

mergesort(a,low,mid);

mergesort(a,mid+1,high);

merge(a, low,mid,high);

}

}

void main()

{

int a[25],i,n;

clrscr();

printf("\n Enter the size of the elements to be sorted:");

scanf("%d",&n); printf("\n Enter the elements to sort:");

for(i=0;i<n;i++)

scanf(“d”, &a[i]);

printf("\n The Elements before sorting are:");

for(i=0;i<n;i++)

printf(“%d\t”, a[i]);

mergesort(a, 0, n-1);

printf("\n The elements after sorting are:");

for(i=0;i<n;i++)

printf(“%d\t”, a[i]);

getch();

}

Output:

Experiment No.7: Develop a program to perform Binary Search on a given set of integer values,

demonstrating both recursive and non-recursive approaches.

#include<stdio.h>

#include<conio.h>

voidbubblesort(int[],int);

intbinsrch(int[],int,int,int);

void display(int[],int);

inti,j;

int main()

{

int a[20],n,key,pos=-1;

clrscr();

printf("\n Enter the number of elements in array are:");

scanf("%d",&n);

printf("\n Enter %d elements in the array:",n);

for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("\n Enter the element to be searched:");

scanf("%d",&key);

bubblesort(a,n);

printf("\n The sorted elements in the array are:");

display(a,n);

pos=binsrch(a,key,0,n-1);

if(pos!=-1)

printf("\n The Element %d is found in position %d",key,pos);

else

printf("\n Element not found");

getch();

return 0;

}

intbinsrch(int a[],intkey,intlow,int high)

{

int mid;

while(low<=high)

{

mid=(low+high)/2;

if(keya[mid])

high=mid-1;

else if(key>a[mid])

low=mid+1;

else

return mid;

}

return -1;

}

voidbubblesort(int a[],int n)

{

inti,j,temp,excg=0;

int last=n-1;

for(i=0;j<last;j++)

{

If(a[j]>a[j+1])

{

temp=a[j];

a[j]=a[j+1];

a[j+1]=temp;

excg++;

}

}

}

if(excg==0)

return ;

else

last=last-1;

}

void display(int a[],int n)

{

inti;

for(i=0;i<n;i++)

printf(“%d\t”, a[i]);

}

Output:

Experiment No.8: Write a program to solve the knapsack problem using the greedy method.

#include<stdio.h>

#include<conio.h>

voidreadf();

void knapsack(int,int);

voiddsort(int n);

void display(int);

int p[20],w[20],n,m;

double x[20],d[20],temp,res=0.0,sum=0.0;

voidreadf()

{

intm,n,i;

printf("\n Enter the no of Profits and weights:");

scanf("%d",&n);

printf("\n Enter the Maximum Capacity of the Knapsack:");

scanf("%d",&m);

printf("\n Enter %d profits of the weights:",n);

for(i=0;i<n;i++)

scanf(“%d”, &p[i]);

printf(“\n Enter %d Weight:”, n);

for(i=0;i<n;i++)

scanf(“%d”, &w[i]);

for(i=0;i<n;i++);

d[i]=(double)p[i]/w[i];

dsort(n);

knapsack(m,n);

display(n);

}

voiddsort(int n)

{

inti,j,t;

for(i=0;i<n;j++)

{

If(d[j]<d[j+1]);

d[j+1]=temp;

t=p[j];

p[j]=p[j+1];

p[j+1]=t;

t=w[j];

w[j]=w[j+1];

w[j+1]=t;

}

}

}

}

void display(int n)

{

inti,m;

printf("\n The Required Optimal solution is:\n");

printf("Profits Weights Xvalue\n");

for(i=0;i<n;i++)

{

printf("%d\t%d\t%f\n",p[i],w[i],x[i]);

sum=sum+(p[i]*x[i]);

res=res+(w[i]*x[i]);

}

printf("\n The Total Resultant Profit is:%f",sum);

printf("\n The total resultant Weight into the knapsack is:%f",res);

}

void knapsack(intm,int n)

{

inti,cu=m;

for(i=0;i<n;i++)

{

inti,cu=m;

for(i=0;i<n;i++)

{

X[i]=0.0;

}

for(i=0;i<n,i++)

{

if(w[i]<=n)

{

If(w[i]<cu)

{

X[i]=1.0;

cu=cu-w[i];

}

else

break;

}

If(i<=n)

{

x[i]=(double)cu/w[i];

}

}

int main()

{

clrscr();

readf();

getch();

return 0;

}

Output:

Experiment No.9: Implement Prim's Algorithm to find the minimum cost spanning tree.

#include<stdio.h>

#include<conio.h>

intn,cost[10][10],temp,nears[10];

voidreadv();

voidprimsalg();

voidreadv()

{

inti,j;

printf("\n Enter the No of nodes or vertices:");

scanf("%d",&n);

printf("\n Enter the Cost Adjacency matrix of the given graph:");

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

scanf("%d",&cost[i][j]);

if((cost[i][j]==0) && (i!=j))

{

cost[i][j]=999;

}

}

}

}

voidprimsalg()

{

intk,l,min,a,t[10][10],u,i,j,mincost=0;

min=999;

for(i=1;i<=n;i++) //To Find the Minimum Edge E(k,l)

{

for(u=1;u<=n;u++)

{

if(i!=u)

{

if(cost[i][u]<min)

{

min=cost[i][u];

k=i;

l=u;

}

}

}

}

t[1][1]=k;

t[1][2]=l;

printf("\n The Minimum Cost Spanning tree is...");

printf("\n(%d,%d)-->%d",k,l,min);

for(i=1;i<=n;i++)

{

if(i!=k)

{

if(cost[i][l]<cost[i][k])

{

nears[i]=l;

}

else

{

nears[i]=k;

}

}

}

nears[k]=nears[l]=0;

mincost=min;

for(i=2;i<=n-1;i++)

{

j = findnextindex(cost,nears);

t[i][1]=j;

t[i][2]=nears[j];

printf("\n(%d,%d)-->%d",t[i][1],t[i][2],cost[j][nears[j]]);

mincost=mincost+cost[j][nears[j]];

nears[j]=0;

for(k=1;k<=n;k++)

{

if(nears[k]!=0 && cost[k][nears[k]]>cost[k][j])

{

nears[k]=j;

}

}

}

printf("\n The Required Mincost of the Spanning Tree is:%d",mincost);

}

intfindnextindex(int cost[10][10],int nears[10])

{

int min=999,a,k,p;

for(a=1;a<=n;a++)

{

p=nears[a];

if(p!=0)

{

if(cost[a][p]<min)

{

Min=cost[a][p];

K=a;

}

}

}

Return k;

}

void main()

{

clrscr();

readv();

primsalg();

}

Output:

Experiment No.10: Implement Kruskal's Algorithm to find the minimum cost spanning tree.

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

inti,j,k,a,b,u,v,n,ne=1;

intmin,mincost=0,cost[9][9],parent[9];

int find(int);

intuni(int,int);

void main()

{

clrscr();

printf("\n\tImplementation of Kruskal's algorithm\n");

printf("\nEnter the no. of vertices:");

scanf("%d",&n);

printf("\nEnter the cost adjacency matrix:\n");

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

scanf("%d",&cost[i][j]);

if(cost[i][j]==0)

cost[i][j]=999;

} }

printf("The edges of Minimum Cost Spanning Tree are\n");

while(ne < n)

{

for(i=1,min=999;i<=n;i++)

{

for(j=1;j <= n;j++)

{

if(cost[i][j] < min)

{

min=cost[i][j];

a=u=i;

b=v=j;

}

}

}

u=find(u);

v=find(v);

if(uni(u,v))

{

printf("%d edge (%d,%d) =%d\n",ne++,a,b,min);

mincost +=min;

}

cost[a][b]=cost[b][a]=999;

}

printf("\n\tMinimum cost = %d\n",mincost);

getch();

}

int find(inti)

{

while(parent[i])

i=parent[i];

returni;

}

intuni(inti,int j)

{

if(i!=j)

{

parent[j]=i;

return 1;

}

return 0;

}

Output:

Experiment No.11: Create a program to solve the single-source shortest path problem for a given

graph.

#include<stdio.h>

#include<conio.h>

voidreadf();

void SP();

int cost[20][20],dist[20],s[20];

intn,u,min,v,w;

voidreadf()

{

inti,j;

printf("\n Enter the no of vertices:");

scanf("%d",&n);

printf("\n Enter the Cost of vertices:");

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

scanf("%d",&cost[i][j]);

if(cost[i][j]==0)

cost[i][j]=999;

}

}

}

void SP()

{

inti,j;

printf("\n Enter the source vertex:");

scanf("%d",&v);

for(i=1;i<=n;i++)

{

s[i]=0;

dist[i]=cost[v][i];

}

s[v]=1;

dist[v]=0;

for(i=2;i<=n;i++)

{

min=dist[i];

for(j=2;j<=n;j++)

{

if(s[j]==0)

{

if(min>dist[j])

{

min=dist[j];

u=j;

}

}

}

s[u]=1;

for(w=1;w<=n;w++)

{

if(cost[u][w]!=0 && s[w]==0)

{

if(dist[w]>(dist[u]+cost[u][w]))

{

dist[w]=dist[u]+cost[u][w];

}

}

}

}

printf("\n From the Source vertex %d",v);

for(i=1;i<=n;i++)

printf("\n%d->%d",i,dist[i]);

}

void main()

{

clrscr();

readf();

SP();

getch();

}

Output:

Experiment No.12: Write a program to find a solution for the job sequencing with deadlines

problem.

#include<stdio.h>

#include<conio.h>

intjobseq();

voidpsort();

inttp,j[10],d[10],p[10],n;

void main()

{

inti,k;

clrscr();

printf("\n Enter the n'o of jobs:");

scanf("%d",&n);

printf("\n Enter the %d Deadlines for the jobs:",n);

for(i=1;i<=n;i++)

scanf("%d",&d[i]);

printf("\n Enter the Profits required for jobs:");

for(i=1;i<=n;i++)

scanf("%d",&p[i]);

psort();

for(i=1;i<=k;i++)

{

tp=tp+p[j[i]];

printf("%d-->",j[i]);

}

printf("\n Profits:%d",tp);

getch();

}

intjobseq()

{

inti,k,q;

d[0]=0;

j[0]=0;

j[1]=1;

k=1;

for(i=2;i<=n;i++)

{

int r=k;

while((d[j[r]]>d[i]) && (d[j[r]]!=r))

r=r-1;

if((d[j[r]]<=d[i]) && (d[i]>r))

{

for(q=k;q>=r+1;q--)

{

j[q+1]=j[q];

}

j[r+1]=i;

k=k+1;

}

}

return k;

}

voidpsort()

{

int i,k,temp1;

for(i=1;i<=n;i++)

{

for(k=1;k<=n-i;k++)

{

if(p[k]<p[k+1])

{

temp1=p[k];

p[k]=p[k+1];

p[k+1]=temp1;

temp1=j[k];

j[k]=j[k+1];

j[k+1]=temp1;

temp1=d[k];

d[k]=d[k+1];

d[k+1]=temp1;

}

}

}

}

Output:

Experiment No.13: Develop a program to solve the all-pairs shortest path problem.

#include<stdio.h>

#include<conio.h>

voidreadf();

voidamin();

int cost[20][20],a[20][20];

inti,j,k,n;

voidreadf()

{

printf("\n Enter the no of vertices:");

scanf("%d",&n);

printf("\n Enter the Cost of vertices:");

for(i=0;i<n;j++)

{

scanf(“”,&cost[i][j]);

if(cost[i][j]==0 && (i!=j))

cost[i][j]=999;

a[i][j]=cost[i][j];

}

} }

Void main()

{

for(k=0;k<n;k++)

{

for(i=0:i<n;i++)

{

for(j=0;j<n;J++)

{

if(a[i][k]+a[k][j])

{

a[i][j]=a[i][k]+a[k][j];

} }

}

}

printf("\n The All pair shortest path is:");

for(i=0;i<n;i++)

{

printf(“\n”);

for(j=0;j<n;j++)

{

Printf(“%d\t”,a[i][j]);

}

} }

void main()

{

clrscr();

readf();

amin();

getch();

}

Output:

Experiment No.14: Implement a program to solve the N-QUEENS problem.

#include<stdio.h>

#include<conio.h>

#include<math.h>

voidreadv();

voidnqueen(int,int);

int place(int,int);

int x[25],count=0;

voidreadv()

{

int n;

printf("\n Enter the no of Queens to be placed:");

scanf("%d",&n);

printf("\n The Places in which the %d Queens are toplaced in the %dx%dChessBoard is:",n,n);

nqueen(1,n);

printf("\n The No of Solutions for the %d Queens Problem are:%d",n,count);

}

voidnqueen(intk,int n)

{

inti,j;

for(i=1;i<=n;i++)

{

if(place(k,i))

{

x[k]=i;

if(k==n)

{

count++;

if(count%10 == 0)

getch();

printf("\n");

for(j=1;j<=n;j++)

{

printf("%d\t",x[j]);

}

}

else

{

nqueen(k+1,n);

} }

} }

int place(intk,inti)

{

int j;

for(j=1;j<=k-1;j++)

{

if((x[j]==i)||(abs(x[j]-i)==abs(j-k)))

{

return 0;

} }

return 1;

}

void main()

{

clrscr();

readv();

getch();

}

Output:

Experiment No.15: Write a program to find a solution for the sum of subsets problem for a

given set of distinct numbers.

#include<stdio.h>

#include<conio.h>

void Sum ofSub(int,int,int);

int x[25],n,m=0,sum=0,w[25];

voidreadf()

{

inti;

printf("\n Enter the no of values in the set:");

scanf("%d",&n);

printf("\n Enter the %d weights of the values in the set:",n);

for(i=1;i<=n;i++)

{

scanf("%d",&w[i]);

sum=sum+w[i];

x[i]=0;

}

printf("\n Enter the required sum of the values in the subset:");

scanf("%d",&m);

printf("\n The Total sum of the weights is:%d",sum);

SumofSub(0,1,sum);

}

voidSumOfSub(ints,intk,int r)

{

inti,j;

x[k]=1;

if(sum>=m)

{

if(s+w[k]==m)

{

printf("\n");

for(j=1;j<=n;j++)

{

printf("%d\t",x[j]);

}

printf("\n-->");

for(j=1;j<=k;j++)

{

if(x[j] == 1)

printf("%d\t",w[j]);

} }

else

if(s+w[k]+w[k+1]<=m)

SumofSub(s+w[k],k+1,r-w[k]);

if((s+r-w[k]>=m) && (s+w[k+1]<=m))

{

x[k]=0;

SumofSub(s,k+1,r-w[k]);

} }

else

{

printf("\n No Solutions Available because sum of all weights is %d less than required sum

%d",sum,m);

} }

void main()

{

clrscr();

readf();

getch();

}

Output:

SESSION 2 WEB DESIGN LAB
Basic Structure

2.0
2.1
2.2

Introduction
Objectives
Introduction to Web Design
2.2.1
2.2.2

Understanding Web Design Principles
Importance of Web Design in the Digital Age

2.3 Tools and Technologies in Web Design
2.3.1 Graphic Design Software
2.3.2 Coding Environment and Languages
2.3.3 Frameworks and Libraries
Introduction to HTML
Cascading Style Sheet (CSS)
Java Script HTML DOM
Experiments

2.4
2.5
2.6
2.7

2.0 INTRODUCTION
This session introduces you to the vital role of Web design labs in bridging the gap

1515

between theoretical knowledge and practical application in web development. These labs

offer a hands-on environment where students and professionals can actively experiment

with various web design principles and technologies. By engaging in real-world projects

and exercises, participants gain a deeper understanding of web design intricacies,

including user interface (UI) and user experience (UX) design, responsive layouts, and

accessibility considerations. This experiential learning approach ensures individuals are

not only well-versed in the latest web design trends but also capable of implementing

them effectively.

Tools and Resources for Web Design

In a web design lab, learners have access to a diverse array of tools and resources that

facilitate website creation and testing. These range from graphic design software like

Adobe Photoshop and Illustrator to robust coding environments such as Visual Studio

Code. Additionally, web design labs often provide access to popular frameworks and

libraries like Bootstrap and jQuery, which streamline the development process. By

leveraging these resources, participants cultivate a comprehensive skill set encompassing
1515

both design aesthetics and technical proficiency, enabling them to build visually

appealing and highly functional websites.

The Power of Collaboration

Collaboration is another crucial aspect of web design labs. Working in a collaborative

setting empowers participants to share ideas, offer constructive feedback, and learn from

each other's experiences. This teamwork is indispensable in web design, as diverse

perspectives often lead to more innovative and user-friendly solutions. Web design labs

frequently simulate real-world scenarios where designers, developers, and clients must

collaborate to achieve a common goal. This collaborative practice effectively prepares

individuals for the dynamic and often team-oriented nature of the web design industry.

Staying Current with Web Technologies

Furthermore, web design labs play a pivotal role in keeping pace with the rapidly

evolving landscape of web technologies. With new tools, techniques, and standards

emerging constantly, staying updated is paramount for anyone involved in web design.

Web design labs provide a structured environment for continuous learning and
1919

experimentation, ensuring participants remain at the forefront of the industry. By

regularly engaging with the latest advancements, learners can develop adaptable skills

and maintain their competitiveness in the job market.

In essence, web design labs are crucial for developing practical skills, fostering

collaboration, and staying current with technological advancements in web design.

2.1 OBJECTIVES
After the completing this unit, you will be able to:
1. Develop a comprehensive understanding of UI and UX design principles.
2. Gain proficiency in using graphic design software and coding environments.
3. Master the implementation of responsive web design techniques.
4. Learn to create accessible and inclusive websites.
5. Utilize frameworks and libraries to streamline the web development process.
6. Enhance problem-solving skills through real-world web design projects.
7. Foster collaboration and teamwork among participants.
8. Stay updated with the latest web design trends and technologies.
9. Build a portfolio of professional-quality web design projects.
10 Prepare for a successful career in the web design industry by developing practical,

hands-on experience.

2.2 INTRODUCTION TO WEB DESIGN
Web design is both an art and a science, focused on crafting websites that are not only

visually appealing but also highly functional and user-friendly. At its core, this discipline
1919

relies on three fundamental technologies: HTML, CSS, and JavaScript. HTML

(Hypertext Markup Language) establishes the structural foundation of a web page,

defining its content and overall layout. CSS (Cascading Style Sheets) then enhances this

structure by introducing styling elements like colors, fonts, and sophisticated layouts, all

contributing to a captivating user experience. JavaScript, on the other hand, injects

interactivity and dynamic behavior into web pages, making them responsive and

engaging. Together, these technologies empower designers to build comprehensive web

experiences that effectively meet the diverse needs of both users and clients.

Key Components of Web Design

a). Structure and Semantics with HTML

HTML serves as the essential building block of web design, providing the basic structure

and semantic meaning of a web page. It utilizes a system of tags and attributes to organize

content into fundamental elements such as headings, paragraphs, lists, links, and images.

Understanding the correct usage of these HTML elements is crucial for creating well-

structured and accessible web pages. The concept of semantic HTML, which involves

using tags that clearly convey the meaning of the enclosed content, is particularly

important for improving search engine optimization (SEO) and overall accessibility.

b). Styling and Layout with CSS

CSS plays a pivotal role in transforming the raw structure provided by HTML into a
212121

visually appealing and intuitive user interface. It allows designers extensive control over

the presentation of web pages, including typography, color schemes, spacing, and overall

layout. CSS is also vital for responsive design, ensuring that web pages seamlessly adapt
22222222222

to various screen sizes and devices, providing a consistent user experience. Key CSS
55555

concepts like the box model, positioning, and flexbox/grid layouts offer powerful tools
13131313

for creating sophisticated and adaptable designs.

c). Interactivity and Dynamics with JavaScript

JavaScript brings interactivity and dynamic content to web pages, enabling features that
22222222222

significantly enhance user engagement and functionality. By manipulating the Document
55555

Object Model (DOM), JavaScript can update content in real-time, respond to user

events, validate forms, and create animations without requiring a full page reload. A solid

grasp of JavaScript fundamentals, including variables, functions, and event handling, is

essential for developing interactive web applications. Furthermore, advanced JavaScript

libraries and frameworks such as jQuery, React, and Angular extend its capabilities,

allowing for the creation of highly complex and performant web applications.

Integrating HTML, CSS, and JavaScript

Effective web design demands a seamless and harmonious integration of HTML, CSS,

and JavaScript. These technologies work in concert to deliver a cohesive user experience,

from the underlying structure and visual styling to interactive elements and dynamic

functionality. In a web design lab setting, students and professionals actively practice this

integration through hands-on projects that mimic real-world scenarios. This practical

approach not only solidifies theoretical knowledge but also cultivates vital problem-

solving skills and creative thinking, both of which are essential for a successful career in

web design. By mastering the combined use of HTML, CSS, and JavaScript, designers

can build robust and engaging websites that cater to diverse user needs.

2.2.1 Understanding Web Design Principles
Web design is both an art and a science, focused on crafting websites that are not only

141414

visually appealing but also highly functional and user-friendly. At its core, this discipline

relies on three fundamental technologies: HTML, CSS, and JavaScript. HTML
888888

(Hypertext Markup Language) establishes the structural foundation of a web page,
22222222222

defining its content and overall layout. CSS (Cascading Style Sheets) then enhances this

structure by introducing styling elements like colors, fonts, and sophisticated layouts, all

contributing to a captivating user experience. JavaScript, on the other hand, injects

interactivity and dynamic behavior into web pages, making them responsive and

engaging. Together, these technologies empower designers to build comprehensive web

experiences that effectively meet the diverse needs of both users and clients.
666666

a). Structure and Semantics with HTML

HTML serves as the essential building block of web design, providing the basic structure

and semantic meaning of a web page. It utilizes a system of tags and attributes to organize

content into fundamental elements such as headings, paragraphs, lists, links, and images.

Understanding the correct usage of these HTML elements is crucial for creating well-

structured and accessible web pages. The concept of semantic HTML, which involves

using tags that clearly convey the meaning of the enclosed content, is particularly

important for improving search engine optimization (SEO) and overall accessibility.

b). Styling and Layout with CSS

CSS plays a pivotal role in transforming the raw structure provided by HTML into a
212121

visually appealing and intuitive user interface. It allows designers extensive control over

the presentation of web pages, including typography, color schemes, spacing, and overall

layout. CSS is also vital for responsive design, ensuring that web pages seamlessly adapt
22222222222

to various screen sizes and devices, providing a consistent user experience. Key CSS
55555

concepts like the box model, positioning, and flexbox/grid layouts offer powerful tools
13131313

for creating sophisticated and adaptable designs.

c). Interactivity and Dynamics with JavaScript

JavaScript brings interactivity and dynamic content to web pages, enabling features that
22222222222

significantly enhance user engagement and functionality. By manipulating the Document
55555

Object Model (DOM), JavaScript can update content in real-time, respond to user

events, validate forms, and create animations without requiring a full page reload. A solid

grasp of JavaScript fundamentals, including variables, functions, and event handling, is

essential for developing interactive web applications. Furthermore, advanced JavaScript

libraries and frameworks such as jQuery, React, and Angular extend its capabilities,

allowing for the creation of highly complex and performant web applications.

d). Integrating HTML, CSS, and JavaScript

Effective web design demands a seamless and harmonious integration of HTML, CSS,

and JavaScript. These technologies work in concert to deliver a cohesive user experience,

from the underlying structure and visual styling to interactive elements and dynamic

functionality. In a web design lab setting, students and professionals actively practice this

integration through hands-on projects that mimic real-world scenarios. This practical

approach not only solidifies theoretical knowledge but also cultivates vital problem-

solving skills and creative thinking, both of which are essential for a successful career in

web design. By mastering the combined use of HTML, CSS, and JavaScript, designers

can build robust and engaging websites that cater to diverse user needs.

2.2.2 Importance of Web Design in the Digital Age
Web design is incredibly important in today's digital world. It's about creating websites
666666

that not only look great but are also easy to use and effective.

a). Enhancing User Engagement and Experience

A well-designed website is crucial for grabbing and holding user attention. It significantly

boosts user engagement by providing an intuitive and enjoyable Browse experience.

Features like simple navigation, fast loading times, and mobile responsiveness ensure

users can access content smoothly across all their devices. By combining HTML for
888888

structure, CSS for styling, and JavaScript for interactivity, designers can create web pages

that not only attract visitors but keep them engaged, reducing bounce rates and increasing

the time they spend on the site.

b). Building Brand Identity and Credibility

Often, a website is the very first interaction a business has with potential customers. This

makes its design vital for establishing a strong brand identity and credibility. Using

consistent colors, fonts, and graphics that align with brand guidelines helps create a

cohesive and professional appearance. Furthermore, incorporating interactive elements

and modern design trends through CSS and JavaScript can convey innovation and

attention to detail. A polished and functional website fosters trust and credibility, making

visitors more inclined to become customers.

c). Impact on SEO and Online Visibility

Web design also heavily influences a site’s search engine optimization (SEO) and

overall online visibility. Correctly using HTML tags, such as headers, alt texts for

images, and meta descriptions, helps search engines understand the site's content and

context, leading to better indexing and higher rankings. CSS ensures the site is visually

appealing and loads quickly, both of which are factors search engines consider when

ranking pages. Additionally, JavaScript can improve user experience by enabling features

that boost user interaction and time spent on the site, indirectly enhancing SEO

performance.

d). Facilitating Business Growth and Accessibility

In the digital marketplace, a well-designed website is a powerful engine for business

growth. It serves as a comprehensive platform for marketing, sales, and customer

engagement. By ensuring the site is accessible to a wide audience, including individuals

with disabilities, businesses can reach more potential customers. HTML provides the

foundational structure that screen readers and other assistive technologies rely on, while

CSS and JavaScript can be used to enhance accessibility features without compromising

the user experience. This inclusivity not only expands market reach but also ensures
212121

compliance with legal standards, contributing to a positive brand reputation.

By mastering the principles of HTML, CSS, and JavaScript, web designers can create

sites that are not just visually stunning and highly functional, but also powerful tools for

engagement, branding, SEO, and business growth. In a web design lab, learners can

develop these essential skills through practical, hands-on experience, preparing them for

the dynamic and ever-evolving field of web design.

2.3 TOOLS AND TECHNOLOGIES IN WEB DESIGN
Web design is both an art and a science, focused on crafting websites that are not only

141414

visually appealing but also highly functional and user-friendly. At its core, this discipline

relies on three fundamental technologies: HTML, CSS, and JavaScript. HTML
888888

(Hypertext Markup Language) establishes the structural foundation of a web page,
22222222222

defining its content and overall layout. CSS (Cascading Style Sheets) then enhances this

structure by introducing styling elements like colors, fonts, and sophisticated layouts, all

contributing to a captivating user experience. JavaScript, on the other hand, injects

interactivity and dynamic behavior into web pages, making them responsive and

engaging. Together, these technologies empower designers to build comprehensive web

experiences that effectively meet the diverse needs of both users and clients.
666666

The Core Technologies of Web Design

a). HTML (Hypertext Markup Language)

HTML serves as the foundational technology in web design, providing the structure and
22222222222

content of a web page. It uses a system of tags and attributes to define various elements,

such as headings, paragraphs, links, images, and multimedia content. By organizing

content into a logical structure, HTML ensures that web pages are accessible and easy to

navigate. Moreover, semantic HTML, which involves using tags that convey the

meaning of the content, enhances search engine optimization (SEO) and accessibility,

making websites more discoverable and usable by a wider audience. Understanding

HTML is crucial for any web designer, as it forms the basis upon which all other web

technologies are built.

b). CSS (Cascading Style Sheets)
22222222222

CSS is the technology that brings style and visual appeal to web pages. It allows

designers to control the presentation of HTML elements, including layout, colors, fonts,

and spacing. CSS enables the creation of responsive designs that adapt to different screen

sizes and devices, ensuring a consistent user experience across desktops, tablets, and

smart phones. Key features of CSS include the box model, which defines the space

around elements, and advanced layout techniques such as Flexbox and CSS Grid, which
666666

provide powerful tools for creating complex and adaptable designs. By separating content

(HTML) from presentation (CSS), designers can maintain cleaner code and more flexible

design options.

c). JavaScript

JavaScript adds interactivity and dynamic functionality to web pages, making them more
13131313

engaging and user-friendly. It allows designers to create real-time updates, form

validations, interactive maps, animations, and other features that enhance user experience.

JavaScript operates on the client side, meaning it runs directly in the user's browser,

which reduces server load and increases the speed of web applications. Understanding

JavaScript fundamentals, such as variables, functions, and event handling, is essential for
22222222222

creating interactive web applications. Additionally, modern JavaScript frameworks and
888888

libraries, such as React, Angular, and Vue.js, provide powerful tools for building

complex, scalable, and maintainable web applications.

Essential Tools and Environments for Web Design

d). Integrated Development Environments (IDEs) and Tools

Effective web design requires the use of various tools and environments that streamline

the development process. Integrated Development Environments (IDEs) like Visual

Studio Code, Sublime Text, and Atom provide a robust platform for writing, testing, and

debugging code. These tools often include features such as syntax highlighting, code

completion, and version control integration, which enhance productivity and and reduce

errors. Additionally, graphic design software like Adobe Photoshop and Illustrator are

essential for creating and manipulating visual elements. Version control systems like Git

enable collaborative work by tracking changes and managing code versions. These tools,

when used in conjunction with HTML, CSS, and JavaScript, empower designers to create

high-quality, professional web designs efficiently.

Specialized Design and Development Tools

1.1.1 Graphic Design Software

In addition to HTML, CSS, and JavaScript, graphic design software plays a crucial role

in the web design process. Tools such as Adobe Photoshop, Illustrator, and Sketch are

indispensable for creating and editing visual elements like logos, icons, and custom

graphics. These programs allow designers to craft high-quality visuals that enhance the

overall look and feel of a website. Photoshop is particularly useful for manipulating

images and creating detailed graphics, while Illustrator excels in vector design, making it

ideal for logos and scalable graphics. Sketch, popular among web designers, offers robust

features for UI and UX design, including prototyping and collaboration tools. Proficiency

in these graphic design tools enables designers to produce visually compelling and

cohesive designs, ensuring that every element of a website aligns with the intended user

experience and branding.

1.1.2 Coding Environments and Languages

A robust coding environment is essential for efficient web design and development,

providing the tools and resources needed to write, test, and debug code effectively.

Integrated Development Environments (IDEs) like Visual Studio Code, Sublime Text,

and Atom are popular choices among web designers. These environments offer features

such as syntax highlighting, code completion, and version control integration, which

streamline the coding process and reduce errors. Additionally, familiarity with languages

beyond HTML, CSS, and JavaScript, such as PHP, Python, and SQL, can enhance a

designer’s ability to build more complex and dynamic web applications. Mastery of these

coding environments and languages is critical for web designers, allowing them to

efficiently develop, test, and deploy high-quality web solutions.

2.3.3 Frameworks and Libraries
888888

Frameworks and libraries are vital tools in web design, significantly enhancing the

efficiency and capabilities of HTML, CSS, and JavaScript. Frameworks like Bootstrap
666666

and Foundation provide pre-designed UI components and responsive grid systems,

allowing designers to quickly create uniform and mobile-friendly layouts. Libraries such

as jQuery simplify JavaScript by offering easy-to-use functions for common tasks like

DOM manipulation and event handling. More advanced libraries and frameworks like
2222

React, Angular, and Vue.js enable the development of complex, single-page

applications with efficient data binding and state management. By leveraging these

frameworks and libraries, web designers can streamline development processes, ensure

consistency across projects, and focus more on creating unique and engaging user

experiences.

In a web design lab setting, learners have the opportunity to master these tools and

technologies through hands-on practice and real-world projects. This practical experience

is crucial for developing the technical skills and creative problem-solving abilities needed

to succeed in the dynamic field of web design. By becoming proficient in HTML, CSS,

JavaScript, and the various tools that support them, designers can create websites that are
141414

not only visually appealing but also functional, responsive, and user-friendly.

2.4 INTRODUCTION TO HTML
Understanding Websites and Web Pages

a). Websites and Web Pages

A website is essentially a collection of interconnected web pages, typically hosted on

the same server. It functions as a cohesive unit of information managed by an

individual, group, or organization. The homepage usually acts as the primary entry

point to the site. Each individual web page within a website is a document crafted using

HTML (Hypertext Markup Language) and becomes accessible on the internet when

accessed via its unique web address. HTML is the foundational technology for building

these pages, providing the structure and content that browsers interpret and display.

b). Types of Web Pages

i). Static Web Pages

Static web pages are delivered to the user exactly as they are stored on the web server.
22222222222

Their content is fixed and doesn't change in response to user interactions. These pages

are simple to create and host, as they consist of basic HTML files without any server-

side processing. Static web pages are ideal for content that doesn't require frequent

updates or user input.

ii). Dynamic Web Pages

In contrast, dynamic web pages are generated in real-time by web applications driven

by server-side software or client-side scripting. These pages can change content

dynamically based on user interactions, such as form submissions or database queries.

Dynamic web pages enhance the user experience by providing personalized and

interactive content that evolves over time.

Web Browsers and the Client-Server Model

c). Browsers and Their Types

A web browser is a software application used to retrieve, present, and navigate

information on the World Wide Web. Major web browsers include Google Chrome,

Firefox, Microsoft Edge (formerly Internet Explorer), Opera, and Safari. Each browser

interprets and displays HTML, CSS, and JavaScript in slightly different ways, making

cross-browser compatibility an important consideration in web design.

d). Client-Server Model

The client-server model is a computing architecture that divides tasks between servers

(providers of resources or services) and clients (requesters of those resources or

services). In this model, clients and servers communicate over a network. Servers host

web applications or data, while clients access these resources by initiating requests for

content or services. This model is fundamental to web operations, enabling efficient and

scalable interactions between users and web applications.

The Role of a Web Server

A web server can refer to either the physical hardware (a computer) or the software

application that delivers web content over the Internet. While hosting websites is their

primary function, web servers also support other applications such as online gaming,

data storage, and enterprise software solutions. Web servers are crucial in web design
because they store and serve the HTML, CSS, and JavaScript files that constitute web

pages.

Different Categories of Web Pages

a). Advocacy Web Pages

Advocacy web pages are created and sponsored by organizations to influence public

opinion or promote specific causes. These sites typically have URLs ending in .org and

aim to raise awareness, support policy changes, or mobilize public action.

b). Business and Marketing Web Pages

Business and marketing web pages are designed by commercial enterprises to sell

products or market services. These pages often feature e-commerce functionality,

promotional content, and customer service information. Their URLs usually end in

.com, reflecting their commercial nature.

c). News Web Pages

News web pages provide timely information about current events, issues, and

developments. These sites are maintained by news organizations and journalists,

offering updates on local, national, and international news.

d). Informational Web Pages

Informational web pages include reports, research findings, and educational content.

These pages are often hosted by educational institutions, research organizations, or

government entities, with URLs typically ending in .edu or .gov. They aim to provide

accurate and detailed information on various topics.

e). Personal Web Pages

Personal web pages are created by individuals for personal use, such as blogs,

portfolios, or online resumes. These pages often have a URL that includes a tilde (~)

and reflect the interests and activities of the individual creator.

2.5 CASCADING STYLE SHEET (CSS)
Cascading Style Sheets (CSS) are an essential technology in web design, providing the

means to control the appearance and layout of HTML elements on a web page. CSS

enables designers to create visually appealing and cohesive designs by defining styles
55555

for elements like text, images, and containers. By separating content from presentation,

CSS allows for more flexible and maintainable web designs. This separation means

developers can change a website's look and feel without altering the underlying HTML

structure, which streamlines the design process and ensures consistency across multiple
13131313

pages.

Responsive Design with CSS

One of the key advantages of CSS is its ability to create responsive web designs.
22222222222

Responsive design ensures that web pages look and function well on a variety of
888888

devices, from desktops to tablets and smartphones. CSS media queries allow designers

to specify different styles for different screen sizes, orientations, and resolutions,
2222

creating a seamless user experience across devices. This adaptability is crucial in today's

digital landscape, where users access websites from an ever-growing array of devices.

Powerful Layout Tools

CSS also offers powerful layout tools that enable designers to create complex and

adaptive designs. Flexbox and CSS Grid are two advanced CSS features that provide

flexible and efficient ways to arrange elements on a web page. Flexbox allows for the

creation of one-dimensional layouts, making it easy to align and distribute space among

items in a container. CSS Grid, on the other hand, supports two-dimensional layouts,

allowing for more intricate and precise arrangements of elements. These tools empower

designers to craft modern, visually appealing, and highly functional layouts that
666666

enhance the overall user experience.

Mastering CSS in the Lab

In a web design lab, mastering CSS is essential for creating professional and effective

web pages. Through hands-on practice and real-world projects, learners can develop

their skills in using CSS to style and lay out web pages. By understanding and applying

CSS principles, designers can ensure their web pages are not only aesthetically pleasing

but also responsive, accessible, and user-friendly. This proficiency in CSS, combined

with knowledge of HTML and JavaScript, forms a solid foundation for successful web

design and development.

2.6 JAVA SCRIPT HTML DOM
The JavaScript HTML DOM (Document Object Model) is a critical concept in web

design and development, enabling dynamic interaction with the content and structure of

web pages. The DOM essentially represents a web page as a hierarchical tree of objects,

where each node corresponds to an HTML element. JavaScript can then manipulate

these objects to dynamically change a web page's content, structure, and style. This

manipulation allows developers to create interactive and responsive user interfaces,

significantly enhancing the user experience by enabling real-time updates and

interactions without requiring a full page reload.

Accessing and Modifying HTML Elements

One of the key features of the JavaScript HTML DOM is its ability to access and

modify HTML elements and their attributes. Using methods such as getElementById,

getElementsByClassName, and querySelector, developers can select specific elements

and make changes to their content, style, or properties. This capability is essential for

tasks like form validation, dynamic content updates, and creating interactive

components such as image sliders, modal windows, and more. By leveraging the DOM,

developers can create rich, interactive experiences that respond directly to user input

and behavior.

Understanding Event Handling

Event handling is another crucial aspect of the JavaScript HTML DOM. Events are

actions or occurrences that happen in the browser, such as clicks, key presses, or page

loads. JavaScript can "listen" for these events and execute specific code in response,

allowing for dynamic and interactive functionality. For example, a button click can

trigger a function that changes the text of a paragraph, submits a form, or fetches data

from a server. Understanding and implementing event handling is fundamental for

creating responsive and interactive web applications, as it enables real-time interaction

between the user and the web page.

Mastering DOM in the Lab

In a web design lab, mastering the JavaScript HTML DOM is essential for building

dynamic and engaging web applications. Through practical exercises and projects,

learners can develop their skills in manipulating the DOM to create interactive user

interfaces. By understanding how to access and modify HTML elements, handle events,

and update the DOM dynamically, designers can significantly enhance the functionality

and responsiveness of their web pages. This expertise, combined with a strong

knowledge of HTML and CSS, provides a comprehensive foundation for modern web

development, enabling the creation of sophisticated and user-friendly web applications.

2.7 EXPERIMENTS
1. Design a page having suitable background colour and text colour with title “My First

99

Web Page” using all the attributes of the Font tag.

2. Create a HTML document giving details of your [Name, Age], [Address, Phone] and
11

[Register Number, Class] aligned in proper order using alignment attributes of

Paragraph tag.

3. Write HTML code to design a page containing some text in a paragraph by giving
99

suitable heading style.

4. Create a page to show different character formatting (B, I, U, SUB, SUP) tags. viz :
11

log b m p = p logb m.

5. Write HTML code to create a Web Page that contains an Image at its centre.

6. Design a webpage featuring an image positioned on the left side. Configure

this image so that clicking on it opens a completely different webpage in the

browser.

7. Develop a webpage that utilizes anchor tags to create links to external

websites. Ensure you use the appropriate HTML attributes to facilitate these

external navigations.

8. Create a single webpage with multiple distinct sections. Implement internal

links within this page so that when a user clicks on a link, the browser scrolls

smoothly to the corresponding section on the same page.
9. Write a HTML code to create a web page with pink color background and display

moving message in red color.

10. Create a web page, showing an ordered list of all second semester courses (Subjects)

Procedure.

11. Create a web page, showing an unordered list of names of all the Diploma

Programmes (Branches) in your institution.

12. Create a HTML document containing a nested list showing a content page of any

book.

13. Create the following table in HTML with Dummy Data:

Reg. Date of
Student Name Year/Semester

Number Admission

14. Create a web page which divides the page in two equal frames and place the audio

and video clips in frame-1 and frame-2 respectively.

FRAME – I FRAME – II

15. Create a web page which should generate following output:

