

 The Report is Generated by DrillBit Plagiarism Detection Software

 Submission Information

 Result Information

 Exclude Information Database Selection

 Author Name MTSOU

 Title CSM-6251

 Paper/Submission ID 3558748

 Submitted by librarian@mtsou.edu.in

 Submission Date 2025-04-29 15:10:09

 Total Pages, Total Words 289, 71922

 Document type Others

 Similarity 6 %
1 10 20 30 40 50 60 70 80 90

Sources Type
Student
Paper
0.33%

Journal/
Publicatio
n 2.93%

Internet
2.74%

Report Content
Words <

14,
1.01%

Quotes
0.55%

Ref/Bib
47.94%

 Quotes Excluded Language English

 References/Bibliography Excluded Student Papers Yes

 Source: Excluded < 14 Words Excluded Journals & publishers Yes

 Excluded Source 0 % Internet or Web Yes

 Excluded Phrases Not Excluded Institution Repository Yes

 A Unique QR Code use to View/Download/Share Pdf File

DrillBit Similarity Report

 SIMILARITY % MATCHED SOURCES GRADE

LOCATION MATCHED DOMAIN % SOURCE TYPE

6 49 A

A-Satisfactory (0-10%)
B-Upgrade (11-40%)
C-Poor (41-60%)
D-Unacceptable (61-100%)

1 www.lpude.in <1 Publication

4 aa.bbs.tr <1 Publication

5 www.studysmarter.co.uk <1 Internet Data

6 sriindu.ac.in <1 Publication

7 www.guvi.com <1 Internet Data

9 medium.com <1 Internet Data

11 index-of.es <1 Publication

12 ro.uow.edu.au <1 Publication

14 coderpad.io <1 Internet Data

15 iare.ac.in <1 Publication

16 sriindu.ac.in <1 Publication

17 REPOSITORY - Submitted to Kalinga University, Raipur on 2024-01-31

13-14
 <1 Student Paper

19 www.questionai.ph <1 Internet Data

20 qdoc.tips <1 Internet Data

https://www.lpude.in/SLMs/Master%20of%20Computer%20Applications/Sem_2/DECAP770_ADVANCED_DATA_STRUCTURES.pdf
https://aa.bbs.tr/lab/cen215-data-structures/Data-Structures-Using-C-2nd-edition.pdf
https://www.studysmarter.co.uk/explanations/computer-science/data-structures/priority-queue/
https://sriindu.ac.in/wp-content/uploads/2023/02/R20CSE2101-Data-Structures.pdf
https://www.guvi.com/blog/linked-list-in-data-structure/
https://medium.com/@umutarpayy/zero-to-hero-mastering-data-structures-and-algorithms-with-python-d1b0d2a4f224
http://index-of.es/Java/McGraw-Hill%20-%20Abstract%20Data%20Types%20in%20Java.pdf
https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1002&context=compsciwp
https://coderpad.io/interview-questions/c-interview-questions/
https://www.iare.ac.in/sites/default/files/NewRegulationsSyllabi/UG20/B.TECH_CSE_DATASCIENCE_UG20_ACADEMIC_REGULATIONS_AND_COURSE_CATALOG_2020-2021.pdf
https://sriindu.ac.in/wp-content/uploads/2023/02/R20CSE2101-Data-Structures.pdf
https://www.questionai.ph/essays-e8qgcAdTRb3/arrays-trees-exploring-essential-data-structures
https://qdoc.tips/engineering-problem-solving-with-c-5-pdf-free.html

21 K Nearest Neighbour Joins for Big Data on MapReduce a Theoretical

and by Song-2016
 <1 Publication

22 gmrit.edu.in <1 Publication

23 coderpad.io <1 Internet Data

24 index-of.es <1 Publication

25 www.questionai.ph <1 Internet Data

26 docplayer.net <1 Internet Data

27 pdfcookie.com <1 Internet Data

29 Local Algorithms for Sparse Spanning Graphs by Levi-2019 <1 Publication

30 www.freecodecamp.org <1 Internet Data

34 pages.cs.wisc.edu <1 Internet Data

40 Submitted to U-Next Learning on 2025-01-25 01-28 3043730 <1 Student Paper

43 es.scribd.com <1 Internet Data

45 moam.info <1 Internet Data

47 www.iimchyderabad.com <1 Publication

49 www.javatpoint.com <1 Internet Data

50 pdfcookie.com <1 Internet Data

51 pdfcookie.com <1 Internet Data

53 www.studysmarter.co.uk <1 Internet Data

54 index-of.es <1 Publication

https://dx.doi.org/10.1109/TKDE.2016.2562627
https://dx.doi.org/10.1109/TKDE.2016.2562627
https://gmrit.edu.in/PDFs/curriculum/B.Tech_CSE_Syllabus_AR21.pdf
https://coderpad.io/interview-questions/c-interview-questions/
http://index-of.es/Java/Prentice%20Hall%20PTR%20-%20Core%20Java%202.%20Volume%20I-Fundamentals.pdf
https://www.questionai.ph/essays-e8qgcAdTRb3/arrays-trees-exploring-essential-data-structures
http://docplayer.net/20943998-Data-structure-and-algorithm-i-midterm-examination-120-points-time-9-10am-12-10pm-180-minutes-friday-november-12-2010.html
https://pdfcookie.com/documents/python-r429w01emdvn
https://dx.doi.org/10.1007/s00453-019-00612-6
https://www.freecodecamp.org/news/data-structures-the-key-to-scalable-software/
http://pages.cs.wisc.edu/~vernon/cs367/notes/4.LINKED-LIST.html
https://es.scribd.com/document/363913202/Binary-Trees
https://moam.info/rate-adaptation-in-congested-wireless-networks-through-citeseerx_5ba7e1cf097c476b718b475d.html
http://www.iimchyderabad.com/Material/DSCpp.pdf
https://www.javatpoint.com/insertion-in-doubly-linked-list-at-the-end
https://pdfcookie.com/documents/engineering-problem-solving-with-c-delores-m-etter-jeanine-a-ingber-3rd-ed-02560rqoe5l1
https://pdfcookie.com/documents/createspaceelementsofprogramminginterviewsinjavatheinsidersguide2ndedition1517435803pdf-g2wnzqn4kd25
https://www.studysmarter.co.uk/explanations/computer-science/data-structures/priority-queue/
http://index-of.es/OS/Wolfgang%20Mauerer%20-%20Professional_Linux_kernel_architecture.pdf

58 technodocbox.com <1 Internet Data

60 baixardoc.com <1 Internet Data

61 Submitted to U-Next Learning on 2024-07-14 18-11 2112788 <1 Student Paper

62 fastercapital.com <1 Internet Data

63 index-of.es <1 Publication

64 Thesis Submitted to Shodhganga Repository <1 Publication

68 Data structure and algorithms for fast automatic differentiation by I-2003 <1 Publication

70 repositorio.uam.es <1 Publication

72 qdoc.tips <1 Internet Data

73 scikit-learn.org <1 Publication

74 Submitted to U-Next Learning on 2024-06-29 11-12 2063899 <1 Student Paper

76 ijcsit.com <1 Publication

78 pdfcookie.com <1 Internet Data

82 www.ic.unicamp.br <1 Publication

83 index-of.es <1 Publication

85 moam.info <1 Internet Data

https://www.technodocbox.com/C_and_CPP/69541487-Einfuhrung-in-die-programmierung-introduction-to-programming.html
https://baixardoc.com/documents/introduction-to-java-programming-by-y-daniel-liang-edition-tarik--5d191c340dd8e
https://fastercapital.com/topics/introduction-to-shape-memory-alloys.html
http://index-of.es/Programming/Java/Java%20All-in-One%20Desk%20Reference%20for%20Dummies.pdf
https://shodhganga.inflibnet.ac.inhttps:/shodhganga.inflibnet.ac.in/bitstream/10603/584997/6/06_chapter%202.pdf
https://dx.doi.org/10.1002/nme.647
https://repositorio.uam.es/bitstream/handle/10486/675862/studying_sanchez_CERI_2016_ps.pdf?sequence=1&isAllowed=y
https://qdoc.tips/ha400-abap-programming-on-sap-hana-3-pdf-free.html
https://scikit-learn.org/0.23/_downloads/scikit-learn-docs.pdf
http://ijcsit.com/docs/Volume%206/vol6issue02/ijcsit2015060218.pdf
https://pdfcookie.com/documents/morfik-help-file-9mlx9pm4erl7
https://www.ic.unicamp.br/~pannain/mc404/aulas/pdfs/Art%20Of%20Intel%20x86%20Assembly.pdf
http://index-of.es/Programming/Java/Java%20Programming%20Unleashed.pdf
https://moam.info/unit-1_5a2ede7f1723dd72b696503e.html

Block I: Introduction to Algorithms and Data Structures

Unit – 1: Analysis of Algorithms

1.0 Introduction

1.1 Objectives

1.2 Mathematical Background

1.3 Process of Analysis

1.4 Calculation of Storage Complexity

1.5 Calculation of Run Time Complexity

1.6 Conclusion

1.7 Questions and Answers

1.8 References

1.0 Introduction

In the realm of computer science, the efficiency and effectiveness of algorithms are paramount to solving complex

problems and handling large datasets. Understanding and analyzing algorithms is essential for developing optimal

solutions that perform well under various conditions. This unit delves into the fundamental aspects of algorithm

analysis, providing a comprehensive overview of the mathematical tools and techniques necessary for evaluating

the performance and resource requirements of algorithms.

We will begin by exploring the mathematical background needed for algorithm analysis, including key concepts

such as Big O, Big Theta, and Big Omega notations, logarithms, exponential functions, and summation formulas.

These foundational elements are crucial for accurately describing and comparing the efficiency of different

algorithms.

Next, we will examine the process of analyzing algorithms, which involves understanding the problem statement,

writing pseudocode, identifying basic operations, and establishing input sizes. This systematic approach ensures

requirements. By the end of this unit, you will have a solid understanding of how to analyze and optimize

algorithms for practical applications.

that algorithms are evaluated consistently and accurately. Additionally, we will cover the calculation of storage

complexity and run time complexity, providing detailed methods for assessing an algorithm's space and time

1.1 Objectives

After completing this unit, you will be able to understand,

 Comprehend the significance and application of Big O, Big Theta, and Big Omega

notations.





Identify the basic operations that dictate the performance of an algorithm.

Calculate the storage complexity for various types of data structures and algorithms,

including simple and recursive algorithms, as well as dynamic data structures.

Analyze the run time complexity of algorithms, using mathematical tools to determine

their efficiency.



 Recognize the trade-offs between time and space complexity in algorithm design.

1.2 Mathematical Background

Understanding the mathematical foundations is essential for analyzing the efficiency of algorithms. This involves

mastering concepts such as Big O, Big Theta, and Big Omega notations, which are used to describe the upper,

logarithms and exponential functions are crucial for understanding the behavior of algorithms that deal with

exponentially growing data sets, such as those involving tree structures or divide-and-conquer strategies.

Summation formulas play a vital role in evaluating the total cost of an algorithm, particularly when dealing with

loops and iterative processes. For example, understanding arithmetic and geometric series can simplify the

calculation of the total number of operations in nested loops or recursive calls. Recurrence relations, on the other

hand, are mathematical equations that define sequences based on previous terms, and solving these relations is

key to analyzing recursive algorithms. Methods like the Master Theorem provide powerful tools to directly solve

these recurrences, offering insights into the time complexity of algorithms like Merge Sort and Quick Sort.

an algorithm works for all possible input sizes, while contradiction helps in disproving incorrect assumptions

about an algorithm's performance. Direct proofs and counterexamples further aid in establishing or refuting claims

about the properties and efficiencies of algorithms. Together, these mathematical tools form the backbone of

algorithm analysis, enabling a deeper and more precise understanding of how algorithms perform and scale.

Basic Mathematics for Algorithm Analysis

exact, and lower bounds of an algorithm's complexity, respectively. These notations provide a standardized way

to express the growth rates of functions, helping to compare the performance of different algorithms. Additionally,

Finally, proof techniques such as induction, contradiction, and direct proofs are indispensable for validating

algorithm correctness and analyzing their behavior rigorously. Induction, for example, is often used to prove that

Big O, Big Theta, and Big Omega Notations: Big O, Big Theta, and Big Omega notations are mathematical

tools used to describe the time and space complexity of algorithms. Big O notation (O) provides an upper bound

on the growth rate of an algorithm, signifying the worst-case scenario. It helps in understanding the maximum

amount of time or space an algorithm may require as the input size grows. For example, an algorithm with a time

complexity of O(n^2) will have its execution time increase quadratically with the input size. Big Theta (Θ)

notation, on the other hand, gives a tight bound, describing the exact asymptotic behavior of an algorithm,

representing both the upper and lower bounds. Big Omega (Ω) notation provides a lower bound, representing the

best-case scenario or the minimum amount of time or space required.

Example:



focus on the term with the highest growth rate as n increases. Here, it's n^2. Thus, f(n) is O(n^2).

Big Theta (Θ) Notation Example: If an algorithm's running time is given by f(n) = 5n log n + 4n, the

dominant term is 5n log n. Therefore, the algorithm's time complexity is Θ (n log n).

Big Omega (Ω) Notation Example: For the function g(n) = 2n + 1, in the best case, the term 2n

dominates. Thus, g(n) is Ω(n).





Logarithms and Exponential Functions

Logarithms and exponential functions are fundamental in analyzing the efficiency of algorithms, especially those

that divide problems into smaller subproblems. Logarithmic functions, such as log(n), are prevalent in algorithms

that halve their input size at each step, such as binary search. These functions grow slowly compared to polynomial

or exponential functions, indicating highly efficient algorithms. Exponential functions, like 2^n, are associated

with algorithms that exhibit rapid growth rates, often found in brute-force approaches or recursive algorithms

solving combinatorial problems. Understanding these functions is crucial for evaluating the scalability and
454545

performance of different algorithmic approaches.

Example:





Logarithmic Funcꢀon Example: The binary search algorithm repeatedly divides the search interval in

half. Its ꢀme complexity is O (log n), meaning the number of comparisons grows logarithmically with

the input size.

Exponential Function Example: The recursive algorithm for solving the Tower of Hanoi problem has

a time complexity of O(2). As the number of disks increases, the number of moves required grows n

Summation Formulas

Summation formulas are used to calculate the total cost of algorithms that involve iterative or repetitive operations.

For example, the sum of the first n natural numbers, given by (n(n + 1))/2, helps in analyzing loops that run

nested loops or recursive calls. These formulas simplify the process of determining the total number of operations,

Big O (O) Notaꢀon Example: Consider the funcꢀon f(n) = 3n^2 + 2n + 1. To find the Big O notaꢀon, we

exponentially.

linearly. Geometric series and other summation formulas are also useful in evaluating the cost of algorithms with

providing a clear picture of an algorithm's complexity.

Example:





Sum of First n Natural Numbers: The formula for the sum of the first n natural numbers is (n (n +

1))/2. For example, if n = 10, the sum is (10 * 11)/2 = 55.

Geometric Series Example: Consider the geometric series 1 + r + r^2 + ... + r^(n-1). The sum of this

series is (1 - r^n) / (1 - r) for r ≠ 1. If r = 2 and n = 4, the sum is (1 - 2^4) / (1 - 2) = 15.

Recurrence Relations and Their Solutions

Recurrence relations are equations that define sequences based on previous terms, commonly used to describe the

time complexity of recursive algorithms. Solving these relations is key to understanding the behavior of algorithms

Theorem are employed to solve recurrence relations. The Master Theorem, in particular, provides a

straightforward way to determine the time complexity of divide-and-conquer algorithms, offering insights into

their efficiency and scalability. Understanding recurrence relations and their solutions is essential for analyzing

and optimizing recursive algorithms.

Example:

Induction

Mathematical Induction is a method of mathematical proof typically used to establish a given statement for all

natural numbers. It consists of two steps: the base case and the inductive step.





Base Case: Prove that the statement holds for the initial value (usually n = 1).

Inductive Step: Assume the statement holds for some arbitrary natural number k, and then prove it holds

for k + 1.

Example: Prove that the sum of the first n natural numbers is (n (n + 1))/2.

1. Base Case: For n = 1, the left side is 1 and the right side is (1(1 + 1))/2 = 1. Thus, the statement holds
1717

for n = 1.

like Merge Sort and Quick Sort. Techniques such as the substitution method, iteration method, and the Master

Proof Techniques

2. Inductive Step: Assume the statement holds for n = k, i.e., 1 + 2 + ... + k = k(k+1)/2. We need to prove

it holds for n = k + 1.

Thus, the statement holds for k + 1, completing the induction proof.

Contradiction

Proof by Contradiction involves assuming the negation of the statement to be proved and showing that this

assumption leads to a contradiction, thereby proving the original statement to be true.

Example: Prove that √2 is irrational.

1. Assume the Opposite: Suppose √2 is rational. Then it can be expressed as a/b where a and b are integers

with no common factors and b ≠ 0.

ꢁ
2. Square Both Sides: 2 = ⟹ 푎 = 2푏 . ꢀ ꢃ ꢃ

ꢁꢂ

3. Parity Argument: This implies a^2 is even, so a must be even. Let a = 2k for some integer k. Substituting

in, we get (2k) = 2b , thus 4k = 2b , and b = 2k . Hence, b is even, and b must also be even. 2 2 2 2 2 2 2

4. Contradiction: This implies that both a and b are even, contradicting the initial assumption that a and b

have no common factors. Thus, √2 is irrational.

Direct Proofs and Counterexamples

Direct Proofs involve straightforwardly showing that a statement is true using definitions, theorems, and logical

deductions.

Example: Prove that the sum of two even numbers is even.

1. Let a and b be two even numbers. By definition of even numbers, there exist integers mmm and n such

that a = 2m and b = 2.

2. Sum: a + b = 2m + 2n =2 (m + n).

3. Conclusion: Since m + n is an integer, a + b is even.

Counterexamples are used to disprove a statement by providing a specific example that shows the statement is

false.

Example: Disprove the statement "All prime numbers are odd."

1. Counterexample: The number 2 is prime and even.

2. Conclusion: Therefore, the statement is false.

These proof techniques form the backbone of mathematical reasoning, providing systematic approaches to

validating theorems and propositions in algorithm analysis and other areas of mathematics.

1.3 Process of Analysis

The process of analyzing algorithms is a critical aspect of computer science and involves a systematic approach

to understanding the efficiency and effectiveness of algorithms. This process typically includes several key steps:

defining the problem, determining the computational model, designing the algorithm, and analyzing its

performance.

 Defining the Problem: The first step in algorithm analysis is to clearly define the problem that the

algorithm aims to solve. This involves specifying the input, the desired output, and any constraints or

requirements. Understanding the problem space helps in selecting or designing an appropriate algorithm

and sets the stage for further analysis.

 Determining the Computational Model: Next, it is essential to choose a computational model that best

represents the environment in which the algorithm will run. Common models include the Random Access

Machine (RAM) model, which assumes a sequential execution of instructions with uniform cost, and the

Turing machine model, which is more theoretical and abstract. The choice of model affects how the

algorithm's performance is measured and understood.





Designing the Algorithm: Once the problem and model are defined, the next step is to design the

algorithm. This involves creating a step-by-step procedure to solve the problem. The design process may

include selecting appropriate data structures, breaking down the problem into smaller sub-problems, and

determining the logical flow of operations.

Analyzing Performance: The final and most crucial step is analyzing the performance of the algorithm.

measures the amount of time an algorithm takes to complete as a function of the size of its input, often
454545

the algorithm uses. Both aspects are critical for understanding the feasibility and efficiency of the

scenarios are considered to provide a comprehensive performance profile.

Steps in Analyzing an Algorithm with Examples

 Understanding the Problem Statement: Consider the problem of finding the maximum element in an

array of integers. The problem statement can be defined as follows: Given an array of nnn integers, find

the largest integer in the array. The input is the array of integers, and the output is the maximum integer

 Writing Pseudocode: Pseudocode for finding the maximum element in an array might look like this:

This typically involves two main aspects: time complexity and space complexity. Time complexity

expressed using Big O notation. Space complexity, on the other hand, measures the amount of memory

algorithm, especially for large input sizes. Additionally, average-case, best-case, and worst-case

within that array.

This pseudocode describes the algorithm in a clear, step-by-step manner, making it easier to understand and

analyze.

Identifying Basic Operations: In this example, the basic operations include:

2. Comparison of each element in the array with maxElement.

3. Assignment of a new value to maxElement if a larger element is found.

These operations are fundamental to the algorithm’s logic and are performed repeatedly as the algorithm processes

10 elements, n is 10. This input size will help us understand how the algorithm’s performance scales with larger

inputs.

Time Complexity Analysis: To analyze the time complexity, we count the number of basic operations performed.

In the worst-case scenario, the algorithm will compare each element in the array to maxElement, resulting in n −

1 comparisons and n−1n-1n−1 potential assignments.

For nnn elements:





The initialization of maxElement takes O (1) time.

The for-loop iterates n times, performing a comparison and possibly an assignment each iteration, which

takes O (n) time.

Thus, the total time complexity is O (n).

Space Complexity Analysis: The space complexity of this algorithm is O (1) because it uses a constant amount

of extra space, regardless of the input size n.

Example 2: Binary Search Algorithm

Understanding the Problem Statement: Consider the problem of searching for a specific integer in a sorted

array of integers using binary search. The input is a sorted array of n integers and the integer to search for, and the

output is the index of the integer in the array or -1 if it is not found.

Writing Pseudocode: Pseudocode for binary search:

1. Initialization of maxElement with the first element of the array.

the input array.

Establishing Input Size: The input size, n, in this problem is the number of elements in the array. If the array has
1717

Identifying Basic Operations: The basic operations include:

1. Initialization of left and right pointers.

2. Calculation of the middle index mid.

4. Adjusting the left or right pointers based on the comparison result.

Time Complexity Analysis: Binary search reduces the search space by half each iteration. The number of

iterations required to search an array of size n is log (n). Therefore, the time complexity is O (log n). 2

Space Complexity Analysis: The space complexity of binary search is O(1) because it uses only a constant

amount of extra space for the pointers and variables, regardless of the input size n.

These examples illustrate the steps involved in analyzing algorithms, from understanding the problem statement

Types of Analysis

 Worst-case Analysis: This type of analysis focuses on the maximum time or space that an algorithm can

take for any input of size nnn. It provides an upper bound on the running time and is particularly useful

for guaranteeing performance in real-time systems or critical applications. For instance, in the case of

Knowing the worst-case performance helps in understanding the algorithm's efficiency under the least

favorable conditions.

 Average-case Analysis: Average-case analysis calculates the expected time or space an algorithm will

take, considering all possible inputs. This type of analysis is more realistic than worst-case analysis

because it provides an average performance measure, which can be more representative of typical use

cases. For example, in quicksort, the average-case time complexity is O (n log n), assuming that the

3. Comparison of the target value with the middle element of the array.

Establishing Input Size: The input size, n, is the number of elements in the array.

to determining time and space complexity, using clear and structured pseudocode.

quicksort, the worst-case occurs when the pivot selection is poor, leading to O(n) time complexity. 2

pivots are chosen randomly. This analysis often involves probabilistic reasoning and is useful for

understanding the algorithm's performance on average inputs.

 Best-case Analysis: Best-case analysis evaluates the minimum time or space an algorithm can take. It

provides a lower bound on the running time and is useful for understanding the most efficient scenario.

However, it is less practical for assessing an algorithm's performance in general. For instance, in insertion

analysis shows how well the algorithm performs with the most favorable input but doesn't account for

average or worst-case scenarios.

Examples

 Worst-case Analysis Example: Consider the insertion sort algorithm. In the worst-case scenario, the

input array is in reverse order. Here, each insertion operation will have to shift all the previously sorted

elements, leading to a time complexity of O(n). 2

 Average-case Analysis Example: For binary search, if the target element is equally likely to be at any

reduces the problem size by half, and the expected number of comparisons averages out over all possible

positions.



the algorithm will only require one comparison, resulting in a best-case time complexity of O (1).

Divide and Conquer: The divide and conquer technique involves breaking a problem into smaller 





original problem. This approach is highly effective for problems that can be divided into similar smaller

problems. Classic examples include merge sort and quicksort. In merge sort, the array is recursively

divided into halves until the base case of a single-element array is reached. These small arrays are then

making it efficient for large datasets.

Greedy Algorithms: Greedy algorithms build up a solution piece by piece, always choosing the next

piece that offers the most immediate benefit or is locally optimal. This approach is used when a problem

can be solved by making a series of choices, each of which looks the best at the moment. However,

greedy algorithms do not always guarantee a globally optimal solution. A well-known example is the

Kruskal's algorithm for finding the minimum spanning tree in a graph. At each step, it selects the smallest

depends on the graph representation but is generally O (E log E), where E is the number of edges.

Dynamic Programming: Dynamic programming (DP) is a method for solving complex problems by

breaking them down into simpler subproblems. It is applicable when the problem can be divided into

redundant computations. This technique is used in problems like the Fibonacci sequence, where the value

of each element is the sum of the two preceding ones. Instead of recalculating Fibonacci numbers, DP
454545

sort, the best-case occurs when the array is already sorted, resulting in O(n) time complexity. This

position in a sorted array, the average-case time complexity remains O (log n). This is because each step

Best-case Analysis Example: For linear search, if the target element is at the first position of the array,

Algorithm Design Techniques

subproblems, solving each subproblem independently, and then combining their solutions to solve the

merged in a sorted manner, resulting in a sorted array. The time complexity of merge sort is O (n log n),

edge that does not form a cycle, ensuring that the spanning tree is built efficiently. The time complexity

overlapping subproblems that can be solved independently. DP stores the results of subproblems to avoid

stores intermediate results, reducing the time complexity from exponential to O (n). Another example is

the Knapsack problem, where DP is used to find the maximum value that can be obtained without

exceeding the weight limit.



at a time, and removing those solutions that fail to satisfy the problem's constraints at any point of time.

It is often used for constraint satisfaction problems, such as puzzles, crosswords, and combinatorial

problems. The classic example is the N-Queens problem, where the goal is to place N queens on an N ×

N chessboard such that no two queens threaten each other. The algorithm tries to place a queen in a row

and then recursively attempts to place queens in subsequent rows, backtracking whenever it encounters

a conflict. While the worst-case time complexity is exponential, O (N!), backtracking can be very

efficient with appropriate pruning.

1.4 Calculation of Storage Complexity

Calculation of storage complexity, also known as space complexity, is a fundamental aspect of algorithm analysis

that evaluates how much memory or storage space an algorithm requires to execute based on the input size. It is

crucial for determining the efficiency and scalability of algorithms, particularly in scenarios where memory

Understanding Storage Complexity

Definition: Storage complexity measures the amount of memory space required by an algorithm to solve a

problem as a function of the input size n. It includes all types of memory used during execution, such as variables,

data structures (arrays, lists, trees), and auxiliary space required by recursion stacks or temporary variables.

Types of Space Complexity:

1. Constant Space (O (1)): Algorithms that use a constant amount of memory regardless of the input size.

Examples include algorithms that operate on a fixed number of variables or use a fixed-size data

structure.

2. Linear Space (O(n)): Algorithms where the space requirement grows linearly with the size of the input.

Typically, this occurs when the algorithm uses data structures whose size scales directly with n, such as

arrays or linked lists.

3. Logarithmic Space (O (log n): Algorithms that reduce the space usage logarithmically as the input size

increases. This is common in divide and conquer algorithms or algorithms that use balanced data

structures like binary search trees.

4. Polynomial Space (O(n)): Algorithms where space complexity grows polynomially with the input size. k

These algorithms are less efficient in terms of space and can become impractical for large inputs.

Backtracking: Backtracking is an algorithmic technique for solving problems incrementally, one piece

resources are limited or costly.

Techniques for Calculating Storage Complexity





Auxiliary Space: Identify all additional space requirements beyond the input size n. This includes

variables, data structures, and recursive function call stacks.

Input Size Impact: Determine how storage requirements change relative to different input sizes.

Analyze worst-case, average-case, and best-case scenarios to understand the full spectrum of memory

usage.





and compare the growth rate of space complexity concerning input size.

Implementation-Specific Considerations: Consider implementation details like system-specific

memory allocation and overheads, especially in lower-level programming languages.

Practical Example

Consider the space complexity of a merge sort algorithm. Merge sort typically operates with a space complexity

of O (n) due to its requirement to temporarily store input elements in auxiliary arrays during the merging phase.

This linear space usage makes merge sort efficient in terms of memory compared to other sorting algorithms like

quicksort, which may require O (log n) additional space due to recursive call stacks.

Memory Usage in Algorithms

Memory usage in algorithms revolves around managing various data types effectively to optimize space

utilization. This involves understanding both primitive and composite data types, which are crucial for storing and

manipulating data efficiently during algorithm execution.

Primitive Data Types

Primitive data types are fundamental building blocks in programming languages that represent basic values. These

include:









Integer: Represents whole numbers (e.g., int in C++, Java).

Floating Point: Represents decimal numbers with fractional parts (e.g., float, double).
838383

Boolean: Represents true/false values (e.g., bool).

Character: Represents single characters (e.g., char).

These data types typically have fixed sizes depending on the programming language and system architecture. For

instance, an int might be 4 bytes in size in many programming languages.

Composite Data Types
828282

Composite data types combine primitive data types to create more complex structures for storing and organizing
838383

data. Key examples include:





Arrays: A collection of elements stored in contiguous memory locations, accessed by indexing.

Lists: Linear data structures where elements are linked by pointers or references.

Analytical Tools: Use mathematical analysis, such as asymptotic notation (Big O notation), to express





Trees: Hierarchical structures composed of nodes, with each node having references to child nodes.

Graphs: Non-linear data structures with nodes (vertices) and edges connecting these nodes.

Memory Usage Considerations

dynamic resizing.

2. Lists: Linked lists dynamically allocate memory per element, allowing flexibility in size but incurring

overhead due to pointers.

3. Trees: Memory usage varies based on the type (e.g., binary trees, AVL trees). Trees balance between

efficient storage and retrieval operations.

4. Graphs: Storage varies based on the representation (e.g., adjacency list, adjacency matrix). Each

Efficient Memory Management

Efficient memory management in algorithms involves:







Optimal Data Structures: Choosing the right data structure based on the operations required and

memory constraints.

Memory Allocation: Using appropriate allocation techniques (e.g., static vs. dynamic allocation) to

minimize wastage and fragmentation.

Garbage Collection: In languages with automatic memory management, ensuring timely release of

Example Scenario

Consider an algorithm that computes the sum of elements in an array:

In this example:





Primitive: int total is used to accumulate the sum.

Composite: int arr[] represents an array storing multiple integers.

Examples of Storage Complexity Calculation

1. Arrays: Use contiguous memory, making them efficient for direct access via indexing but limiting in

representation offers trade-offs between space and operations efficiency.

unused memory.

Calculating storage complexity involves understanding how much memory an algorithm or data structure requires

based on its operations and data handling. Here are examples of how storage complexity is calculated for different

scenarios:

Calculating Storage for Simple Algorithms

Consider a simple algorithm that computes the factorial of a number n:

Storage Calculation:

 Primitive Data Types: The function uses int for the parameter and the return value.

o

o

Space for int n: Typically 4 bytes (assuming a 32-bit integer).

Space for the return value (int): 4 bytes.



o

o

For factorial(n), there will be n recursive calls.

Assuming each call uses 8 bytes for function call overhead and local variables (on a typical 64-

bit system).

Total Storage:





Fixed Memory: Around 8 bytes for n and the return value.

Stack Memory: Approximately 8 * n bytes for the recursive calls.

Calculating Storage for Recursive Algorithms

Consider the Fibonacci sequence computed recursively:

Storage Calculation:

 Primitive Data Types: Uses int for the parameter and the return value.

Recursive Call Stack: Each recursive call adds to the stack memory.

o

o

Space for int n: 4 bytes.

Space for the return value (int): 4 bytes.

 Recursive Call Stack: Similar to factorial, Fibonacci also has n recursive calls.

Each call uses 8 bytes for function call overhead and local variables. o

Total Storage:





Fixed Memory: Around 8 bytes for n and the return value.

Stack Memory: Approximately 8 * n bytes for the recursive calls.

Storage Complexity in Dynamic Data Structures

Consider a dynamic data structure like a linked list with n nodes:

Storage Calculation:

 Node Structure: Each Node structure contains an int and a pointer (Node*).

o

o

Size of int data: 4 bytes.

Size of Node* next: 8 bytes (assuming a 64-bit system).



Total memory depends on the number of nodes (n). o

Total Storage:





Fixed Memory: Minimal fixed memory for variables like head and function parameters.

Heap Memory: Approximately (4 + 8) * n bytes for data and next pointers across n nodes.

1.5 Calculation of Run Time Complexity

Heap Memory: Each new Node allocates memory dynamically.

Calculating the runtime complexity of an algorithm involves analyzing how its execution time increases with
212121

respect to the input size. This analysis is crucial for understanding the efficiency of algorithms and making

informed decisions about their applicability in different scenarios. Here’s how the calculation of runtime

complexity is typically approached:

Steps in Calculating Runtime Complexity

1. Identify Basic Operations:

o Determine the fundamental operations that contribute most significantly to the execution time.

For example, in sorting algorithms, comparisons and swaps are often primary operations.

2. Establish Input Size:

o Define the parameter that represents the size of the input data. For sorting algorithms, this could

be the number of elements n.

3. Count Operations:

Analyze how many times the identified basic operations are executed as a function of the input o

size n. This step often involves considering different cases: best-case, average-case, and worst-

case scenarios.

4. Express Complexity:

Use Big O notation to express the asymptotic upper bound of the algorithm's runtime complexity o

in terms of n. This notation provides a concise way to describe how the algorithm's performance

scales with input size.

Examples of Calculating Runtime Complexity

Example 1: Linear Search







Basic Operation: Comparison (arr[i] == key).

Input Size: n, where arr is an array of size n.

Operations Count: In the worst case, the loop executes n times.

 Runtime Complexity: O(n), as the algorithm checks each element in the array once in the worst case.

Example 2: Bubble Sort







Basic Operations: Comparisons (arr[j] > arr[j+1]) and Swaps.

Input Size: n, where arr is an array of size n.

comparisons in the i-th pass.

 Runtime Complexity: O(n^2), as the algorithm performs quadratic time operations in the worst case

due to nested loops.

Importance of Runtime Complexity Calculation

Understanding runtime complexity helps in:







Algorithm Selection: Choosing the most efficient algorithm for a given problem size.

Performance Prediction: Estimating how an algorithm will perform as the input size grows.

Optimization: Identifying opportunities for improving algorithm efficiency through algorithmic design

or data structure selection.

1.6 Conclusion

In this unit, we delved into the foundational aspects of algorithm analysis, emphasizing the importance of

understanding mathematical concepts such as Big O, Big Theta, and Big Omega notations. These notations are

critical tools for describing the efficiency of algorithms and predicting their behavior as input sizes grow. We also

explored logarithms, exponential functions, summation formulas, and recurrence relations, which are essential for

analyzing and solving problems related to algorithm performance.

Operations Count: In the worst case, bubble sort performs n-1 passes over the array, with n-i-1

We examined the process of analyzing algorithms, starting with a clear understanding of the problem statement

and progressing through writing pseudocode, identifying basic operations, and establishing input sizes. This

systematic approach helps in accurately assessing an algorithm's efficiency and potential bottlenecks.

Furthermore, we discussed the different types of analysis—worst-case, average-case, and best-case scenarios—

highlighting their significance in practical applications.

algorithm's resource requirements. By understanding these concepts, we can make informed decisions about

1.7 Questions and Answers

1. What is the significance of Big O notation in algorithm analysis?

Answer: Big O notation is crucial in algorithm analysis because it provides a high-level understanding of an

running time, helping to predict its performance and scalability as the input size increases. This notation allows

for the comparison of different algorithms' efficiencies, facilitating the selection of the most suitable algorithm

for a given problem.

2. Explain the difference between worst-case, average-case, and best-case analyses.

Answer: Worst-case analysis evaluates an algorithm's performance under the most unfavorable conditions,

providing an upper bound on its running time. Average-case analysis considers the algorithm's performance across

performance under the most favorable conditions, offering a lower bound on its running time. Each type of

analysis provides different insights into the algorithm's behavior and helps in understanding its efficiency

3. What are recurrence relations and why are they important in algorithm analysis?

Answer: Recurrence relations are equations that define a sequence of values based on previous terms. They are

essential in algorithm analysis for expressing the running time of recursive algorithms. By solving these relations,

we can determine the time complexity of the algorithm. This is particularly useful for divide-and-conquer

algorithms, where the problem is broken down into smaller subproblems, and the running time depends on the

solutions of these subproblems.

4. How do you calculate the storage complexity of an algorithm?

Answer: The storage complexity of an algorithm is calculated by analyzing the amount of memory it requires

during execution. This involves considering the memory used by variables, data structures, and any additional

Lastly, we covered the calculation of storage and run time complexity, which are crucial for evaluating an

algorithm design, balancing the trade-offs between time and space efficiency. This unit has equipped you with the

essential tools and knowledge to analyze algorithms methodically, optimize their performance, and apply these

principles to solve real-world problems effectively.

algorithm's efficiency in terms of time and space complexity. It describes the upper bound of an algorithm's

all possible inputs, giving a more realistic expectation of its efficiency. Best-case analysis examines the algorithm's

comprehensively.

space needed for recursion or dynamic allocation. For simple algorithms, this can be straightforward, but for more

complex algorithms involving dynamic data structures or recursion, a detailed breakdown of memory usage is

5. Why is it important to establish the input size when analyzing an algorithm?
7272

Answer: Establishing the input size is crucial because it directly influences the algorithm's running time and space
212121

requirements. The efficiency of an algorithm is often expressed as a function of the input size, allowing us to

understand how the algorithm scales with larger inputs. Accurate input size estimation ensures that the analysis

reflects real-world performance and helps in identifying potential inefficiencies and bottlenecks.

6. What are the basic steps in the process of analyzing an algorithm?

Answer: The basic steps in analyzing an algorithm include:

1. Understanding the Problem Statement: Clearly define the problem and its requirements.

2. Writing Pseudocode: Develop a high-level representation of the algorithm to understand its flow and

logic.

3. Identifying Basic Operations: Determine the fundamental operations that significantly impact the

running time.

4. Establishing Input Size: Define the variable representing the size of the input, which will be used in the

complexity analysis.

5. Analyzing Complexity: Calculate the time and space complexity based on the identified operations and

input size.

1.8 References

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd

ed.). MIT Press.









Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.



necessary to determine the total storage complexity.

Weiss, M. A. (2012). Data Structures and Algorithm Analysis in C++ (4th ed.). Addison-Wesley.

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data Structures and Algorithms. Addison-Wesley.

Knuth, D. E. (1997). The Art of Computer Programming, Volume 1: Fundamental Algorithms (3rd ed.).

Addison-Wesley.

Dasgupta, S., Papadimitriou, C., & Vazirani, U. (2006). Algorithms. McGraw-Hill Education.

Unit – 2: Arrays and Pointers in C++

2.0 Introduction

2.1 Objectives

2.2 Arrays

2.3 Pointers

2.4 Sparse Matrices:

2.5 Polynomials:

2.6 Representation of Arrays:

2.7 Applications of Arrays and Pointers

2.8 Conclusion

2.9 Questions and Answers

2.10 References

2.0 Introduction

In the realm of computer science and programming, understanding fundamental data structures like arrays and
828282

pointers forms the bedrock of efficient algorithm design and application development. These concepts not only

facilitate storage and manipulation of data but also play crucial roles in optimizing memory usage and enhancing

representations, and practical applications in various domains.

Arrays, as a cornerstone of data structures, provide a systematic way to store homogeneous elements in contiguous

memory locations. They offer quick access to elements using indices and support a wide range of operations,

making them versatile for applications ranging from simple list storage to complex numerical computations.

Pointers, on the other hand, enhance the flexibility of memory management by allowing dynamic memory
828282

allocation and manipulation of addresses, enabling efficient data structures like linked lists and trees.

Sparse matrices and polynomials extend the concept of arrays into specialized domains. Sparse matrices,

characterized by a majority of zero elements, employ efficient representation techniques such as triplet and

compressed formats to conserve memory and accelerate operations like addition and multiplication. Polynomials,

represented using arrays or linked lists, demonstrate how basic data structures can be adapted for mathematical

computational efficiency. This unit delves into these foundational concepts, exploring their definitions, operations,

computations, showcasing operations like addition and multiplication that are pivotal in scientific computing and

engineering applications.

Throughout this unit, we explore not only the theoretical underpinnings of these data structures but also their real-

world applications. Understanding their representations in memory and their computational advantages and

disadvantages equips us with the knowledge to leverage arrays, pointers, sparse matrices, and polynomials

effectively in solving practical problems across diverse fields.

2.1 Objectives 7272

After completing this unit, you will be able to understand,









Learn how to declare, initialize, and access elements in arrays.

Understand the concept of multidimensional arrays and their practical uses.

Grasp the basics of pointers, including declaration, initialization, and dereferencing.

Discover how arrays and pointers are used in fundamental data structures like linked lists, stacks,

and queues.

 Develop problem-solving abilities by applying arrays and pointers to solve programming challenges.

2.2 Arrays

An array in C++ is a structured data type that stores a fixed-size sequential collection of elements of the same

type. It provides a contiguous memory location to store multiple values under a single name, allowing efficient

access to each element using an index. Arrays are declared by specifying the data type of the elements they will

hold and the number of elements, which must be known at compile time. Elements in an array are accessed using

zero-based indexing, where the first element is at index 0 and the last element is at index size - 1. Arrays facilitate

efficient storage and retrieval of data, making them essential for tasks that involve managing and manipulating

collections of homogeneous data elements in C++ programs.

Declaration of Arrays:

In C++, an array is declared by specifying the data type of its elements followed by the array name and the size
212121

of the array enclosed in square brackets ([]). The syntax for declaring an array is:

datatype arrayName[arraySize];

Here, datatype specifies the type of elements the array will hold (e.g., int, double, char), arrayName is the identifier

constant expression or a literal value known at compile time.

used to refer to the array, and arraySize is the number of elements in the array. The size of the array must be a
838383

For example, to declare an array of integers named myArray with 5 elements:
2424

int myArray[5];

Initialization of Arrays:

Arrays in C++ can be initialized at the time of declaration or later during the program execution. Initialization

1. Initialization at Declaration:

int myArray[5] = {1, 2, 3, 4, 5};

This initializes an array myArray with 5 elements {1, 2, 3, 4, 5}.

2. Partial Initialization:

int myArray[5] = {1, 2, 3};

This initializes the first three elements of myArray as {1, 2, 3} and sets the remaining elements to zero

(0 for numeric types).

3. Empty Initialization:

int myArray[5] = {};

This initializes all elements of myArray to zero (0).

4. Initialization using Iteration:

int myArray[5];

for (int i = 0; i < 5; ++i) {

myArray[i] = i + 1;

}

This initializes myArray with values {1, 2, 3, 4, 5} using a loop.

Accessing Elements of Arrays:

In C++, elements of an array are accessed using zero-based indexing. Once an array is declared and initialized,

you can access individual elements by specifying the index within square brackets ([]). The syntax is:

arrayName[index]

Indexing starts from 0 for the first element and goes up to arraySize - 1 for the last element.

For example, consider an array of integers myArray:

This declaration reserves space in memory to store 5 integers contiguously.

assigns initial values to the elements of the array. There are several ways to initialize arrays:

Here, arrayName is the name of the array, and index is the position of the element you want to access.

int myArray[5] = {10, 20, 30, 40, 50};

To access elements of myArray:

int firstElement = myArray[0]; // Accessing the first element (10)

int thirdElement = myArray[2]; // Accessing the third element (30)

You can also modify array elements using the same indexing syntax:

myArray[1] = 25; // Changing the value of the second element to 25

Multidimensional Arrays:

A multidimensional array in C++ is an array that contains more than one dimension, allowing data to be stored in
73

dimensions as well.

Declaration of Multidimensional Arrays:

sizes of each dimension enclosed in square brackets ([]). The syntax for a 2D array is:

datatype arrayName[rowSize][colSize];

Here, rowSize specifies the number of rows, and colSize specifies the number of columns.

For example, a 2D array matrix with 3 rows and 4 columns of integers can be declared as:

cpp

Copy code

int matrix[3][4];

Initialization of Multidimensional Arrays:

Multidimensional arrays can be initialized similarly to 1D arrays, using nested braces {} to enclose the elements:

Accessing Elements of Multidimensional Arrays:

Elements in a 2D array are accessed using two indices: one for the row and one for the column:

int element = matrix[rowIndex][colIndex];

a tabular form. The most common multidimensional array is the 2D array, but C++ supports arrays with more

To declare a multidimensional array, you specify the data type of its elements followed by the array name and the

Here, rowIndex specifies the row number (starting from 0), and colIndex specifies the column number (also

starting from 0).

For example, to access the element at the second row and third column of matrix:

int value = matrix [1][2]; // Accessing element at second row, third column (value 7)

Example 1: Simple Array Operations

Output:

Example 2: Multidimensional Array Operations

Output:

2.3 Pointers

directly access and manipulate memory locations, enabling efficient dynamic memory allocation and

management.

In C++, every variable is stored in a specific memory location with a unique address. Pointers allow us to store

and manipulate these addresses as values. They are declared using the asterisk (*) symbol before the variable

name, indicating that the variable is a pointer. For example, int* ptr; declares a pointer ptr that can hold the address

of an integer variable.

Dereferencing a pointer retrieves the value stored at the memory address it points to. For instance, if ptr points to

an integer variable num, *ptr accesses the value of num. This capability makes pointers powerful for indirect

access to data, especially useful in data structures and dynamic memory allocation scenarios where memory

Pointers are extensively used in C++ for tasks like passing parameters to functions by reference, dynamic memory

allocation with new and delete operators, and implementing complex data structures such as linked lists and trees.

While powerful, pointers require careful handling to avoid common pitfalls like dereferencing null pointers or

accessing memory out of bounds, which can lead to runtime errors like segmentation faults. Mastery of pointers

is essential for C++ programmers to fully utilize the language's capabilities for memory management and efficient

data manipulation.

Declaration of Pointers:

In C++, pointers are declared using the asterisk (*) symbol before the pointer variable name. The syntax for

declaring a pointer to a specific data type is:

datatype *pointerName;

Here, datatype specifies the type of data that the pointer will point to (e.g., int, double, char), and pointerName is

the name of the pointer variable.

For example, to declare a pointer to an integer (int):

int *ptr; // Declares a pointer to an integer
78

The pointer ptr can now hold the memory address of an integer variable.

Pointer Arithmetic Operations:

Pointer arithmetic allows you to perform arithmetic operations on pointers to manipulate memory addresses. This

is particularly useful when iterating through arrays or dynamically allocated memory blocks.

1. Incrementing Pointers:

Pointers in C++ are variables that store memory addresses rather than values directly. They provide a way to
232323

One of the fundamental operations with pointers is dereferencing, which is done using the asterisk (*) operator.

addresses are manipulated directly.

Incrementing a pointer moves it to point to the next memory location of its data type. The increment operation
2424

depends on the size of the data type the pointer is pointing to.

Decrementing Pointers:

Decrementing a pointer moves it to point to the previous memory location of its data type.

Pointer arithmetic also allows addition and subtraction of integers to/from pointers, which moves the pointer by a

certain number of elements, scaled by the size of the data type it points to. Care must be taken with pointer

Pointer Indirection (Dereferencing):

Pointer indirection, also known as dereferencing, refers to the process of accessing the value stored at the memory

address held by a pointer. It is denoted by the asterisk (*) operator placed before the pointer variable name.

In this example, ptr++ increments the pointer ptr to point to the next integer in the array arr.

Here, ptr-- decrements the pointer ptr to point to the previous integer in the array arr.

arithmetic to ensure that pointers remain within valid memory bounds to avoid undefined behavior.

Dereferencing a pointer allows you to manipulate the data stored in the memory location pointed to by the pointer.

In this example, *ptr = 20; assigns the value 20 to the memory location pointed to by ptr, effectively updating the

value of num.

Null Pointers and Void Pointers:

 Null Pointers: A null pointer is a pointer that does not point to any memory location. It is initialized

explicitly to a null value (nullptr) or implicitly when not initialized at all. Null pointers are often used to
232323

indicate that a pointer does not currently point to a valid object or memory location.

int *ptr = nullptr; // Initializing ptr as a null pointer

 Void Pointers: A void pointer (or void*) is a special type of pointer that can point to objects of any data

type. It is used when the specific type of data pointed to is not known at compile time or when dealing

with functions that accept pointers to any type. However, you cannot directly dereference a void pointer

without first casting it to a specific pointer type.

Pointers and Arrays (Relationship between Pointers and Arrays):

In C++, arrays and pointers are closely related concepts due to the way arrays are implemented. An array name

can be used as a pointer to its first element. When an array name is used in an expression, it is automatically
232323

converted to a pointer to the first element of the array.

In this example, ptr is initialized to point to arr[0], the first element of the array arr. Using pointer

interchangeable in many contexts, making pointers an essential tool for efficiently manipulating arrays

in C++.

2.4 Sparse Matrices

Sparse matrices are matrices where the majority of elements are zero. In contrast, dense matrices have mostly

non-zero elements. The sparsity of a matrix refers to the proportion of zero elements to the total number of

elements. Sparse matrices are commonly encountered in various fields, including scientific computing, data

mining, and machine learning, where they help optimize storage and computation.

1. Triplet Representation (COO - Coordinate Format):

o In this representation, each non-zero element is stored with its row and column indices and its

value.

o Example: If a matrix M has non-zero elements at (0, 1), (1, 2), and (2, 0), it would be represented

as:

o

o

Pros: Simple and easy to understand. Suitable for matrices with irregular non-zero patterns.

Cons: Requires additional space for storing row and column indices.

2. Compressed Sparse Row (CSR) Format:

 In CSR format, the matrix is represented using three arrays:

o

o Column indices array: Stores the column indices corresponding to each non-zero element

o

 Example: For a matrix with rows [0, 0, 2, 3] and column indices [1, 3, 1, 2], CSR format would be:

arithmetic (ptr + i), you can access successive elements of the array. Thus, arrays and pointers are

Representation Techniques:

Values array: Contains non-zero elements of the matrix in row-major order.

in the values array.

Row pointers array: Indicates the start index in the values array for each row.

o

o

Pros: Efficient for row-wise operations like addition and multiplication.

Cons: More complex to construct and maintain compared to COO format.

Operations on Sparse Matrices:

1. Addition:

o

o

Add two sparse matrices by adding corresponding non-zero elements.

Example: Adding two sparse matrices A and B involves adding elements at corresponding

positions where both matrices have non-zero elements.

2. Multiplication:

o Multiply two sparse matrices using appropriate algorithms such as the traditional algorithm or

the Strassen algorithm.

o Example: Multiplying two sparse matrices A and B involves multiplying rows of A with

columns of B, taking into account zero elements to optimize computation.

2.5 Polynomials

Polynomials are mathematical expressions consisting of variables and coefficients raised to non-negative integer

powers. They can be represented using arrays or linked lists, with each element storing a coefficient and an

exponent.

1. Array Representation:

o In this representation, an array stores coefficient where each index corresponds to the exponent

of the variable.

o Example: The polynomial 3x + 2x + x + 5 can be represented as an array [5, 1, 2, 3], where 3 2

index 0 corresponds to the constant term, index 1 to the linear term, and so on.

2. Linked List Representation:

o

o

Using a linked list, each node contains a coefficient and an exponent.

Example: The polynomial 3x + 2x + x + 5 can be represented as a linked list: 3 2

Operaꢀons on Polynomials:

1. Addition:

o

o

Add two polynomials by combining like terms (terms with the same exponent).

Example: Adding (3x2+2x+1)(3x^2 + 2x + 1)(3x2+2x+1) and (4x2+3x−2)(4x^2 + 3x -

2)(4x2+3x−2) results in 7x2+5x−17x^2 + 5x - 17x2+5x−1.

2. Multiplication:

o

o

Multiply two polynomials using distributive property and combining like terms.

Example: Multiplying (3x+2)(3x + 2)(3x+2) and (4x−1)(4x - 1)(4x−1) results in

12x2+5x−212x^2 + 5x - 212x2+5x−2.

Applications of Polynomials:

Polynomials find applications in various computational problems, including:

1. Curve Fitting and Interpolation: Polynomials are used to approximate and fit curves to data points,

facilitating trend analysis and predictive modeling in fields like statistics and engineering.

2. Signal Processing: In digital signal processing, polynomials are used to model and manipulate signals

for filtering, noise reduction, and compression.

3. Numerical Methods: Polynomial interpolation and approximation are fundamental in numerical

analysis for solving differential equations, optimization problems, and root finding algorithms.

4. Computer Graphics: Polynomials are used extensively in computer graphics to represent curves and

surfaces, enabling realistic rendering and animation in applications such as gaming and simulation.

5. Error Detection and Correction: Error-correcting codes and algorithms in communication systems rely

on polynomials for encoding and decoding information, ensuring reliable data transmission.

2.6 Representation of Arrays

Arrays are fundamental data structures that store elements of the same data type in contiguous memory locations.

How elements are stored in memory can significantly impact access patterns and performance, especially in large

datasets.

1. Row-Major Representation:

o

o

o

Definition: In row-major representation, elements of a multidimensional array are stored row

Memory Layout: If you have a 2D array A[m][n], the elements are stored sequentially such

that all elements of row 0 are followed by all elements of row 1, and so forth.

Access Pattern: Accessing elements is optimized for row-wise traversal. For example,

2. Column-Major Representation:

o

o

o

Definition: In column-major representation, elements of a multidimensional array are stored

Memory Layout: Similar to row-major but stored column-wise. Elements of column 0 are

followed by elements of column 1, and so on.

Access Pattern: Accessing elements is optimized for column-wise traversal. For example,

Differences between Row-Major and Column-Major Order:

1. Memory Storage Order:

o

o

2. Traversal Efficiency:

o

o

Row-Major: Optimized for row-wise traversal due to contiguous memory access.

Column-Major: Optimized for column-wise traversal for the same reason.

3. Access Patterns:

o

o

Row-Major: Accessing adjacent elements within the same row is efficient.

Column-Major: Accessing adjacent elements within the same column is efficient.

Advantages and Disadvantages:

1. Row-Major:

o Advantages:

. Efficient for row-wise operations such as matrix addition, subtraction, and

multiplication.

. Suitable for applications where row-oriented access patterns dominate, such as image

processing and linear algebra operations.

by row in memory.

accessing A[i][j] is efficient because the next element A[i][j+1] is adjacent in memory.

column by column in memory.

accessing A[i][j] is efficient because the next element A[i+1][j] is adjacent in memory.

Row-Major: Elements of each row are stored contiguously in memory.

Column-Major: Elements of each column are stored contiguously in memory.

o Disadvantages:

. Less efficient for column-wise operations, which may result in cache misses and

reduced performance.

. Not optimal for applications requiring frequent column-oriented data access.

2. Column-Major:

o Advantages:

. Efficient for column-oriented operations like transposition and certain types of matrix

manipulations.

. Suitable for applications where column-wise access patterns are prevalent, such as

database queries and statistical analysis.

o Disadvantages:

. May lead to inefficiencies in row-wise access, especially in algorithms that heavily

depend on sequential row access.

. Limited utility in applications that primarily utilize row-wise data manipulation.

2.7 Applications of Arrays and Pointers

Arrays and pointers are fundamental concepts in C++ programming with diverse applications across various

domains. Here are some common applications where arrays and pointers play a crucial role:

1. Data Structures: Arrays are the building blocks for implementing fundamental data structures such as

lists, stacks, queues, and hash tables. For instance, dynamic arrays (using pointers) allow resizing based

on runtime needs, making them versatile for data storage and manipulation.

2. Dynamic Memory Allocation: Pointers are essential for dynamic memory allocation using operators

like new and delete. This capability is crucial when the size of data is not known at compile time or when
14141414

memory needs to be managed dynamically during program execution.

3. String Manipulation: In C++, strings are often represented as arrays of characters (char[]). Pointers to

characters (char*) are extensively used to manipulate and access individual characters within strings,

allowing for efficient string operations like concatenation, comparison, and parsing.

4. Function Parameters: Pointers are commonly used to pass parameters by reference to functions. This

and avoiding unnecessary copying of large data structures.

allows functions to modify variables outside their scope directly, facilitating efficient parameter passing

5. Multidimensional Arrays: Arrays of pointers or pointers to arrays enable the creation and manipulation

of multidimensional data structures. This flexibility is crucial for representing matrices, images, and other

complex data sets where data is organized in multiple dimensions.

6. Iterating and Accessing Data: Pointers provide a mechanism for efficient iteration over arrays and other

sequential data structures. Using pointer arithmetic, programmers can traverse arrays, access elements,

and perform operations without explicitly calculating indices, thereby improving performance in data-

intensive applications.

Passing Arrays to Functions (Arrays as Function Arguments):

array must be specified. However, using pointers allows passing arrays of varying sizes and enables the function

In this example, printArray accepts an array arr and its size as arguments. The main function passes myArray and

Returning Arrays from Functions:

C++ does not allow directly returning an entire array from a function. Instead, you can return a pointer to the first

element of the array or use dynamic memory allocation to return arrays of variable size.

Arrays can be passed to functions in C++ either directly or using pointers. When passed directly, the size of the

to modify the original array.

its size to printArray, which then prints each element of the array.

Here, createArray dynamically allocates an array of integers of size size, initializes it, and returns a pointer to the

first element. In main, newArray receives the returned pointer, allowing access to the elements of the dynamically

Dynamic Memory Allocation (Using new and delete):

Dynamic memory allocation in C++ is achieved using new and delete operators. new allocates memory

Arrays can also be allocated dynamically:

allocated array.

dynamically, while delete deallocates the memory allocated by new.

Dynamic Arrays (Arrays Allocated on the Heap):

Dynamic arrays in C++ are arrays whose size is determined at runtime using dynamic memory allocation. They

are allocated on the heap, allowing flexibility in size and lifetime compared to static arrays allocated on the stack.

Here, dynamicArray is allocated dynamically based on user input for size. It allows for efficient memory usage

and flexibility compared to fixed-size arrays.

2.8 Conclusion

In conclusion, arrays and pointers form integral components of C++ programming, offering powerful capabilities

in data management and memory manipulation. Arrays provide a structured way to store and access data elements

Understanding these concepts is essential for developing efficient algorithms, implementing data structures, and

optimizing program performance.

Throughout this exploration, we've highlighted how arrays allow for organized data storage and manipulation,

supporting various operations such as iteration and sorting. Pointers, on the other hand, offer flexibility by

facilitating direct memory access and dynamic memory allocation, crucial for handling large datasets and

implementing complex data structures.
14141414

sequentially, while pointers enable dynamic memory allocation and efficient memory management.

Moreover, the synergy between arrays and pointers extends to enhancing string manipulation, supporting function

parameter passing, and enabling advanced programming techniques. Mastery of these concepts equips

programmers with the tools needed to build scalable and robust software solutions in C++, ensuring efficient

Continued practice and exploration of these concepts will further strengthen programming skills and expand

capabilities in software development contexts.

2.9Questions and Answers

1. What is an array? How does it differ from a linked list?

Answer: An array is a contiguous block of memory elements where each element is of the same data type and

accessed using an index. It offers constant-time access to elements but has a fixed size. In contrast, a linked list is

a data structure where each element (node) contains a data field and a reference (pointer) to the next node. It

allows dynamic size and efficient insertion/deletion at any position but requires linear-time access.

2. Explain the concept of pointers in C/C++ and their significance in memory management.

Answer: Pointers in C/C++ are variables that store memory addresses of other variables. They enable direct access

to memory locations, facilitating dynamic memory allocation and manipulation of data structures like arrays and

linked lists. They are crucial for efficient memory management and are used extensively for tasks like passing

arguments to functions by reference and implementing data structures.

3. What are sparse matrices, and why are they used? Provide an example of their application.

Answer: Sparse matrices are matrices with a large number of elements that are zero. They are represented

efficiently using techniques like triplet representation (COO format) or compressed sparse row/column (CSR/CSC

formats). They are used to save memory and optimize operations in applications where most matrix elements are

zero, such as in finite element analysis, graph algorithms, and image processing.

and disadvantages?

Answer: In row-major order, elements of a 2D array are stored row-wise in memory, while in column-major order,

they are stored column-wise. Row-major order provides faster traversal of rows but slower traversal of columns,

whereas column-major order is efficient for column-wise operations but slower for rows. The choice depends on

the access pattern of the application and the underlying hardware architecture.

5. How are polynomials represented using arrays or linked lists? Describe an efficient way to perform

polynomial addition.

memory usage and effective data handling. In summary, arrays and pointers are foundational elements in C++

programming, empowering developers to tackle diverse programming challenges with precision and efficiency.

4. Compare the representation of arrays in row-major and column-major order. What are their advantages

Answer: Polynomials can be represented using arrays (coefficient array where index represents the exponent) or

linked lists (nodes containing coefficient and exponent fields). Polynomial addition involves iterating through

both polynomials and adding corresponding coefficients for each exponent. Efficient addition can be achieved by

remaining terms.

2.10 References











Stroustrup, Bjarne. "The C++ Programming Language." Addison-Wesley Professional, 2013.

Eckel, Bruce. "Thinking in C++." Prentice Hall, 2000.

Deitel, Paul, and Harvey Deitel. "C++ How to Program." Pearson, 2017.

"C++ Reference - cppreference.com." Available online at: https://en.cppreference.com/w/

"C++ Programming Tutorials - GeeksforGeeks." Available online at: https://www.geeksforgeeks.org/c-

plus-plus/

iterating through the arrays/lists simultaneously, combining terms with the same exponent, and appending

Unit – 3:

3.0 Introduction

3.1 Objectives

3.2 Lists

3.3 Abstract Data Type - List

3.4 Array Implementation of Lists

3.5 Linked Lists - Implementation

3.6 Doubly Linked Lists - Implementation

3.7 Circularly Linked Lists - Implementation

3.8 Skip List

3.9 Conclusion

3.10 Questions and Answers

3.11 References

3.0 Introduction

In the realm of computer science and software engineering, understanding and effectively utilizing data structures

are fundamental to building efficient and scalable applications. Among these structures, lists play a pivotal role

by offering a flexible means to store and manipulate collections of data elements in a linear sequence. This chapter

explores various facets of lists, ranging from their theoretical underpinnings to practical implementations using

different data structures.

Lists are versatile and can be implemented in multiple ways, each method offering unique advantages and

addressing specific operational needs. This chapter delves into the Abstract Data Type (ADT) of lists, which

provides a conceptual framework defining operations like insertion, deletion, and traversal. We explore how lists

can be implemented using arrays, linked lists—including singly linked, doubly linked, and circularly linked

variations—and delve into more advanced structures like skip lists.

Understanding these implementations is crucial for developers seeking to optimize data management strategies,

balance performance with memory efficiency, and adapt to diverse application requirements. By the end of this

chapter, readers will gain a comprehensive understanding of lists as a foundational data structure and how different

implementations cater to various computational challenges.

3.1 Objectives

After completing this unit, you will be able to understand,
5353







Understand the Concept of Lists: Define what lists are in the context of data structures, emphasizing

their linear sequence and operations.

Explore Abstract Data Type (ADT) of Lists: Introduce the ADT of lists, specifying its operations and

abstracting away implementation details.

Compare and Contrast Implementations: Compare different implementations of lists, including array-

based lists and various forms of linked lists (singly linked, doubly linked, circularly linked), highlighting

their advantages and disadvantages.





Discuss Efficiency Considerations: Analyze the efficiency of list operations such as insertion, deletion,

and search in different implementations, considering time complexity and memory usage.

Introduce Skip Lists: Introduce skip lists as a probabilistic data structure alternative to balanced trees,

explaining their structure, operations, and advantages.

3.2 Lists

A list is a linear data structure in C++ that illustrates an ordered group of elements. Every element in the list has
14141414

a unique location that determines whether it may be viewed, added, or deleted. There are several ways to

implement lists, but the most popular ones are linked lists and array-based lists. Contiguous memory regions are

used by array-based lists, which enables quick indexed access but necessitates resizing when the capacity is

reached. In contrast, linked lists are efficient for insertion and deletion operations at any location since they are

made up of nodes that each contain data and a pointer to the next node. However, accessing items of linked lists

is slower than with array-based lists. C++ lists are flexible and capable of managing homogeneous data types.

They can also dynamically modify their size to fit different data sizes. They are essential in many applications,

such as algorithm implementation and data management.

Characteristics of Lists

 Ordered Collection: The elements in a list are ordered, meaning each element has a specific position

(index) within the list.





Indexed Access: Elements can be accessed, inserted, or deleted based on their index.

Dynamic Size: Lists can grow and shrink in size dynamically, allowing elements to be added or removed.

 Homogeneous or Heterogeneous: Depending on the implementation and language, lists can contain

elements of the same type (homogeneous) or elements of different types (heterogeneous).

Operations on Lists (insertion, deletion, traversal)











Insertion: Adding an element to the list at a specific position.
5353

Deletion: Removing an element from the list based on its position or value.

Traversal: Accessing each element of the list, typically using loops or recursion.

Searching: Finding an element in the list based on its value.

Updating: Changing the value of an element at a specific position.

Insertion:

Algorithm for Insertion:

1. At the end:

o

o

o

2. At a specific position:

o

o Shift elements from the specified position to the right.

Insert the new element at the specified position. o

o

Code Example:

Deletion

Check if the array is full. If yes, resize the array.

Add the new element to the end of the array.
14141414

Increment the size of the array.

Check if the array is full. If yes, resize the array.

Increment the size of the array.

Algorithm for Deletion:

1. At the end:

o

2. At a specific position:

o

o

Shift elements from the specified position to the left.

Code Example:

Traversal

Algorithm for Traversal:

 Iterate over each element in the array and perform the desired operation.

Code Example:

Types of Lists (array-based, linked lists, skip lists)

Array-based Lists

Array-based lists, often implemented using arrays or vectors, store elements in contiguous memory locations. This

structure allows for O(1) time complexity for accessing elements by their index, making it ideal for applications
747474

requiring frequent random access. However, insertions and deletions, especially in the middle or beginning of the

list, are less efficient, typically O(n) due to the need to shift elements. Array-based lists are suitable for use cases

Singly Linked Lists

Simply decrement the size of the array.

Decrement the size of the array.

where the list size does not change frequently or can be resized dynamically, such as managing a list of fixed-size
202020202020

records or a collection of items that is primarily read-only.

A singly linked list consists of nodes, each containing data and a pointer to the next node. This structure provides

dynamic sizing and allows for efficient O(1) insertions and deletions at the beginning of the list. However,
545454

accessing elements requires O(n) time as it involves traversing the list sequentially from the head node. Singly

linked lists are advantageous in scenarios where frequent insertions and deletions are required, such as

implementing stacks, queues, or managing a dynamic collection of elements where the order of elements needs to

be maintained without frequent random access.

Doubly Linked Lists

Doubly linked lists enhance singly linked lists by having nodes that contain pointers to both the next and previous

nodes, enabling bidirectional traversal. This feature allows for efficient insertions and deletions at both ends and

they require additional memory for the extra pointer in each node. Doubly linked lists are useful in applications
202020202020

such as navigation systems where backward and forward traversal is needed, or in implementing complex data

structures like deques and certain types of caches.

Circular Linked Lists
34343434

Circular linked lists are a variation of linked lists where the last node points back to the first node, forming a

circle. This allows for continuous traversal of the list and can be implemented as either singly or doubly linked.

Circular linked lists are particularly useful in scenarios requiring cyclic iteration, such as in round-robin

scheduling or implementing a circular buffer. They provide the same benefits as their singly or doubly linked

counterparts, with the added advantage of naturally supporting circular traversal without additional checks.

Skip Lists

Skip lists are an advanced data structure that enhances linked lists with multiple levels of links, allowing for

efficient O(log n) search, insertion, and deletion operations. By using randomization, skip lists maintain a balanced

element in the skip list is part of multiple linked lists at different levels, with higher levels skipping over multiple

elements, thus speeding up the search process. Skip lists are ideal for applications requiring fast search times, such

as databases, in-memory data structures, and distributed systems.

3.3 Abstract Data Type - List

An Abstract Data Type (ADT) for a list is a conceptual model that defines a collection of elements organized in a
202020202020

linear sequence. It provides a clear interface specifying operations that can be performed on the list, without

specifying how these operations are implemented. Here’s an overview of the Abstract Data Type - List:
34343434

A list is an ordered collection of elements where each element has a specific position or index. Elements can be
26262626

of any data type, and the list can dynamically grow or shrink in size. Elements in a list are arranged in a linear

anywhere within the list with O(1) complexity, provided the node to be inserted or deleted is known. However,

structure probabilistically, providing performance similar to balanced trees but with simpler algorithms. Each

sequence, where each element (except possibly the first and last) has a unique predecessor and successor.

Operations Defined for List ADT

1. Insertion: Adds an element at a specified position in the list.

2. Deletion: Removes an element from a specified position in the list.

3. Access: Retrieves the element at a specified position in the list.

4. Traversal: Iterates through all elements in the list, typically from the beginning to the end.

5. Search: Finds the position of a specified element in the list, if it exists.

6. Size Management: Provides operations to determine the number of elements currently in the list.

7. Concatenation: Combines two lists into a single list.
202020202020

8. Sorting: Arranges elements in a specified order, such as ascending or descending.

Implementation Considerations

 Array-based Implementation: Uses a contiguous block of memory to store elements, allowing direct

access by index but requiring resizing operations for dynamic lists.

 Linked List Implementation: Utilizes nodes with pointers/references to connect elements, providing

flexibility in size and efficient insertion/deletion operations.

Usage and Applications

 Data Structures: Lists are fundamental in various data structures like stacks, queues, and priority

queues.

 Applications: Used in applications requiring dynamic data management, such as databases, text

processing, and simulations.

Example of List ADT Interface (Pseudocode)

ADT operations and their specifications

list of operations commonly associated with Abstract Data Types (ADTs) and their typical specifications. These

operations provide a standardized interface for interacting with data structures, ensuring consistency in behavior

while abstracting away implementation details:

1. Insertion (Insert): Adds an element to the data structure at a specified position or according to specific rules.

 Parameters:

o

o

position: Position where the element should be inserted.

element: The element to be inserted.

 Returns: true if insertion is successful, false otherwise (e.g., if position is out of bounds).

2. Deletion (Delete)







Description: Removes an element from the data structure at a specified position.

Parameters: position: Position of the element to be deleted.

Returns: true if deletion is successful, false otherwise (e.g., if position is out of bounds).

3. Access (Get): Retrieves the element from the data structure at a specified position without modifying the data

structure.





Parameters: position: Position of the element to retrieve.

Returns: The element at the specified position, or a specified default value or error indicator if position

is out of bounds.

4. Search (Find)







Description: Searches for a specified element within the data structure.

Returns: Position/index of the element if found, or a specified indicator (e.g., -1 or nullptr) if not found.

Advantages and disadvantages of using ADT List

Using an Abstract Data Type (ADT) List offers several advantages and disadvantages, depending on the specific

requirements and context of the application. Here’s a breakdown of the key advantages and disadvantages:

Advantages:

1. Flexibility: ADT List provides a flexible structure for storing and manipulating elements in a linear

sequence. It supports various operations such as insertion, deletion, access, and traversal, making it

versatile for different application needs.

Parameters: element: Element to search for.

2. Modularity: ADT List abstracts away the implementation details, allowing programmers to focus on the

interface and functionality of the data structure rather than low-level operations. This promotes modular

3. Ease of Use: The defined operations (insertion, deletion, etc.) provide a clear and standardized way to

interact with the data structure. This makes it easier for developers to understand and maintain the code.

4. Performance: Depending on the implementation (e.g., array-based or linked list-based), ADT List can

offer efficient performance characteristics for specific operations. For example, arrays provide O(1)

access time, while linked lists offer O(1) insertion/deletion time at the head/tail.

5. Scalability: ADT List implementations can scale well with the size of the data. Dynamic resizing (in

array-based lists) or node allocation (in linked lists) allows the list to grow or shrink as needed,

Disadvantages:

1. Memory Overhead: Some implementations of ADT List, especially linked lists, can incur memory

overhead due to storing additional pointers or references for linking elements. This overhead may affect

2. Access Time Complexity: Depending on the implementation, certain operations such as random access

(e.g., accessing elements by index in linked lists) may have higher time complexity (e.g., O(n) for linked

lists vs. O(1) for arrays). This can impact performance in applications requiring frequent random access.

3. Complexity of Operations: While ADT List abstracts implementation details, certain operations like

insertion or deletion in specific positions (e.g., middle of the list) can be complex and may require careful

handling of pointers/references (in linked lists) or resizing operations (in arrays).

4. Lack of Specificity: ADT List provides a general-purpose interface for lists but may not optimize

performance for specific use cases. Specialized data structures (e.g., queues, stacks, priority queues) may

offer more tailored solutions for particular application requirements.

5. Dependency on Implementation: The efficiency and characteristics of ADT List heavily depend on the

chosen implementation (e.g., array-based vs. linked list-based). Selecting the appropriate implementation

is crucial for achieving desired performance and memory usage goals.

3.4 Array Implementation of Lists

Array implementation of lists involves using a contiguous block of memory to store the elements of the list. In
202020202020

this structure, each element is stored in an indexed position, allowing for O (1) time complexity for access by
747474

index, which makes it efficient for random access operations. However, array-based lists require resizing when

the capacity is exceeded, which involves creating a new larger array and copying the elements from the old array

programming and enhances code reusability.

accommodating varying data sizes efficiently.

memory usage efficiency, particularly for large datasets.

beginning or in the middle of the list, are less efficient because they require shifting elements to maintain order,

straightforward implementation and efficient access times, making them suitable for applications where frequent

such as C++'s std::vector and Java's ArrayList.

Basics of array data structure
26262626

An array is a linear data structure consisting of a collection of elements (values or variables), each identified by

access to individual elements using their index.

Syntax

Declaration and Initialization

Arrays in C++ are declared using a fixed size and can be initialized with specific values at the time of declaration

Accessing Elements

Elements in an array are accessed using zero-based indexing.

Updating Elements

Individual elements of an array can be updated by assigning a new value to the corresponding index.
545454

Iterating Through an Array

Arrays are typically iterated using loops like for or while.

to the new one, an operation with O(n) time complexity. Additionally, insertions and deletions, especially at the

also with O(n) time complexity. Despite these limitations, array-based lists are widely used due to their

random access is needed and the list size doesn't change dramatically. Common examples include dynamic arrays

at least one index or key. Elements are typically stored in contiguous memory locations, allowing for efficient

or later.

Characteristics

 Fixed Size: Arrays have a fixed size defined at the time of declaration, which determines the maximum

number of elements they can store.





Homogeneous Elements: Arrays usually store elements of the same data type (e.g., integers, characters).
202020202020

Index-based Access: Elements in an array are accessed using numeric indices starting from 0 up to size-

1, providing O(1) time complexity for accessing an element by its index.



facilitates efficient traversal and sequential access.

Operations

 Access: Retrieve the value of an element at a specific index.



 Deletion: Remove an element from a specified position, often requiring elements to be shifted.

Update: Modify the value of an existing element at a specific index. 



Usage

Arrays are widely used in programming for various purposes:



 Implementing Other Data Structures: Serving as the underlying structure for more complex data

structures like stacks, queues, and hash tables.







Matrix Operations: Representing and manipulating matrices in mathematical computations and

algorithms.

Sorting and Searching: Arrays are essential for implementing sorting algorithms (e.g., bubble sort,

quicksort) and searching algorithms (e.g., binary search).

Buffering: Handling input/output operations and buffering data in applications.

Implementing a list using arrays

Contiguous Memory Allocation: Elements in an array are stored next to each other in memory, which

Insertion: Add an element at a specified position within the array.

Traversal: Iterate through all elements of the array sequentially.

Data Storage: Storing collections of data elements that need to be accessed efficiently.

Implementing a list (or a dynamic array-based list) using arrays involves creating a data structure that can

dynamically resize itself as elements are added or removed. Here’s a basic implementation of a list using arrays

in C++:

#include <iostream>
class ArrayList {
private:

int capacity; // Maximum capacity of the list
int size;
int* arr;

// Current number of elements in the list
26262626

// Pointer to the array storing elements
public:

// Constructor to initialize an empty list
34343434

ArrayList(int capacity) {
this->capacity = capacity;
this->size = 0;
this->arr = new int[capacity];

}
// Destructor to free memory allocated to the array
~ArrayList() {

delete[] arr;
}
// Function to insert an element at the end of the list

545454

void insert(int value) {
if (size < capacity) {

arr[size++] = value;
} else {

std::cout << "List is full. Cannot insert." << std::endl;
}

}
// Function to remove an element from the list at a specific index

26262626
void remove(int index) {

if (index < 0 || index >= size) {
std::cout << "Invalid index. Cannot remove." << std::endl;

} else {
for (int i = index; i < size - 1; ++i) {

arr[i] = arr[i + 1];
}
size--;

}
}
// Function to get the size of the list (number of elements)
int getSize() {

return size;
}
// Function to print all elements in the list
void print() {

std::cout << "List elements:";
for (int i = 0; i < size; ++i) {

std::cout << " " << arr[i];
}
std::cout << std::endl;

}
};
// Example usage of the ArrayList class
int main() {

// Create an ArrayList with initial capacity of 5
ArrayList list(5);
// Insert elements into the list
list.insert(10);

list.insert(20);
list.insert(30);
// Print current elements in the list
list.print(); // Output: List elements: 10 20 30
// Remove an element from the list
list.remove(1); // Removes element at index 1 (20)
// Print updated list
list.print(); // Output: List elements: 10 30
return 0;

}

Efficiency considerations (time and space complexity)

When implementing a list using arrays, efficiency considerations revolve around several key aspects that impact

the performance and usability of the data structure:

1. Dynamic Resizing

Arrays have a fixed size once allocated, which necessitates careful handling when the number of elements exceeds

 Doubling the Array Size: When the array reaches capacity, allocate a new array of double the current

typically resulting in O(1) average time complexity for insertions.

 Shrinking the Array: When the number of elements decreases significantly, consider resizing the array

2. Insertion and Deletion

Efficient insertion and deletion operations are critical for list implementations using arrays:

 Insertion:

o

o

End of List: O(1) average time complexity if space is available.

Middle of List: O(n) time complexity due to shifting elements after the insertion point.

 Deletion:

o

o

End of List: O(1) time complexity for removing the last element.

Middle of List: O(n) time complexity due to shifting elements after the deletion point.

3. Access and Search

Arrays offer O(1) time complexity for accessing elements by index, which is advantageous for random access:
747474

 Ensure indices are within bounds to prevent out-of-bound errors, which can lead to runtime issues.

4. Memory Management

Efficient memory management practices include:

the initial capacity. Dynamic resizing strategies involve:

size, copy existing elements, and deallocate the old array. This strategy amortizes the cost of resizing,

to save memory, though this operation may be less frequent.





Allocating Memory: Allocate sufficient memory initially based on expected usage to minimize frequent

resizing.

Deallocating Memory: Properly deallocate memory when elements are removed or when the list is

destroyed to prevent memory leaks.

5. Trade-offs with Other Data Structures

Consider trade-offs between array-based lists and other data structures like linked lists:

 Arrays vs. Linked Lists: Arrays offer efficient random access but can be inefficient for frequent

insertions/deletions in the middle. Linked lists excel in dynamic resizing and efficient insertions/deletions

but may consume more memory due to node overhead.

6. Amortized Analysis

Use amortized analysis to evaluate the average time complexity of operations over a series of operations rather

than individual ones, especially for resizing operations in dynamic arrays.

Example Considerations

In the context of the previously discussed ArrayList implementation:







Insertions: Efficient at the end (O(1)), less efficient in the middle (O(n)).

Deletions: Efficient at the end (O(1)), less efficient in the middle (O(n)).

operations.

3.5 Linked Lists - Implementation

Implementing linked lists involves defining the structure of nodes and operations to manipulate these nodes.

Linked lists are composed of nodes where each node contains data and a pointer/reference to the next node in the
34343434

sequence. Here's a basic outline of how linked lists can be implemented in C++:

Node Structure

First, define a structure for the nodes of the linked list:

Resizing: Occurs infrequently due to doubling strategy, amortizing the cost of resizing over multiple

Types of linked lists (singly linked, doubly linked, circularly linked)

Linked lists are versatile data structures that come in several types, each offering unique advantages for different

applications. Here’s an overview of the types of linked lists—singly linked, doubly linked, and circularly linked—

and their operations with algorithms:

1. Singly Linked List
515151

In a singly linked list, each node contains data and a pointer/reference to the next node in the sequence. It only
777777777 27272727

allows traversal in one direction—from the head to the last node.

Operations:

 Insertion at the Beginning (insertFront):

o

o

o

Create a new node with the given data.
777777777

Point the new node's next to the current head.

Update head to point to the new node.

 Insertion at the End (insertBack):

o

o

o

Traverse the list to find the last node.

Point the last node's next to the new node.

Create a new node with the given data and set its next to nullptr.



o

o

o

Traverse the list to find the node with the given value and its predecessor.

Update the predecessor node's next to skip the node to be deleted.

Comparisons with array-based lists

Array-based Lists Linked Lists

Memory Allocate contiguous memory block, Memory Allocation: Nodes dynamically

typically resizing when capacity is allocated as needed, supporting efficient Allocation

exceeded. memory usage.

Deletion by Value (deleteNode):

Delete the node and free memory.

Memory Usage May allocate more memory than needed Overhead due to storing pointers/references

due to pre-allocation or resizing for linking nodes.

strategies.

Insertions and

Deletions

Insertions: Efficient at the end with Insertions: Efficient at both ends (O(1) for

amortized constant time complexity head/tail), and efficient in the middle with

(O(1)), but inefficient in the middle due to direct node manipulation (O(1) given node

shifting elements (O(n)). reference).

Deletions: Similar to insertions, O(n) in Deletions: Efficient with direct node access

worst-case for deletions in the middle. (O(1) given node reference), but O(n) for

searching node to delete.

Random Access O(1) time complexity for accessing O(n) time complexity for accessing elements

elements by index, due to contiguous by index, requiring traversal from the head to
777777777

memory allocation. the desired index.

Space Efficient in terms of space utilization May consume more memory due to node

when the list is nearly full due to overhead (next/prev pointers), especially for Efficiency

contiguous allocation.

Implementation Simple to implement and understand, More complex due to pointer manipulation,

Complexity with direct indexing and straightforward requiring careful management of node

operations. connections and potential for memory leaks.

small data sizes.

3.6 Doubly Linked Lists - Implementation

A doubly linked list extends the singly linked list by each node containing an additional pointer/reference to the

previous node, allowing bidirectional traversal.

Operations:

 Insertion at the Beginning (insertFront):

o

o

o

o

Create a new node with the given data.

Update the prev of the current head to point to the new node.

Update head to point to the new node.

Set its next to the current head and its prev to nullptr.

Insertion at the End (insertBack):

 Similar to singly linked list, but also update the prev of the new node to point to the current last node.
27272727

Deletion by Value (deleteNode):







Traverse the list to find the node with the given value.

Update the next of the predecessor node and the prev of the successor node to skip the node to be deleted.
777777777

Delete the node and free memory.

Advantages over singly linked lists

Doubly linked lists offer several advantages over singly linked lists, primarily due to their ability to support

bidirectional traversal and more flexible node manipulation. Here are the key advantages of doubly linked lists

over singly linked lists:

1. Bidirectional Traversal

In a doubly linked list, each node maintains pointers to both its previous and next nodes. This bidirectional linkage
60606060

allows traversal in both directions—from head to tail and from tail to head. This feature enables efficient

operations that require accessing nodes in reverse order, which is not possible or efficient with singly linked lists.

2. Easy Deletion of Nodes

Deleting a node in a doubly linked list is more straightforward compared to a singly linked list:
4949





Singly Linked List: To delete a node, you typically need to traverse the list to find the node and modify

its previous node's next pointer to skip over the node to be deleted. This requires knowing the previous
777777777

node, which may involve an additional traversal.

Doubly Linked List: In contrast, a doubly linked list allows direct access to both the previous and next
27272727

nodes of any given node. Thus, deleting a node involves simply adjusting the next and prev pointers of

its adjacent nodes, without needing to traverse the list again to find the previous node.

3. Insertions and Deletions at Both Ends

Doubly linked lists support efficient insertions and deletions at both the head and tail of the list:
777777777

 Insertion at the Head: In a doubly linked list, inserting a node at the head involves updating the next
60606060 515151

pointer of the new node to point to the current head, updating the prev pointer of the current head (if it

exists), and updating the head pointer to the new node. This operation is O(1) constant time complexity.

 Insertion at the Tail: Similarly, inserting a node at the tail of a doubly linked list is efficient. It involves
60606060

updating the next pointer of the current last node to point to the new node, updating the prev pointer of
515151 777777777

the new node to point to the current last node, and updating the tail pointer (if maintained) to the new

3.7 Circularly Linked Lists - Implementation

In a circularly linked list, the last node points back to the first node, forming a circular loop. This structure allows

for continuous traversal.

Operations:

 Insertion at the Beginning (insertFront):

o Similar to singly linked list insertion at the beginning, but handle the circular link by pointing
4949

the last node's next to the new node.

Insertion at the End (insertBack):

Traverse to find the last node and update its next to point to the new node.
777777777



node. This operation is also O(1) constant time complexity.

Deletion by Value (deleteNode):







Traverse the list to find the node with the given value and its predecessor.

Update the predecessor node's next to skip the node to be deleted.

Handle circular links to maintain integrity.

Applications where circular lists are useful

ircular lists, also known as circularly linked lists, find applications in various scenarios where cyclic or continuous

access patterns are advantageous. Here are some notable applications where circular lists are useful:

1. Circular Buffers or Ring Buffers

Circular lists are commonly used to implement circular buffers, also known as ring buffers or cyclic buffers. These

buffers are fixed-size arrays managed as circular lists, where elements wrap around upon reaching the end of the
27272727

buffer. Key applications include:

 Data Streaming: In real-time data processing or streaming applications, circular buffers efficiently

manage continuous data flow, such as audio or video streams, without needing to resize or shift data.

 Embedded Systems: Circular buffers are extensively used in embedded systems for managing data

between different parts of a system, where efficient memory management and predictable behavior are

crucial.

2. Round-Robin Scheduling

In operating systems and task scheduling algorithms, circular lists facilitate round-robin scheduling, where tasks

are scheduled in a circular sequence. Each task gets a predefined time slice before the scheduler moves to the next

task in the sequence. This approach ensures fair allocation of CPU time among multiple tasks.

 CPU Scheduling: In multitasking environments, round-robin scheduling using circular lists ensures that

all processes receive an equal share of CPU time, promoting fairness and preventing starvation.

3. Managing Circular Lists of Objects

Circular lists are also useful in managing cyclic relationships or sequences of objects that naturally form a loop:

 Game Development: In game development, circular lists can manage objects or entities that move in a

continuous loop, such as a game world where characters or objects wrap around the screen.

 Data Structures: Circular lists are employed in implementing data structures like circular queues, which

efficiently manage data in applications such as event handling or task processing where data needs to be

processed in a continuous loop.

4. Navigation and Routing Algorithms

In geographical applications and routing algorithms, circular lists can represent circular paths or continuous

routes:

 Navigation Systems: Circular lists are used to represent circular routes or paths in navigation systems,

where routes wrap around to the starting point.

 Network Routing: In network protocols and algorithms, circular lists can represent circular paths in data

packet routing, ensuring packets are forwarded in a loop until reaching their destination or timing out.

5. Resource Management and Allocation

Circular lists are also utilized in resource management and allocation scenarios:

 Memory Management: Circular lists can manage memory allocation in memory pools or memory

caches, where memory blocks are reused in a continuous loop to optimize memory usage and access.

 Resource Allocation: In resource allocation algorithms, circular lists can manage the allocation and
777777777

deallocation of resources, ensuring efficient utilization and recycling of resources in a cyclic manner.

3.8 Skip List

Skip lists are a data structure that combines the advantages of linked lists with probabilistic balancing, allowing

for fast search, insertion, and deletion operations. They are particularly useful in scenarios where balanced trees

(like AVL trees or red-black trees) might be too complex or where dynamic data structures with efficient average-

case performance are required. Here’s an overview of skip lists, their structure, operations, and applications:

Structure of Skip Lists

 Layers: Skip lists are composed of multiple layers (or levels), where each level is essentially a linked

 Skip Pointers: Nodes at each level have pointers that may skip over several elements in the list. Higher

levels have fewer nodes, with each node skipping more elements, effectively speeding up search

operations.

 Header and Sentinel Nodes: Skip lists typically include header nodes at each level to simplify boundary

conditions and sentinel nodes (often nullptr or an infinite node) at the end of each list.

Operations on Skip Lists







Search: Skip lists support efficient search operations, similar to binary search trees but without requiring

strict balance conditions. Starting from the top level, skip pointers are used to quickly narrow down the

search range.

Insertion: To insert an element, determine the insertion point using search. Randomly decide the level

of the new node (higher levels are less probable), and update skip pointers at each level accordingly to

maintain the list’s structure.

Deletion: Deleting an element involves updating skip pointers to bypass the node to be deleted at each

level. This operation requires careful adjustment to maintain the skip list’s properties.

Advantages of Skip Lists

 Average-Case Performance: Skip lists offer average-case O(log n) time complexity for search,
60606060

insertion, and deletion operations, similar to balanced binary search trees but with simpler maintenance

requirements.





Simplicity: Compared to balanced trees, skip lists are easier to implement and manage. They do not

require rebalancing operations, making them more suitable for dynamic datasets with frequent updates.

operations are critical, such as database indexing, priority queues, and probabilistic data structures.

Applications of Skip Lists

list. The bottom level (level 0) contains all elements in sorted order.

Versatility: Skip lists can be adapted for various applications where efficient search and insertion







Database Indexing: Skip lists are used in databases to speed up search operations, providing efficient
9999999999

indexing structures for large datasets.

Concurrency Control: In concurrent programming, skip lists can be adapted for lock-free data

structures, enabling efficient and scalable access to shared resources.

Priority Queues: Skip lists can serve as the basis for priority queues, where elements are dynamically

prioritized based on their keys or values.

3.9 Conclusion

In conclusion, the study of lists as fundamental data structures reveals their indispensable role in computer science

and software engineering. Lists, characterized by their linear arrangement of elements, provide a versatile

framework for organizing and manipulating data in a sequential manner. Throughout this chapter, we have

explored various implementations and aspects of lists, starting with their conceptual underpinnings as the Abstract

Data Type (ADT) of lists. This foundational understanding paved the way for delving into practical

implementations such as array-based lists, which offer direct access but require careful management of memory

and resizing, and linked lists, including singly linked, doubly linked, and circularly linked variations, each suited

to different operational needs and efficiency considerations.

search, insertion, and deletion operations. By comparing these implementations, we have underscored how

different design choices impact performance metrics like time complexity and memory usage, crucial for

optimizing data-intensive applications. Practical examples across databases, scheduling algorithms, and more

illustrate the versatility and real-world applicability of lists. Mastery of these structures equips developers with

the tools to design efficient, scalable solutions tailored to diverse computational challenges, ensuring robust

performance and adaptability in software systems.

In essence, lists remain pivotal in both theoretical foundations and practical applications within the realm of data

structures. Their continual evolution and adaptation underscore their enduring relevance in modern computing,

promising continued exploration and innovation in leveraging lists for optimal data management and

3.10 Questions and Answers

Q1: What is the main difference between an array-based list and a linked list?

Answer: The main difference lies in how they store and access elements.

Additionally, skip lists emerged as a notable alternative, leveraging probabilistic techniques to provide efficient

computational efficiency.





Array-based lists store elements in contiguous memory locations, allowing for fast random access using
252525252525

Linked lists, on the other hand, use nodes with pointers to link elements, which allows for efficient

insertion and deletion operations but does not support direct indexing. Each type has its advantages based

on the specific application needs for access and modification operations.

Q2: Why would you choose a doubly linked list over a singly linked list?

Answer: Doubly linked lists offer bidirectional traversal capabilities compared to singly linked lists, which only

support forward traversal. This bidirectional feature allows for efficient backward traversal and easier node

deletion operations as each node maintains references to both its previous and next nodes. However, doubly linked
636363

lists require more memory due to storing an additional pointer for each node, and they are more complex to
9999999999

implement and maintain than singly linked lists.

Q3: What are skip lists, and what advantages do they offer over traditional balanced trees?

Answer: Skip lists are probabilistic data structures that provide efficient search, insertion, and deletion operations

similar to balanced trees (e.g., AVL trees, red-black trees) but with simpler implementation and maintenance

requirements. They achieve this by linking elements across multiple levels, where each level represents a

progressively sparser subset of the elements. Skip lists offer average-case O(log n) time complexity for search,

insertion, and deletion operations, making them suitable for applications where maintaining balanced trees would

Q4: In what scenarios would you prefer using a circularly linked list?

Answer: Circularly linked lists are particularly useful in scenarios where data elements need to be processed in a
9999999999

continuous loop or cycle. Examples include:

 Round-robin scheduling: Managing tasks or processes in a cyclic manner, ensuring fair allocation of

resources over time.

 Buffer management: Implementing circular buffers or queues where elements wrap around once the

end of the buffer is reached, useful in data streaming and real-time processing applications.

Q5: How can lists be used in database management systems?

Answer: Lists play a crucial role in database management systems for storing and managing collections of records

or entries:





Indexing: Lists can serve as index structures, facilitating fast access to records based on indexed keys.

Sorting and querying: Lists enable efficient sorting and querying operations, essential for optimizing

database queries and data retrieval processes.

 Transaction management: Lists can be used to manage transaction logs or sequences of operations,

ensuring data consistency and reliability in transactional processing.

indices. However, resizing an array can be costly, especially if it exceeds its allocated capacity.

be overly complex or unnecessary.

3.11 References

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.).

MIT Press.







 Mehta, D., & Sahni, S. (2007). Data Structures, Algorithms, & Applications in C++ (2nd ed.). Silicon

Press.

 Lafore, R. (2002). Data Structures and Algorithms in Java (2nd ed.). Sams Publishing.

Goodrich, M. T., & Tamassia, R. (2012). Data Structures and Algorithms in Java (6th ed.). Wiley.
9999999999

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley.

Brass, P. (2008). Advanced Data Structures. Cambridge University Press.

Unit – 4:

4.0 Introduction

4.1 Objectives

4.2 Introduction to Stacks

4.3 Operations on Stacks (Push, Pop, Peek)

4.4 Implementation of Stack using Arrays

4.5 Implementation of Stack using Linked Lists

4.6 Algorithmic Implementation of Multiple Stacks

4.7 Conclusion

4.8 Questions and Answers

4.9 References

4.0 Introduction

In the realm of computer science and software engineering, stacks represent a pivotal concept deeply ingrained in

the fabric of efficient data management and algorithm design. A stack operates on the principle of Last In, First

Out (LIFO), where elements are added and removed from one end, known as the top. This characteristic makes

stacks particularly suited for scenarios where strict ordering of operations is essential, such as function call
252525252525

management, expression evaluation, and backtracking algorithms. By adhering to the LIFO principle, stacks

ensure that the most recent operation or data element processed is the first one to be reversed or retrieved,
9999999999

facilitating streamlined and predictable control flow in software systems.

element to the top of the stack, pop removes and returns the top element, and peek retrieves the top element

without removing it. These operations are typically executed in constant time, O(1), regardless of the size of the

stack, ensuring efficiency in both time and space. This efficiency is crucial in applications where rapid access to

and manipulation of data is paramount, such as in real-time systems, interactive applications, and embedded

computing environments.

Block II: Stacks, Queues and Trees

The core operations on a stack—push, pop, and peek—form the cornerstone of its functionality. Pushing adds an
252525252525

Implementing stacks can be achieved using various underlying data structures, most commonly arrays and linked

lists. Each approach offers distinct advantages: array-based stacks provide direct access to elements but are limited

by fixed sizes, while linked list-based stacks offer dynamic memory management but may incur overhead due to

pointer operations. Understanding these implementations and their trade-offs is essential for choosing the most

suitable approach based on specific application requirements and constraints. Overall, stacks embody a

foundational concept in computer science, driving innovation and efficiency across diverse fields by enabling

structured and efficient data handling in software systems.

4.1 Objectives

After completing this unit, you will be able to understand,







Understand Stack Fundamentals: Gain a comprehensive understanding of the stack data structure,

including its characteristics, operations, and the Last In, First Out (LIFO) principle.

Explore Stack Operations: Learn how to perform fundamental stack operations such as push, pop, and

peek. Understand their functionalities, complexities, and applications in real-world scenarios.

Compare Implementation Methods: Compare and contrast different implementations of stacks using

arrays and linked lists. Evaluate the advantages, disadvantages, and optimal use cases for each

implementation approach.





Implement Multiple Stacks: Explore advanced stack concepts by learning how to implement and

manage multiple stacks within a single array or memory block. Understand the benefits and challenges

of dynamic stack management.

Analyze Efficiency Considerations: Evaluate the efficiency of stack operations and implementations,
9999999999

development.

4.2 Introduction to Stacks

A stack is a fundamental data structure in computer science, known for its simplicity and versatility in managing

data. It operates on the principle of Last In, First Out (LIFO), meaning that the last element added to the stack is

the first one to be removed. This characteristic makes stacks ideal for scenarios where the order of operations

must be strictly controlled.

Last In, First Out (LIFO) principle:

The Last In, First Out (LIFO) principle is a core concept in the stack data structure, which dictates the order in

which elements are accessed and removed. According to this principle, the most recently added element is the
252525252525 9999999999

considering factors such as time complexity, space complexity, and practical considerations in software

first one to be removed. This behavior is analogous to a stack of plates where you can only add or remove the top

plate.

How LIFO Works

 Push Operation: When an element is added to the stack, it is "pushed" onto the top of the stack. This
636363

element becomes the most recent addition and the first candidate for removal.

 Pop Operation: When an element needs to be removed from the stack, it is "popped" from the top of the
9999999999

stack. Since only the top element can be removed, this ensures that the most recent addition is the first

to be removed.

Illustrative Example

Consider a stack of books:

2. You place Book A on the stack (push operation). Now, Book A is at the top.

3. You then place Book B on the stack (push operation). Book B is now at the top, with Book A underneath

it.

4. Next, you place Book C on the stack (push operation). Book C is at the top, with Book B and Book A

If you now remove a book from the stack (pop operation), Book C, the last one added, will be removed first. The

stack now has Book B at the top. If you perform another pop operation, Book B will be removed next, leaving

Book A as the topmost element.

Characteristics of Stacks

1. LIFO Principle: The most recent addition is the first to be removed, akin to a stack of plates where you

can only take the top plate off.

2. Dynamic Size: Depending on the implementation, the size of the stack can grow or shrink dynamically

as elements are added or removed.

3. Restricted Access: Elements can only be added (pushed) or removed (popped) from one end of the

structure, referred to as the top of the stack.
636363

Basic Operations

1. Push: Adds an element to the top of the stack.
252525252525

2. Pop: Removes the element from the top of the stack.
9999999999

3. Peek/Top: Returns the element at the top of the stack without removing it.

1. Initially, the stack is empty.

below it in that order.

4. IsEmpty: Checks if the stack is empty.

5. IsFull: Checks if the stack has reached its capacity (relevant for array-based implementations).

Real-world Analogies

The stack data structure mirrors many real-world scenarios:

 Plate Dispenser: Imagine a spring-loaded plate dispenser in a cafeteria. Plates are added on top, and the
252525252525

last plate added is the first to be taken off.

 Browser History: When navigating web pages, the browser stores the visited pages in a stack. The back

button removes (pops) the last visited page from the stack and displays it.

Applications of Stacks

Stacks are widely used in various applications across computer science and programming:

1. Expression Evaluation and Syntax Parsing: Stacks are used to evaluate arithmetic expressions, convert

infix expressions to postfix, and check for balanced parentheses in expressions.

2. Function Call Management: In programming languages, the call stack keeps track of function calls,

enabling proper return from functions and managing recursive calls.

3. Undo Mechanism: Applications like text editors use stacks to keep track of changes, allowing users to

undo recent actions.

4.3 Operations on Stacks (Push, Pop, Peek)

Push Operation

The push operation adds an element to the top of the stack.

Algorithm:

1. Check if the stack is full. If full, print an overflow message and exit.
9999999999

2. If not full, increment the top index.

3. Add the element at the new top index.

Pop Operation

The pop operation removes the element from the top of the stack.

Algorithm:

C++ Implementation:

1. Check if the stack is empty. If empty, print an underflow message and exit.

2. If not empty, return the element at the top index and decrement the top index.

Peek Operation

The peek operation returns the top element of the stack without removing it.

Algorithm:

C++ Implementation:

Utility Functions

isEmpty Function

isFull Function

Complete Implementation

Here's the complete implementation combining all the above methods:

1. Check if the stack is empty. If empty, print an empty stack message and exit.

2. If not empty, return the element at the top index.

#include <iostream>
using namespace std;
#define MAX 1000
class Stack {

int top;
public:

int arr[MAX]; // Maximum size of Stack
Stack() { top = -1; }
bool push(int x);
int pop();
int peek();
bool isEmpty();
bool isFull();

};
bool Stack::push(int x) {

if (top >= (MAX - 1)) {
cout << "Stack Overflow\n";
return false;

} else {
arr[++top] = x;
cout << x << " pushed into stack\n";
return true;

}
}
int Stack::pop() {

if (top < 0) {
cout << "Stack Underflow\n";
return 0;

} else {
int x = arr[top--];
return x;

}
}
int Stack::peek() {

if (top < 0) {
cout << "Stack is Empty\n";
return 0;

} else {
int x = arr[top];
return x;

}
}
bool Stack::isEmpty() {

return (top < 0);
}
bool Stack::isFull() {

return (top >= MAX - 1);
}
// Driver program to test above functions
int main() {

Stack s;
s.push(10);
s.push(20);
s.push(30);
cout << s.pop() << " Popped from stack\n";
cout << "Top element is " << s.peek() << endl;
cout << "Stack is empty: " << (s.isEmpty() ? "True" : "False") << endl;
return 0;

}

4.4 Implementation of Stack using Arrays

An array-based stack structure uses a fixed-size array to store stack elements. This implementation is

straightforward and efficient for managing stack operations, which include pushing elements onto the stack,
11111111

popping elements from the stack, and peeking at the top element.

Key Components of Array-based Stack

1. Array: A fixed-size array to store stack elements.

2. Top: An integer to keep track of the index of the top element in the stack. It is initialized to -1 to indicate

3. Capacity: A constant defining the maximum size of the stack.

Basic Operations

1. Push: Adds an element to the top of the stack.
1919191919

2. Pop: Removes and returns the element from the top of the stack.
11111111

3. Peek: Returns the top element without removing it.

5. isFull: Checks if the stack is full.

C++ Implementation

Here is the complete implementation of an array-based stack structure in C++:

#include <iostream>
using namespace std;
#define MAX 1000 // Define the maximum size of the stack
class Stack {

int top;
public:

int arr[MAX]; // Array to store stack elements
Stack() { top = -1; } // Constructor to initialize the stack
bool push(int x);
int pop();
int peek();
bool isEmpty();
bool isFull();

};
// Function to add an element to the stack
bool Stack::push(int x) {

if (top >= (MAX - 1)) {
cout << "Stack Overflow\n";
return false;

} else {
arr[++top] = x;
cout << x << " pushed into stack\n";
return true;

that the stack is initially empty.

4. isEmpty: Checks if the stack is empty.

}
}
// Function to remove an element from the stack
int Stack::pop() {

if (top < 0) {
cout << "Stack Underflow\n";
return 0;

} else {
int x = arr[top--];
return x;

}
}
// Function to get the top element of the stack without removing it
int Stack::peek() {

if (top < 0) {
cout << "Stack is Empty\n";
return 0; // or return an error code or throw an exception

} else {
int x = arr[top];
return x;

}
}
// Function to check if the stack is empty
bool Stack::isEmpty() {

return (top < 0);
}
// Function to check if the stack is full
bool Stack::isFull() {

return (top >= MAX - 1);
}
// Driver program to test above functions
int main() {

Stack s;
s.push(10);
s.push(20);
s.push(30);
cout << s.pop() << " Popped from stack\n";
cout << "Top element is " << s.peek() << endl;
cout << "Stack is empty: " << (s.isEmpty() ? "True" : "False") << endl;
cout << "Stack is full: " << (s.isFull() ? "True" : "False") << endl;
return 0;

}

Advantages and Disadvantages of Array-based Stack

Advantages:

1. Simplicity: Easy to implement and understand.

3. Memory Contiguity: Array-based stacks are stored in contiguous memory locations, which can lead to

better cache performance.

Disadvantages:

elements can be added without resizing.

2. Wasted Space: If the maximum size is much larger than the actual number of elements, memory may be

wasted.

2. Constant Time Operations: Push, pop, and peek operations have O(1) time complexity.

1. Fixed Size: The size of the stack is fixed at compile time, limiting flexibility. If the stack is full, no more

3. Stack Overflow: If too many elements are pushed onto the stack, it can cause stack overflow, which can

crash the program.

Handling dynamic resizing

Handling dynamic resizing of a stack implemented using arrays allows the stack to grow or shrink as needed,

avoiding the limitations of fixed-size arrays. Below is an enhanced implementation of a stack in C++ that supports

dynamic resizing.

Dynamic Resizing Stack Implementation

Key Enhancements

1. Dynamic Array: Instead of a fixed-size array, use a dynamic array (pointer) that can be resized.

2. Resize Function: A function to resize the array when the stack is full or when it is sparsely populated to

optimize memory usage.

4.5 Implementation of Stack using Linked Lists

A stack can be implemented using a linked list to provide a dynamic, flexible stack structure that can grow and

Key Components of Linked List-based Stack

1. Node: A structure representing each element in the stack, containing the data and a pointer to the next
1919191919

node.

2. Top: A pointer to the top node of the stack.

Basic Operations

1. Push: Adds an element to the top of the stack.

2. Pop: Removes and returns the element from the top of the stack.
11111111

3. Peek: Returns the top element without removing it.

C++ Implementation

Here is the complete implementation of a stack using linked lists in C++:

#include <iostream>
using namespace std;

3. Capacity Management: Maintain the current capacity of the array and resize it as necessary.

shrink as needed without the limitations of a fixed-size array.

4. isEmpty: Checks if the stack is empty.

// Define the structure of a node
struct Node {

int data;
Node* next;

};
class Stack {

Node* top; // Pointer to the top node
public:

Stack() { top = nullptr; } // Constructor to initialize the stack
void push(int x);
int pop();
int peek();
bool isEmpty();
void display(); // Utility function to display the stack elements

};
// Function to add an element to the stack
void Stack::push(int x) {

Node* newNode = new Node(); // Create a new node
if (!newNode) {

cout << "Heap Overflow\n";
return;

}
newNode->data = x;
newNode->next = top;
top = newNode;
cout << x << " pushed into stack\n";

}
// Function to remove an element from the stack
int Stack::pop() {

if (isEmpty()) {
cout << "Stack Underflow\n";
return 0; // or return an error code or throw an exception

} else {
Node* temp = top;
top = top->next;
int popped = temp->data;
delete temp;
return popped;

}
}
// Function to get the top element of the stack without removing it
int Stack::peek() {

if (!isEmpty()) {
return top->data;

} else {
cout << "Stack is Empty\n";
return 0; // or return an error code or throw an exception

}
}
// Function to check if the stack is empty
bool Stack::isEmpty() {

return top == nullptr;
}
// Utility function to display the stack elements
void Stack::display() {

if (isEmpty()) {
cout << "Stack is Empty\n";

} else {
Node* temp = top;
while (temp != nullptr) {

cout << temp->data << " ";
temp = temp->next;

}
cout << endl;

}
}
// Driver program to test above functions
int main() {

Stack s;
s.push(10);
s.push(20);
s.push(30);
s.display();
cout << s.pop() << " Popped from stack\n";
s.display();
cout << "Top element is " << s.peek() << endl;
cout << "Stack is empty: " << (s.isEmpty() ? "True" : "False") << endl;
return 0;

}

Advantages of Linked List-based Stack

2. No Wasted Space: Memory is allocated only when needed, avoiding the wasted space issue of fixed-

size arrays.

3. No Overflow: Unlike array-based stacks, a linked list-based stack does not overflow unless the system

Disadvantages

1. Memory Overhead: Each element requires additional memory for the pointer, which can be significant

if the stack contains many elements.

2. Non-contiguous Memory: Elements are not stored in contiguous memory locations, which can lead to

cache inefficiencies compared to array-based stacks.

4.6 Algorithmic Implementation of Multiple Stacks

In computer science and software engineering, the stack is a fundamental data structure that follows the Last In,
1919191919

First Out (LIFO) principle. This means that the most recently added element is the first one to be removed. Stacks

are widely used in various applications, including function call management, expression evaluation, and

backtracking algorithms. However, in certain scenarios, a single stack is not sufficient to handle multiple sets of

Multiple stacks involve managing several stack data structures within a single array or memory block. This

approach can optimize memory usage and improve the efficiency of algorithms that require simultaneous and

1. Dynamic Size: The stack can grow and shrink as needed, limited only by available memory.

runs out of memory.

data independently. This is where the concept of multiple stacks comes into play.

independent stack operations. By leveraging multiple stacks, one can avoid the overhead of maintaining separate

arrays for each stack, leading to more compact and manageable code.

There are two primary strategies for implementing multiple stacks:

1. Fixed Division: The array is divided into fixed-size sections, each allocated to a specific stack. This

2. Dynamic Division: The boundaries between stacks are adjusted dynamically based on the current usage
61

of each stack. This method is more complex but offers greater flexibility and efficient utilization of

In practical applications, multiple stacks are particularly useful in scenarios such as:







Memory Management: Managing multiple stack frames for different threads or processes in a

concurrent computing environment.

Resource Allocation: Keeping track of resource usage and availability in systems that need to handle

multiple independent tasks.

Algorithm Optimization: Implementing complex algorithms that require simultaneous traversal or

manipulation of multiple data sets.

Applications and scenarios where multiple stacks are useful

Multiple stacks are highly beneficial in various applications and scenarios where independent management of

multiple sets of data or operations is required. Here are some key areas where multiple stacks find significant

utility:

Applications and Scenarios

1. Expression Evaluation and Parsing: In compilers and interpreters, multiple stacks are used to handle

nested expressions, function calls, and operator precedence. Each stack can manage operands, operators,

expressions.

2. Function Call Management: In programming languages and runtime environments, multiple stacks are

employed to manage function calls and local variables. Each stack corresponds to a different function or

subroutine, ensuring proper execution flow and efficient memory allocation for local variables.

3. Backtracking Algorithms: Algorithms like depth-first search (DFS) and recursive backtracking often

require multiple stacks to manage state transitions and backtracking paths independently. Each stack

maintains a different path or state sequence, facilitating efficient exploration of solution spaces.

4. Memory Management in Operating Systems: Operating systems use multiple stacks to manage

execution contexts, interrupts, and system calls for different processes or threads. Each stack provides

isolated memory space and execution flow, ensuring security and efficient resource utilization.

method is straightforward but lacks flexibility, as it cannot adjust the size of individual stacks

dynamically.

memory.

and function call contexts independently, ensuring correct evaluation and parsing of complex

5. Undo/Redo Mechanisms in Applications: Applications with undo/redo functionalities often employ

multiple stacks to store previous states or actions. Each stack represents a history of user actions or

modifications, enabling seamless navigation and recovery of application states.

6. Simulation and Modelling: Simulation software and modelling tools utilize multiple stacks to manage

different simulation scenarios or model configurations. Each stack stores parameters, states, or simulation

connections, or database transactions benefit from multiple stacks to allocate and track resource usage

utilization and performance.

8. Algorithmic Optimization: Complex algorithms, including graph traversal, dynamic programming, and

state machines, often utilize multiple stacks to manage different states, paths, or data structures. Each

stack supports efficient traversal or manipulation of algorithmic data structures, enhancing algorithm

Advantages of Multiple Stacks









without interference.

Efficiency: Multiple stacks optimize memory usage and improve algorithm performance by isolating

Flexibility: Dynamic adjustment of stack boundaries (in dynamic division) provides flexibility in

managing varying sizes and requirements of individual stacks.

Simplicity: While providing more robust and efficient data management than a single stack, multiple

stacks can be managed with the same ease of a single stack

4.7 Conclusion

In conclusion, the study of stacks reveals their foundational role in computer science and software engineering.

Through the exploration of their Last In, First Out (LIFO) principle and essential operations like push, pop, and
11111111

peek, we have seen how stacks efficiently manage data with predictable ordering. The implementations using

arrays and linked lists underscore their versatility in accommodating different needs—from fixed-size memory

management to dynamic and flexible data structures.

Moreover, the concept of multiple stacks within a single array expands the utility of stacks, demonstrating their

adaptability in handling complex scenarios where independent management of multiple data sets is required.

Efficiency considerations, such as time complexity for operations and space management, highlight the trade-offs

steps independently, facilitating parallel or sequential simulation runs.

7. Resource Allocation and Management: Systems managing resources such as memory, network

efficiently. Each stack handles resource requests or transactions independently, ensuring optimal resource

performance and scalability.

Independence: Each stack operates independently, allowing separate handling of data sets or operations

and managing distinct data sets or operations efficiently.

between array-based and linked list-based implementations, crucial for optimizing performance in diverse

applications.

Looking ahead, the practical applications of stacks—from parsing expressions in compilers to managing function

calls in programming languages—underscore their indispensable role in modern computing. By mastering stack

operations and understanding their implementations, developers can leverage stacks effectively in algorithm

design, system programming, and various software applications, ensuring robust and efficient data management.

In conclusion, stacks remain a cornerstone of computational efficiency and structured data handling, continuing

to inspire innovation and optimal solutions across a wide range of technological domains.

4.8 Questions and Answers

Q1: What is the LIFO principle, and why is it important in stacks?

Answer: The LIFO (Last In, First Out) principle states that the last element inserted into a stack is the first one to
1919191919

be removed. It ensures that operations are processed in reverse order of their insertion, making stacks ideal for

scenarios requiring strict ordering and efficient data management.

Q2: What are the main operations performed on a stack, and how do they work?

Answer: The main operations on a stack are:

o

o

o

Push: Adds an element to the top of the stack.

Pop: Removes and returns the top element from the stack.

executed in constant time, O(1), making stacks efficient for managing data with predictable

access patterns.

Q3: What are the advantages of using an array-based implementation of stacks over a linked list-based

implementation?

Answer: Array-based stacks offer direct access to elements using indices, which can be faster in scenarios where

Q4: How can multiple stacks be implemented using a single array, and what are the benefits of this

approach?

Answer: Multiple stacks can be managed within a single array by partitioning the array into sections allocated to

each stack. This approach optimizes memory usage by allowing stacks to dynamically expand and contract within

the same memory block, enhancing flexibility and reducing memory fragmentation.

Peek (or Top): Returns the top element without removing it. These operations are typically

random access is important. They also use contiguous memory, which may result in better cache performance.

However, they are limited by a fixed size and require resizing if the stack grows beyond its initial capacity.

Q5: What are some practical applications of stacks in software development and computer science?

Answer: Stacks are widely used in expression evaluation, function call management, backtracking algorithms,

memory management in operating systems, and parsing techniques in compilers. They play a critical role in

managing program execution flow and optimizing memory utilization in various computational tasks.

4.9 References





Academic Journals: Search databases like Google Scholar, IEEE Xplore, or ACM Digital Library for

peer-reviewed articles on stack data structures, algorithms, and their applications.

by Thomas H. Cormen et al., "Data Structures and Algorithms in Java" by Robert Lafore, or "Data

Structures Using C++" by D.S. Malik.







structures that cover stacks, along with recommended readings and references.

Official Documentation: Refer to official documentation from programming language providers (e.g.,

C++, Java) or system documentation (e.g., Linux kernel) for implementation details and best practices.

Research Papers: Look for relevant research papers presented at conferences like ACM SIGMOD, IEEE

INFOCOM, or USENIX Symposium on Operating Systems Design and Implementation (OSDI).

Textbooks: Explore textbooks on data structures and algorithms, such as "Introduction to Algorithms"

Online Learning Platforms: Websites like Coursera, edX, or Khan Academy offer courses on data

Unit – 5: Queues

5.0 Introduction

5.1 Objectives

5.2 Queue

5.3 Operations on Queues

5.4 Implementation of Queue using Arrays

5.5 Conclusion

5.6 Questions and Answers

5.7 References

5.0 Introduction

In computer science and software engineering, queues are fundamental data structures that facilitate the orderly

processing of data based on the First-In-First-Out (FIFO) principle. They play a crucial role in various applications
1919191919

queue is the first one to be removed, making them essential in scenarios ranging from operating system task

scheduling to network packet management and beyond.

This section explores the foundational concepts, operations, and implementations of queues, covering their diverse

specialized variants like priority queues, which prioritize elements based on specific criteria, and double-ended

queues (deques), offering flexibility with operations at both ends. Understanding these structures equips

developers with powerful tools to optimize data handling and application performance.

The subsequent sections will delve into each aspect of queues, detailing their operations, implementations in both

arrays and linked lists, specialized forms like circular queues, priority queues for managing prioritized tasks, and

thorough understanding of how queues function, their practical applications, and their role in efficient data

management strategies.

where data needs to be managed and processed sequentially. Queues ensure that the first element added to the

forms such as linear queues using arrays, linked lists, and circular structures. Additionally, it delves into

versatile double-ended queues. By examining these topics comprehensively, this exploration aims to provide a

5.1 Objectives

After completing this unit, you will be able to understand,











Understand Queue Basics: Define queues and grasp the FIFO principle essential for orderly data

processing.

Master Queue Operations: Explore insertion, deletion, and traversal operations crucial for queue

management.

Implement Using Arrays and Linked Lists: Implement queues using both arrays and linked lists,

understanding their advantages and limitations.

Explore Circular Queue Mechanics: Study circular queues, including their implementation and

advantages in managing continuous data streams.

Examine Specialized Queue Types: Investigate priority queues and double-ended queues (deques),

5.2 Queue

Queues are fundamental data structures in computer science that adhere to the First In, First Out (FIFO) principle.

Similar to real-life queues, such as waiting in line at a ticket counter, queues manage elements in the order they

are added. The structure ensures that the oldest element, added first, is the first to be removed or processed. This

characteristic makes queues ideal for scenarios where tasks must be handled in the order they arrive.

In programming, queues are crucial for managing tasks that require sequential processing, such as job scheduling,

printer spooling, and asynchronous data transfer. Operations on queues typically include adding an element to the

rear (enqueue), removing an element from the front (dequeue), and peeking at the front element without removing

it. These operations enable efficient data handling and ensure that processes are executed in a fair and orderly

Queues can be implemented using various underlying data structures, including arrays and linked lists, each

offering distinct advantages based on specific application requirements. Understanding queues and their

implementations is foundational for designing efficient algorithms and systems that rely on orderly task execution

and data management.

FIFO (First In, First Out) principle

The FIFO principle dictates that the oldest elements in a queue are processed or removed first, maintaining the

sequential order of arrival. This principle is fundamental to how queues operate and distinguishes them from other

data structures like stacks, which follow the Last In, First Out (LIFO) principle. FIFO ensures fairness in task

scheduling and data processing by handling tasks in the order they are queued.

exploring their unique applications and operational efficiency.

manner.

Queue Syntax in C++

1. Include Header:

#include <queue>

2. Declare Queue: To declare a queue of integers:

std::queue<int> myQueue;

3. Operations:

o

o

o

o

o

o

Push (Enqueue): Adds an element to the back of the queue.

myQueue.push(value);

Pop (Dequeue): Removes the element at the front of the queue.

myQueue.pop();

Front: Accesses the element at the front of the queue.

int frontElement = myQueue.front();

Back: Accesses the element at the back of the queue.

int backElement = myQueue.back();

Size: Returns the number of elements in the queue.

int size = myQueue.size();

bool isEmpty = myQueue.empty();

Example:

Empty: Checks if the queue is empty.

Explanation:













std::queue<int>: Declares a queue of integers.

myQueue.push(value);: Adds value to the back of the queue.

myQueue.pop();: Removes the front element from the queue.

myQueue.size();: Returns the number of elements in the queue.

Real-World Analogies and Examples

Queues have numerous real-world analogies and applications, reflecting their ubiquitous nature in everyday

scenarios:







Waiting Lines: Queues resemble physical lines at ticket counters, checkout lanes in supermarkets, or

queues at amusement parks, where individuals wait in order to be served or processed.

Print Spooling: Printers use queues to manage print jobs, ensuring that documents are printed in the

Job Scheduling: Operating systems manage processes using queues to prioritize tasks and allocate

myQueue.front(); and myQueue.back();: Accesses the front and back elements of the queue, respectively.

myQueue.empty();: Checks if the queue is empty.

order they were sent to the printer.

resources based on their arrival and priority.

 Network Data Packet Processing: Network routers and switches use queues to buffer and forward data

packets based on their arrival time and network conditions.

Real-world analogies and examples (e.g., waiting lines)









Ticket Counter at a Movie Theater: At a movie theater, patrons line up to purchase tickets. The ticket

counter operates as a queue where customers are served in the order they arrived. This ensures efficient

ticket sales and customer satisfaction.

Call Center Customer Service: Call centers manage customer queries and support requests using

queues. Calls are queued based on their arrival, and customer service representatives handle them

Print Spooling: Printers use queues to manage print jobs submitted by multiple users. Each print job is

queued based on its submission time, and the printer processes them in the order they were received.

This ensures orderly printing and prevents job conflicts.

Traffic at Intersection Signals: Traffic signals manage vehicle movement at intersections using queues.

allowed to proceed based on their position in the queue. This systematic approach helps in managing





Job Scheduling in Operating Systems: Operating systems use queues to manage processes and tasks.

Jobs are queued based on their priority and resource requirements, and the operating system schedules

performance.

Buffering in Data Communication: Network devices use queues to buffer data packets during

smooth and efficient data transfer without packet loss.

5.3 Operations on Queues

Operations on queues are fundamental to their functionality and efficient management of data. The main

operations typically supported by a queue data structure include:

Operations on Queues

1. Enqueue (Insertion): Adds an element to the rear (end) of the queue. It Increases the queue's size and

stores new data for processing.

o Algorithm:

sequentially. This approach ensures that all customer inquiries are addressed promptly and fairly.

Vehicles waiting at a red-light form queues in each lane, and when the light turns green, vehicles are

traffic flow efficiently.

them for execution accordingly. This ensures efficient utilization of system resources and optimal

transmission. Data packets are queued based on network conditions and bandwidth availability, ensuring

Dequeue (Deletion): Removes an element from the front (beginning) of the queue. It Retrieves and processes the

oldest data entered into the queue.

 Algorithm:

Peek (Front): Retrieves the element at the front of the queue without removing it. It Allows inspection of the next

element to be dequeued.

 Algorithm:

processing.

 Algorithm:

isEmpty: It Checks if the queue is empty. It Determines whether there are elements present in the queue for

isFull: Checks if the queue is full (not always applicable for dynamic-sized implementations). Determines if

 Algorithm:

5.4 Implementation of Queue using Arrays

An array-based representation of a queue involves using a fixed-size array to store elements and maintaining

pointers (or indices) to track the front and rear of the queue. Here's a detailed explanation and implementation of

an array-based queue in C++:

Array-Based Representation of a Queue

In this implementation, we'll define a queue class that uses an array to store elements. We'll include operations for

enqueue (adding elements), dequeue (removing elements), peek (viewing the front element), and utility functions

to check if the queue is empty or full.

Array-based representation of a queue

1. Enqueue (Insertion): Adds an element to the rear (end) of the queue.

Algorithm:

additional elements can be added to the queue without causing overflow.

2. Dequeue (Deletion): Removes an element from the front (beginning) of the queue.

Algorithm:

3. Peek (Front): Retrieves the element at the front of the queue without removing it.

Algorithm:

Algorithm:

4. IsEmpty: Checks if the queue is empty.

5. IsFull: Checks if the queue is full (only applicable for array implementation).

Algorithm:

Full Implementation Example in C++

Combining the above operations, here’s a complete example for both array and linked list implementations of a

queue:

Array-Based Queue Implementation:

#include <iostream>
using namespace std;
#define MAX_SIZE 100
class Queue {
private:

int queue[MAX_SIZE];
int front, rear;

public:
Queue() {

front = -1;
rear = -1;

}
bool isEmpty() {

return (front == -1 && rear == -1);
}

bool isFull() {
return (rear == MAX_SIZE - 1);

}
void enqueue(int element) {

if (isFull()) {
cout << "Queue Overflow! Cannot enqueue element " << element << endl;
return;

} else if (isEmpty()) {
front = rear = 0;

} else {
rear++;

}
queue[rear] = element;
cout << "Enqueued element: " << element << endl;

}
int dequeue() {

if (isEmpty()) {
cout << "Queue Underflow! Cannot dequeue from an empty queue." << endl;
return -1;

} else if (front == rear) {
int element = queue[front];

front = rear = -1;
return element;

} else {
return queue[front++];

}
}
int peek() {

if (isEmpty()) {

return -1;
}
return queue[front];

}
};
int main() {

Queue q;
q.enqueue(10);
q.enqueue(20);
q.enqueue(30);
cout << "Front element: " << q.peek() << endl;
cout << "Dequeued element: " << q.dequeue() << endl;
cout << "Front element after dequeue: " << q.peek() << endl;
return 0;

}

Pros and cons of array-based implementation

Pros:

1. Simple and Easy to Implement: Array-based queues are straightforward and easy to understand,

making them suitable for beginners and educational purposes.

2. Constant Time Complexity: Enqueue and dequeue operations have O(1) time complexity, ensuring fast

execution for queue operations.

3. Cache-Friendly: Arrays provide contiguous memory allocation, which is more cache-friendly and can

lead to better performance in terms of memory access speed.

4. Predictable Memory Usage: The memory usage is fixed and known in advance, which can be an

advantage in systems with limited or predictable memory resources.

5. Direct Access: Elements in an array can be accessed directly via indices, which can be beneficial for

certain operations or optimizations.

Cons:

1. Fixed Size: The size of the array must be defined at the time of queue creation. This fixed size can lead

to inefficiency if the queue size is either too small (leading to overflow) or too large (leading to wasted

memory).

2. No Dynamic Resizing: Without additional logic for dynamic resizing, the array cannot grow or shrink

based on the actual number of elements, which can be limiting in scenarios with varying data sizes.

cout << "Queue is empty. No element to peek." << endl;

3. Overflow and Underflow: Array-based queues are prone to overflow if the queue is full and an

additional element is enqueued. Similarly, if all elements are dequeued, the queue becomes empty and

underflow conditions must be handled.

4. Circular Queue Complexity: To efficiently use space in an array-based queue, a circular queue

implementation is often used. This adds complexity to the implementation, especially in managing the

wrap-around of front and rear indices.

to inefficient memory usage.

6. Reallocation Overhead: In implementations that handle dynamic resizing, the reallocation process

(copying elements to a new, larger array) can be time-consuming and add overhead.

5.5 Conclusion

First-In-First-Out (FIFO) manner. Throughout this section, we have explored the foundational principles of

queues, emphasizing their role in maintaining order and facilitating efficient data processing. Operations such as

insertion, deletion, and traversal have been examined, illustrating how queues enable systematic handling of data

items based on their arrival sequence.

Implementation-wise, we have investigated queue implementations using arrays and linked lists. Arrays offer

direct access and simplicity but require careful management of dynamic resizing. Linked lists provide flexibility

in memory management and support dynamic operations, making them suitable for scenarios requiring frequent

insertions and deletions.

explored. Circular queues optimize memory usage and support continuous data processing, while priority queues

prioritize elements based on predefined criteria. Deques provide flexibility with operations at both ends, catering

to applications that demand versatile data handling capabilities.

In conclusion, mastering the concepts and implementations of queues equips developers with essential tools for

designing efficient algorithms and robust software systems. By understanding the principles behind queues and

their practical applications, developers can leverage these structures effectively to enhance system performance,

manage data workflows, and ensure reliable data processing in various computational environments.

5.6 Questions and Answers

1. What is the primary principle that queues follow?

5. Wasted Space: If the queue is not used to its full capacity, there can be wasted space in the array, leading

In summary, queues represent a fundamental data structure in computer science, crucial for managing data in a

Additionally, specialized forms like circular queues, priority queues, and double-ended queues (deques) have been

Answer: Queues follow the First-In-First-Out (FIFO) principle, where the first element inserted into the queue is

the first one to be removed.

2. How is a queue implemented using arrays different from using linked lists?

Answer:

 Arrays: Queues implemented using arrays offer direct access to elements and require resizing when the

array becomes full, which can be inefficient for large queues.

 Linked Lists: Queues implemented using linked lists offer flexibility in dynamic memory allocation and

efficient insertion and deletion operations but may have higher memory overhead due to storing pointers.

3. What is the purpose of implementing a circular queue?

Answer: Circular queues are implemented to efficiently manage continuous data streams or buffer scenarios.

They utilize a circular array structure where elements wrap around when the end of the array is reached, optimizing

memory usage and enabling constant-time operations for both insertion and deletion.

4. How does a priority queue differ from a regular queue?

Answer:

 Regular Queue: A regular queue follows the FIFO principle, where elements are processed in the order

they are added.

 Priority Queue: A priority queue allows elements to be inserted with a priority and processed in order

of priority rather than the order of insertion. Higher priority elements are processed before lower priority

ones, ensuring that the most urgent tasks or elements are handled first.

5. What are the advantages of using a deque (double-ended queue) over a regular queue?

Answer:

 Flexibility: Deques allow elements to be added or removed from both the front and the back, offering

greater flexibility in data management compared to queues, which only support operations at one end.

 Efficiency: Operations such as insertion and deletion at both ends of a deque are typically efficient, often

from both directions.

5.7 References

Books:

with constant time complexity, making deques suitable for scenarios requiring dynamic data processing







"Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein.

"Data Structures and Algorithm Analysis in C++" by Mark Allen Weiss.

Documentation:

C++ Standard Library documentation for std::queue, std::deque, and related containers. 

"Data Structures and Algorithms in Java" by Michael T. Goodrich, Roberto Tamassia, and Michael H.

Goldwasser.

Unit – 6: Linked List Implementation

6.0 Introduction

6.1 Objectives

6.2 Implementation of Queue using Linked Lists

6.3 Circular Queue Implementation

6.4 Priority Queues

6.5 Double-ended Queues (Deque)

6.6 Conclusion

6.7 Questions and Answers

6.8 References

6.0 Introduction

Queues are pivotal data structures in computer science, designed to manage elements in a First-In-First-Out

(FIFO) manner. This section delves into various aspects of queues, exploring their implementations and

specialized variants to cater to diverse application needs. From basic linear structures to advanced forms like

circular queues and priority queues, understanding these concepts equips developers with powerful tools for

efficient data management and algorithm design.

We begin by examining the implementation of queues using linked lists, highlighting the flexibility they offer in

dynamic memory allocation and operations. Moving forward, we explore circular queues, which optimize space

utilization and streamline continuous data processing scenarios. Priority queues come next, providing mechanisms

double-ended queues (deques) are investigated, showcasing their versatility in supporting operations from both

ends, enabling sophisticated data handling capabilities.

This exploration aims to provide a comprehensive understanding of queue data structures, their implementations,

and practical applications. By delving into each variant's operational nuances and performance considerations,

this section aims to empower developers with the knowledge needed to leverage queues effectively in software

development and system optimization.

to prioritize elements based on predefined criteria, essential for real-time systems and task scheduling. Lastly,

6.1 Objectives

After completing this unit, you will be able to understand,











Understand Queue Fundamentals: Define queues and their fundamental characteristics, focusing on

the FIFO (First-In-First-Out) principle.

Explore Linked List Implementation: Implement queues using linked lists, emphasizing dynamic

memory allocation and efficient insertion/deletion operations.

Study Circular Queue Mechanics: Investigate circular queues, including their implementation details

and advantages in managing continuous data streams.

Examine Priority Queue Operations: Understand priority queues and their operations, prioritizing

elements based on specified criteria for optimal task management.

Master Double-ended Queue Functionality: Explore double-ended queues (deques), their

implementations, and operations allowing insertion and deletion from both ends for flexible data

handling.

6.2 Implementation of Queue using Linked Lists

Implementing a queue using linked lists involves dynamically creating nodes to store data and linking them

together in a sequence. Each node contains a data part and a pointer (or reference) to the next node in the sequence.

The queue maintains two pointers: front and rear. The front pointer points to the first node in the queue, and the

rear pointer points to the last node. When an element is enqueued (added) to the queue, a new node is created and

linked to the end of the list, and the rear pointer is updated to point to this new node. When an element is dequeued

(removed) from the queue, the node at the front is removed, and the front pointer is updated to the next node in

queue to dynamically adjust its size, avoiding the fixed size limitations of array-based implementations and

efficiently handling memory usage.

1. Enqueue (Insertion)

Description: Adds an element to the rear (end) of the queue.

Algorithm:

the list. If the queue becomes empty, both front and rear pointers are set to null. This implementation allows the

2. Dequeue (Deletion)

Description: Removes an element from the front (beginning) of the queue.

Algorithm:

3. Peek (Front)

Description: Retrieves the element at the front of the queue without removing it.

Algorithm:

4. IsEmpty

Algorithm:

Linked List Based Queue Implementation

#include <iostream>
using namespace std;
struct Node {

int data;
Node* next;

};
class Queue {
private:

Node* front;
Node* rear;

public:
Queue() {

front = NULL;
rear = NULL;

}
bool isEmpty() {

return (front == NULL);
}
void enqueue(int element) {

Node* temp = new Node();
temp->data = element;
temp->next = NULL;
if (front == NULL && rear == NULL) {

front = rear = temp;
} else {

rear->next = temp;
rear = temp;

}
cout << "Enqueued element: " << element << endl;

}
int dequeue() {

if (front == NULL) {
cout << "Queue Underflow! Cannot dequeue from an empty queue." << endl;
return -1;

}

Description: Checks if the queue is empty.

Node* temp = front;
int element = front->data;
if (front == rear) {

front = rear = NULL;
} else {

front = front->next;
}
delete temp;
return element;

}
int peek() {

if (front == NULL) {

return -1;
}
return front->data;

}
};
int main() {

Queue q;
q.enqueue(10);
q.enqueue(20);
q.enqueue(30);
cout << "Front element: " << q.peek() << endl;
cout << "Dequeued element: " << q.dequeue() << endl;
cout << "Front element after dequeue: " << q.peek() << endl;
return 0;

}

Advantages of linked list implementation

 Dynamic Size: Linked lists provide a dynamic size, meaning the queue can grow or shrink as needed

without predefining a maximum size. This is particularly useful when the maximum number of elements







Efficient Memory Utilization: Memory is allocated only as needed. Unlike array-based

operations or handling the overhead associated with array reallocation.

a significant advantage over fixed-size array queues where overflow can occur when the capacity is

exceeded.

 Ease of Insertions and Deletions: Inserting (enqueue) and deleting (dequeue) elements are

straightforward operations in a linked list, with both operations being O(1). There is no need to shift

elements as in array-based implementations.

6.3 Circular Queue Implementation

cout << "Queue is empty. No element to peek." << endl;

is unknown or varies significantly.

implementations that may have unused space, linked lists do not waste memory.

No Need for Resizing: Since linked lists grow dynamically, there is no need for complex resizing

No Overflow: As long as there is available memory, a linked list-based queue will not overflow. This is

A circular queue is a linear data structure that overcomes the limitations of a standard linear queue by treating the

queue as a circular buffer. Unlike a linear queue where the end of the queue is fixed and adding more elements

requires shifting or resizing, a circular queue allows for efficient reuse of space by connecting the end of the queue

back to the front, forming a circular structure. This means that once the end of the queue is reached, the next

dequeued).

Key Features

1. Circular Nature: The queue's end connects back to the beginning, enabling efficient use of space.

2. Fixed Size: Like an array-based queue, the size of the circular queue is fixed, but it utilizes the available

3. Two Pointers: Maintains two pointers:

o

o

Front: Points to the first element in the queue.

Rear: Points to the last element in the queue.

4. Full and Empty Conditions: Specific conditions determine whether the queue is full or empty:

o

o

Empty Queue: When front and rear are both -1 or when front is equal to rear + 1.

Full Queue: When the position next to rear is the front (i.e., (rear + 1) % size == front).

Benefits





Efficient Space Utilization: Eliminates the problem of unused space in a standard array-based queue.

Fixed Size Management: Useful in scenarios where a fixed buffer size is required, such as in circular

buffers for streaming data.

Implementation using arrays (circular array)

implementation of a circular queue using arrays in C++. This implementation covers different operations

(enqueue, dequeue, peek, and display) with various algorithms to ensure the circular nature of the queue is

properly handled.

Circular Queue Implementation Using Arrays

#include <iostream>
using namespace std;
class CircularQueue {
private:

int *queue;
int front, rear, size;

public:
CircularQueue(int s) {

size = s;
queue = new int[size];
front = rear = -1;

element is inserted at the beginning of the array, provided there is free space (i.e., positions that have been

space more efficiently.

}
// Function to check if the queue is full
bool isFull() {

return (front == 0 && rear == size - 1) || (rear == front - 1);
}
// Function to check if the queue is empty
bool isEmpty() {

return front == -1;
}
// Function to add an element to the queue (enqueue operation)
void enqueue(int element) {

if (isFull()) {
cout << "Queue Overflow! Cannot enqueue element " << element << endl;
return;

}
if (front == -1) {

front = rear = 0;
} else if (rear == size - 1 && front != 0) {

rear = 0;
} else {

rear = (rear + 1) % size;
}
queue[rear] = element;
cout << "Enqueued element: " << element << endl;

}
// Function to remove and return an element from the queue (dequeue operation)
int dequeue() {

if (isEmpty()) {
cout << "Queue Underflow! Cannot dequeue from an empty queue." << endl;
return -1;

}
int element = queue[front];
if (front == rear) {

front = rear = -1;
} else if (front == size - 1) {

front = 0;
} else {

front = (front + 1) % size;
}
return element;

}
// Function to return the front element of the queue without removing it (peek operation)
int peek() {

if (isEmpty()) {

return -1;
}
return queue[front];

}
// Function to display all elements of the queue
void display() {

if (isEmpty()) {

return;
}
cout << "Queue elements: ";
if (rear >= front) {

for (int i = front; i <= rear; i++) {
cout << queue[i] << " ";

}

cout << "Queue is empty. No element to peek." << endl;

cout << "Queue is empty." << endl;

} else {
for (int i = front; i < size; i++) {

cout << queue[i] << " ";
}
for (int i = 0; i <= rear; i++) {

cout << queue[i] << " ";
}

}
cout << endl;

}
};
int main() {

CircularQueue q(5);
q.enqueue(10);
q.enqueue(20);
q.enqueue(30);
q.enqueue(40);
q.enqueue(50);
q.display();
cout << "Dequeued element: " << q.dequeue() << endl;
q.enqueue(60);
cout << "Peeked element: " << q.peek() << endl;
q.display();
return 0;

}

Applications and advantages of circular queues

Applications of Circular Queues:

1. Buffering Data in I/O Systems: Circular queues are commonly used in I/O operations where data is

continuously received or transmitted. They provide a fixed-size buffer that can wrap around, allowing

seamless data processing without the need for resizing or complex memory management.

2. Resource Management: They are useful in managing resources with a fixed capacity that need to be

accessed in a circular manner. For example, in operating systems, circular queues can manage resources

like CPU scheduling queues or device driver queues.

3. Implementation of Task Schedulers: Circular queues are employed in task scheduling algorithms

where tasks are scheduled in a round-robin manner. Each task gets a turn to execute for a specified time

quantum before being preempted, which is facilitated efficiently using a circular queue.

4. Network Traffic Management: In networking applications, circular queues can be used to manage

network packets. They allow packets to be stored temporarily before processing or transmission, ensuring

efficient handling of network traffic.

5. Memory Management: Circular queues can be utilized in memory management algorithms to

implement caching mechanisms or in systems where memory allocation and deallocation need to be

Advantages of Circular Queues:

handled efficiently.

1. Efficient Use of Memory: Circular queues use a fixed-size buffer, which makes efficient use of memory

compared to dynamic data structures that may require resizing operations.

2. Constant Time Complexity: Operations such as enqueue and dequeue in circular queues typically have

a constant time complexity O (1), assuming the circular nature is properly managed. This makes them

highly efficient for real-time and embedded systems.

3. Simplified Implementation: Implementing circular queues is straightforward compared to other data
55555555

structures like linked lists. They involve simple arithmetic operations (modular arithmetic) to manage

4. Optimal for Streaming Applications: Due to their circular nature, these queues are ideal for streaming

applications where data is continuously flowing. They ensure that the oldest data is overwritten when

5. Avoids Fragmentation: Unlike dynamic data structures, circular queues do not suffer from memory

running applications.

6.4 Priority Queues

A priority queue is an abstract data type (ADT) similar to a regular queue or stack but with added functionality

to be removed (FIFO - First In, First Out), a priority queue retrieves elements based on their priority. Here's an

overview of priority queues:

A priority queue is a collection of elements where each element has a priority assigned to it. Elements with higher

priorities are dequeued before elements with lower priorities. Priority queues do not follow the FIFO principle of

regular queues; instead, they provide operations that allow elements to be added and removed based on their

priority level.

Operations on Priority Queues:

1. Insertion (Enqueue): Adds an element to the priority queue based on its priority. Higher priority

elements are placed at the front of the queue.

Algorithm:





Add the new element at the end of the heap (array representation).
6868

Adjust the heap upwards (up-heap or bubble-up) to maintain the heap property (min-heap or

max-heap).

2. Deletion (Dequeue): Removes and returns the highest priority element from the priority queue. If
55555555

the circular behavior.

new data is added, maintaining a consistent flow.

fragmentation issues because they use a contiguous block of memory. This makes them reliable for long-

that allows elements to be stored with a priority. Unlike a regular queue where the first element added is the first

multiple elements have the same highest priority, they are typically removed in a FIFO order.

Algorithm:

 Remove the root element (highest priority element in a max-heap or lowest priority in a min-

heap).





Move the last element of the heap to the root position.

3. Peek: Retrieves the highest priority element without removing it from the queue.
55555555

Algorithm:

 Return the root element of the heap without removing it. This operation retrieves the highest

priority element.

Implementation:

Priority queues can be implemented using various data structures, such as:

 Binary Heap: A binary heap is a complete binary tree where each node satisfies the heap property (either

min-heap or max-heap). This structure allows efficient insertion and deletion operations.
55555555

 Binary Search Tree (BST): A BST can be used to implement a priority queue where elements are
55555555

operations.

Applications:

Priority queues are useful in scenarios where:







Dijkstra's shortest path algorithm, where nodes are processed based on their shortest known path distance.

Event-driven Simulations: Systems that simulate real-world events (e.g., discrete event simulations)

often use priority queues to manage events scheduled for future processing.

Advantages:







Efficient Operations: Priority queues allow O (log n) time complexity for insertion and deletion

operations (depending on the implementation), making them suitable for real-time applications.

Flexible Data Structure: They provide flexibility in managing data with varying priorities, allowing

dynamic adjustments based on application needs.

Optimized for Specific Applications: Priority queues are tailored to handle specific scenarios where

prioritization of elements is critical, such as in scheduling and optimization problems.

Adjust the heap downwards (down-heap or bubble-down) to restore the heap property.

ordered based on their priority, allowing logarithmic time complexity for insertion and deletion

Task Scheduling: Operating systems use priority queues to manage tasks with different levels of priority.

Higher priority tasks are executed sooner.

Dijkstra’s Algorithm: In graph theory, priority queues are essential for implementing algorithms like
55555555

6.5 Double-ended Queues (Deque)

A double-ended queue, often abbreviated as deque (pronounced "deck"), is a versatile data structure that allows

insertion and deletion of elements from both ends. Unlike queues and stacks, which support insertion and deletion

from only one end, deques support operations from both the front and the back. Here's an overview of double-

ended queues:

A deque is a linear collection of elements that supports efficient insertion and deletion operations at both ends. It

allows elements to be added or removed from the front or the back, making it suitable for scenarios requiring

flexibility in data access patterns.

Operations on Deques:

1. Insertion at Front and Back:

o

o

push_front(value): Adds an element to the front of the deque.

push_back(value): Adds an element to the back of the deque.

2. Deletion from Front and Back:

o

o

pop_front(): Removes and returns the element at the front of the deque.

pop_back(): Removes and returns the element at the back of the deque.

3. Accessing Elements:

o

o

front(): Returns (but does not remove) the element at the front of the deque.

back(): Returns (but does not remove) the element at the back of the deque.

4. Size and Empty Check:

o

o

size(): Returns the number of elements currently stored in the deque.

empty(): Checks if the deque is empty and returns true if no elements are present.

Implementation Considerations:

 Array-based Implementation: Deques can be implemented using dynamic arrays or circular arrays to

allow efficient insertion and deletion operations at both ends.

 Linked List Implementation: Using a doubly linked list allows constant time complexity for insertion
6868

and deletion operations at both ends, but it requires more memory overhead due to storing pointers for

each element.

Applications:

 Double-ended Queues: Used in applications where elements need to be accessed and modified

efficiently from both ends, such as implementing deque-based data structures like deque-based

algorithms.





Simulation Systems: Deques are suitable for implementing simulation systems where events can be

added or removed from the front or back based on their priority or timestamp.

Memory Management: Used in memory management systems where elements need to be dynamically

allocated or deallocated from both ends.

Advantages:







Flexibility: Provides flexibility in accessing and manipulating elements from both ends, allowing various

data processing and algorithmic operations.

Efficiency: Supports efficient insertion and deletion operations with constant time complexity when

implemented using arrays or linked lists.

1. Insert Front (push_front)

Description: Adds an element to the front of the deque.

Algorithm:

 If using a dynamic array or a vector, shift all existing elements to the right to make space for the new

element at the front.

 If using a doubly linked list, create a new node and adjust pointers to insert it at the beginning of the list.

C++ Implementation (using std::deque):

Versatility: Offers a versatile approach to handling data structures that require dynamic management of

elements based on their position and priority.

Operations: insert front, insert rear, delete front, delete rear

2. Insert Rear (push_back)

Description: Adds an element to the back of the deque.

Algorithm:







Append the new element at the end of the deque.

For a doubly linked list, simply adjust pointers to insert the new node at the end.

C++ Implementation (using std::deque):

For a dynamic array, this typically involves appending the element to the vector.

3. Delete Front (pop_front)

Description: Removes and returns the element at the front of the deque.
55555555

Algorithm:



 For a doubly linked list, adjust pointers to remove the first node.

C++ Implementation (using std::deque):

For a dynamic array, remove the first element and shift all other elements to the left.

4. Delete Rear (pop_back)

Description: Removes and returns the element at the back of the deque.

Algorithm:



 For a doubly linked list, adjust pointers to remove the last node.

C++ Implementation (using std::deque):

For a dynamic array, remove the last element.

6.6 Conclusion

Throughout this section, we have delved into the fundamental role of queues as crucial data structures for

managing data in a First-In-First-Out (FIFO) manner, pivotal across a wide array of computational applications.

Our exploration began with an in-depth look at linked list implementations of queues, emphasizing their dynamic

memory allocation and efficient handling of insertion and deletion operations. Linked lists provide adaptability to

varying queue sizes, making them particularly suited for scenarios where data changes frequently and

By leveraging circular arrays or linked structures, circular queues minimize memory overhead and ensure

seamless data circulation, ideal for applications requiring uninterrupted processing loops. This variant underscores

the importance of efficient data management in optimizing computational workflows and system performance.

specific operational needs. Priority queues prioritize elements based on predefined criteria, essential for time-

sensitive tasks where urgency dictates processing order. Deques, offering operations from both ends of the queue,

provide flexibility in data manipulation, catering to diverse data handling requirements.

In mastering the concepts and implementations covered here, developers gain essential tools for designing robust

algorithms and efficient software systems. Understanding the operational mechanics and strategic applications of

unpredictably.

Circular queues were also examined for their specialized ability to manage continuous data streams efficiently.

Additionally, our discussion encompassed priority queues and double-ended queues (deques), each tailored to

different queue structures empowers developers to make informed decisions, enhancing their ability to optimize

6.7 Questions and Answers

1. What is the primary principle that queues follow, and why is it important in data management?

Answer: Queues follow the First-In-First-Out (FIFO) principle, where the first element inserted into the queue is
55555555

the first one to be removed. This principle ensures that data is processed in the order of arrival, essential for

2. How does a linked list implementation of a queue differ from an array-based implementation?

Answer: Linked List: Implementing a queue using linked lists offers flexibility in dynamic memory allocation

and efficient insertion and deletion operations. It allows for easy expansion and contraction of the queue size as

elements are added or removed.

Array-based: Arrays provide direct access to elements but require resizing when the array becomes full, which

can be less efficient for large queues or dynamic data sizes.

3. What are the advantages of using a circular queue over a linear queue?

Circular queues optimize memory usage by reusing space in a circular manner, preventing the need for shifting

scenarios where data elements need to be processed in a loop without interruption.

4. How are priority queues different from regular queues, and what are their typical applications?

Answer: Difference: Priority queues prioritize elements based on predefined criteria (such as numerical value or

urgency) rather than the order of insertion. Higher priority elements are processed before lower priority ones,

making them suitable for applications like task scheduling, job prioritization, and event handling in real-time

systems.

5. What advantages do double-ended queues (deques) offer over standard queues, and in what scenarios are they

beneficial?

Answer: Deques support operations at both ends (front and back), allowing for flexible data manipulation. This

such as managing sliding windows in data processing or implementing advanced data structures like stacks and

data workflows, manage real-time tasks effectively, and ultimately improve overall system performance.

managing tasks or data items that need to be handled sequentially.

elements when the front of the queue becomes empty. This efficiency is crucial for continuous data processing

capability is advantageous in scenarios where elements need to be added or removed from either end dynamically,

queues simultaneously.

6.8 References

Books:







"Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein.

"Data Structures and Algorithm Analysis in C++" by Mark Allen Weiss.

Documentation:

C++ Standard Library documentation for std::queue, std::deque, and related containers. 

"Data Structures and Algorithms in Java" by Michael T. Goodrich, Roberto Tamassia, and Michael H.

Goldwasser.

Unit – 7:

7.0 Introduction

7.1 Objectives

7.2 Abstract Data Type

7.3 Tree Data Structure

7.4 Implementation of Tree

7.5 Tree Traversals

7.6 Binary Trees

7.7 Implementation of Binary Tree

7.8 Operations on Binary Trees

7.9 Conclusion

7.10 Questions and Answers

7.11 References

7.0 Introduction

Binary trees are a fundamental data structure in computer science, serving as the foundation for various complex

data structures and algorithms. Understanding binary trees is crucial for effectively managing and organizing

hierarchical data. This chapter delves into the intricacies of binary trees, covering their abstract data types,

their practical applications and operational methodologies.

Binary trees not only provide efficient means for data storage and retrieval but also enhance the performance of

search and sort operations. They are employed in a myriad of applications, from database indexing and syntax

parsing in compilers to network routing algorithms and artificial intelligence.

This chapter aims to equip you with a comprehensive understanding of binary trees, including their conceptual

framework, implementation strategies, and common operations. By the end of this chapter, you will have a solid
292929

grasp of how to construct, manipulate, and traverse binary trees, preparing you for more advanced topics in data

structures and algorithms.

implementation, and traversal techniques. We will explore the properties and types of binary trees, emphasizing

7.1 Objectives 8585

After completing this unit, you will be able to understand,









Understand Binary Trees: Define the structure and characteristics of binary trees.

Implement Binary Trees: Implement binary trees using linked representation (nodes and pointers).

Perform Tree Traversals: Implement and apply inorder, preorder, and postorder traversal methods.

Conduct Operations on Binary Trees: Perform insertion, deletion, and search operations on binary

trees.

 Apply Binary Trees in Problem Solving: Recognize and apply binary trees in solving real-world

problems.

7.2 Abstract Data Type

An Abstract Data Type (ADT) refers to a theoretical model that defines a set of operations and the semantics of

those operations on a data structure, without specifying how the data structure should be implemented. It provides

a high-level description of data and operations, allowing for flexibility in implementation while ensuring

Characteristics of ADTs:

1. Encapsulation: ADTs encapsulate data and operations within a cohesive unit, shielding internal details

from external access. This promotes information hiding and ensures that operations are performed

through well-defined interfaces.

2. Operations: ADTs define a set of operations that can be performed on the data structure. These

operations include creating the structure, inserting or deleting elements, accessing elements, and other

manipulations specific to the type of data structure.

3. Data Abstraction: ADTs abstract away the underlying details of data representation and storage. Users

interact with the ADT through a predefined set of operations, focusing on what operations can be

performed rather than how they are implemented.

4. Implementation Flexibility: ADTs can be implemented using various programming paradigms and data

structures. For example, a queue ADT can be implemented using arrays, linked lists, or other structures,

as long as it adheres to the specified operations and behavior.
3030

 Stack: Supports operations like push (add element), pop (remove element), and peek (view top element),

consistency in behavior.

Example ADTs:

following Last-In-First-Out (LIFO) order.







Queue: Allows operations such as enqueue (add element), dequeue (remove element), and peek (view

Tree: Defines operations for creating nodes, inserting or deleting nodes, and traversing the tree (e.g.,

inorder, preorder, postorder).

Graph: Defines vertices and edges, supporting operations like adding vertices, adding edges between

vertices, and traversing through vertices and edges.







Modularity: ADTs promote modular programming by separating data structure definitions from their

implementations, facilitating code reuse and maintenance.

Abstraction: ADTs hide complex implementation details, allowing programmers to focus on solving

problems at a higher level of abstraction.

7.3 Tree Data Structure

A tree in computer science is a hierarchical data structure composed of nodes. Each node typically contains a

value and a list of references to its child nodes. The structure starts from a root node and branches out into subtrees,
292929

where each subtree is also a tree in itself. Trees are used to represent hierarchical relationships, such as file

systems, organizational charts, or abstract syntax trees in programming languages. Key concepts in trees include

the root (topmost node), parent and child relationships, siblings (nodes sharing the same parent), and leaves (nodes

without children). Common operations on trees include traversal (visiting each node in a specific order), insertion

of nodes, deletion of nodes, and searching for nodes based on their values or properties. Trees can vary in

complexity and types, such as binary trees (where each node has at most two children), balanced trees (maintaining

a balanced structure for efficient operations), and more specialized structures like binary search trees (BSTs) for
70

efficient searching and sorting operations. Understanding trees is fundamental for designing efficient algorithms

and data structures in computer science.

The TreeNode struct defines each node in the tree, storing an integer value and pointers to its left and right child

nodes. The BinaryTree class manages the tree operations, including insertion (insert method) and inorder traversal

(inorderTraversal method). Insertion is handled recursively (insertRecursive), ensuring each value is placed

correctly according to its relation with existing nodes. The inorderTraversal method recursively visits nodes in

left subtree, root, and right subtree order, printing node values to display them in sorted order. The main function

exemplifies the usage by creating a BinaryTree instance, inserting values (50, 30, 20, 40, 70, 60, 80) into the tree,
222222

and then performing an inorder traversal to output the values in ascending order. This example serves as a

foundational implementation of a binary tree in C++, suitable for basic tree operations and traversal techniques.

front element), adhering to First-In-First-Out (FIFO) order.

Benefits of ADTs:

Flexibility: ADTs provide flexibility in choosing implementation strategies based on performance

requirements or specific application needs, without affecting the overall functionality.

Operations supported by the tree ADT, such as insertion, deletion, traversal, and searching.

The operations supported by the tree Abstract Data Type (ADT) include:

1. Insertion: Adding a new node to the tree. The node is typically inserted based on specific rules, such as
3030

maintaining a sorted order in a binary search tree.

may involve reorganizing the tree to ensure it remains a valid tree structure.

3. Traversal: Visiting all nodes in the tree in a specific order. Common traversal methods include:

o

o

o

Inorder: Visit left subtree, current node, right subtree.

Preorder: Visit current node, left subtree, right subtree.

Postorder: Visit left subtree, right subtree, current node. These traversals are useful for various

applications, such as evaluating mathematical expressions (inorder) or copying a tree (preorder).

4. Searching: Finding a node with a specific value or property within the tree. Searching in a binary search

tree, for example, can be efficient due to its ordered nature, allowing for logarithmic time complexity in

balanced trees.

7.4 Implementation of Tree 222222

an algorithmic approach for inserting nodes into a binary search tree (BST) and performing an inorder traversal:

Algorithm: Insertion in Binary Search Tree (BST)

Example:

Let's apply this algorithm to insert a value key into a BST:

2. Deletion: Removing a node from the tree while maintaining the tree's structural integrity. This operation

Considerations for dynamic memory management and efficient node operations.

When implementing tree data structures, especially in languages like C++ where manual memory management is

common, considerations for dynamic memory management and efficient node operations are crucial for

performance and memory usage optimization. Here are some key considerations:

Dynamic Memory Management:

1. Node Allocation: Each node in the tree should be dynamically allocated using new in C++ to manage

the tree.

2. Node Deallocation: When nodes are no longer needed (e.g., during deletion operations), they should be

explicitly deallocated using delete to avoid memory leaks. This is particularly important for recursive

operations like tree traversal and deletion.

3. Memory Efficiency: Consider using memory pooling or custom memory allocation strategies if

managing a large number of nodes to reduce overhead from frequent allocations and deallocations.

Efficient Node Operations:

1. Insertion: Implement insertion operations (e.g., for BST) using recursive or iterative methods that

ordering properties of the tree.

memory efficiently. This ensures nodes are allocated on the heap and can be accessed globally throughout

maintain the BST properties efficiently. Ensure nodes are inserted in the correct position to maintain the

2. Deletion: Implement deletion operations carefully to preserve the structure and properties of the tree

(e.g., BST deletion). Handle cases for nodes with zero, one, or two children, ensuring the tree remains

balanced and valid after deletion.

3. Traversal: Use efficient traversal algorithms (e.g., inorder, preorder, postorder) to visit nodes in a

specific order. Recursive implementations are straightforward but may consume stack space for deep

trees; iterative implementations using stacks or queues can be more memory efficient.

4. Balancing (for balanced trees): Consider implementing self-balancing tree structures (e.g., AVL tree,

logarithmic time complexity for search operations.

5. Node Access and Modification: Design node structures with efficient access and modification methods

(e.g., getters, setters) to manipulate node data and relationships without compromising tree integrity or

performance.

7.5 Tree Traversals

Tree traversals are essential techniques for accessing and processing nodes in a tree data structure. Here's an

overview of the different traversal methods:

Depth-First Traversals

1. Preorder Traversal

 Definition: Visit the root node first, then recursively do a preorder traversal of the left subtree, followed

by a preorder traversal of the right subtree.

 Algorithm:

Implementation:

Red-Black tree) for operations like insertion and deletion that maintain balance automatically, ensuring

 Usage: Useful for creating a copy of the tree or evaluating expressions.

2. Inorder Traversal





Definition: In an inorder traversal, nodes are visited in ascending order (for BSTs) by recursively visiting

the left subtree, then the node itself, and finally the right subtree.

Algorithm:

Implementation:

 Usage: Useful for retrieving elements in sorted order from BSTs.

3. Postorder Traversal

 Definition: Recursively do a postorder traversal of the left subtree, then recursively do a postorder

traversal of the right subtree, and finally visit the root node.

 Algorithm:

Implementation:

 Usage: Useful for deleting nodes or evaluating expressions.

Breadth-First Traversal

4. Level Order Traversal (Breadth-First)





Definition: In a level order traversal, nodes are visited level by level from left to right.

Algorithm:

Implementation:

7.6 Binary Trees

 According to the binary tree, a node can only have a maximum of two children. Since the binary name

in this case implies "two," each node may have zero, one, or two children.

 Properties:

o

o

o

o

o

o

Height of Binary Tree: The length of the path from the root to the deepest node.
292929

Number of Nodes: In a binary tree of height h, the maximum number of nodes is 2 − 1. h+1

Depth of a Node: The length of the path from the root to that node.

Leaf Node: A node with no children.

Internal Node: A node with at least one child.

Binary Search Tree (BST): A binary tree in which for every node, the value of all the nodes in

Types of Binary Tree

There are four types of Binary tree

1. Full/ proper/ strict Binary tree

2. Complete Binary tree

3. Perfect Binary tree

4. Balanced Binary tree

Full Binary Tree:

Strict binary trees are another name for full binary trees. Only when every node has either 0 or 2 offspring can the

tree be said to be the full binary tree. Another way to describe the full binary tree is as a tree where every node—

aside from leaf nodes—must have two children.

the left subtree is less, and the value of all the nodes in the right subtree is greater.

The aforementioned tree is a Full Binary tree since every node can be shown to have either zero or two offspring.

Properties of Full Binary Tree

 One more internal node is added to the total number of leaf nodes. Since there are five internal nodes in
222222

the example above, there are six leaf nodes overall.









The maximum number of nodes, or 2 -1, is equal to the number of nodes in the binary tree. h+1

In the whole binary tree, there must be at least 2 * h - 1 nodes.

The whole binary tree has a minimum height of log (n+1) - 1. 2

The formula for calculating the maximum height of the entire binary tree is n= 2*h - 1.

Complete Binary Tree

With the exception of the final level, every node in the complete binary tree is fully filled. Every node needs to be
8585

as far to the left as feasible in the final level. The nodes in a full binary tree have to be inserted from the left.

Because every node in the last level is inserted at the left first and every node is fully filled, the aforementioned

tree is a complete binary tree.

Properties of Complete Binary Tree
161616









A binary tree with all nodes can have a maximum of 2 - 1. h+1

The minimum number of nodes in complete binary tree is 2h.
1515151515151515 161616

A full binary tree has a minimum height of log2(n+1) - 1.

The highest point on an entire binary tree is

Perfect Binary Tree

If every internal node in a tree has two offspring and every leaf node is at the same level, the tree is a perfect

binary tree.

The below tree is not a perfect binary tree because all the leaf nodes are not at the same level.

Balanced Binary Tree

A balanced binary tree is one in which the difference between the left and right trees is no more than 1. Red-Black

and AVL trees are two examples of balanced binary trees.

7.7 Implementation of Binary Tree

Here is a basic implementation of a binary tree in C++. The implementation includes a node class, the binary tree

class with insertion and traversal methods.

Binary Tree Node Class

First, we define a class for the nodes of the binary tree:

Array representation of binary trees:

Array representation of binary trees is a way to store a binary tree using an array (or vector). This method is

particularly useful for complete binary trees. Here's how it works:

1. Root: The root of the binary tree is stored at the first index of the array (index 0).
1515151515151515

2. Parent-Child Relationship:

o For a node at index i:

.

.
5050

The left child is at index 2i + 1.

The right child is at index 2i + 2.

o Conversely:

The parent of a node at index i is at index (i - 1) / 2. .

Example

Consider the following binary tree:

This tree can be represented in an array as:

[1, 2, 3, 4, 5, 6, 7]
1515151515151515

Implementation in C++

Here's a basic implementation of a binary tree using array representation in C++:

#include <iostream>
#include <vector>
class BinaryTree {
public:

BinaryTree() {}
void insert(int key) {

arr.push_back(key);
}
void inorderTraversal(int index, std::vector<int>& result) {

if (index < arr.size()) {
inorderTraversal(2 * index + 1, result); // Visit left subtree
result.push_back(arr[index]); // Visit node
inorderTraversal(2 * index + 2, result); // Visit right subtree

}
}
void preorderTraversal(int index, std::vector<int>& result) {

if (index < arr.size()) {
result.push_back(arr[index]); // Visit node
preorderTraversal(2 * index + 1, result); // Visit left subtree
preorderTraversal(2 * index + 2, result); // Visit right subtree

}
}
void postorderTraversal(int index, std::vector<int>& result) {

if (index < arr.size()) {
postorderTraversal(2 * index + 1, result); // Visit left subtree
postorderTraversal(2 * index + 2, result); // Visit right subtree

result.push_back(arr[index]); // Visit node
}

}
std::vector<int> inorder() {

std::vector<int> result;
inorderTraversal(0, result);
return result;

}
std::vector<int> preorder() {

std::vector<int> result;
preorderTraversal(0, result);
return result;

}
std::vector<int> postorder() {

std::vector<int> result;
postorderTraversal(0, result);
return result;

}
private:

std::vector<int> arr;
};
int main() {

BinaryTree tree;
tree.insert(1);
tree.insert(2);
tree.insert(3);
tree.insert(4);
tree.insert(5);
tree.insert(6);
tree.insert(7);
std::vector<int> inorderResult = tree.inorder();
std::vector<int> preorderResult = tree.preorder();
std::vector<int> postorderResult = tree.postorder();
std::cout << "Inorder traversal: ";
for (int val : inorderResult) {

std::cout << val << " ";
}
std::cout << std::endl;
std::cout << "Preorder traversal: ";
for (int val : preorderResult) {

std::cout << val << " ";
}
std::cout << std::endl;
std::cout << "Postorder traversal: ";
for (int val : postorderResult) {

std::cout << val << " ";
}
std::cout << std::endl;
return 0;

}

Explanation



 Traversal Methods:

o Inorder Traversal: Recursively visits the left subtree, the node, and then the right subtree.
4343434343

Insert: Adds a new element to the end of the array.

o

o

Preorder Traversal: Recursively visits the node, the left subtree, and then the right subtree.

Postorder Traversal: Recursively visits the left subtree, the right subtree, and then the node.

 Main Function: Demonstrates the usage of the BinaryTree class by inserting elements and performing

different traversals.

Linked representation (using nodes and pointers) of binary trees.

In the linked representation of binary trees, each node is represented by a structure (or class) that contains data

and pointers to its left and right children. This is a more flexible way to represent binary trees compared to array

representation, especially for trees that are not complete.

Node Structure

First, define a structure (or class) for the nodes of the binary tree:

Binary Tree Class

Next, define a class for the binary tree that includes methods to insert nodes and perform traversals:
47

class BinaryTree {
public:

BinaryTree() : root(nullptr) {}
void insert(int key) {

if (root == nullptr) {
root = new TreeNode(key);

} else {
insert(root, key);

}
}
void inorderTraversal(TreeNode* node, std::vector<int>& result) {

if (node != nullptr) {
inorderTraversal(node->left, result);
result.push_back(node->val);
inorderTraversal(node->right, result);

}
}
void preorderTraversal(TreeNode* node, std::vector<int>& result) {

if (node != nullptr) {
result.push_back(node->val);

preorderTraversal(node->left, result);
preorderTraversal(node->right, result);

}
}
void postorderTraversal(TreeNode* node, std::vector<int>& result) {

if (node != nullptr) {
postorderTraversal(node->left, result);
postorderTraversal(node->right, result);
result.push_back(node->val);

}
}
std::vector<int> inorder() {

std::vector<int> result;
inorderTraversal(root, result);
return result;

}
std::vector<int> preorder() {

std::vector<int> result;
preorderTraversal(root, result);
return result;

}
std::vector<int> postorder() {

std::vector<int> result;
postorderTraversal(root, result);
return result;

}
private:

TreeNode* root;
void insert(TreeNode* node, int key) {

if (key < node->val) {
if (node->left == nullptr) {

node->left = new TreeNode(key);
} else {

insert(node->left, key);
}

} else {
if (node->right == nullptr) {

node->right = new TreeNode(key);
} else {

insert(node->right, key);
}

}
}

};

7.8 Operations on Binary Trees

Here’s a comprehensive guide to various operations on binary trees using different algorithms in C++:

Operations on Binary Trees: Insertion with Algorithms

In a binary tree, insertion can be performed in different ways based on the type of binary tree (e.g., Binary Search

Tree, Complete Binary Tree). Here, we'll explore insertion in both a Binary Search Tree (BST) and a Complete
4343434343

Binary Tree.

Node Structure

Define a structure for the nodes of the binary tree:
1515151515151515

Insertion in a Binary Search Tree (BST)

In a BST, nodes are inserted such that the left subtree of a node contains only nodes with keys less than the node’s
4343434343 1515151515151515

Insertion Algorithm

1. Start at the root node.

2. Compare the key to be inserted with the current node's key:

o

o

If the key is less, move to the left child.

If the key is greater, move to the right child.

3. Repeat step 2 until finding an appropriate null position.

4. Insert the new node at the found null position.

C++ Implementation

class BinarySearchTree {
public:

BinarySearchTree() : root(nullptr) {}
void insert(int key) {

root = insert(root, key);
}
void inorder() {

inorderTraversal(root);
}

private:
TreeNode* root;
TreeNode* insert(TreeNode* node, int key) {

if (node == nullptr) {
return new TreeNode(key);

}

key, and the right subtree only nodes with keys greater than the node’s key.

if (key < node->val) {
node->left = insert(node->left, key);

} else if (key > node->val) {
node->right = insert(node->right, key);

}
return node;

}
void inorderTraversal(TreeNode* node) {

if (node != nullptr) {
inorderTraversal(node->left);
std::cout << node->val << " ";
inorderTraversal(node->right);

}
}

};

Deletion in Binary Trees

Deletion in binary trees can vary based on the type of binary tree (e.g., Binary Search Tree, Complete Binary

Tree). Here, we'll explore deletion in both a Binary Search Tree (BST) and a Complete Binary Tree.
4343434343

Node Structure

Define a structure for the nodes of the binary tree:
1515151515151515

Deletion in a Binary Search Tree (BST)

In a BST, deletion involves three main cases:

1. The node to be deleted is a leaf node (no children).
161616

2. The node to be deleted has one child.

3. The node to be deleted has two children.

Deletion Algorithm

1. Find the node to be deleted.
1515151515151515

2. Handle the three cases for deletion:

o

o

o

No children: Simply remove the node.

One child: Replace the node with its child.

Two children: Find the in-order successor (smallest node in the right subtree), replace the

7.9 Conclusion

In conclusion, binary trees stand as foundational structures in computer science, pivotal for organizing hierarchical

data efficiently and enabling optimized algorithms. Throughout this chapter, we have explored the fundamental

concepts of binary trees, from their basic definition and implementation to the intricacies of traversal methods and

essential operations.

Binary trees' versatility is evident in their application across various domains, including database management,

expression parsing in compilers, and efficient routing in networks. Their ability to store and retrieve data in a

hierarchical manner makes them indispensable in scenarios requiring structured data organization and rapid

access.

Implementing and manipulating binary trees involves mastering operations such as insertion, deletion, and

traversal. Each operation impacts the tree's structure and performance, necessitating careful consideration of

algorithms to maintain balance and optimize efficiency. The choice of traversal method—whether inorder,

preorder, or postorder—affects how nodes are accessed and processed, influencing the outcome of algorithms

built upon binary tree structures.

Looking ahead, further exploration into balanced binary trees like AVL trees and Red-Black trees offers insights

into maintaining optimal performance across operations, especially in scenarios involving large datasets and

critical applications. Mastery of binary trees provides a solid foundation for tackling advanced data structures and

algorithmic challenges, essential for aspiring computer scientists and engineers alike.

7.10 Questions and Answers

1. What is a binary tree?
4343434343

Answer: A binary tree is a hierarchical data structure composed of nodes, where each node has at most two
1515151515151515 5050

children, referred to as the left child and the right child.

2. What are the main operations on binary trees?

node’s value with the successor’s value, and then delete the successor.

Answer: The main operations on binary trees include insertion, deletion, and searching for nodes based on their

key values. Additionally, traversal methods such as inorder, preorder, and postorder allow for accessing and

processing nodes in different sequences.

3. What are the advantages of binary trees over other data structures?

Answer: Binary trees excel in scenarios where data needs to be organized hierarchically with efficient search,

insertion, and deletion operations. They are particularly useful in applications requiring sorted data and balanced

access patterns.

4. How do you implement a binary tree in practice?

Answer: Binary trees can be implemented using linked structures (nodes with pointers to left and right children)

or array-based representations (for complete binary trees). The implementation typically involves defining a node

structure and methods to perform operations like insertion, deletion, and traversal.

5. What are some real-world applications of binary trees?

Answer: Binary trees find applications in various fields, including database indexing, hierarchical data storage,

expression parsing in compilers, file system organization, and network routing algorithms.

7.11 References

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd

Edition). MIT Press.





Weiss, M. A. (2014). Data Structures and Algorithm Analysis in C++ (4th Edition). Pearson Education.

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014). Data Structures and Algorithms in C++

(2nd Edition). John Wiley & Sons.



 Sahni, S. (2006). Data Structures, Algorithms, and Applications in C++. McGraw-Hill Education.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th Edition). Addison-Wesley.

Unit – 8:

8.0 Introduction

8.1 Objectives

8.2 Binary Tree Traversals

8.3 Recursive Implementation of Binary Tree Traversals

8.4 Non-Recursive Implementations of Binary Tree Traversals

8.5 Applications of Binary Tree Traversals

8.6 Conclusion

8.7 Questions and Answers

8.8 References

8.0 Introduction

Binary trees are fundamental data structures in computer science, characterized by nodes that have at most two

children, commonly referred to as the left child and the right child. Traversing these structures involves

systematically visiting each node, facilitating various operations and analyses crucial across numerous

computational tasks. Binary tree traversals provide methods to explore and process nodes in specific sequences,

each offering unique advantages in data manipulation and algorithmic applications.

Binary tree traversal algorithms, both recursive and iterative, are pivotal in understanding and manipulating

explicit data structures like stacks or queues, provide control over memory usage and are often favored in

environments sensitive to stack depth or performance.

This discussion explores the intricacies of binary tree traversals, delving into both their theoretical underpinnings

highlighting their respective strengths and use cases. Furthermore, we will explore diverse applications where

binary tree traversals play a crucial role, from expression evaluation to graph algorithms and tree optimizations.

hierarchical data efficiently. Recursive implementations, characterized by their straightforward approach using

function calls, offer simplicity and clarity in algorithm design. Conversely, non-recursive approaches, employing

and practical applications. We will examine recursive and non-recursive implementations of traversal algorithms,

Understanding these traversal techniques equips us with essential tools for efficiently navigating and manipulating

binary tree structures, underpinning foundational concepts in computer science and enabling sophisticated

solutions across various domains.

8.1 Objectives

After completing this unit, you will be able to understand,





Understand Binary Tree Traversals: Explore the concepts of inorder, preorder, and postorder

traversals, comprehending their definitions and traversal sequences within binary tree structures.

Compare Recursive and Iterative Implementations: Analyze the differences between recursive and

iterative approaches to binary tree traversals, evaluating their performance characteristics and memory

usage.







Implement Binary Tree Traversals: Develop proficiency in implementing recursive and non-recursive

algorithms for inorder, preorder, and postorder traversals in practical scenarios.

Explore Applications: Investigate real-world applications of binary tree traversals across various

domains, including data processing, algorithmic problem-solving, and data structure optimizations.

Gain Practical Skills: Acquire hands-on experience in utilizing binary tree traversals for tasks such as

expression evaluation, tree manipulation, pathfinding, and graph algorithms.

8.2 Binary Tree Traversals

Binary tree traversals involve systematically visiting each node in a binary tree according to a specified order. The

three primary traversal methods are inorder, preorder, and postorder. In inorder traversal, nodes are visited in a

the root before its left and right children, making it suitable for creating a copy of a tree or prefix expression

evaluation. Postorder traversal visits the left and right children before the root, often used for deleting a tree or
40404040

evaluating postfix expressions. These traversal techniques are fundamental for accessing, modifying, or analyzing

binary tree structures in various computational tasks and algorithms.

Inorder Traversal: Visit left subtree, then root, then right subtree.

Inorder traversal is a method used to visit nodes in a binary tree where each node is recursively visited in the
58585858

order: left subtree, root, right subtree. This traversal method is particularly useful for binary search trees (BSTs)
40404040

as it visits nodes in ascending order of their keys.

Algorithm

The recursive algorithm for inorder traversal can be defined as follows:

left-root-right sequence, making it useful for accessing nodes in sorted order in a BST. Preorder traversal visits

1. Base Case: If the current node is null (empty tree), return.

2. Recursive Step:

o

o

o

Recursively traverse the left subtree.

Visit (print, process, or store) the current node's value.

Recursively traverse the right subtree.

This approach ensures that nodes are visited in the correct order according to the properties of inorder traversal.
646464

Example

Let's illustrate the inorder traversal algorithm with a simple C++ implementation using a class TreeNode for the

tree nodes:

#include <iostream>
class TreeNode {
public:

int val;
TreeNode* left;
TreeNode* right;
TreeNode(int value) : val(value), left(nullptr), right(nullptr) {}

};
void inorderTraversal(TreeNode* root) {

if (root == nullptr) {
return;

}
// Traverse the left subtree
inorderTraversal(root->left);
// Visit the current node (print its value)
std::cout << root->val << " ";
// Traverse the right subtree
inorderTraversal(root->right);

}
// Example usage
int main() {

// Constructing a sample binary tree
TreeNode* root = new TreeNode(1);
root->left = new TreeNode(2);
root->right = new TreeNode(3);
root->left->left = new TreeNode(4);
root->left->right = new TreeNode(5);
std::cout << "Inorder traversal: ";
inorderTraversal(root);
std::cout << std::endl;
return 0;

}

Explanation

In the above example:





We define the TreeNode class to represent nodes of the binary tree.

The inorderTraversal function is a recursive function that performs inorder traversal.





Starting from the root node (root), it recursively traverses the left subtree (root->left), then visits the

current node (root->val), and finally recursively traverses the right subtree (root->right).

The traversal prints node values in ascending order due to the nature of inorder traversal, resulting in

output: 4 2 5 1 3.

Preorder Traversal: Visit root, then left subtree, then right subtree.

Preorder traversal is a method used to visit nodes in a binary tree where each node is recursively visited in the
58585858

order: root, left subtree, right subtree. This traversal method is useful for creating a copy of the tree, prefix
40404040

expression evaluation, or constructing prefix notation from infix notation.

Algorithm

The recursive algorithm for preorder traversal can be defined as follows:

1. Base Case: If the current node is null (empty tree), return.

2. Recursive Step:

o

o

o

Visit (print, process, or store) the current node's value.

Recursively traverse the left subtree.

Recursively traverse the right subtree.

This approach ensures that the root node is visited before its left and right subtrees.
646464

Example in Python

Let's illustrate the preorder traversal algorithm with an example implementation in C++:

#include <iostream>
// Definition of TreeNode
class TreeNode {
public:

int val;
TreeNode* left;
TreeNode* right;
TreeNode(int value) : val(value), left(nullptr), right(nullptr) {}

};
// Function to perform preorder traversal
void preorderTraversal(TreeNode* root) {

if (root == nullptr) {
return;

}
// Visit the current node
std::cout << root->val << " ";
// Traverse the left subtree
preorderTraversal(root->left);
// Traverse the right subtree
preorderTraversal(root->right);

}
// Main function for example usage
int main() {

// Constructing a sample binary tree
TreeNode* root = new TreeNode(1);
root->left = new TreeNode(2);
root->right = new TreeNode(3);
root->left->left = new TreeNode(4);
root->left->right = new TreeNode(5);
// Perform preorder traversal
std::cout << "Preorder traversal: ";
preorderTraversal(root);
std::cout << std::endl;
return 0;

}

Explanation:

1. TreeNode Class: Defines a simple binary tree node with an integer value (val) and pointers to left (left)

and right (right) children.

2. preorderTraversal Function:

o

o Prints the value of the current node (root->val) before recursively calling preorderTraversal on

its left and right children (root->left and root->right).

3. Main Function:

o

o

o

Constructs a sample binary tree with values 1, 2, 3, 4, and 5.

Calls preorderTraversal starting from the root node (TreeNode (1)).

Outputs the result of the preorder traversal, which in this case would be: 1 2 4 5 3.

Postorder Traversal: Visit left subtree, then right subtree, then root.

Postorder traversal is a method used to visit nodes in a binary tree where each node is recursively visited in the
58585858

order: left subtree, right subtree, root. This traversal method is useful for deleting a tree, evaluating postfix

expressions, or performing certain types of bottom-up processing.

Algorithm

The recursive algorithm for postorder traversal can be defined as follows:

1. Base Case: If the current node is null (empty tree), return.

2. Recursive Step:

o

o

o

Recursively traverse the left subtree.

Recursively traverse the right subtree.

Visit (print, process, or store) the current node's value.

This approach ensures that the root node is visited after its left and right subtrees have been fully explored.
646464

Recursively traverses the binary tree in preorder.

Example in C++

Here's how you can implement postorder traversal of a binary tree in C++ using a class TreeNode for the nodes:

#include <iostream>
// Definition of TreeNode
class TreeNode {
public:

int val;
TreeNode* left;
TreeNode* right;
TreeNode(int value) : val(value), left(nullptr), right(nullptr) {}

};
// Function to perform postorder traversal
void postorderTraversal(TreeNode* root) {

if (root == nullptr) {
return;

}
// Traverse the left subtree
postorderTraversal(root->left);
// Traverse the right subtree
postorderTraversal(root->right);
// Visit the current node
std::cout << root->val << " ";

}
// Main function for example usage
int main() {

// Constructing a sample binary tree
TreeNode* root = new TreeNode(1);
root->left = new TreeNode(2);
root->right = new TreeNode(3);
root->left->left = new TreeNode(4);
root->left->right = new TreeNode(5);
// Perform postorder traversal
std::cout << "Postorder traversal: ";
postorderTraversal(root);
std::cout << std::endl;
return 0;

}

Level-order Traversal: Visit nodes level by level, left to right.

Level-order traversal, also known as breadth-first traversal, is a method used to visit nodes in a binary tree where
58585858

each level of the tree is visited before moving on to the next level. This traversal method explores nodes level by

level, from left to right, making it suitable for tasks such as level-wise printing or searching in a tree structure.

Algorithm

Level-order traversal can be implemented using a queue data structure to keep track of nodes at each level:

1. Initialize: Start with a queue initialized with the root node.

2. Process Nodes: Dequeue a node from the front of the queue, visit (print, process, or store) its value.

3. Enqueue Children: Enqueue its left and right children (if they exist) into the queue.

4. Repeat: Continue this process until the queue is empty.

Example in C++

Here's how you can implement level-order traversal of a binary tree in C++ using a class TreeNode for the nodes

and std::queue for managing the traversal:

#include <iostream>
#include <queue>
// Definition of TreeNode
class TreeNode {
public:

int val;
TreeNode* left;
TreeNode* right;
TreeNode(int value) : val(value), left(nullptr), right(nullptr) {}

};
// Function to perform level-order traversal
void levelOrderTraversal(TreeNode* root) {

if (root == nullptr) {
return;

}
// Create a queue for level-order traversal
std::queue<TreeNode*> q;
q.push(root);
while (!q.empty()) {

TreeNode* current = q.front();
q.pop();
// Visit the current node
std::cout << current->val << " ";
// Enqueue left child
if (current->left) {

q.push(current->left);
}
// Enqueue right child
if (current->right) {

q.push(current->right);
}

}
}
// Main function for example usage
int main() {

// Constructing a sample binary tree
TreeNode* root = new TreeNode(1);
root->left = new TreeNode(2);
root->right = new TreeNode(3);
root->left->left = new TreeNode(4);
root->left->right = new TreeNode(5);
// Perform level-order traversal
std::cout << "Level-order traversal: ";
levelOrderTraversal(root);
std::cout << std::endl;
return 0;

}

Explanation:

1. TreeNode Class: Defines a simple binary tree node with an integer value (val) and pointers to left (left)

and right (right) children.

2. levelOrderTraversal Function:

o

o

o

Implements level-order traversal using a std::queue.

Starts with the root node (root) enqueued.

Dequeues each node (current) from the front of the queue, visits its value (std::cout << current-

>val << " "), and enqueues its children (if they exist) into the queue.

o Continues this process until all nodes at every level have been visited.

3. Main Function:

o

o

o

Constructs a sample binary tree with values 1, 2, 3, 4, and 5.

Calls levelOrderTraversal starting from the root node (TreeNode(1)).

Outputs the result of the level-order traversal, which in this case would be: 1 2 3 4 5.

8.3 Recursive Implementation of Binary Tree Traversals

Recursive implementation of binary tree traversal refers to the method of visiting each node in a binary tree using

In each traversal method, the recursive function ensures that all nodes are visited in the prescribed order,

leveraging the function call stack to manage the sequence of node visits. Recursive implementations are typically

concise and intuitive for tree traversal, suitable for operations such as printing tree nodes in a specific order,

evaluating expressions, or performing depth-first searches in binary tree structures.

The algorithms for recursive binary tree traversals in C++ format:

In inorder traversal, the nodes are visited in the sequence: left subtree, root, right subtree. The recursive

algorithm starts by checking if the current node is null; if so, it returns. Otherwise, it recursively traverses the left

subtree, then visits the current node (e.g., prints its value), and finally recursively traverses the right subtree.

Time Complexity of Recursive Traversals







Each node is visited exactly once.

Time complexity: O(n), where n is the number of nodes in the binary tree.

This is because every node is processed once, and processing each node takes constant time.

Inorder Traversal Algorithm (C++ Format)

recursive function calls. There are three primary types of binary tree traversals: inorder, preorder, and postorder.

Preorder traversal visits nodes in the sequence: root, left subtree, right subtree. Similarly, the recursive function

checks if the current node is null; if not, it visits the current node first, then recursively traverses the left subtree,

followed by the right subtree.

Time Complexity of Recursive Traversals







Each node is visited exactly once.

Time complexity: O(n), where n is the number of nodes in the binary tree.

Similar to inorder traversal, all nodes are processed once.

Preorder Traversal Algorithm (C++ Format)

Postorder traversal visits nodes in the sequence: left subtree, right subtree, root. The recursive approach begins

by recursively traversing the left subtree, then the right subtree, and finally visiting the current node.
40404040

Time Complexity of Recursive Traversals







Each node is visited exactly once.

Time complexity: O (n), where nnn is the number of nodes in the binary tree.

Like the other traversals, all nodes are processed once.

Postorder Traversal Algorithm (C++ Format)

Explanation







Each function (inorderTraversal, preorderTraversal, postorderTraversal) takes a TreeNode* parameter

root, representing the root of the subtree to traverse.

Base Case: if (root == nullptr) checks if the current node (root) is null (empty tree). If true, the function

Recursive Step: For each traversal:

o

o

o

Inorder: Recursively call inorderTraversal on the left subtree, visit the current node, then

recursively call it on the right subtree.

Preorder: Visit the current node, recursively call preorderTraversal on the left subtree, then on

the right subtree.

Postorder: Recursively call postorderTraversal on the left subtree, then on the right subtree,

and finally visit the current node.

 Visit Node: This part of the algorithm is where you would typically perform an action on the current

node, such as printing its value (std::cout << root->val << " ";). This action can be adjusted based on the

specific requirements of your application.

8.4 Non-Recursive Implementations of Binary Tree Traversals

returns immediately, halting further recursion.

the algorithmic outlines for non-recursive implementations of binary tree traversals:
121212121212

Non-Recursive Algorithms for Binary Tree Traversals

Inorder Traversal Algorithm (Non-Recursive)

Preorder Traversal Algorithm (Non-Recursive)

Postorder Traversal Algorithm (Non-Recursive)

Explanation







Inorder Traversal: Uses a stack to simulate the call stack of recursive approach. It traverses left subtree

first, processes the current node, and then moves to the right subtree.

Preorder Traversal: Starts from the root node, processes it, and pushes its right and left children onto

the stack. This ensures nodes are processed in the correct preorder sequence.

Postorder Traversal: Uses two stacks: the main stack pushes nodes in root-right-left order, and the

output stack reverses this order to achieve the postorder sequence.

Compare the recursive and iterative approaches in terms of performance and memory usage.

Recursive Approach

Performance:

 Time Complexity: Recursive traversals (inorder, preorder, postorder) typically have a time complexity
1111111

of O (n), where n is the number of nodes in the binary tree. Each node is visited exactly once.

 Space Complexity: The space complexity depends on the maximum depth of the recursion stack, which

is O (h) where h is the height of the binary tree. In the best-case scenario (balanced tree), this is O (log

n); in the worst case (unbalanced tree), it can be O (n).

Memory Usage:

 Recursive calls use memory on the call stack for function calls and local variables. Each recursive call

adds a stack frame, which can potentially lead to stack overflow errors if the tree is deeply nested or

unbalanced.

 Despite potential drawbacks, recursive approaches are often simpler to implement and understand due to

their natural recursive nature.

Iterative Approach

Performance:

 Time Complexity: Iterative traversals also have a time complexity of O (n), similar to recursive

traversals. Each node is processed exactly once.

 Space Complexity: Iterative traversals typically use an explicit data structure such as a stack (or queue

for level-order traversal). The space complexity is also O (h), where h is the height of the binary tree.

This is because the stack or queue stores nodes as they are processed, similar to the depth of recursion in

the recursive approach.

Memory Usage:

 Iterative approaches often use additional memory for data structures like stacks or queues to manage the

order of node processing.

 They may be more memory-efficient in some cases compared to recursive approaches, especially in

situations where tail-call optimization is not available (as in many programming languages).

8.5 Applications of Binary Tree Traversals

Binary tree traversals, both recursive and iterative, are fundamental operations with numerous practical
6262

applications across various domains. Here are some key applications of binary tree traversals:

1. Binary Search Trees (BSTs): Inorder traversal of a BST results in a sorted sequence of elements. This

property is utilized for tasks such as generating sorted outputs from data stored in a BST or validating
121212121212

the ordering of elements.

2. Expression Evaluation: Preorder or postorder traversals are used to evaluate arithmetic expressions

stored in binary expression trees (expression trees). Each traversal method corresponds to a different

evaluation strategy (prefix, postfix), making it efficient for computational tasks.

3. Path Finding and Reconstruction: Traversals are employed to reconstruct or find paths within binary

trees. For example, determining the path from the root to a specific node or finding all root-to-leaf paths

in the tree.

4. Binary Tree Operations: Traversals facilitate various operations such as cloning a tree (preorder),

transforming a tree structure (inorder), or deleting nodes (postorder). These operations leverage the

5. Binary Tree Serialization and Deserialization: Preorder or postorder traversals are used to serialize

binary trees into a linear data format (e.g., arrays or strings). This serialized format can be stored or

transmitted across networks and later deserialized back into a binary tree.

6. Graph Algorithms: Binary tree traversals serve as a basis for several graph algorithms, such as depth-

first search (DFS), which explores vertices in a similar manner to preorder traversal. Applications include

finding connected components, cycle detection, and topological sorting in directed acyclic graphs

(DAGs).

8.6 Conclusion

Binary tree traversals represent a cornerstone in the study of data structures and algorithms, offering essential
1111111

into the intricacies of inorder, preorder, and postorder traversals, each methodically visiting nodes in distinct

sequences that serve various computational purposes.

sequential access provided by traversals to manipulate tree data effectively.

tools for navigating and manipulating hierarchical data efficiently. Throughout this exploration, we have delved

Recursive implementations of these traversals provide a clear and intuitive approach, leveraging function calls to

explore tree structures depth-first. They offer simplicity in algorithmic design but necessitate careful consideration

of stack space in deeply nested trees. In contrast, non-recursive approaches utilize explicit data structures like

stacks or queues to achieve iterative traversal, offering finer control over memory usage and stack depth.

From practical applications in expression evaluation and tree manipulation to supporting complex graph

They empower efficient solutions across domains, enhancing computational efficiency and enabling sophisticated

data processing tasks.

As we conclude, understanding the nuances of binary tree traversals equips us with essential skills for tackling

algorithmic challenges, optimizing code performance, and developing robust software solutions. Mastery of these

traversal techniques not only enriches our understanding of data structures but also fosters creativity in algorithm

design, ensuring proficiency in navigating the complexities of binary tree structures.
1111111

8.7 Questions and Answers

1. What are the three main types of binary tree traversals?

Answer: The three main types of binary tree traversals are:







Inorder traversal: Visit left subtree, then current node, then right subtree.

Preorder traversal: Visit current node, then left subtree, then right subtree.

2. How does inorder traversal of a binary search tree differ from preorder and postorder traversals?

Answer: In an inorder traversal of a binary search tree (BST), the nodes are visited in ascending order of their

keys. This property makes inorder traversal useful for generating sorted lists from BSTs. In contrast, preorder and

postorder traversals follow different sequences: preorder visits the root before its subtrees, while postorder visits

the root after its subtrees.

3. What is the advantage of using iterative approaches for binary tree traversals over recursive methods?

Answer: Iterative approaches using stacks or queues offer more control over memory usage, especially in

environments where stack depth is a concern (such as in deeply nested trees). They can also be more efficient in

terms of space utilization and are suitable for iterative modifications or optimizations of tree structures.

4. Give an example where postorder traversal of a binary tree is particularly useful.
121212121212

Answer: Postorder traversal is useful in scenarios where operations need to be performed on subtrees before

processing the root node. For example, in deleting a binary tree, postorder traversal ensures that child nodes are

deleted before their parent nodes, preventing memory leaks and ensuring proper cleanup.

algorithms and optimizing data structures like binary search trees, binary tree traversals find wide-ranging utility.

Postorder traversal: Visit left subtree, then right subtree, then current node.

5. How does the time complexity of binary tree traversals compare to each other?

Answer: All three types of binary tree traversals (inorder, preorder, postorder) have a time complexity of O (n),

where nnn is the number of nodes in the binary tree. This is because each node is visited exactly once during

8.8 References

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd

Edition). MIT Press.





Weiss, M. A. (2014). Data Structures and Algorithm Analysis in C++ (4th Edition). Pearson Education.

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014). Data Structures and Algorithms in C++

(2nd Edition). John Wiley & Sons.



 Sahni, S. (2006). Data Structures, Algorithms, and Applications in C++. McGraw-Hill Education.

traversal, making them equally efficient in terms of time complexity.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th Edition). Addison-Wesley.

Block III: Graph Algorithms and Searching Techniques

Unit – 9: Advanced Trees

9.0 Introduction

9.1 Objectives

9.2 AVL Trees

9.2.1 RR Rotation

9.2.2 LL Rotation

9.2.3 LR Rotation

9.2.4 RL Rotation

9.3 Implementation of AVL Trees Operations

9.4 Applications of AVL Trees

9.5 Conclusion

9.6 Questions and Answers

9.7 References

9.0 Introduction

Evgenii Landis. They maintain a balanced structure to ensure that the height of the tree remains logarithmic with
1111111

respect to the number of nodes, which allows for efficient operations such as insertion, deletion, and searching.

The balance of an AVL tree is managed through rotations, which ensure that the tree remains balanced after
121212121212

modifications. This balancing mechanism makes AVL trees particularly suitable for applications requiring
6262

frequent updates and efficient data retrieval.

In this chapter, we will explore the fundamentals of AVL trees, including the different types of rotations used to

maintain balance. We will delve into the implementation of various AVL tree operations, such as insertion and

deletion, and discuss their algorithms in detail. Additionally, we will examine practical applications of AVL trees,

questions and answers to reinforce the concepts covered, along with references for further reading.

AVL trees are a type of self-balancing binary search tree named after their inventors, Georgy Adelson-Velsky and

highlighting their significance in various computational and real-world scenarios. Finally, we will provide a set of

This comprehensive overview aims to equip you with a thorough understanding of AVL trees, their operations,

and their applications, providing a solid foundation for further exploration and implementation of this essential

data structure.

9.1 Objectives

After completing this unit, you will be able to understand,











Understand the basic concepts and properties of AVL trees and why they are called self-balancing binary

search trees.

Learn and implement the different types of rotations (RR, LL, LR, RL) used to maintain the balance in
1111111

AVL trees.

Implement insertion and deletion operations in AVL trees, ensuring the tree remains balanced through

appropriate rotations.

Explore various real-world applications of AVL trees to understand their practical significance and

Reinforce your understanding of AVL trees through questions and answers, and refer to additional

resources for deeper insights into the topic.

9.2 AVL Trees

The height of each node in an AVL Tree is determined by subtracting the height of its left sub-tree from the height

of its right sub-tree, creating a height balanced binary search tree.

If every node's balance factor falls between -1 and 1, the tree is said to be balanced; if not, it needs to be balanced.

Balance Factor (k) = height (left(k)) - height (right(k))









The left sub-tree is one level higher than the right sub-tree if the balancing factor of any node is 1.

Any node whose balancing factor is zero indicates that the heights of the left and right subtrees are equal.
121212121212

The left sub-tree is one level lower than the right sub-tree if the balancing factor of any node is -1.
1111111

The AVL tree is shown in the image below. It is evident that every node has a balance factor that ranges

from -1 to +1. It is an AVL tree example as a result.

efficiency.

In 1962, GM Adelson-Velsky and EM Landis created the AVL Tree. To honor its creators, the tree is called AVL.

Image Source: Javat Point

Operation on AVL Tree

All operations are carried out in the same manner as they are carried out in a binary search tree as the AVL tree is
121212121212

likewise a binary search tree. There is no property violation of the AVL tree as a result of searching or traversing.

Nevertheless, insertion and deletion are the operations that need to be reviewed because they have the potential to

break this characteristic.

• Insertion: The process of inserting data into an AVL tree is identical to that of inserting data into a binary

search tree. It might, however, result in an AVL tree property violation, necessitating the balancing of the

tree. Rotations can be used to balance the tree.

•

rotations are performed to rebalance the tree because deletions can also throw it out of balance.

The AVL Tree: Why?

By preventing skewing, the AVL tree regulates the height of the binary search tree. In a binary search tree of

height h, the total processing time is O(h). On the other hand, in the worst-case scenario, if the BST skews, it can

be stretched to O(n). The AVL tree sets an upper limitation on each operation to be O(log n), where n is the number
1111111

of nodes, by restricting this height to log n.

Rotations of AVL

Rotation in the AVL tree is only carried out when the Balance Factor is not equal to -1, 0 or 1. Rotations can be

broadly classified into four categories, which are as follows:

1. L L rotation: Inserted node is in the left subtree of left subtree of A

2. R R rotation: Inserted node is in the right subtree of right subtree of A

3. L R rotation: Inserted node is in the right subtree of left subtree of A

4. R L rotation: Inserted node is in the left subtree of right subtree of A

Assuming that node A is the node with a balancing factor that is not -1, 0, 1.

The initial two iterations: The next two rotations, LR and RL, are double rotations, whereas LL and RR are single

rotations. A tree must have a minimum height of two in order to be considered imbalanced. Let's examine each

revolution.

9.2.1 RR Rotation

We apply RR rotation, an anticlockwise rotation, on the edge beneath a node with a balance factor of -2 when

BST becomes unbalanced as a result of a node being placed into the right subtree of the right subtree of A.

Because node C is added into the right subtree of node A, node A in the example above has a -2 balancing factor.

We rotate the RR on the edge beneath A.

Deletion: The process of deletion can be carried out similarly to how it is in a binary search tree. Various

9.2.2 LL Rotation

We apply LL rotation, or clockwise rotation, on the edge beneath a node with balance factor 2 when BST becomes

unbalanced as a result of a node being added into the left subtree of the left subtree of C.
767676 6666666666666

Because node A is inserted into the left subtree of the C left subtree, node C in the example above has a balance
444444444444

factor of 2. The LL rotation is applied to the edge beneath A.

9.2.3 LR Rotation

As was already mentioned, single rotations are a little easier than double rotations. RR rotation is initially applied

to the subtree, then LL rotation is applied to the complete tree (which is defined as the first node from the route
6666666666666

of the inserted node whose balance factor is not -1, 0, or 1). This means that LR rotation is equal to RR rotation
444444444444

plus LL rotation.

Step – I: Node B was inserted into both the left and right subtrees of C and A, resulting in C being an unbalanced
6666666666666

node with a balance factor of 2. In this case of rotation from L to R, where: The inserted node can be found in the

right subtree of C's left subtree.
6666666666666

Step – II: Given that LR rotation is equal to RR plus LL rotation, RR (anticlockwise) on the subtree rooted at A

is done first. Node A has become the left subtree of B through RR rotation.

Step – III: Because inserted node A is to the left of C, node C is still unbalanced, or has a balance factor of 2,
444444444444

even after RR rotation.

right subtree, and node A is node B's left subtree.

9.2.4 RL Rotation

Double rotations are a little more difficult than single rotations, as was previously mentioned and previously

explained. The formula for R L rotation is equal to LL rotation plus RR rotation. This means that LL rotation is

Step – IV: We now rotate the entire tree, or node C, in a clockwise direction using LL. Node C is now node B's

applied to the subtree first, then RR rotation is applied to the complete tree (which is defined as the first node from
6666666666666

the route of the inserted node whose balancing factor is not equal to -1, 0, or 1).

Step – I: Due to the insertion of node B into the right subtree of A and left subtree of C, A is now an unbalanced

node with a balance factor of 2. In this RL rotation scenario, where: The node that was inserted is in the left subtree

of A's right subtree.

Step – II: Since LL rotation plus RR rotation equals RL rotation, LL (clockwise) rotation on the subtree rooted at

C is done first. After performing RR rotation, node C is now B's correct subtree.

Step – III: Node A remains unbalanced, with a balance factor of -2, even after LL rotation has been performed.

This is due to the fact that node A's right-subtree is also its right-subtree.

the left subtree of node B, and node C is the right subtree of node B.

Step – IV: We now rotate the entire tree, or node A, in an anticlockwise direction, or RR rotation. Now, node A is
6666666666666

9.3 Implementation of AVL Trees Operations

Operations on AVL Trees

Insertion of a Node

Algorithm:









Perform a standard BST insertion.

Update the height of each node from the inserted node to the root.
444444444444

Check the balance factor of each node.
6666666666666

If the balance factor of any node becomes greater than 1 or less than -1, perform rotations (LL, RR, LR,
444444444444 767676

RL) to balance the tree.
6666666666666

Deletion of a Node

Algorithm:









Perform a standard BST deletion.

Update the height of each node from the deleted node to the root.

Check the balance factor of each node.

If the balance factor of any node becomes greater than 1 or less than -1, perform rotations to balance the
444444444444 767676 444444444444

tree.

Left Rotation

Algorithm:

Step – V: Balance factor of each node is now either -1, 0, or 1, i.e., BST is balanced now.

Right Rotation

Algorithm:

Double Rotation (Left-Right Rotation)

Algorithm:

Double Rotation (Right-Left Rotation)

Algorithm:

Balancing and Maintenance

 Check Balance Factor: Calculate the balance factor (height difference between left and right subtrees)

of each node.

 Rebalance Tree: After insertions or deletions, check and rebalance the tree using rotations if necessary

to maintain AVL properties.

9.4 Applications of AVL Trees

Data Storage and Retrieval





Efficient Searching: AVL trees maintain a balanced structure, ensuring that the height of the tree is

logarithmic in the number of nodes. This guarantees that search operations can be performed in

O(log n)O(\log n)O(logn) time, making them highly efficient for data retrieval tasks.

Dynamic Sets: AVL trees are useful in applications where dynamic data sets are frequently updated with

insertions and deletions. The self-balancing property ensures that the tree remains balanced after each
6666666666666

update, maintaining efficient access times.

Database Indexing

 Balanced Index Structures: AVL trees are often used in database indexing to maintain sorted data. The

balanced nature of AVL trees ensures that the depth of the index remains low, allowing for quick searches,

insertions, and deletions.

 Multilevel Indexes: In databases, AVL trees can be used to implement multilevel indexes, where each

level of the index is a balanced tree, providing efficient access paths to the data.

Memory Management

 Garbage Collection: AVL trees are employed in memory management systems, such as garbage

collectors, to keep track of free memory blocks. The balanced structure allows for efficient allocation

 Buddy System: In the buddy memory allocation system, AVL trees can be used to manage the free

memory blocks, ensuring that the system can quickly find the best-fit block for memory allocation

requests.

and deallocation of memory.

File Systems

 File Indexing: File systems use AVL trees to index files and directories. The balanced nature of AVL
444444444444

 Metadata Management: AVL trees are used to manage file metadata, enabling quick access and updates

to file attributes such as permissions, timestamps, and sizes.

Network Routing



balanced structure allows for efficient lookup, insertion, and deletion of routing entries, ensuring quick

and accurate routing decisions.

 IP Address Management: AVL trees are useful in managing IP address ranges and routing prefixes,

enabling efficient searching and allocation of IP addresses in large networks.

Event Scheduling

 Priority Queues: AVL trees can be used to implement priority queues for event scheduling. The balanced

structure ensures that events are processed in the correct order of priority, with efficient insertion and

extraction operations.

 Task Scheduling: In operating systems, AVL trees are used to manage the scheduling of tasks and

processes. The balanced nature of the tree ensures that tasks are scheduled and executed efficiently based

on their priority and deadlines.

Computational Geometry

 Range Searching: AVL trees are employed in computational geometry for range searching problems,

where the goal is to efficiently find all points within a given range. The balanced structure allows for

quick and efficient searches.

 Intersection Detection: AVL trees are used to detect intersections of geometric objects such as lines and

polygons. The efficient insertion and deletion operations facilitate the dynamic updating of the geometric

structure.

9.5 Conclusion

AVL trees play a crucial role in ensuring efficient data management through their self-balancing properties. By

maintaining a balanced structure, AVL trees guarantee logarithmic time complexity for insertion, deletion, and
6666666666666

search operations, which is essential for applications requiring frequent updates and rapid data retrieval. The use

of rotations, such as RR, LL, LR, and RL, is fundamental in preserving this balance after modifications,

demonstrating the sophisticated nature of AVL trees compared to simple binary search trees.

trees ensures that file operations such as searching, insertion, and deletion are performed efficiently.

Routing Tables: AVL trees can be used in the implementation of routing tables in network routers. The

Throughout this chapter, we have explored the intricacies of AVL trees, starting with the basic concepts and

advancing to the implementation of various operations. We have examined how rotations help in maintaining the

balance and efficiency of AVL trees. Furthermore, we have discussed the practical applications of AVL trees in

fields like database indexing, memory management, and network routing, showcasing their versatility and

importance in real-world scenarios.

By understanding and implementing AVL trees, you gain a valuable tool for optimizing data structures in your

applications. This chapter has equipped you with the necessary knowledge and skills to apply AVL trees

9.6 Questions and Answers

1. What is an AVL tree?
444444444444

Evgenii Landis. It maintains its balance by ensuring the height difference between the left and right subtrees of
6666666666666

any node is no more than one.
444444444444

2. Why are AVL trees considered self-balancing?

Answer: AVL trees are considered self-balancing because they automatically perform rotations to maintain a

balanced structure after insertion and deletion operations, ensuring the height difference (balance factor) between

the left and right subtrees of any node is -1, 0, or +1.
6666666666666

3. What is the balance factor in an AVL tree?
444444444444

Answer: The balance factor of a node in an AVL tree is the difference between the height of its left subtree and
6666666666666

the height of its right subtree. It helps in determining whether the tree needs rebalancing through rotations.
444444444444

4. Explain the RR rotation in AVL trees.

Answer: RR (Right-Right) rotation is a single left rotation used to rebalance an AVL tree when a node's right

subtree is heavier (i.e., its balance factor is -2) and the right child has a balance factor of -1 or 0. This rotation

shifts the unbalanced subtree to the left.

5. Describe the LL rotation in AVL trees.

Answer: LL (Left-Left) rotation is a single right rotation used to rebalance an AVL tree when a node's left subtree

is heavier (i.e., its balance factor is +2) and the left child has a balance factor of +1 or 0. This rotation shifts the

unbalanced subtree to the right.

6. What is the difference between LR and RL rotations in AVL trees?

Answer: LR (Left-Right) rotation is a double rotation, first a left rotation on the left child and then a right rotation

on the node, used when the balance factor of the node is +2 and the left child has a balance factor of -1. RL (Right-

effectively, ensuring that your data operations are performed efficiently and reliably.

Answer: An AVL tree is a self-balancing binary search tree named after its inventors, Georgy Adelson-Velsky and

Left) rotation is also a double rotation, first a right rotation on the right child and then a left rotation on the node,

used when the balance factor of the node is -2 and the right child has a balance factor of +1.

9.7 References

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd

Edition). MIT Press.





Weiss, M. A. (2014). Data Structures and Algorithm Analysis in C++ (4th Edition). Pearson Education.

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014). Data Structures and Algorithms in C++

(2nd Edition). John Wiley & Sons.



 Sahni, S. (2006). Data Structures, Algorithms, and Applications in C++. McGraw-Hill Education.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th Edition). Addison-Wesley.

Unit – 10: B-Trees

10.0 Introduction

10.1 Objectives

10.2 B-Tree

10.2.1 Properties of B-Trees

10.2.2 Operations on B-Trees

10.2.3 Applications of B-Trees

10.3 Splay Trees

10.3.1 Splaying Algorithm

10.3.2 Operations on Splay Trees

10.4 Red-Black Trees

10.5 AA-Trees

10.6 Applications of Balanced Trees

10.7 Conclusion

10.8 Questions and Answers

10.9 References

10.0 Introduction

Among the diverse types of trees, balanced trees stand out for their ability to maintain balanced structures that

ensure optimal performance for various operations. This chapter explores several important balanced trees,

including B-Trees, Splay Trees, Red-Black Trees, and AA-Trees, along with their properties, operations,

applications, and the broader significance of balanced trees in computer science.

Balanced Trees are designed to keep the tree height proportional to the logarithm of the number of nodes, ensuring

that operations such as search, insertions, and deletions remain efficient even as the dataset grows. These trees are

essential in scenarios where maintaining balance is critical to performance, such as in databases, file systems, and

In the realm of data structures, trees play a pivotal role in organizing and managing hierarchical data efficiently.

compilers. Understanding the principles and applications of balanced trees equips us with powerful tools for

optimizing data structures in real-world applications.

This chapter will delve into the intricacies of various balanced trees, exploring their structural properties,

algorithms for balancing and rebalancing, and practical applications. By the end, you will gain a comprehensive

understanding of how these trees contribute to efficient data management and algorithmic design, laying a

foundation for advanced studies and applications in computer science.

10.1 Objectives

After completing this unit, you will be able to understand,







Explore B-Trees: Understand the structure and properties of B-Trees, including rules for balancing.

Study Splay Trees: Learn operations such as splaying, insertion, deletion, and search in Splay Trees.

Examine Red-Black Trees: Understand the properties and rules that define Red-Black Trees as balanced

binary search trees.





Understand AA-Trees: Learn about AA-Trees, a variant of Red-Black Trees with simplified balancing

rules.

Analyze Applications of Balanced Trees: Investigate practical uses of balanced trees in databases, file

systems, and compilers.

10.2 B-Tree

A B-Tree is a self-balancing tree data structure that maintains sorted data and allows for efficient insertion,

deletion, and search operations. It is designed to work well on systems that read and write large blocks of data,

such as databases and filesystems. B-Trees are characterized by their ability to manage large amounts of data by

keeping all leaf nodes at the same depth, ensuring that the tree remains balanced. This balance ensures that the

time complexity for insertion, deletion, and search operations remains logarithmic. In a B-Tree of order m, each

node can have at most m children and must have at least ⌈m/2⌉ children, except for the root node which can have

fewer children. The keys within each node are maintained in sorted order, and internal nodes act as guides to direct

searches to the correct subtree. This structure allows B-Trees to efficiently handle large datasets and makes them

particularly suitable for use in database indexing and filesystems, where quick access to large volumes of data is

crucial.

10.2.1 Properties of B-Trees

Order of B-Tree (m): The order m of a B-Tree defines the maximum number of children a node can have. An

internal node in a B-Tree of order m can have at most m children.

Key Range in Nodes:







Each node (except for the root and leaves) must have at least ⌈m/2⌉ children and ⌈m/2⌉ - 1 keys.

The root node must have at least 2 children if it is not a leaf node.

A non-leaf node with k children must contain k-1 keys.

Balance: B-Trees are balanced, meaning all leaf nodes are at the same depth, ensuring that the tree remains

Height of the Tree: The height of a B-Tree with n keys and minimum degree t is at most log_t(n+1)/2.

Nodes and Keys:

 Nodes in a B-Tree contain multiple keys and children pointers. Keys within each node are sorted in non-

 Internal nodes store keys to guide the search operations by directing them to the appropriate child subtree.

Root Node: The root node of a B-Tree has at least one key and can have as few as two children or more, depending

on the order of the tree.

Leaf Nodes: All leaf nodes appear at the same level and do not contain children. They only store keys.

Node Splitting: When a node becomes full (i.e., contains m-1 keys), it splits into two nodes. The median key is

moved up to the parent node, ensuring that the properties of the B-Tree are maintained.

Node Merging: During deletion, if a node has fewer than ⌈m/2⌉ - 1 keys, it may borrow a key from its sibling or

merge with a sibling to maintain the minimum number of keys required.

Efficiency: B-Trees are optimized for systems that read and write large blocks of data. They are widely used in

database systems and filesystems to ensure efficient data access and management.

 B-Trees are balanced search trees designed to work well on disks or other direct-access secondary storage

devices.





Every node in a B-Tree contains several keys and children, and all leaves are at the same depth.

A B-Tree of order m is defined as:

o

o

o

o

o

o

Each node has at most m children.

Each internal node (except the root) has at least ⌈m/2⌉ children.

Each non-leaf node has at least ⌈m/2⌉ - 1 keys.

The root has at least two children if it is not a leaf node.

All leaves appear on the same level.

A non-leaf node with k children contains k-1 keys.

balanced and the operations (insertion, deletion, search) have logarithmic time complexity.

decreasing order.

10.2.2 Operations on B-Trees

1. Insertion

 Algorithm:

1. Start at the root node.

2. If the root is full, split it and make the new root its parent, then proceed with insertion.

3. Traverse down the tree to find the appropriate leaf node.

4. If the leaf node is full, split it into two nodes and move the middle key up to the parent.

5. Insert the new key into the appropriate position in the non-full node.

Insertion Algorithm in Detail:

1. Insert (k):

o If the root is full, create a new root and split the old root, and set the new root as the parent of

the old root.

o

o

Traverse the tree from the root to the appropriate leaf node.

Insert the key k into the non-full node.

2. Split (x, i):

o

o

o

Split the child x.child[i] of node x into two nodes.

Create a new node z that contains the second half of the keys and children from x.child[i].

Move the median key of x.child[i] up to x, making space in x for the new child pointer.

Example:

void BTreeInsert(BTreeNode *root, int k) {
if (root->n == 2*t - 1) {

BTreeNode *s = new BTreeNode(false);
s->C[0] = root;
BTreeSplitChild(s, 0, root);
BTreeInsertNonFull(s, k);
root = s;

} else {
BTreeInsertNonFull(root, k);

}
}
void BTreeInsertNonFull(BTreeNode *x, int k) {

int i = x->n - 1;
if (x->leaf) {

while (i >= 0 && x->keys[i] > k) {
x->keys[i+1] = x->keys[i];
i--;

}
x->keys[i+1] = k;
x->n++;

} else {
while (i >= 0 && x->keys[i] > k) {

i--;
}
i++;
if (x->C[i]->n == 2*t - 1) {

BTreeSplitChild(x, i, x->C[i]);
if (x->keys[i] < k) {

i++;
}

}
BTreeInsertNonFull(x->C[i], k);

}
}
void BTreeSplitChild(BTreeNode *x, int i, BTreeNode *y) {

BTreeNode *z = new BTreeNode(y->leaf);
z->n = t - 1;
for (int j = 0; j < t - 1; j++) {

z->keys[j] = y->keys[j+t];
}
if (!y->leaf) {

for (int j = 0; j < t; j++) {
z->C[j] = y->C[j+t];

}
}
y->n = t - 1;
for (int j = x->n; j >= i+1; j--) {

x->C[j+1] = x->C[j];
}
x->C[i+1] = z;
for (int j = x->n-1; j >= i; j--) {

x->keys[j+1] = x->keys[j];
}
x->keys[i] = y->keys[t-1];
x->n++;

}
 Example:

o Insert keys 10, 20, 5, 6, 12, 30, 7, 17 into a B-Tree of order 3.

2. Deletion

 Algorithm:

1. Start at the root node and locate the key to be deleted.

4. If the node has fewer than ⌈m/2⌉ - 1 keys after deletion, perform redistribution or merging:

o

o

If a sibling has more than ⌈m/2⌉ - 1 keys, redistribute keys.

If no sibling has extra keys, merge the node with a sibling.

 Deletion Algorithm in Detail:

1. Delete (k):

2. If the key is in a leaf node, delete it directly.

3. If the key is in an internal node, replace it with its predecessor or successor and delete the key.

o

o

If k is in the leaf node, remove k from the node.

If k is in the internal node:

.

. Otherwise, if the successor child node has at least t keys, replace k with the successor

. Otherwise, merge k and its two children into a single node.

o If the child has fewer than t keys, ensure that the child has at least t keys by borrowing from the

sibling or merging.

 Example:

Delete keys 6, 13 from the B-Tree obtained in the insertion example. o

3. Search

 Algorithm:

1. Start at the root node.

2. Compare the key with the keys in the current node.

3. If the key is found, return the key and the node.

4. If the key is not found and the node is a leaf, the key does not exist in the tree.

5. If the key is not found and the node is not a leaf, recursively search the appropriate child node.

 Example:

Search for keys 6, 15, 30 in the B-Tree obtained after insertions. o

10.2.3 Applications of B-Trees

B-Trees are widely used in scenarios that require efficient insertion, deletion, and searching operations on large

amounts of data. Some of the key applications of B-Trees include:

1. File Systems: B-Trees are extensively used in file systems to manage large amounts of disk blocks

Plus) use B-Trees to store file metadata such as file names, sizes, permissions, and pointers to data blocks.

The balanced nature of B-Trees ensures that file system operations such as file creation, deletion, and

searching are performed efficiently even as the file system grows.

2. Database Systems: B-Trees are a fundamental data structure in database indexing. They are used to

index large datasets based on key values, allowing quick retrieval, insertion, and deletion of records.

Database management systems (DBMS) like Oracle, PostgreSQL, and MySQL employ B-Trees to index

If the predecessor child node has at least t keys, replace k with the predecessor key.

key.

efficiently. File systems like NTFS (New Technology File System) and HFS+ (Hierarchical File System

primary keys, secondary keys, and other indexed columns. This indexing structure enables efficient

querying and sorting operations, which are crucial for optimizing database performance.

3. Persistent Data Structures: B-Trees are suitable for persistent storage environments, such as databases

and file systems, where data needs to be stored permanently even after power loss or system restarts. The

structure of B-Trees ensures that data can be efficiently written to and read from disk storage, minimizing

disk I/O operations and ensuring faster access times compared to other data structures like binary search

trees.

4. Multilevel Indexing: B-Trees are used in multilevel indexing scenarios where the index itself is too large

efficient traversal through multiple levels of index nodes to quickly locate data blocks or records. This

hierarchical indexing scheme reduces the time complexity of search operations compared to linear search

methods.

5. Concurrency Control in Databases: In database systems that support concurrent transactions, B-Trees

individual nodes during concurrent data access and updates, allowing multiple transactions to read and

write data simultaneously without causing data inconsistency or conflicts.

6. Routing Tables in Networks: B-Trees are utilized in computer networking for storing and managing

routing tables. In network routers and switches, B-Trees are employed to maintain information about

network addresses, routing paths, and next-hop destinations. The balanced structure of B-Trees ensures

efficient routing table lookups and updates, enabling fast packet forwarding and routing decision making

in large-scale networks.

7. Compiler Symbol Tables: B-Trees are used in compilers and interpreters to manage symbol tables that

store information about variables, functions, and other program entities. Symbol tables implemented with

B-Trees allow efficient lookup and manipulation of symbols during compilation and runtime, supporting

tasks such as scope resolution, type checking, and code optimization.

10.3 Splay Trees

Splay Trees are a self-adjusting binary search tree data structure where every operation, whether it's search,

insertion, or deletion, adjusts the tree to bring the accessed node to the root. This characteristic of splaying

differentiates it from traditional balanced trees like AVL trees or Red-Black trees, which maintain balance through

explicit rotations or color adjustments.

Amortized analysis of operations

Amortized analysis is a method used to determine the average time complexity of a sequence of operations on a

data structure, even if some operations may be costlier than others in isolation. It provides a more accurate

to fit entirely in memory. By organizing index entries into a hierarchical structure of nodes, B-Trees allow

are used to manage locks and ensure data integrity. B-Trees provide efficient mechanisms for locking

representation of the overall performance of data structures over time, considering both efficient and potentially

Key Concepts in Amortized Analysis:

1. Aggregate Method:

o In amortized analysis, the aggregate method considers the total cost of a sequence of operations

and divides it by the number of operations to determine the average cost per operation.

o This method assumes that some operations may be cheaper than their actual worst-case scenario

due to previous operations potentially offsetting higher costs.

2. Potential Method:

o

o

o

The potential method compares each operation's actual cost to an average cost or potential

function.

It calculates how much "potential" or credit is accumulated or spent by each operation, ensuring

that the total potential across all operations remains non-negative.

This method is particularly useful for dynamic data structures where the cost of one operation

affects future operations.

Amortized Analysis Examples:

Dynamic Arrays (Resizable Arrays): 





o

o

Operation: Inserting an element into a dynamic array that needs resizing.

this cost is amortized over multiple insertions.

o Amortized Cost: Each insertion operation has an average cost of O(1), considering the

occasional resizing operation.

Binary Counters:

o

o

Operation: Incrementing a binary counter represented as an array of bits.

Cost: Incrementing may cause a series of cascading flips from 0 to 1, potentially affecting

multiple bits.

o Amortized Cost: Despite occasional longer sequences of bit flips, the average cost of each

increment operation remains O(1) due to the infrequency of longer sequences.

Splay Trees:

Operation: Splaying a node to the root during search, insertion, or deletion. o

costly operations that may occur intermittently.

Cost: Normally, resizing involves copying elements to a larger array, which is O(n). However,

o

o

Cost: The cost of splaying involves rotations and restructuring, which can vary depending on

the depth of the node.

Amortized Cost: Over a series of operations, the average cost of splaying is reduced by

subsequent operations that benefit from the structure adjustments made during previous splay

operations.

Benefits of Amortized Analysis:

 Accurate Performance Prediction: It provides a more realistic assessment of the average time

 Useful for Dynamic Data Structures: Amortized analysis is particularly valuable for dynamic data

structures where operations can vary in complexity depending on the structure's state.

Splaying Steps:

1. Access Operation:

o When searching for a node in a splay tree, the tree undergoes a splaying process where the

accessed node moves to the root.

o This splaying operation involves a sequence of rotations and restructuring of nodes to promote

the accessed node closer to the root.

2. Splaying Algorithm:

o Upon accessing a node during search, the splaying algorithm performs rotations to move the

accessed node upwards.

o Depending on whether the node to be splayed is a left or right child, single or double rotations

(zig-zig or zig-zag rotations) are applied to bring the node to the root.

3. Balancing:

o Unlike balanced trees that maintain a specific height or balance factor, splay trees balance

themselves dynamically during operations.

o The splaying process ensures that frequently accessed nodes remain closer to the root,

optimizing future access times for those nodes.

4. Insertion and Deletion:

o Insertion and deletion in splay trees also involve a splaying process where the inserted or deleted

node is splayed to the root.

o This self-adjustment ensures that subsequent operations benefit from the recent structural

changes, potentially improving overall performance.

complexity of operations, accounting for worst-case scenarios that occur sporadically.

Example of Splaying Steps:

Consider a splay tree where we perform a search operation to access a node with key value k. Here are simplified

steps for splaying:









Start from the root of the tree.

Traverse down the tree to find the node with key k.

As you traverse, perform rotations and restructuring to move the accessed node towards the root.

After accessing the node with key k, ensure it becomes the root or is placed close to the root through

appropriate rotations (zig-zig or zig-zag).

Applications of Splay Trees:









Caching Mechanisms: Splay trees are used in caching scenarios where frequently accessed items are

kept in memory for quick retrieval. The self-adjusting nature of splay trees ensures that the most recently

accessed cache items remain quickly accessible, optimizing cache hit rates.

Data Compression Algorithms: Splay trees have been used in data compression algorithms where

frequent patterns or symbols are dynamically adjusted to the root, enhancing compression efficiency by

reducing access times for common patterns.

Adaptive Data Structures: In scenarios where data access patterns are unpredictable or dynamic, splay

them suitable for real-time applications where data access patterns evolve over time.

Implementations in Libraries: Although less common in standard libraries compared to AVL trees or

Red-Black trees, splay trees find specialized applications in certain libraries and systems requiring

dynamic and adaptive data structures.

10.3.1 Splaying Algorithm

The splaying algorithm is the core procedure used in splay trees to bring a specified node closer to the root, thereby

optimizing future access times for that node. Here is a structured outline of the splaying algorithm:

Splaying Algorithm Outline:

1. Search for the Node:

o Start the splaying algorithm by searching for the node with the specified key or value in the

splay tree.

o Traverse the tree starting from the root and move towards the node that needs to be splayed.

2. Splay Operation:

trees adapt efficiently by adjusting their structure based on recent access history. This adaptability makes

o Once the node is found or accessed (either through search, insertion, or deletion), begin the

splay operation to bring this node closer to the root.

3. Rotation and Restructuring:

o During the splay operation, perform rotations and restructuring of the tree to move the accessed

node (X) towards the root.

o Rotations are based on the relationship between X, its parent (P), and potentially its grandparent

(G) in the tree structure.

4. Zig-Zig Rotation:

o If X and P are both left children or both right children, perform a double rotation (zig-zig

rotation) to bring X directly under the root.

o

5. Zig-Zag Rotation:

o If X and P are opposite children (one is a left child and the other is a right child), perform a

double rotation (zig-zag rotation) to bring X closer to the root.

o Rotate X around P and then rotate X's new parent around G.

6. Continue Splaying Upwards:

o Repeat the rotation and restructuring steps until the accessed node X becomes the root of the

splay tree or is positioned close to the root.

o Each rotation aims to move X towards the root, adjusting the tree structure dynamically based

on recent access patterns.

7. Return the Splayed Tree:

o After completing the splaying operation, the splay tree structure is updated with the accessed

node (X) at or near the root, optimizing future accesses to this node.

Example Splaying Algorithm:

Here’s a simplified pseudocode outline of the splaying algorithm:

Rotate P around G and then X around P.

In this pseudocode:

 The rotate(node) function performs the necessary rotations to move node closer to the root based on its

relationship with its parent and grandparent.

 The splaying algorithm ensures that after accessing or manipulating a node in the tree, it is splayed

towards the root, optimizing future access operations.

10.3.2 Operations on Splay Trees

Operations on splay trees include fundamental operations like search, insert, and delete, each of which involves

the splaying process to optimize the tree structure based on recent access patterns. Here’s a breakdown of these

operations in splay trees:

1. Search Operation:

 Algorithm:

o Start from the root and traverse the tree to find the node with the specified key.

o

o

o

During traversal, perform splaying to bring the accessed node closer to the root.

If the node is found, splay it to the root.

If the node is not found, splay the last accessed node to the root.

2. Insertion Operation:

 Algorithm:

o

o

o

Perform a standard binary search tree insertion to place the new node in its appropriate position.

After insertion, splay the newly inserted node to bring it to the root.

This step ensures that the most recently inserted node becomes the root, optimizing future

accesses.

 Example:

3. Deletion Operation:

 Algorithm:

o

o After deletion, splay the parent of the deleted node (or the successor/predecessor node) to bring

it to the root.

o This step maintains the splay tree properties and optimizes the structure after deletion.

 Example:

Perform a standard binary search tree deletion to remove the node with the specified key.

Key Points:

 Splaying Mechanism:

o Each operation (search, insert, delete) in a splay tree involves splaying the accessed or

manipulated node towards the root.

o Splaying optimizes the tree structure dynamically based on recent access patterns, ensuring that

frequently accessed nodes are closer to the root.





Efficiency: While individual splaying operations can have a worst-case time complexity of O(n) in

skewed trees, the amortized time complexity of operations tends to be efficient due to the self-adjusting

nature of splay trees.

Adaptability: Splay trees adapt their structure to optimize access times for recently accessed nodes,

making them suitable for applications where access patterns are dynamic and unpredictable.

10.4 Red-Black Trees

Red-Black trees are self-balancing binary search trees that ensure balanced operations like search, insert, and

delete, with a worst-case time complexity of O(log n). They maintain balance using color properties and rotation

operations, making them efficient for dynamic data storage and retrieval. Here are the key properties and

operations of Red-Black trees:

Properties of Red-Black Trees:

1. Node Coloring:

o

o

o

o

Each node in a Red-Black tree is colored either red or black.

The root is always black.

Every red node must have two black children (no consecutive red nodes).

Every path from a node to its descendant null nodes must have the same number of black nodes

(black height).

2. Balanced Height:

o

o

Red-Black trees maintain balanced height by ensuring that the longest path from the root to any

leaf is no more than twice the shortest path.

This property guarantees O(log n) time complexity for search, insert, and delete operations.

Operations on Red-Black Trees:

1. Search Operation:

o Similar to standard binary search trees, search operations in Red-Black trees follow the

properties of binary search, utilizing node colors to maintain balance.

2. Insertion Operation:

o

o

Insertions in Red-Black trees start with a standard BST insertion.

After insertion, the tree may violate Red-Black properties, necessitating restructuring (rotations)

and recoloring to restore balance.

o The tree is adjusted to maintain Red-Black properties while ensuring the balanced height.

3. Deletion Operation:

o

o

o

Deletions in Red-Black trees begin with a standard BST deletion.

After deletion, the tree may temporarily violate Red-Black properties.

To restore balance, perform rotations and recoloring operations as necessary to maintain Red-

Black properties and balanced height.

Example of Red-Black Tree Operations:

 Search Operation:

 Insertion Operation:

 Deletion Operation:

Advantages of Red-Black Trees:







Balanced Operations: Ensure O(log n) time complexity for search, insert, and delete operations.

Predictable Performance: Provide predictable and efficient performance in dynamic environments.

Widely Used: Commonly used in libraries and applications where efficient data insertion, deletion, and

retrieval are crucial.

10.5 AA-Trees

An AA-Tree is a type of self-balancing binary search tree that maintains balance using only a single type of

rotation, known as skew and split operations. It ensures that the tree remains balanced by enforcing specific level

and structural properties rather than complex color rules or multiple rotation types like Red-Black trees. Here’s

an overview of AA-Trees, including their properties and operations:

Properties of AA-Trees:

1. Level Properties:

o

o

Every leaf node (null node) is at level 1.

For any node with a left child, the left child must have a level equal to or one less than the node's

level.

o Nodes without a left child have the same level as their right child.

2. Skew Operation:

o

o

o

A skew operation is applied to correct consecutive right links (right-right situation).

It rotates the node to the left to balance the tree structure.

After skew operation, the level properties are adjusted to maintain balance.

3. Split Operation:

o

o

o

A split operation is applied to correct double left links (left-left situation).

It rotates the node to the right and increases its level to balance the tree structure.

After split operation, the level properties are adjusted to maintain balance.

Operations on AA-Trees:

1. Search Operation:

o Similar to standard binary search trees, search operations in AA-Trees follow the properties of

binary search, utilizing level properties to maintain balance.

2. Insertion Operation:

o

o

Insertions in AA-Trees start with a standard BST insertion.

After insertion, the tree may violate AA-Tree properties, necessitating skew and split operations

to restore balance.

o Adjustments are made to ensure that level properties are maintained after each operation.

3. Deletion Operation:

o

o

o

Deletions in AA-Trees begin with a standard BST deletion.

After deletion, the tree may temporarily violate AA-Tree properties.

Skew and split operations are applied as necessary to restore balance and maintain level

properties.

Example of AA-Tree Operations:

Search Operation: 

Insertion Operation:

Deletion Operation:

Advantages of AA-Trees:

 Simplified Balancing: Use only skew and split operations for balancing, which simplifies

implementation compared to Red-Black trees.





Efficient Operations: Maintain O(log n) time complexity for search, insert, and delete operations.

Less Overhead: Avoids complex color rules and multiple rotation types, reducing implementation

complexity and potential overhead.

10.6 Applications of Balanced Trees

Balanced trees, including Red-Black trees, AVL trees, B-trees, and AA-trees, find applications in various domains

where efficient data storage and retrieval are critical. Here are some common applications of balanced trees:

1. Databases: B-trees and AVL trees are widely used in database systems for indexing. They provide

efficient retrieval of data records based on keys, ensuring that operations like search, insert, and delete

They ensure that data blocks are organized and accessible in a balanced manner, optimizing disk access

and storage.

3. Compiler Design: Symbol tables in compilers often use balanced trees to store identifiers and their

associated attributes. This allows for quick lookup and modification of symbols during compilation.

4. Networking: Routing tables in computer networks employ balanced trees to store and manage routing

5. Concurrency Control: In concurrent programming and transaction processing systems, B-trees and

Red-Black trees are used to implement data structures like transactional maps. These ensure that data

operations are thread-safe and efficient.

6. Caches and Memory Management: AA-trees and AVL trees are used in memory management systems

and caches to maintain efficient data retrieval and replacement strategies. They help in managing limited

7. Geospatial and GIS Systems: R-trees, a variant of balanced trees, are used in geospatial databases and

8. Data Compression: Balanced trees are used in Huffman coding, a popular data compression technique.

They help in constructing optimal prefix codes for encoding data, where frequently used symbols have

shorter codes.

9. Database Query Optimization: Query planners and optimizers in relational databases use balanced

trees to represent query execution plans and optimize data retrieval strategies, ensuring efficient

execution of complex queries.

10.7 Conclusion

In this chapter, we explored a variety of balanced tree structures that are essential in computer science for

maintaining efficient data organization and retrieval. Balanced trees such as B-Trees, Splay Trees, Red-Black

Trees, and AA-Trees each offer unique advantages and applications.

B-Trees are widely used in databases and file systems due to their ability to efficiently manage large datasets with

a balanced structure that supports fast operations like insertion, deletion, and search.

are performed in O (log n) time complexity.

2. File Systems: B-trees are commonly used in file systems to manage large amounts of data efficiently.

information efficiently. This facilitates fast routing decisions and network packet forwarding.

memory resources effectively.

Geographic Information Systems (GIS) for indexing and querying spatial data efficiently.

Splay Trees dynamically adjust their structure through the splaying algorithm, optimizing access times for

frequently accessed elements. This property makes them valuable in applications requiring dynamic data

management and caching.

Red-Black Trees ensure balanced operations with logarithmic time complexity for insertion, deletion, and search.

They find extensive use in memory management, language implementations, and persistent data structures where

efficient data retrieval is crucial.

Each of these tree structures plays a critical role in optimizing performance across various computational domains,

from database systems to memory management and beyond. By mastering the principles and applications of

balanced trees, one gains essential tools for designing efficient algorithms and systems in modern computing

environments.

10.8 Questions and Answers

1. What are B-Trees and why are they used in databases?

Answer: B-Trees are balanced tree structures designed to handle large amounts of data and frequent operations

optimal access times even with large datasets, ensuring fast retrieval and modification operations.

2. How does the splaying algorithm work in Splay Trees?

Answer: The splaying algorithm in Splay Trees reorganizes the tree by bringing the most recently accessed node

to the root position through a series of rotations. This optimization ensures that frequently accessed elements are

closer to the root, improving future access times.

3. What properties define Red-Black Trees as balanced binary search trees?

Answer: Red-Black Trees maintain balance by adhering to specific rules: each node is either red or black, the root

is black, and no two red nodes can be adjacent. These properties ensure that the tree remains balanced, with

4. How do AA-Trees differ from Red-Black Trees?

Answer: AA-Trees are a variation of Red-Black Trees that simplify the balancing rules. They use only two types

of nodes (horizontal and vertical) and employ skew and split operations instead of color changes and rotations.

AA-Trees provide efficient performance for dynamic sets and are used in applications requiring balanced tree

structures.

5. What are some practical applications of balanced trees?

like insertion, deletion, and search efficiently. They are used in databases because they can maintain balance and

operations like insertion and deletion maintaining logarithmic time complexity.

Answer: Balanced trees are used extensively in databases for indexing and efficient data retrieval, in file systems

for managing file directories, in compilers for symbol table management, and in memory management systems

for efficient allocation and deallocation of memory blocks.

10.9 References

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.).

MIT Press.



 Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2015). Data Structures and Algorithms in Java



 Weiss, M. A. (2014). Data Structures and Algorithm Analysis in Java (3rd ed.). Pearson Education.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley.

(6th ed.). Wiley.

Mehlhorn, K., & Sanders, P. (2008). Algorithms and Data Structures: The Basic Toolbox. Springer.

Unit – 11: Graph Data Structure

13.0 Introduction

13.1 Objectives

13.2 Graph

13.3 Representation of Graphs

13.4 Graph Traversal Algorithms

13.5 Advanced Graph Algorithms

13.6 Applications of Graphs

13.7 Conclusion

13.8 Questions and Answers

13.9 References

11.0 Introduction

A basic data structure in computer science, graphs are used to represent the connections and interactions between

items. They are made up of edges that join pairs of vertices and vertices, also known as nodes. Based on their

characteristics, graphs can be classified as directed or undirected, weighted or unweighted, among other varieties.

Because of these qualities, graphs are quite flexible and can be used to illustrate a variety of real-world situations,

such as social networks and transportation networks.

Graph representation is essential for effective manipulation and storage. The adjacency matrix and the adjacency

graph algorithms can be greatly impacted by selecting the right representation, particularly for big and complicated

datasets. Implementing and optimizing graph-related operations requires an understanding of various

representations.

For examining and assessing graph structures, graph traversal algorithms like Depth-First Search (DFS) and

Breadth-First Search (BFS) are crucial resources. These algorithms serve as the foundation for more complex

graph algorithms, such as those that build minimal spanning trees, identify cycles, and locate the shortest

pathways. This course explores both simple and complex graph algorithms, emphasizing how they can be used to

solve issues in real life and how important they are in a variety of domains, including artificial intelligence,

network analysis, and computer graphics.

list are two popular techniques, both with pros and cons related to time and space complexity. The efficiency of

11.1 Objectives

After completing this unit, you will be able to understand,





Understand Graph Basics: Define what constitutes a graph, including vertices (nodes) and edges, and

distinguish between directed and undirected graphs.

adjacency matrices and adjacency lists, and understand the trade-offs between these representations in







Graph Traversal Algorithms: Learn about fundamental graph traversal algorithms like Breadth-First

Search (BFS) and Depth-First Search (DFS), including their applications in solving problems such as

finding connected components and detecting cycles.

Advanced Graph Algorithms: Delve into more complex algorithms like Dijkstra's algorithm for finding

shortest paths, Prim's and Kruskal's algorithms for Minimum Spanning Trees (MSTs), and algorithms for

topological sorting and cycle detection.

Real-World Applications: Explore practical applications of graphs in various domains, such as social

networks, transportation networks, and recommendation systems, to understand how graph algorithms

11.2 Graph

A graph is a type of data structure made up of edges connecting a finite number of vertices, also known as nodes.

vertices and E is a set of edges linking the vertices, is the definition of a graph.

Several real-world structures, including networks, interactions, and paths, can be represented by graphs. People

can be shown as vertices in a social network, for example, and friendships as edges.

Graphs: Directed versus Undirected

Graphs fall into two categories according on the orientation of their edges:





Directed Graphs (Digraphs): Every edge in a directed graph indicates a one-way relationship between

two vertices. As an ordered pair of vertices, this is represented. An edge that is oriented from vertex u to

vertex v, for instance, is represented as (u, v).

Undirected Graphs: An undirected graph has no direction assigned to any of its edges. Because of the

bidirectional nature of the link between vertices, an edge between u and v can be traveled in both

directions. A pair {u, v} that is unordered is used to express this.

Graph Representation Techniques: Explore various methods for representing graphs, such as

terms of space and time complexity.

solve real-world problems effectively.

Graphs are employed to represent pairwise relationships among entities. G = (V, E), where V is a collection of

Source: Simple Snippets

Weighted vs. Unweighted Graphs

Another way to categorize graphs is by the weights assigned to their edges:

can be used to represent expenses, distances, or any other quantitative metric. The weights can be used, for

instance, to represent the distance between two points in a road network.

Unweighted Graphs: An unweighted graph has no weights assigned to its edges. Every edge is regarded as equal.

For instance, in a social network, the edges might, in the lack of further information, indicate whether a friendship

exists.

Weighted Graphs: The weight of a weighted graph is a numerical number that is assigned to each edge. Weights

Key Terms:







Edges: The links that connect vertices are called edges.

Degree: A vertex's degree is the total number of edges that connect to it. The number of incoming edges

in a directed graph is called the in-degree, while the number of exiting edges is called the out-degree.

Path: A series of vertices connected by a series of edges. 

 Cycle: A path that, aside from the start/end vertex, repeats neither edges nor vertices but instead begins

and terminates at the same vertex.

 Connected Components: In an undirected graph, a connected component is a subgraph that has no

further connections to any other vertices in the supergraph and any two vertices connected to each other

by pathways.

11.3 Representation of Graphs

Adjacency Matrix Representation

matrix's cells, each represented by the notation adj [i] [j], each indicate whether or not vertex i and vertex j have

an edge.

In case of an unweighted graph:



 If there isn't an edge connecting vertex i and vertex j, adj [i] [j] = 0.

For a graph with weights:





The weight of the edge between vertex i and vertex j is contained in adj [i] [j].

If there is no edge, adj [i] [j] = 0.

For instance: if a graph has the vertices A, B, C, and D:

Vertices, or Nodes: They are the basic building blocks of a graph; they stand for entities.

A 2D array of size V × V, where V is the number of vertices in the graph, is called an adjacency matrix. The

Vertex i and vertex j have an edge, adj [i] [j] = 1.

An undirected graph is represented by this matrix, in which A is connected to B and D, B to A and C, and so on.

Adjacency List Representation

An array of lists is called an adjacency list. The number of vertices in the array determines its size. Every entry in

the array is a list that has every vertex connected to the vertex the array index represents in it.

For instance, if a graph has the vertices A, B, C, and D:

demonstrates.

Adjacency Matrix and Adjacency List Comparison

Complexity of Space:





Adjacency Matrix: V is the number of vertices, and O(V) space is used. When there are fewer edges in 2

a sparse graph, this is less effective.

(V + E) space is used by the adjacency list, where E is the number of edges. For sparse graphs, this is a

more space-efficient method.

Time Complexity:

The Adjacency Matrix



 Going through every edge once: O (V2).

Adjacencies List:



 Going around all edges in turn: O (V + E).

Use Cases for Each Representation

The Adjacency Matrix

Vertex A is related to vertices B and D, vertex B is connected to vertices A and C, and so on, as this list

Verifying the existence of an edge: O (1).

Verifying if an edge exists: in the worst situation, O(V).





Ideal for thick graphs with an edge count that approaches V2.

helpful when it's necessary to quickly check whether edges exist.

Adjacencies List:







Ideal for graphs that are sparse, meaning they have a lot less edges than V2.

Faster and more space-efficient for iterating across all edges.

favored in situations when the graph is not tightly connected, such as social networks, road networks, or

other applications.

11.4 Graph Traversal Algorithms

systematically exploring each vertex and its connected edges to ensure that all nodes are visited exactly once. Two

common algorithms for graph traversal are breadth-first search (BFS) and depth-first search (DFS).

 Breadth-First Search (BFS): Explores all nodes at the present "depth" prior to moving on to nodes at

the next level of depth.

 Depth-First Search (DFS): Traverses by exploring as far as possible down a branch before

backtracking.

These algorithms are essential for tasks like finding the shortest path, connectivity analysis, and spanning tree

construction

First-Breadth Search (BFS)

The graph traversal technique known as Breadth-First Search (BFS) investigates a graph's vertices level by level.

BFS begins with a source vertex, visits each of its neighbors, and then advances to the next level of neighbors. It

is especially helpful for level-order traversal of trees and for determining the shortest path in unweighted graphs.

Steps of Algorithm:

1. Initialize a queue and enqueue the starting vertex.

2. Mark the starting vertex as visited.

3. While the queue is not empty:

o

o

o

Dequeue a vertex from the queue.

Process the dequeued vertex.

Enqueue all unvisited neighboring vertices and mark them as visited.

Graph traversal refers to the process of visiting all nodes (vertices) in a graph in a systematic way. It involves

Example: Consider the following graph:

Implementation in C++:

BFS would visit the vertices in the following order, beginning at vertex A: A, B, D, C, E, and F.

DFS, or Depth-First Search

Concept and Use Cases: The graph traversal technique known as Depth-First Search (DFS) searches as far as

feasible down each branch before turning around. Either directly or implicitly through recursion, it makes use of

a stack data structure. DFS is used to solve puzzles like mazes and find cycles in topological sorting.

Steps of Algorithm:

1. Initialize a stack and push the starting vertex.

2. Mark the starting vertex as visited.

3. While the stack is not empty:

o

o

o

Pop a vertex from the stack.

Process the popped vertex.

Push all unvisited neighboring vertices onto the stack and mark them as visited.

Example: Consider the following graph:

possible order among many).

Implementation in C++:

#include <iostream>
#include <vector>
void DFSUtil(const std::vector<std::vector<int>>& graph, int vertex, std::vector<bool>&
visited) {

visited[vertex] = true;
std::cout << vertex << " ";
for (int neighbor : graph[vertex]) {

if (!visited[neighbor]) {
DFSUtil(graph, neighbor, visited);

}
}

}
void DFS(const std::vector<std::vector<int>>& graph, int start) {

std::vector<bool> visited(graph.size(), false);
DFSUtil(graph, start, visited);

}
int main() {

std::vector<std::vector<int>> graph = {
{1, 3}, // neighbors of vertex 0 (A)
{0, 2, 4}, // neighbors of vertex 1 (B)
{1, 5}, // neighbors of vertex 2 (C)
{0, 4}, // neighbors of vertex 3 (D)
{1, 3, 5}, // neighbors of vertex 4 (E)
{2, 4} // neighbors of vertex 5 (F)

};
DFS(graph, 0); // Start DFS from vertex 0 (A)
return 0;

}

A comparison between DFS and BFS

DFS could visit the vertices in the following order, starting with vertex A: A, B, E, F, D, and C (this is only one

BFS:







Improved for determining the shortest path in graphs without weights.

extra memory is used (queue).

DFS:

 Ideal for activities that necessitate delving into the most profound area of the graph, including resolving

puzzles.





reduces memory usage (recursion/stack).

Process before children in a preorder traversal; however, this can be modified for other traversals as well.

11.5 Advanced Graph Algorithms

Minimum Spanning Trees (MST) Algorithm

The subset of edges in a connected, undirected graph that joins all of the vertices together without creating any

cycles and with the least amount of edge weight overall is found using Minimum Spanning Tree (MST)

techniques. The following are the main ideas and methods pertaining to minimum spanning trees:

MST Algorithm Concepts:

 Minimum Spanning Tree (MST): An edge subset that joins all of the vertices in a graph without

creating any cycles is known as a spanning tree. A spanning tree with a minimum sum of edge weights

is known as a minimum spanning tree.

Properties:







An MST consisting of N vertices has precisely N-1 edges.

It is acyclic—it lacks cycles.

It joins every vertex with the least amount of edge weight overall.

Applications:







Network design: It is the process of connecting all nodes, or cities, with the fewest possible total edge

weights, or roads, cables, etc.

Cluster Analysis: It Put related items in groups with the least amount of overall dissimilarity is known

as cluster analysis.

Algorithms for Approximation: Used in a variety of approximation techniques to address optimization

issues.

traversal at level-order.

Prim's Algorithm: A weighted undirected graph's Minimum Spanning Tree (MST) can be found using Prim's

algorithm. Beginning with an arbitrary vertex, it adds the shortest edge possible between each vertex in the

expanding tree and any vertex that is not yet in the tree, growing the MST one edge at a time.

Steps of an Algorithm:







Set the MST's representation to an empty set at startup.

Add an arbitrary vertex to the MST to begin with.

Even so, not every vertex is included in the MST:

o To connect a vertex inside the MST to a vertex outside the MST, choose the edge with the least

weight.

o To the MST, add the chosen edge and vertex.

As an illustration, look at the weighted graph below:

Prim's algorithm would add edges (A-B, B-E, E-D, B-C, and E-F) starting at vertex A to create the MST, which

would have a total weight of 2 + 1 + 4 + 3 + 5 = 15.

Kruskal's Algorithm:

Another technique for determining the MST of a weighted undirected graph is the Kruskal's algorithm. It adds

edges to the MST while making sure no cycle forms by sorting all of the edges in non-decreasing order of their

weights.

Steps of Algorithm:







Arrange each edge according to its weight in a non-decreasing sequence.

Set the MST's representation to an empty set at startup.

Apply edges to the MST using a Union-Find data structure in ascending weight order, making sure that

no cycles arise.

Example: Using the previously given example graph, Kruskal's algorithm would create an MST with a total

weight of 15 by adding edges (A-B, B-E, E-D, B-C, and E-F).

Shortest Path Algorithms

The shortest path between a source vertex and every other vertex in a weighted graph with non-negative weights

is found using Dijkstra's algorithm. The shortest known path is always expanded through the usage of a priority

queue.

Steps of Algorithm:







Store the vertices to be processed in a priority queue, beginning with the source vertex.

Although there are items in the priority queue:

o

o

Take out of the priority queue the vertex that is the closest to the center.

As an illustration, look at the weighted graph below:

Dijkstra's method would calculate the shortest paths to each of the vertices (A, B, C, D, and E) with their

corresponding distances (1, 4, 2).

Bellman-Ford Algorithm: In a weighted graph with negative weight edges, the Bellman-Ford algorithm finds

the shortest pathways between a single source vertex and every other vertex. All edges are relaxed repeatedly by

a number equal to the vertices minus one.

Steps of Algorithm:







Let |V| be the number of vertices, and relax all edges |V| - 1 times.

By repeatedly iterating over all edges and updating distances, look for cycles with negative weights.

Example: The Bellman-Ford algorithm can accurately compute shortest paths for a graph with edges that have

negative weights, even when the graph has cycles and negative weights.

Maximum Flow Algorithms

The Ford-Fulkerson Algorithm is a directed graph with a capacity for each edge. It calculates the maximum

flow along these paths until no more augmenting paths are found.

Set the distances between the source vertex and itself to 0 and to all other vertices to infinity.

If a shorter path is discovered, update the distances to the vertices that are nearby.

Set the distances between the source vertex and itself to 0 and to all other vertices to infinity.

flow in a flow network. It finds augmenting paths by applying the notion of residual capacity, and it then raises

Steps of Algorithm:





Set the flow's initial value to 0.

As the path from source to sink is augmentable:

o

o

o

Use DFS or BFS to determine the augmenting path.

Enhance the flow as it travels.

Example: The Ford-Fulkerson algorithm determines the maximum flow from source to sink in a flow network.

Edmonds-Karp Algorithm: This algorithm use BFS to determine the augmenting pathways and is an application

of the Ford-Fulkerson technique. It guarantees that the algorithm's temporal complexity is O(VE^2), where V and

Uses:







MST Algorithms: In networks where linking all vertices at the lowest possible cost is critical, the Prim

and Kruskal algorithms are indispensable for determining the minimal spanning tree.

Shortest way Algorithms: Based on flight paths or road networks, navigation systems employ Dijkstra's

and Bellman-Ford algorithms to determine the shortest way between two points.

Maximum Flow Algorithms: In network flow problems, such transportation and communication

networks, the Ford-Fulkerson and Edmonds-Karp algorithms are used to maximize the flow from source

to sink while taking into account each edge's capacity restrictions.

11.6 Applications of Graphs

Uses for Graphs

Graphs are widely used in practical applications.







Applications in the real world include recommendation systems (user-item relationships), maps (routing

and navigation), and social networks (modeling user connections).

Algorithmic problems include network flow optimization (maximizing flow in a network) and the

traveling salesman problem (finding the shortest path to visit each vertex).

Three types of graph-based data structures are available: spanning trees, which are a subset of a graph

that connects all of its vertices, trees, and connectedness, which examines connected components.

11.7 Conclusion

Determine the path's residual capacity.

E are the numbers of vertices and edges, respectively.

Graphs and the algorithms that go along with them are an essential component of computer science because they

offer strong tools for problem modeling and addressing intricate issues. We have studied the definitions, important

characteristics, and different kinds of graph data structures throughout this unit. Gaining an understanding of these

fundamentals is necessary in order to apply graphs to real-world situations and to efficiently solve problems

involving connections and relationships.

matrices, and talked about the benefits and drawbacks of each. This information is essential for choosing the best

representation depending on an application's unique requirements, including the graph's size and the kinds of

operations that must be carried out. Furthermore, graph traversal algorithms such as BFS and DFS offer

fundamental methods for graph exploration and serve as building blocks for more complex algorithms.

Complex graph algorithms show the breadth of applications and depth of issues that graph theory can solve.

Examples include finding minimal spanning trees, shortest pathways, and maximum flows. These algorithms are

essential in many fields, including data analysis, resource management, network design, and optimization. Gaining

proficiency in these ideas and methods will enable one to effectively use graphs to solve challenging, real-world

problems.

11.8 Questions and Answers

1. What is a Minimum Spanning Tree (MST)

Answer: In a connected, undirected graph, an MST is a subset of edges that joins all vertices with the fewest

feasible total edge weights and without any cycles.

2. Describe the algorithm used by Dijkstra.

Answer: In a weighted graph with non-negative weights, Dijkstra's algorithm uses a priority queue to explore

vertices and determines the shortest path between each source vertex and all other vertices.

3. What are some practical uses for graphs?

Answer: In social networks, maps are utilized for routing and navigation; in recommendation systems, graphs are

employed to depict user-item relationships.

4. The Traveling Salesman Problem (TSP): What is it?

Answer: In order to discover the shortest path that visits each vertex once and returns to the origin vertex, a

5. What are the differences between the MST algorithms found by Prim and Kruskal?

Additionally, we looked at other graph representation techniques, including adjacency lists and adjacency

salesman must solve the algorithmic problem known as TSP.

Answer: In response, Kruskal's algorithm adds the shortest edge to the MST until all vertices are connected,

guaranteeing no cycles emerge. Prim's approach grows the MST from an arbitrary beginning vertex by adding the

cheapest edge to the tree.

6. What role do graph traversal algorithms play?

Answer: In order to perform activities like pathfinding, connectivity checking, and cycle detection, graph traversal

algorithms like BFS and DFS are essential for network exploration and analysis.

7. What are the adjacency matrix and adjacency list space and temporal complexities?

The traversal difficulty of an adjacency list is O (V + E) in both space and time.

11.9 References











Bjarne Stroustrup, "The C++ Programming Language"

Herb Sutter, "Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions"

Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo, "C++ Primer"

Scott Meyers, "Effective C++: 55 Specific Ways to Improve Your Programs and Designs"

Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and Reference"

Answer: The adjacency matrix allows for O(1) time complexity for edge look-up and O(V2) space complexity.

Unit – 12: Minimum Cost Spanning Trees

12.0 Introduction

12.1 Objectives

12.2 Minimum Cost Spanning Trees

12.3 Kruskal’s Algorithm

12.4 Prim's Algorithm

12.5 Applications of Minimum Cost Spanning Trees

12.6 Breadth-First Search (BFS)

12.7 Depth-First Search (DFS)

12.8 Finding Strongly Connected Components (SCCs)

12.9 Conclusion

12.10 Questions and Answers

12.11 References

12.0 Introduction

Graphs are fundamental data structures in computer science, representing a network of interconnected nodes or

vertices and the edges connecting them. They are versatile tools used in a wide range of applications, from social

networks and web page ranking to network routing and scheduling problems. Understanding how to efficiently

traverse and manipulate graphs is crucial for solving many complex computational problems. This unit delves

into several key graph algorithms, each with unique properties and applications.

We'll begin by exploring Minimum Cost Spanning Trees, which are essential for optimizing the connections within

a network. Two prominent algorithms for constructing these trees, Kruskal's and Prim's algorithms, will be

examined in detail. Following this, we'll look at Breadth-First Search (BFS) and Depth-First Search (DFS),

foundational algorithms for traversing graphs that form the basis for more advanced graph operations. These

traversal techniques are vital for exploring and understanding the structure of a graph.

SCCs helps in understanding the underlying structure and connectivity of complex networks, leading to more

Finally, we will cover the concept of Strongly Connected Components (SCCs) in directed graphs. Identifying

efficient designs and analyses. Through this unit, you'll gain a comprehensive understanding of key graph

algorithms and their applications, equipping you with the knowledge to tackle a wide array of problems in

computer science and beyond.

12.1 Objectives

After completing this unit, you will be able to understand,





definitions, properties, and representations of graphs.

Explore Minimum Cost Spanning Trees: Learn about Minimum Cost Spanning Trees and their

importance in optimizing network connections. Study Kruskal’s and Prim’s algorithms for constructing

these trees.









Master Graph Traversal Algorithms: Develop proficiency in Breadth-First Search (BFS) and Depth-

First Search (DFS) algorithms, and understand their applications in graph traversal and problem-solving.

Analyze Strongly Connected Components (SCCs): Understand the concept of SCCs in directed graphs

and learn methods to identify them, which is crucial for analyzing and designing complex networks.

Apply Graph Algorithms: Explore practical applications of graph algorithms in various domains such

as network design, data analysis, machine learning, and logistics.

Evaluate Algorithm Efficiency: Analyze the time and space complexities of different graph algorithms

12.2 Minimum Cost Spanning Trees

Minimum Cost Spanning Trees (MSTs) are crucial concepts in graph theory, representing the subset of edges that

connect all vertices of a graph with the lowest possible total edge weight. An MST of a graph ensures that all

vertices are connected while minimizing the sum of the edge weights, without forming any cycles. This structure

finds wide application in various fields such as network design, telecommunications, and computer science

algorithms.

The primary goal of finding an MST is to establish a spanning tree that spans all vertices with the least total

weight, making it an optimal solution for connecting nodes in networks or organizing data points in clustering

algorithms. Two well-known algorithms for finding MSTs include Kruskal’s and Prim’s algorithms. Kruskal’s

algorithm sorts all edges by weight and adds them to the MST if they do not form cycles, using a union-find data

structure for efficiency. On the other hand, Prim’s algorithm starts from an arbitrary vertex and grows the MST

by always adding the shortest edge connecting the current MST to an adjacent vertex until all vertices are included.

Understand Graph Fundamentals: Gain a solid understanding of graph theory, including the basic

to understand their performance and scalability.

optimal solutions to a variety of real-world problems where minimizing connectivity costs is essential.

Algorithms:

 Kruskal’s Algorithm: Kruskal’s algorithm constructs an MST by iteratively adding the smallest edge

that doesn’t form a cycle until all vertices are connected. It uses a union-find data structure to efficiently

manage and merge subsets of vertices.

 Prim’s Algorithm: Prim’s algorithm starts from an arbitrary vertex and grows the MST one vertex at a

time, always choosing the shortest edge that connects a vertex in the MST to a vertex outside of it. It

Applications:







Network Design: MSTs are used to minimize the cost of connecting cities in a telecommunications

network or computers in a LAN.

Clustering: In data science, MSTs can be used to identify clusters by treating each vertex as a data point

and edges as distances between points.

Optimization Problems: MSTs are essential in optimization problems like finding the minimum cost of

connecting components in a manufacturing process or the shortest route in transportation networks.

12.3 Kruskal’s Algorithm

Kruskal’s algorithm is a popular method used to find the Minimum Spanning Tree (MST) of a connected, weighted

graph. The algorithm operates by sorting all the edges in the graph by their weights and then iteratively adding

Here’s a step-by-step outline of Kruskal’s algorithm:

1. Initialization: Start with a graph containing V vertices and E edges.

2. Sort Edges: Sort all edges in the graph in non-decreasing order of their weights.

3. Union-Find Data Structure: Initialize a union-find data structure (or disjoint-set data structure) to keep

track of which vertices are in which components and to efficiently check whether adding an edge would

form a cycle.

4. Iterate Through Edges: Iterate through the sorted edges and for each edge:

o

o

Check if adding the edge to the MST would not create a cycle using the union-find structure.

Applications of MSTs extend to optimizing routes in transportation networks, minimizing costs in manufacturing

processes, and organizing hierarchical data structures efficiently. The ability to compute MSTs efficiently ensures

typically uses a priority queue to manage candidate edges efficiently.

the smallest edge to the growing MST, provided that adding the edge does not form a cycle. This process continues

until all vertices are included in the MST.

If it does not create a cycle, add the edge to the MST.

o Update the union-find structure to merge the components of the vertices connected by the edge.

the graph.

Kruskal’s algorithm is efficient with a time complexity of O (E log E) due to the sorting step, where E is the

number of edges in the graph. This makes it suitable for graphs with a large number of edges, especially sparse

graphs where E is much smaller than V . 2

Applications of Kruskal’s algorithm include network design, circuit design, and clustering algorithms where

finding the MST helps minimize costs or optimize connections between nodes. Its simplicity and efficiency make

it a valuable tool in various computational and practical settings.

Example:

Let's consider the following graph with 4 vertices (A, B, C, D) and the following weighted edges:













AB: 1

AC: 4

AD: 3

BC: 2

BD: 5

CD: 6

Step-by-Step Execution:

1. Sort Edges: Sort edges by weight:

o

o

o

o

o

o

AB: 1

BC: 2

AD: 3

AC: 4

BD: 5

CD: 6

2. Initialize Union-Find: Initialize each vertex as its own component.

3. Process Edges:

o

o

Edge AB (Weight 1): Include AB in MST (A-B).

Edge BC (Weight 2): Include BC in MST (B-C).

5. Termination: Stop when V − 1 edges have been added to the MST, where V is the number of vertices in

o

o

o

Edge AD (Weight 3): Include AD in MST (A-D).

Edge AC (Weight 4): Include AC in MST (A-C).

Edge BD (Weight 5): Include BD in MST (B-D).

4. Union Operations:

o

o

o

o

o

Union(A, B)

Union(B, C)

Union(A, D)

Union(A, C)

Union(B, D)

1+2+3+4=101 + 2 + 3 + 4 = 101+2+3+4=10.

Explanation:

 Kruskal's algorithm selects edges based on their weights in ascending order and ensures that no cycles

are formed by checking if the endpoints of each edge belong to the same connected component using the

union-find data structure.

 It's efficient for sparse graphs and can handle graphs with different edge weights, making it versatile for

various applications such as network design, circuit layout, and clustering algorithms.

Implementation in C++:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// Structure to represent an edge in the graph
struct Edge {

int u, v, weight;
Edge(int u, int v, int weight) : u(u), v(v), weight(weight) {}

};

// Union-Find data structure with path compression and union by rank
class UnionFind {
private:

vector<int> parent, rank;
public:

UnionFind(int n) {
parent.resize(n);
rank.resize(n, 0);
for (int i = 0; i < n; ++i)

parent[i] = i;
}
int find(int u) {

if (parent[u] != u)

5. Resulting MST: The MST includes edges AB, BC, AD, AC. The total weight of the MST is

parent[u] = find(parent[u]); // Path compression
return parent[u];

}
void union_set(int u, int v) {

int root_u = find(u);
int root_v = find(v);
if (root_u != root_v) {

// Union by rank
if (rank[root_u] > rank[root_v])

parent[root_v] = root_u;
else if (rank[root_u] < rank[root_v])

parent[root_u] = root_v;
else {

parent[root_v] = root_u;
rank[root_u]++;

}
}

}
};
// Comparator function to sort edges by weight
bool compareEdges(const Edge& a, const Edge& b) {

return a.weight < b.weight;
}
// Function to find Minimum Spanning Tree using Kruskal's algorithm
vector<Edge> kruskalMST(vector<Edge>& edges, int V) {

// Sort edges by weight
sort(edges.begin(), edges.end(), compareEdges);
UnionFind uf(V);
vector<Edge> result;
for (Edge& edge : edges) {

int u = edge.u;
int v = edge.v;
if (uf.find(u) != uf.find(v)) {

uf.union_set(u, v);
result.push_back(edge);

}

if (result.size() == V - 1)
break;

}
return result;

}

12.4 Prim's Algorithm

Prim's algorithm is another popular greedy algorithm used to find the Minimum Spanning Tree (MST) of a

starting from an arbitrary vertex and adding the shortest edge that connects a vertex in the MST to a vertex outside

the MST. Here’s how Prim's algorithm works, explained with an example:

Prim's Algorithm Steps:

1. Initialization: Start with an arbitrary vertex as the initial MST, or a single vertex as the starting point.

// Stop when MST is found (V-1 edges)

connected, weighted graph. Similar to Kruskal's algorithm, Prim's algorithm builds the MST incrementally,

2. Priority Queue: Use a priority queue (min-heap) to keep track of the minimum-weight edge that

o Add the vertex with the smallest edge weight that connects the current MST to a vertex not yet

o Update the priority queue with new edges that connect the current MST to vertices outside the

is the number of vertices in the graph.

Example:

Consider the following graph with 4 vertices (A, B, C, D) and the following weighted edges:













AB: 1

AC: 4

AD: 3

BC: 2

BD: 5

CD: 6

Step-by-Step Execution:

2. Priority Queue Contents:

o

Edges: AB (1), AC (4), AD (3). o

3. Process:

o

o

o

o

Step 1: Add edge AB to the MST (A-B). Priority queue now has AC (4), AD (3).

Step 2: Add edge AD to the MST (A-D). Priority queue now has AC (4), BD (5).

Step 3: Add edge AC to the MST (A-C). Priority queue now has BC (2), BD (5).

Step 4: Add edge BC to the MST (B-C). Priority queue now has BD (5), CD (6).

1+3+4+2=101 + 3 + 4 + 2 = 101+3+4+2=10.

connects the MST to vertices outside the MST.

3. Process Edges: Repeat the following steps until all vertices are included in the MST:

in the MST.

MST.

4. Termination: Stop when all vertices are included in the MST, forming V−1V-1V−1 edges, where VVV

1. Start with Vertex A: Assume we start with vertex A.

Initially, vertex A is in the MST.

4. Resulting MST: The MST includes edges AB, AD, AC, BC. The total weight of the MST is

Explanation:







Prim's algorithm starts from an initial vertex and grows the MST one vertex at a time by adding the

It uses a priority queue to efficiently retrieve the next minimum-weight edge to process, ensuring that

the algorithm runs efficiently even for large graphs.

Prim's algorithm is particularly useful for dense graphs or when a specific starting vertex is known, as it

guarantees that the MST grows incrementally with minimal edge weights.

Implementation in C++:

#include <iostream>
#include <vector>
#include <queue>
#include <climits>
using namespace std;
#define V 5 // Number of vertices in the graph
// Function to find the vertex with the minimum key value,
// from the set of vertices not yet included in MST
int minKey(int key[], bool mstSet[]) {

int min = INT_MAX, min_index;
for (int v = 0; v < V; v++) {

if (mstSet[v] == false && key[v] < min) {
min = key[v];
min_index = v;

}
}
return min_index;

}
// Function to print the MST stored in parent array
void printMST(int parent[], vector<vector<int>>& graph) {

cout << "Edge \tWeight\n";
for (int i = 1; i < V; i++) {

cout << parent[i] << " - " << i << "\t" << graph[i][parent[i]] << "\n";
}

}
// Function to construct and print MST using Prim's algorithm
void primMST(vector<vector<int>>& graph) {

int parent[V]; // Array to store constructed MST
int key[V]; // Key values used to pick minimum weight edge in cut
bool mstSet[V]; // To represent set of vertices included in MST
// Initialize all keys as INFINITE
for (int i = 0; i < V; i++) {

key[i] = INT_MAX;
mstSet[i] = false;

}
// Always include first vertex in MST
key[0] = 0; // Make key 0 so that this vertex is picked as first vertex
parent[0] = -1; // First node is always root of MST
// The MST will have V vertices
for (int count = 0; count < V - 1; count++) {

// Pick the minimum key vertex from the set of vertices not yet included in MST

// Add the picked vertex to the MST set
mstSet[u] = true;
// Update key value and parent index of the adjacent vertices of the picked vertex

shortest edge that connects the current MST to a vertex outside the MST.

int u = minKey(key, mstSet);

// Consider only those vertices which are not yet included in MST
for (int v = 0; v < V; v++) {

// graph[u][v] is non-zero only for adjacent vertices of u
// mstSet[v] is false for vertices not yet included in MST
// Update the key only if graph[u][v] is smaller than key[v]
if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v]) {

parent[v] = u;
key[v] = graph[u][v];

}
}

}
// Print the constructed MST
printMST(parent, graph);

}
// Driver program to test above functions
int main() {

vector<vector<int>> graph = {
{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}

};
// Print the MST using Prim's algorithm
primMST(graph);
return 0;

}

12.5 Applications of Minimum Cost Spanning Trees

Use cases in network design (telecommunications, computer networks).

In network design, Minimum Cost Spanning Trees (MCST) find numerous applications across various domains.

Here are some specific use cases:

design efficient networks of communication channels, such as fiber optic cables or wireless links between

cities, towns, or network nodes. The goal is to minimize the total cost of establishing and maintaining

these connections while ensuring reliable and high-speed communication.

2. Computer Networks: In computer networks, MCST algorithms help in designing network topologies

that connect all devices (computers, routers, switches) with minimal total cable length or transmission

3. Wireless Sensor Networks: MCST algorithms are applied in designing wireless sensor networks

(WSNs) where sensors need to communicate with each other and with a central node (sink) using

minimal energy consumption. The algorithm helps in forming a tree structure that optimizes energy usage

and ensures data from sensors is efficiently routed to the sink.

4. Satellite Communication Networks: For satellite communication systems, MCST algorithms are used

to establish communication links between satellites and ground stations or between different satellites in

1. Telecommunications Networks: MCST algorithms are extensively used in telecommunications to

cost. This ensures efficient data transmission, reduces latency, and enhances network reliability.

a constellation. The objective is to minimize signal propagation delay and maximize bandwidth

5. Internet of Things (IoT) Networks: In IoT applications, where numerous devices (sensors, actuators,

smart appliances) are interconnected, MCST algorithms play a role in optimizing the network topology

for efficient data exchange and resource management. This ensures that IoT devices can communicate

seamlessly while conserving energy and reducing communication overhead.

Clustering applications in data analysis and machine learning

In data analysis and machine learning, clustering refers to the process of grouping data points into clusters based

on their similarity or distance metrics. Minimum Cost Spanning Trees (MCST) and related algorithms have

applications in clustering contexts, particularly in graph-based clustering methods. Here’s how MCST and

clustering intersect:

1. Graph-based Clustering:

o Minimum Spanning Tree Clustering: In this approach, MCST algorithms like Kruskal's or

Prim's are used to construct a minimum spanning tree of a graph where nodes represent data

points and edges represent distances or similarities between them. Once the tree is constructed,

clusters can be derived by cutting edges based on a threshold distance or similarity measure.

The resulting clusters are connected subgraphs with minimal total edge weights, ensuring

compact and cohesive clusters.

2. Hierarchical Clustering:

Agglomerative Clustering: MCST algorithms can be adapted for hierarchical clustering o

methods. Starting with each data point as a separate cluster, the algorithm progressively merges

clusters based on proximity until all points belong to a single cluster. The merging process can

the total inter-cluster similarity or distance.

3. Community Detection:

Graph Partitioning: MCST algorithms are also used in community detection tasks where the o

goal is to identify densely connected subgroups of nodes in a network (graph). By constructing

an MCST or other graph-based structures, community detection algorithms can efficiently

identify these subgroups, which often correspond to clusters of similar data points in

applications like social network analysis or recommendation systems.

4. Optimization and Representation Learning:

o

constructing a graph representation of data points and then applying MCST algorithms to

discover meaningful structures or patterns. This approach can enhance the efficiency of

utilization while keeping operational costs low.

be guided by the edges of the MCST, ensuring that clusters are merged in a way that minimizes

MCST-based clustering methods can help in optimizing representation learning tasks by

clustering tasks in large datasets or high-dimensional spaces where traditional clustering

algorithms may struggle.

Optimization problems in logistics and transportation.

In logistics and transportation, optimization problems are pervasive, involving efficient resource allocation, route

planning, and network management. Minimum Cost Spanning Trees (MCST) and related algorithms play crucial

roles in solving these optimization challenges:

1. Network Design and Maintenance:

o Infrastructure Planning: MCST algorithms like Prim's and Kruskal's are used to design

efficient transportation networks such as roadways, railways, and telecommunications grids. By

constructing minimum spanning trees, these algorithms help minimize construction costs while

ensuring connectivity and accessibility across the network.

Optimal Route Planning: In transportation logistics, MCST algorithms aid in determining the o

most cost-effective routes for vehicles, considering factors like distance, traffic conditions, and

fuel costs. By constructing minimal spanning trees or related structures, these algorithms

optimize delivery routes, reduce transportation times, and lower operational costs.

3. Supply Chain Management:

Inventory and Distribution Networks: MCST algorithms optimize supply chain networks by o

identifying the most efficient distribution routes between warehouses, suppliers, and retail

locations. This ensures timely delivery of goods while minimizing transportation costs and

maintaining inventory levels.

4. Facility Location and Service Coverage:

Service Area Design: MCST algorithms assist in locating facilities (such as warehouses or o

distribution centers) strategically to maximize service coverage while minimizing transportation

distances and costs. These algorithms ensure that service areas are efficiently defined and

maintained.

5. Resource Allocation and Management:

Energy and Resource Networks: In energy distribution and resource management, MCST o

algorithms optimize the layout of power grids or resource networks. By minimizing the total

network cost (including construction and maintenance), these algorithms improve resource

12.6 Breadth-First Search (BFS)

2. Vehicle Routing and Scheduling:

allocation efficiency and reliability.

Breadth-First Search (BFS) is a fundamental graph traversal algorithm used to explore nodes level by level. It

starts at a specified node (often called the "source" node) and explores all its neighbors at the present depth level

before moving on to nodes at the next depth level.

Key Characteristics and Steps:

1. Initialization:

o

o

BFS begins by selecting a starting node and marking it as visited.

It uses a queue data structure to manage the order of exploration. The starting node is enqueued.

2. Exploration Process:

o

o

o

Dequeue a node from the front of the queue.

Visit all adjacent nodes (neighbors) of the dequeued node that have not been visited yet.

Mark each visited node to prevent re-processing and enqueue it into the queue.

3. Level-wise Exploration:

o BFS ensures that all nodes at a certain depth (distance from the source) are visited before

moving on to nodes at the next depth level.

o This ensures that BFS explores the shortest path first in an unweighted graph.

o

Applications:







Shortest Path and Minimum Spanning Tree: BFS can be used to find the shortest path in an

unweighted graph and to construct the minimum spanning tree in conjunction with other algorithms.

Web Crawling and Social Networking: BFS is used by search engines to crawl the web and by social

networking sites to find friends or connections within a limited number of hops.

Puzzle Solving: BFS is employed in solving puzzles like the 8-puzzle or maze traversal, where finding

the shortest path or reaching a target configuration is essential.

Example:

Consider a simple graph with nodes connected in a way that resembles a tree structure. Starting from node A, BFS

would explore each level of nodes before moving to the next level. For instance, from A, it would explore B and

C, then from B, it would explore D and E, and so on.

Consider a graph represented as follows:

4. Termination:

The process continues until the queue is empty, meaning all reachable nodes have been visited.

Starting BFS from node A:

1. Initialization:

o

o

Begin at node A and mark it as visited.

Enqueue A into the queue.

2. Exploration Process:

o Dequeue A, visit its neighbors B and D, and enqueue them (B before D).

o Dequeue B, visit its neighbors A, C, and E. Enqueue C and E (E before D).

o

o Dequeue D, visit its neighbors A and E (skip A as it's already visited).

Dequeue E, visit its neighbors B, D, and F (skip B and D as they're visited).

Dequeue F, visit its neighbor E (skip as it's visited).

o

o

3. Result:

o

In this example:





BFS explores all nodes at the current depth level before moving on to nodes at the next depth level.

It ensures that the shortest path (in terms of number of edges) from the starting node A to any other

reachable node is found first.

Complexity:

 Time Complexity: O(V + E), where V is the number of vertices (nodes) and E is the number of edges

in the graph.

 Space Complexity: O(V), due to the storage required for the queue and the visited list.

12.7 Depth-First Search (DFS)

Dequeue C, visit its neighbors B and F. Enqueue F.

The BFS traversal order from node A would be: A, B, D, C, E, F.

Depth-First Search (DFS) is a graph traversal algorithm that explores as far as possible along each branch before

backtracking. It traverses a graph depthwise, exploring vertices and edges to reach the deepest nodes before

backtracking to explore other paths. The main properties of DFS include its recursive nature, which utilizes a

stack to keep track of vertices, and its ability to uncover all vertices in a connected component.

Definition and Properties of DFS:

It follows these properties:







Recursive Nature: DFS uses recursion or an explicit stack to manage traversal.

Backtracking: It explores all paths from the current vertex before moving to the next vertex.

Visited Marking: Ensures each vertex is visited once to avoid infinite loops in cyclic graphs.

Implementation Details:

Recursive Implementation:

In a recursive approach, DFS uses function calls to traverse the graph:

Example:

Depth-First Search (DFS) is another fundamental graph traversal algorithm that explores as far as possible along

each branch before backtracking. Here's an example of how DFS works on a simple graph:

Consider a graph represented as follows:

DFS starts from an initial vertex, visits all its neighbors recursively, and marks visited vertices to avoid revisiting.

Starting DFS from node A:

1. Initialization:

o Begin at node A and mark it as visited.

2. Exploration Process:

o

.

.

From B, visit its unvisited neighbor E (since B to A is visited).

From E, visit its unvisited neighbors F (since E to A is visited).

3. Result:

o

In this example:







DFS explores as far as possible along each branch before backtracking.

It uses a stack (implicitly through recursion or explicitly) to keep track of the path and visited nodes.

DFS is used for tasks like finding connected components, detecting cycles, and topological sorting in

directed graphs.

Applications of DFS:

DFS finds applications in various graph-related problems:







Cycle Detection: Detects cycles in directed and undirected graphs by checking for back edges during

traversal.

Topological Sorting: Orders vertices such that for every directed edge u -> v, u comes before v in the

ordering.

Maze Solving: Used to find paths through mazes or grids by exploring all possible paths until the exit is

found.

12.8 Finding Strongly Connected Components (SCCs)

Finding Strongly Connected Components (SCCs) in a directed graph is a fundamental graph algorithm that

identifies subsets of vertices where each vertex is reachable from any other vertex within the same subset.

the SCC, there exists a path from u to v and a path from v to u.

Steps to Find Strongly Connected Components (Kosaraju's Algorithm):

Visit A's neighbors recursively: B, D, E, F.

The DFS traversal order from node A would be: A, B, E, F, C, D.

Formally, an SCC in a directed graph is a maximal subgraph such that for every pair of vertices uuu and vvv in

1. First Pass (DFS on Original Graph):

o Perform a Depth-First Search (DFS) on the original graph, tracking the finishing times of

vertices. This step helps identify the order in which vertices finish processing.

o Store vertices based on their finishing times in a stack.

2. Transpose Graph:

Create a transpose or reverse graph where all the edges of the original graph are reversed. o

in the transpose graph.

3. Second Pass (DFS on Transposed Graph):

o

o

Pop vertices from the stack (ordered by finishing times from the first pass).

Perform DFS on the transpose graph starting from each popped vertex to explore all vertices in

the same SCC.

o Each DFS call from an unvisited vertex in the stack identifies a new SCC.

Example:

Consider a directed graph with vertices V = {1, 2, 3, 4, 5, 6} and edges {(1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (5, 6),

(6, 4)}.

1. First Pass (Original Graph):

o

o

Perform DFS on the original graph.

Track finishing times: finishing time (1) > finishing time (2) > finishing time (3) > finishing time

(4) > finishing time (5) >finishing time (6).

o

2. Transpose Graph:

o Reverse all edges: {(2, 1), (3, 2), (1, 3), (4, 3), (5, 4), (6, 5), (4, 6)}.

3. Second Pass (DFS on Transposed Graph):

o

o

o

Start DFS from vertex 6 (top of the stack).

Explore all vertices reachable from 666: {6, 5, 4} forms an SCC.

Continue with other unvisited vertices in the stack until all SCCs are identified.

Applications:

 Compiler Design: Used in optimizing code by identifying code blocks that can be executed

Essentially, if there is an edge from u to v in the original graph, there is an edge from vvv to uuu

Vertices in order of decreasing finishing times: [6, 5, 4, 3, 2, 1].

independently.



 Component-based Systems: Finding modules or components with interdependencies that must be

Kosaraju's algorithm efficiently finds all SCCs in O (V + E) time, making it suitable for large graphs encountered

in real-world applications like social networks, transportation networks, and data flow analysis.

12.9 Conclusion

In this unit, we have explored a comprehensive range of topics centered around graph theory and its applications.

We began with the fundamental concepts of graphs, delving into various ways they can be represented and

manipulated. This foundational knowledge set the stage for understanding more complex algorithms and their

practical uses.

We examined Minimum Cost Spanning Trees and studied Kruskal’s and Prim’s algorithms in detail. These

algorithms are crucial for solving optimization problems in network design and other fields. We then moved on

to essential graph traversal techniques, such as Breadth-First Search (BFS) and Depth-First Search (DFS),

highlighting their implementation and diverse applications, from pathfinding to topological sorting.

important concept for analyzing the structure of complex networks. Throughout this unit, the emphasis has been

on both theoretical understanding and practical implementation, equipping you with the skills to apply these

powerful graph algorithms to real-world problems.

12.10 Questions and Answers

Q1: What is a graph in the context of data structures?

Answer: A graph is a data structure that consists of a set of nodes (vertices) connected by edges. Graphs can be

directed or undirected, and they are used to represent relationships between entities in various applications such

Q2: What is the primary difference between Kruskal’s Algorithm and Prim’s Algorithm for finding

Minimum Cost Spanning Trees?

Answer: Kruskal’s Algorithm builds the Minimum Cost Spanning Tree (MST) by adding edges in order of

increasing weight, ensuring no cycles are formed. Prim’s Algorithm, on the other hand, starts from an arbitrary

node and grows the MST by adding the smallest edge that connects a vertex in the tree to a vertex outside the tree.

Q3: How does the Breadth-First Search (BFS) algorithm work?

Network Analysis: Identifying clusters of nodes that can communicate effectively.

analyzed together.

Finally, we explored the identification of Strongly Connected Components (SCCs) in directed graphs, an

as social networks, transportation systems, and network topology.

Answer: BFS is a graph traversal algorithm that starts from a given node and explores all its neighbors at the

present depth before moving on to nodes at the next depth level. It uses a queue to keep track of nodes to be

explored, ensuring a level-order traversal.

Q4: What are the typical applications of Depth-First Search (DFS)?

Answer: DFS is used in various applications, including cycle detection in graphs, topological sorting, solving

maze puzzles, and finding connected components in a graph. It is characterized by its use of a stack or recursion

to explore as far as possible along each branch before backtracking.

Q5: Explain the concept of Strongly Connected Components (SCCs) in a graph.

Answer: Strongly Connected Components (SCCs) are subgraphs in a directed graph where every node is reachable

from every other node within the same subgraph. Identifying SCCs is crucial for understanding the structure of

complex networks, such as identifying clusters or modules within a larger system.

Q6: What are the key properties of a Minimum Cost Spanning Tree (MCST)?

Answer: A Minimum Cost Spanning Tree (MCST) connects all vertices in a graph with the minimum possible

total edge weight, without forming any cycles. It ensures that the spanning tree is as light as possible, which is

essential for optimizing network design and other applications.

12.11 References

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd

ed.). MIT Press.









Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.

Kleinberg, J., & Tardos, É. (2005). Algorithm Design. Pearson.

Tarjan, R. E. (1972). "Depth-First Search and Linear Graph Algorithms". SIAM Journal on Computing,

1(2), 146-160.





Journal, 36(6), 1389-1401.

Kruskal, J. B. (1956). "On the Shortest Spanning Subtree of a Graph and the Traveling Salesman

Problem". Proceedings of the American Mathematical Society, 7(1), 48-50.

Dasgupta, S., Papadimitriou, C., & Vazirani, U. (2008). Algorithms. McGraw-Hill Education.

Prim, R. C. (1957). "Shortest Connection Networks and Some Generalizations". Bell System Technical

Unit – 13: Searching and Sorting Algorithms

13.0 Introduction

13.1 Objectives

13.2 Sorting Algorithms

13.3 Selection Sort

13.4 Insertion Sort

13.5 Merge Sort

13.6 Quick Sort

13.7 Searching Algorithms

13.8 Comparing the Efficiency of Sorting and Searching Algorithms

13.9 Conclusion

13.10 Questions and Answers

13.11 References

13.0 Introduction

In computer science and software engineering, sorting and searching algorithms are essential for efficiently

managing and manipulating data. These algorithms are essential resources that facilitate the effective arrangement

this topic, including their foundations, applications, effectiveness, and practical applications.

for quickly and efficiently finding elements in sorted arrays or other data repositories.

The first part of this subject looks at different sorting strategies, such as Quick Sort, Insertion Sort, Selection Sort,

and Merge Sort. Every technique is examined in detail to comprehend its working principles, computational

and compare the optimal use cases and efficiency of several searching algorithms, including Binary Search and

and retrieval of data for a wide range of applications. We thoroughly examine sorting and searching algorithms in

Sorting algorithms are methods for putting data in a specific order, like lexicographical or numerical order.

Because of their differences in efficiency and complexity, some are more suited for particular jobs than others.

Conversely, searching algorithms make it easier to retrieve data from structured data structures. They are essential

intricacies in the best, average, and worst-case situations, and useful applications. Additionally, we investigate

Linear Search. Our goal is to offer a thorough grasp of how these algorithms support effective data management

and retrieval in theoretical and real-world settings by the conclusion.

13.1 Objectives

After completing this unit, you will be able to understand,











Understanding Sorting Algorithms: To comprehend the fundamental principles behind various sorting

algorithms such as Selection Sort, Insertion Sort, Merge Sort, and Quick Sort. This includes exploring

their respective implementation strategies, advantages, and disadvantages.

Analyzing Time and Space Complexity: To conduct a detailed analysis of the time complexity (best,

average, and worst-case scenarios) and space complexity of each sorting algorithm. This analysis helps

in understanding their efficiency and suitability for different data sizes and structures.

Exploring Searching Algorithms: To investigate essential searching algorithms, particularly Linear

Search and Binary Search. This involves understanding their operational mechanisms, efficiency in terms

of time complexity, and practical applications in data retrieval scenarios.

Comparing Efficiency: To compare the efficiency of sorting and searching algorithms based on their

time and space complexities. This comparison aids in selecting the most appropriate algorithm for

Real-world Applications: To examine practical applications of sorting and searching algorithms across

various domains, including database management, information retrieval, and computational problem-

solving.

13.2 Sorting Algorithms

Sorting algorithms are methods for putting items in a list or array in a specific order, usually lexicographically or

an initial step in a variety of algorithms and applications. Sorting algorithms can be assessed for efficiency using

two metrics: space complexity (the amount of additional memory needed) and time complexity (the rate at which

the algorithm's execution time grows with the size of the input).

Bubble Sort: This straightforward sorting algorithm analyzes each pair of adjacent items and swaps them if they

are out of order as it iteratively goes through the list to be sorted. Until the list is sorted, the trip through the list is

repeated. Smaller elements "bubble" to the top of the list (the beginning of the array) with each iteration of the

algorithm, hence its name.

specific tasks, considering factors like data size, structure, and order.

numerically, ascending or descending. A basic operation in computer science, sorting is frequently employed as

Sorting Techniques:

Methodical Application in C++

Analysis of Time Complexity







Best Case: O(n): When the array has previously been sorted, this happens. In this case, the algorithm

merely performs one trip around the array to verify that it is sorted; swaps are not required.

Average Case: O(n): This happens when there is an average random element order. The method does 2

n passes, comparing and sometimes swapping neighboring pairings on each iteration.

Worst-Case Scenario: The worst-case scenario, which happens when the array is sorted in reverse order,

is O(n2). The method must perform n passes, requiring n-1 swaps and comparisons for each pass.

Analysis of Space Complexity

Space Complexity: O (1): Bubble Sort requires a constant amount of additional memory space because 

it is an in-place sorting method. The temporary variable that holds elements during swaps is the only

purpose for the additional space.

Detailed Description with Illustration

Considering an array arr[] = {64, 25, 12, 22, 11}, let us perform the Bubble Sort steps:

First Pass,









When comparing 64 and 25, swap them out because 64 > 25 → {25, 64, 12, 22, 11}

As 64 > 12 → {25, 12, 64, 22, 11}, compare 64 and 12: Swap

Examine 64 and 22: Exchange, as 64 > 22 → {25, 12, 22, 64, 11}

Examine 64 and 11: Exchange, as 64 > 11 → {25, 12, 22, 11, 64}

Second Pass,









In contrast, swap 25 and 12 because 25 > 12 => {12, 25, 22, 11, 64}

In order to swap 25 and 22, remember that 25 > 22 → {12, 22, 25, 11, 64}.

In order to swap 25 and 11, note that 25 > 11 → {12, 22, 11, 25, 64}.

Third Pass







Examine 12 and 22: There is no exchange because 12 < 22 → {12, 22, 11, 25, 64}

In contrast, 22 > 11 → {12, 11, 22, 25, 64}. Compare 22 with 11.

The numbers 25 and 64 are already in the right places.

Fourth Pass:







As 12 > 11 → {11, 12, 22, 25, 64}, compare 12 with 11.

The numbers 22, 25, and 64 are already in the right place.

The array is sorted in the following order: {11, 12, 22, 25, 64}.

13.3 Selection Sort

Selection Sort is a basic sorting algorithm that relies on comparisons. The input list is split into two sections by

the algorithm: a sublist of the remaining unsorted items and a sorted sublist of items that are accumulated from

left to right at the front (left) of the list. The input list as a whole is the unsorted sublist at first, and the sorted

unsorted sublist, moves the sublist borders one element to the right, and exchanges it with the leftmost unsorted

Step-by-Step Implementation in C++

64 is already positioned correctly.

sublist is empty. The method then finds the smallest (or largest, depending on the order of sorting) element in the

element to put it in sorted order.

Analysis of Time Complexity







Best Case: O(n): Because the technique does not check to see if the list is already sorted, the best-case 2

scenario still requires n passes through the list and n comparisons each pass.

Average Case: O(n): In this scenario, the algorithm runs through n passes, averaging n/2 comparisons 2

each pass.

Worst Case: O(n): In this scenario, there are n comparisons made for each run through the list and n 2

passes overall.

Analysis of Space Complexity

Because Selection Sort is an in-place sorting algorithm, it has a constant memory space need (space complexity:

O (1)). The temporary variable that holds elements during swaps is the only purpose for the additional space.

Use Cases and Realistic Implementations

 Small Data Sets: Selection Sort is helpful when dealing with small data sets since its simplicity and

convenience of usage outweigh its drawbacks.







Partially Sorted Arrays: Selection Sort occasionally works better if you are aware that the array has

previously been partially sorted.

principles of sorting algorithms.

Memory-Constrained Environments: Because it is an in-place sort, it can be used in settings with

Detailed Description with Illustration

Considering an array arr[] = {64, 25, 12, 22, 11}, let us perform the Selection Sort steps:

First Pass:





Determine the least element—11—among 64, 25, 12, 22, and 11.

Replace element 64 with 11, resulting in {11, 25, 12, 22, 64}.

Second Pass:





Determine the least element—12—among 25, 12, 22, and 64.

Replace element 12 with element 25 to get {11, 12, 25, 22, 64}.

Third Pass





Determine the least element—22—among 25, 22, 64.

Replace element 22 with the third one (25) to get {11, 12, 22, 25, 64}.

Fourth Pass:







Determine the least element—25—among 25, 64.

Since 25 is already in the right place, there is no need to swap.

The array is sorted in the following order: {11, 12, 22, 25, 64}.

13.4 Insertion Sort

Insertion Sort is a basic and intuitive comparison-based sorting algorithm. It builds the final sorted array (or list)

one item at a time. It is substantially less efficient on huge lists than more complex algorithms such as quicksort,

heapsort, or merge sort. However, it has the virtue of being simple to implement and efficient for small data sets.

comprises only the first element, and the rest of the list is unsorted. The method proceeds by taking the next

element from the unsorted section and inserting it into the correct position in the sorted region. This process

continues until the full list is sorted.

Step-by-Step Implementation in C++

Educational Purposes: Because of its simplicity, it is frequently used in school contexts to teach the

constrained memory.

The list is split into sorted and unsorted regions in order for the algorithm to function. Initially, the sorted region

Time Complexity Analysis







Best Case: O(n): The best-case scenario happens when the array is already sorted. The algorithm just

needs to pass through the list once, making n-1 comparisons.

Average Case: O(n): On average, each element in the array is compared half of the elements preceding 2

it. This leads in a quadratic amount of comparisons and shifts.

Worst Case: O(n): The worst-case scenario happens when the array is sorted in reverse order. The 2

method needs to bring each element to the front of the sorted zone, resulting in the maximum amount of

comparisons and shifts.

Analysis of Space Complexity

Space Complexity: O(1): Insertion Sort is an in-place sorting algorithm, meaning it requires a constant amount

of additional memory space. The only extra space used is for a temporary variable to hold components during

shifts.

Use Cases and Realistic Implementations

Small Data Sets: Insertion Sort works well for small data sets since it is straightforward to use and has a low

implementation overhead.

Nearly Sorted Arrays: Insertion Sort works well when you know the array is already almost sorted because it

requires less shifts.

Online Sorting: Insertion Sort is appropriate for online sorting where data is received one piece at a time since it

can sort a list as it gets items.

of sorting algorithms.

Detailed Description with Illustration

Considering an array arr[] = {12, 11, 13, 5, 6}, let us proceed with the Insertion Sort steps:

First Pass:







Key = 11, contrast with 12.

Move 12 to the right since 11 < 12.

Put 11 where it belongs → {11, 12, 13, 5, 6}.

Second Pass:







Key = 13, contrast with 12.

There is no need for shifts because 13 > 12.

Place 13 where it belongs → {11, 12, 13, 5, 6}.

Third Pass:







Key: 5, with relation to 13, 12, and 11.

Due to the fact that 5 < 13, 12, and 11, move them right.

Put 5 in the proper place: {5, 11, 12, 13, 6}.

Fourth Pass:









Key: 6, in relation to 13, 12, and 11.

As 6 is less than 13, 12, and 11, move them to the right.

Put 6 in the proper place: {5, 6, 11, 12, 13}.

The array is sorted in the following order: {5, 6, 11, 12, 13}.

13.5 Merge Sort

(best, average, and worst-case), making it a stable sorting algorithm.

For educational purposes: Because of its simplicity, it is frequently used in school contexts to teach the principles

A divide-and-conquer method called merge sort splits the input array in half, sorts each half recursively, and then

combines the sorted halves to create a sorted array. O (n log n) time complexity is guaranteed in all scenarios

Step-by-Step Implementation in C++

The basic instance of the C++ implementation of merge sort is splitting the array in half recursively until each

#include <iostream>
using namespace std;
// Function to merge two halves sorted arrays
void merge(int arr[], int left, int mid, int right) {

int n1 = mid - left + 1;
int n2 = right - mid;

// Create temporary arrays
int L[n1], R[n2];

// Copy data to temporary arrays L[] and R[]
for (int i = 0; i < n1; i++)

L[i] = arr[left + i];
for (int j = 0; j < n2; j++)

R[j] = arr[mid + 1 + j];
// Merge the temporary arrays back into arr[left..right]

int i = 0; // Initial index of first subarray
int j = 0; // Initial index of second subarray
int k = left; // Initial index of merged subarray

while (i < n1 && j < n2) {
if (L[i] <= R[j]) {

arr[k] = L[i];
i++;

} else {
arr[k] = R[j];
j++;

}
k++;

}
// Copy the remaining elements of L[], if any

while (i < n1) {
arr[k] = L[i];
i++;
k++;

}
// Copy the remaining elements of R[], if any
while (j < n2) {

arr[k] = R[j];
j++;
k++;

}
}
// Function to perform merge sort on array arr[left..right]
void mergeSort(int arr[], int left, int right) {

if (left < right) {
int mid = left + (right - left) / 2;

// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge the sorted halves
merge(arr, left, mid, right);

}
}
// Main function to test merge sort
int main() {

int arr[] = {12, 11, 13, 5, 6, 7};

sub-array has one entry. To create the final sorted array, it then combines the sorted sub-arrays once more.

int n = sizeof(arr) / sizeof(arr[0]);
cout << "Given array is \n";

for (int i = 0; i < n; i++)
cout << arr[i] << " ";

cout << endl;
mergeSort(arr, 0, n - 1);
cout << "Sorted array is \n";

for (int i = 0; i < n; i++)
cout << arr[i] << " ";

cout << endl;
return 0;

}

Analysis of Time Complexity

 Best Case: O (n log n): When the array is sorted or almost sorted, this is the best-case situation. The

array is split in half by Merge Sort until each sub-array contains one element, at which point it merges





Merge Sort: Merge Sort on average, splits the array in half and then combines them back together in an

O (n log n) time. Its time complexity is expressed as T(n) = 2T(n/2) + O(n) in the recurrence relation.

Worst Case: O (n log n): When the array is unsorted, this is also the worst-case situation. Recursively

Analysis of Space Complexity

 Space Complexity: O(n): The temporary arrays utilized during the merge operation necessitate

additional memory space for Merge Sort. O(n) is the space complexity because auxiliary arrays are used.

Use Cases and Realistic Implementations







huge data sets.

External Sorting: Merge sort is used in external sorting when data needs to be stored on external storage

Parallel Processing: Merge Sort is easily adaptable to parallel processing, which allows various parts of

the data to be sorted simultaneously by several processors or cores.

13.6 Quick Sort

Quick Sort is a sorting algorithm that uses comparison and the divide-and-conquer tactic. To operate, one 'pivot'

the two halves back together.

splitting the array in half and merging them together, Merge Sort preserves O (n log n) time complexity.

Sorting Big Data Sets: Because of its O(n log n) time complexity, merge sort is effective for sorting

devices because it cannot fit in the main memory.

element is chosen from the array, and the remaining elements are divided into two sub-arrays according to whether

they are bigger or less than the pivot. After that, the sub-arrays are sorted recursively.

Step-by-Step Implementation in C++

In order to implement Quick Sort in C++, one must first choose a pivot element, divide the array around it, and

then recursively sort the sub-arrays. The main steps involved are as follows:







Select Pivot: The pivot should be one of the array's elements. There are several ways to determine which

element will serve as the pivot: you can choose to use the first, last, or random element.

Partitioning: Slide the array back and forth until all elements larger than the pivot are on the right side

and all elements less than the pivot are on the left. The pivot is in its final position following partitioning.

Recursive Sort: Sort the sub-arrays created by partitioning by applying Quick Sort recursively until the

full array is sorted.

#include <iostream>
#include <vector>
using namespace std;
// Function to partition the array and return the index of the pivot element
int partition(vector<int>& arr, int low, int high) {

int pivot = arr[high]; // Choosing the last element as the pivot
int i = low - 1; // Index of smaller element
for (int j = low; j <= high - 1; j++) {

// If current element is smaller than or equal to pivot
if (arr[j] <= pivot) {

i++; // Increment index of smaller element
swap(arr[i], arr[j]);

}
}
swap(arr[i + 1], arr[high]);
return (i + 1);

}
// Function to implement Quick Sort
void quickSort(vector<int>& arr, int low, int high) {

if (low < high) {
// Partitioning index
int pi = partition(arr, low, high);
// Recursively sort elements before partition and after partition
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

}
}
// Utility function to print an array
void printArray(const vector<int>& arr) {

for (int i = 0; i < arr.size(); i++) {
cout << arr[i] << " ";

}
cout << endl;

}
// Main function
int main() {

vector<int> arr = {10, 7, 8, 9, 1, 5};
int n = arr.size();
cout << "Original array: ";

printArray(arr);
quickSort(arr, 0, n - 1);
cout << "Sorted array: ";
printArray(arr);
return 0;

}

Time Complexity Analysis







Best Case: O(n log n): The array is divided into two roughly equal halves by the pivot in the best-case

scenario. The array is divided into two pieces by each partitioning step, resulting in O(log n) divisions

and O(n) comparisons for each division.

Average Case: O(n log n): Quick Sort's effective partitioning technique allows it to perform well on

average. Because each partitioning step splits the array into two sub-arrays proportionate to the pivot,

the temporal complexity is O(n log n).

Worst Case: O(n): Unbalanced partitions result when the pivot is either the smallest or largest element 2

uncommon but can be avoided by deliberately selecting the pivot.

Analysis of Space Complexity

Space Complexity: O (log n) to O(n): The recursive call stack for Quick Sort normally takes up O(log 

n) of space. If more arrays are used in the implementation, in the worst scenario, O(n) auxiliary space

might be needed for partitioning.

Use Cases and Realistic Implementations







General-Purpose Sorting: Because of its effective average-case performance, Quick Sort is frequently

used for general-purpose sorting.

In-Place Sorting: Quick Sort can be done in-place for the recursive call stack using O(log n) auxiliary

space.

Optimized Libraries: Because Quick Sort and its variants are reliable and efficient sorting algorithms,

many computer languages and libraries utilize them by default.

13.7 Searching Algorithms

Algorithms for searching are techniques for locating particular elements in a set of data, like trees, arrays, or lists.

Finding the location of a specific element within the data structure and, if it does, retrieving it are the objectives.

The following are a few popular search algorithms:

in the array. This is the worst-case scenario. O(n) time complexity results from this situation, which is 2

The efficiency of various searching algorithms vary, and they are frequently assessed in terms of space complexity,

time complexity, and overall performance depending on the quantity and quality of the data.

 Linear Search: another name for linear search, is a simple searching technique that goes over each

element in a data structure one after the other until the target element is located or all the items have been

examined. When data is randomly arranged or unsorted and each element is compared one after the other

Step-by-step Implementation in C++:

Analysis of Time Complexity:

o

o

Best Case: O(1): This happens when the element of interest is located at the initial position.

Average Case: O(n): - The average case requires the algorithm to scan through half of the array

o Worst Case: O(n): - This situation necessitates a complete traversal of the array and happens

when the target element is at the last position or absent.

Analysis of Space Complexity:

consecutively, it performs admirably.

on average, since the target element can be anywhere in the array.

Because it only needs a fixed amount of additional memory to store variables like the loop counter and

target element, Linear Search has a space complexity of O(1).

Uses and Real-World Implementations:

o

o

o

Searching Unsorted Arrays: Because linear search examines each element one after the other,

it is frequently employed when data is not sorted.

Simple and Easy to Implement: It is helpful in circumstances where efficiency is not as crucial

as simplicity and ease of implementation.

Tiny Datasets: Appropriate for tiny datasets or situations in which sorting using more

sophisticated algorithms, such as Binary Search, would not be cost-effective.

 Binary Search: Working with sorted arrays or lists, Binary Search is a very effective searching

the search interval in half. Depending on whether the target value is higher or less than the array's middle

element, it compares it to that element before determining whether to carry on looking in the left or right

Step-by-step Implementation in C++:

#include <iostream>
#include <vector>
using namespace std;
// Function to perform binary search
int binarySearch(vector<int>& arr, int target) {

int left = 0;
int right = arr.size() - 1;
while (left <= right) {

int mid = left + (right - left) / 2;
// Check if target is present at mid
if (arr[mid] == target) {

return mid;
}
// If target is greater, ignore left half
else if (arr[mid] < target) {

left = mid + 1;
}
// If target is smaller, ignore right half
else {

right = mid - 1;
}

}
// If target is not found in the array
return -1;

}
int main() {

vector<int> arr = {10, 20, 30, 40, 50, 60};
int target = 40;

technique. Until the target element is located or the interval is empty, it operates by periodically halving

subarray.

// Perform binary search
int index = binarySearch(arr, target);
if (index != -1) {

cout << "Element found at index: " << index << endl;
} else {

}
return 0;

}
Analysis of Time Complexity:





In the best scenario, the target element is located in the middle of the array (O(1)).

Average Case: O(log n) - Binary search is very effective for huge datasets since it splits the search interval

in half with each comparison.

 The worst situation, which is similar to the average scenario, happens when the target element is at either

extreme of the array. It is expressed as O(log n).

Analysis of Space Complexity:

 Because it only needs a fixed amount of additional memory to store variables like the left, right, and mid

indices, Binary Search has a space complexity of O(1).

Uses and Real-World Implementations:







Sorted Arrays and Lists: Binary search works well for searching in sorted arrays and lists that allow for

random access.

linear search on huge datasets.

Algorithmic Foundations: In computer science, binary search is a basic algorithm that forms the basis of

more intricate algorithms and data structures.

14.8 Comparing the Efficiency of Sorting and Searching Algorithms

Comparing Time Complexities of Sorting Algorithms:

1. Bubble Sort:

o

o

o

Best Case: O(n) - Occurs when the array is already sorted.

Average Case: O(n) 2

2. Selection Sort:

Best Case: O(n) 2o

cout << "Element not found in the array." << endl;

Effective Searching: Because of its logarithmic time complexity, it performs substantially quicker than

Worst Case: O(n) - Occurs when the array is sorted in reverse order. 2

o

o

Average Case: O(n 2) ^

Worst Case: O(n) 2

3. Insertion Sort:

o

o

o

Best Case: O(n) - Occurs when the array is already sorted.

Average Case: O(n) 2

Worst Case: O(n) 2

4. Merge Sort:

o

o

o

Best Case: O(n log n)

Average Case: O(n log n)

Worst Case: O(n log n)

5. Quick Sort:

o

o

o

Best Case: O(n log n)

Average Case: O(n log n)

Worst Case: O(n^2) - Occurs when the pivot is consistently the smallest or largest element.

Comparing Space Complexities of Sorting Algorithms:











Bubble Sort: O(1) - In-place algorithm.

Selection Sort: O(1) - In-place algorithm.

Insertion Sort: O(1) - In-place algorithm.

Merge Sort: O(n) - Requires additional space for merging.

Quick Sort: O(log n) - Space complexity is dominated by the call stack due to recursion.

Best Scenarios to Use Each Sorting Algorithm:







Bubble Sort, Selection Sort, Insertion Sort: These algorithms are simple and efficient for small

datasets or nearly sorted arrays due to their O(n) best case scenarios.

Merge Sort: Suitable for sorting large datasets or when stable sorting is required (maintaining the

relative order of equal elements).

Quick Sort: Preferred for average and best-case scenarios due to its average O(n log n) time complexity

and in-place partitioning.

13.9 Conclusion

In conclusion, learning about sorting and searching algorithms is essential to comprehending the basic principles

of computer science that underlie effective data organizing and retrieval. This lesson covered a variety of sorting

algorithms, such as Quick Sort, Insertion Sort, Selection Sort, and Merge Sort. Based on their time and space

emphasizing their efficiency metrics and working principles in various contexts.

Furthermore, contrasting these algorithms revealed information about their respective advantages and

disadvantages, which increased our understanding of the significance of algorithmic efficiency in practical

applications. In addition to being fundamental to software development, sorting and searching algorithms are also

vital in domains where effective data handling is required, such as data analysis, database administration, and

computational research.

data processing jobs, and efficiently handle challenging computational problems.

13.10 Questions and Answers

1. Why does sorting and searching depend on an algorithm's time complexity?

Answer: The answer is that temporal complexity quantifies how an algorithm's runtime grows as the amount of

input data grows. Lower time complexity algorithms are chosen for sorting and searching because they operate

more quickly, particularly for huge datasets.

2. Contrast Binary and Linear Search. Which would you prefer to use, and when?

Answer: The answer is that Linear Search works well with unsorted lists because it iteratively examines each

element in the list until the target element is located. Contrarily, Binary Search is quicker for huge datasets since

it only needs a sorted list and effectively reduces the search space at each step.

Answer: The answer is that elements with equal keys appear in the sorted output in the same order as they do in

the original input because sorting algorithms are stable. When sorting data using multiple keys (e.g., sorting

employees by department and then by name), this feature is essential.

4. How is the O(n log n) average-case time complexity of Quick Sort achieved?

complexity, each sorting algorithm offers a distinct method for sorting data with differing degrees of efficiency.

Comparably, we examined fundamental searching algorithms including Binary Search and Linear Search,

Basically, knowing these algorithms gives practitioners useful abilities to improve system performance, optimize

3. Describe the idea of sorting algorithms' stability. Why does it matter?

Answer: In response, Quick Sort divides the array recursively into smaller subarrays depending on a pivot element

approach, the workload is balanced and the number of comparisons required is decreased.

5. Give an instance in which Merge Sort would not be preferred over Insertion Sort.

Answer: Because of its ease of use and effective performance on tiny datasets, insertion sort is the method of

choice for sorting small arrays or almost sorted arrays. Merge Sort, on the other hand, works well with large

6. What is the temporal complexity of Selection Sort and how does it operate?

Answer: To answer your question, selection sort operates by repeatedly identifying the minimum element in the

array's unsorted section and replacing it with the element that was initially unsorted. For large datasets, it is less

complexity frequently require less additional memory (lower space complexity). Higher space complexity

algorithms can offer faster runtime, but they may require more data structures to help in sorting.

13.11 References











Bjarne Stroustrup, "The C++ Programming Language"

Herb Sutter, "Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions"

Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo, "C++ Primer"

Scott Meyers, "Effective C++: 55 Specific Ways to Improve Your Programs and Designs"

Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and Reference"

and sorts each subarray separately to reach O(n log n) average-case complexity. By using a divide and conquer

datasets because of its O(n log n) complexity.

efficient than algorithms like Quick Sort or Merge Sort due to its O(n^2) time complexity.

7. Talk about the trade-offs sorting algorithms have between time and space complexity.

Answer: Because they may sort data in place, altering the input array, sorting algorithms with higher time

Block IV: File Structures and Advanced Data Structures

Unit – 14: Hashing

14.0 Introduction

14.1 Objectives

14.2 Introduction to Hashing

14.3 Collision Resolution Techniques

14.4 Importance of Collision Resolution

14.5 Applications of Hashing in Data Storage and Retrieval

14.6 Conclusion

14.7 Questions and Answers

14.8 References

14.0 Introduction

Effective system performance in the fields of computer science and data management frequently rests on efficient

data retrieval. Hashing is a key idea in this field that provides a reliable way to quickly arrange and retrieve data.

hash algorithms. This method directly accesses the stored value linked to a computed index, enabling quick data

retrieval. Hashing is therefore essential for maximizing the effectiveness of a variety of processes, including

algorithmic calculations and database administration.

Gaining an understanding of hashing requires exploring its theoretical underpinnings as well as its real-world

applications. The foundation of hashing approaches is the idea of hash functions, which transform data of any size

into a fixed-size result. The purpose of hash functions is to generate hash codes with characteristics such as

collision resistance, predictable calculation, and uniform distribution. These characteristics guarantee that hash

tables can effectively manage big datasets while preserving data integrity and cutting down on retrieval times.

This unit delves further into these concepts, offering insights into the implementation and optimization of hash

functions to meet a range of computing requirements.

mitigation requires the use of strategies like open addressing, which includes searching for empty slots until one

is discovered, and chaining, which stores several keys that hash to the same index in linked lists within the same

Fundamentally, hashing maps data pieces to distinct index values inside a data structure called a hash table using

Furthermore, collision resolution methods are essential to hash tables' dependability and efficiency. When two

distinct keys hash to the same index, a collision occurs, requiring a resolution strategy. Effective collision

table slot. Learners can comprehend the subtleties of hash table management and recognize the vital part these

approaches play in contemporary computing infrastructures by grasping these strategies.

14.1 Objectives

After completing this unit, you will be able to understand,











Understanding of Hashing: Gain a clear understanding of hashing as a fundamental technique for

efficient data retrieval. This includes grasping the concept of hash functions, their properties, and how

they are applied to map data elements to unique indices.

Collision Resolution Techniques: Explore various collision resolution techniques used in hash tables.

Learn how methods like chaining and open addressing handle collisions and maintain the integrity and

efficiency of hash-based data structures.

Importance of Collision Resolution: Recognize the significance of collision resolution in hash tables.

Understand how effective collision resolution techniques contribute to improving the performance and

reliability of data retrieval operations.

Applications of Hashing: Explore real-world applications where hashing is instrumental in data storage

and retrieval. This includes database indexing, caching mechanisms, symbol tables in compilers, and

data deduplication strategies.

Practical Knowledge: Acquire practical knowledge through examples and implementations that

illustrate the concepts of hashing, collision resolution, and their applications. Develop skills in designing

and optimizing hash-based data structures for various computational tasks.

14.2 Introduction to Hashing

In computer science and data structures, hashing is a basic method for quickly and effectively storing and

retrieving data. In order to map data of any size to fixed-size values, usually integers, known as hash codes or

hash values, a hash function is applied. By reducing the temporal complexity of accessing items, hashing aims to

achieve efficient data retrieval and storage processes.

To be more specific, hashing is the process of taking an input (or key), applying a hash function to get an index

(or hash code), and then storing or retrieving the appropriate data (or value) from a data structure (like a hash

directly to the position of the data in the underlying storage. This makes it useful for situations where fast access

is essential, such database indexing, caching techniques, and various algorithmic applications. It also provides for

speedy insertion, deletion, and retrieval of data pieces.

table). Usually, the hash function processes the key via some sort of calculation and outputs an index that points

Since hashing typically yields average-case constant-time operations for search, insert, and delete operations—

assuming that a suitable collision resolution approach and a strong hash function are put into place—it is a widely

utilized technique. It serves as the foundation for a number of data structures, including dictionaries, hash tables,

and hash maps, all of which are crucial in contemporary computer science for handling massive datasets and

Qualities of an Effective Hash Function

 Even Distribution: The hash codes should be dispersed equally throughout the hash table or array by a

strong hash algorithm. In other words, the function should reduce the amount of collisions—that is, the

instances in which two distinct keys map to the same index or bucket. By ensuring that every bucket in

the hash table has an equal chance of being reached, uniform distribution maximizes operational





you hash the same key many times.

Quick Computation: A strong hash function should be computationally efficient since hashing relies

This guarantees that in applications requiring frequent data access or manipulation, the hashing process

itself does not constitute a bottleneck.

Common Hash Function Examples







Division Method: This is one of the most basic hash functions; it calculates the hash code by dividing

the hash table size by the remainder of the key (a modulo operation). As an example, consider hash(key)

= key % table_size. Even though it is straightforward, if the table size is not prime, improper selection

may result in clustering.

Multiplication Method: In this method, the fractional part of the product is multiplied by the table size

after the key is multiplied by a constant, usually a fraction of a power of two. As an illustration, consider

the formula hash(key) = floor (table_size * (key * A % 1)), where A is a constant selected for acceptable

distribution through actual research.

Universal Hashing: Using a random selection process, a family of hash functions is employed to choose

which particular hash function is used. Because of its inherent randomness, it can be used in situations

where security or resilience against enemies are crucial. Selecting the hash function according to the size

of the hash table and the characteristics of the data being hashed is a widely used method in universal

hashing.

maximizing efficiency.

efficiency.

Deterministic: For a given input key, the hash function should always produce the same hash code.

Because determinism guarantees predictability and dependability, it makes it possible to update and

retrieve stored data consistently. Stated otherwise, you should consistently obtain the same hash code if

heavily on efficiency. All hash codes should be generated rapidly, irrespective of the input key's size.

Image Source: TutorialsPoints

14.3 Collision Resolution Techniques

When two distinct keys hash to the same index or location in a hash table, this is known as a collision in hashing.

This indicates that numerous keys are assigned to the same slot by the hash function, which maps keys to locations

in the hash table.

When Collisions Occurs?

When two distinct keys hash to the same index in a hash table, this is known as a hash collision. There are a

number of possible causes for this, and knowing them is crucial to putting successful collision resolution

techniques into practice. The following list of frequent collision causes is illustrated with examples:

1. Limitations of Hash Functions: Generally speaking, hash functions convert an infinite number of keys

into a finite number of hash values, or indices. Collisions are unavoidable because of this mapping

constraint, particularly when the number of unique keys (domain of input) surpasses the total number of

potential hash values (range of output).

As an illustration, let's say we have a basic hash function that calculates the index by taking the table

= 25% 10) yields 5, for example, if the table size is 10 (TABLE_SIZE = 10).

Cause: If keys are not evenly distributed, the hash function's simplicity and lack of complexity may lead

to multiple keys mapping to the same index.

2. Limited Hash Table Size: When hashing a large number of keys, collisions become more likely if the

hash table has a restricted number of buckets (or slots).

As an illustration, let's look at a hash table with the size TABLE_SIZE = 5. All of these keys will

size and the modulo of the key. The hash function for keys 15 (hashValue = 15% 10) and 25 (hashValue

compute to index 2 (hashValue = key % 5), if we hash them 12, 22, 32, 42, and 52.

Cause: Collisions become more common when there are substantially less potential hash values

(depending on table size) than there are keys being hashed.

Example Scenario

Examine a hash table that employs a basic modulo hashing method:

Handling Collisions:

There are various approaches to successfully manage collisions:

1. Chaining: When using chaining, every hash table slot keeps track of every key that hashes to the

same index in a linked list or other data structure. The new key is added to the linked list at the

appropriate slot in the event of a collision. Every bucket in the hash table is a linked list when using

distinct chaining. The colliding elements (key-value pairs) are added to the linked list that

corresponds to their hash index in order to handle collisions.

For illustration, let's say we have a hash table with ten buckets. The keys "apple" and "banana"

hash to the same index, which is, for example, index 3. Rather than replacing "apple" with "banana,"

"banana" is added to index 3 of the linked list. This produces a structure similar to:

Benefits: Easy to implement, effectively manages several collisions.

Drawbacks: If many keys hash to the same index, performance suffers and there is additional

memory expense because of linked lists.

2. Open Addressing: When a collision occurs, it can be avoided by probing or looking through the

hash table's alternate slots until an empty one is located. Common methods of probing include double

hashing (calculating the next slot using a secondary hash function), quadratic probing (using a

quadratic function to identify the next slot), and linear probing (examining successive slots).

Idea: In open addressing, a different place is found (by probing) inside the hash table to resolve

clashes.

Example: If a collision happens at a certain index using linear probing, the algorithm successively

tries the next index until it locates an empty slot. In case "apple" hashes to index 3 and it's filled, the

algorithm proceeds to check index 4, then 5 and so on until it finds an empty space.

Benefits: Less need for extra data structures, faster cache operation than chaining.

Drawbacks: It includes the possibility of performance loss with high load factors and increased

clustering.

3. Double Hashing: This technique determines the time between probes by using a second hash

function to handle collisions.

As an illustration, a secondary hash function decides the step size for probing if a collision happens

at index 3. For instance, the algorithm would investigate index 5 (3 + 2) if the secondary hash

function yielded a result of 2 for "apple".

Benefits: Effective for a variety of keys, helps prevent major clustering problems.

Cons: To guarantee uniform distribution, the secondary hash function must be implemented

Example Scenario

Think about a hash table that uses distinct chaining:

carefully.

14.4 Importance of Collision Resolution

For hash tables to continue operating effectively and performing as intended, efficient collision resolution is

essential. Negatively handled collisions can make a hash-based data structure less effective overall by lengthening

For instance:

Consider a hash table with the numbers 0 through 9 as the slots. A collision happens when two keys—let's say

"apple" and "banana"—hash to the same index—let's say index 3. The hash table would either store both keys in

search times and decreasing operational efficiency.

a linked list at index 3 (chaining) or select an alternate slot (open addressing) for one of the keys to avoid overlap,

depending on the collision resolution approach used.

Different kinds of collision-resolution methods:

In a hash table, collision resolution strategies are ways to deal with the case where several keys hash to the same

index. The following are some typical methods for resolving collisions:





Chaining: When using chaining, every hash table slot keeps track of all the keys that hash to the same

index in a linked list or other data structure. The new key-value pair is added to the linked list at the

appropriate place in the event of a collision.

o

o

Benefits: Easy to set up and doesn't need any more room than what the hash table itself requires.

Cons: If linked lists get too big, there may be an increase in memory overhead and a possible

decline in speed.

Open Addressing: In this method, collisions are avoided by locating a different slot inside the hash

table.

o

.

.

.

.

.

Linear Probing: Slots are examined one after the other until an empty slot or a slot

holding a deleted item is discovered.

Quadratic Probing: A quadratic function is used to identify the next slot to probe, as

Double Hashing: To improve dispersion and lessen clustering, this technique uses a

second hash function to determine the next slot to explore.

Benefits: Due to proximity of reference, cache performance may be improved; also,

memory overhead may be reduced in comparison to chaining.

Drawbacks: Can be more difficult to execute than chaining and necessitates careful

selection of probing techniques to prevent clustering.

o Robin Hood Hashing: This method seeks to lessen the possibility of chaining-related volatility

in chain length (linked lists). If the new object is closer to the start of its chain than the old item

when it collides with it, it may "steal" a position from the existing item.

. Benefits: May improve average search times and contribute to the maintenance of a

more balanced hash table.

. Cons: It could take more calculation to decide whether or not the elements in the hash

table need to be rearranged.

Selecting a Method for Resolving Collisions:



approaches may be more effective.

Probing Techniques:

opposed to inspecting each one one after the other.

Hash Table Size: When memory is an issue or the hash table is relatively tiny, open addressing





Expected Number of Collisions: Chaining is appropriate when collisions are anticipated to occur

frequently since it can smoothly tolerate a higher number of collisions.

Performance Requirements: The technique to use may depend on the application and the trade-offs

between memory utilization, retrieval speed, and insertion speed.

14.5 Applications of Hashing in Data Storage and Retrieval

Because hashing allows for quick access and efficiently manages big datasets, it is essential for many applications

that require efficient data storage and retrieval. The following are some important uses for hashing:

 Indexing in Databases: Hashing is a common technique used in databases to index records. Data may

be quickly retrieved based on a key thanks to hash functions, which map keys to particular places in a

hash table. This greatly enhances query performance when compared to linear search techniques.

o Use of Hash Functions:

Mapping Keys to Addresses: In a hash table, keys—typically primary keys or unique .

identifiers—are mapped to particular addresses using hash functions. Direct access to

the records connected to those keys is made possible by this mapping, eliminating the

need to search through the whole dataset.

 Effective Recovery:

Quick Access: Hashing offers a constant-time complexity of O(1) for average-case lookups in o

place of a linear search through the database, which can be laborious, particularly for large

datasets. This effectiveness is attained by calculating a key's hash value and using it as an index

Database Systems Examples and Use Cases

o Primary Key Lookup: To enable quick access to certain rows in tables, primary keys in

relational databases are frequently hashed. For example, if a database table contains a primary

key on a unique identifier column called "user_id," the location of each user's data in the

database can be found by applying a hash function to the "user_id" values.

o Hash-based Indexing Structures: Hash tables and hash indexes are examples of hash-based

indexing structures that database management systems (DBMS) implement. Key-value pairs

are stored in these structures; the keys are hashed, and the values are pointers to the real data

records or locations. Use of hash indexes in NoSQL databases such as MongoDB for fast

document retrieval based on unique identifiers is one example.

o Enhancement of Performance: The efficiency of database operations like searching, inserting,

and removing records is greatly enhanced by hash-based indexing. Databases can handle

massive volumes of data more effectively, guaranteeing quick query response times, by

lowering the average time complexity of data access operations to O(1).

to get the associated record quickly.

o Handling Collisions: Although hash algorithms make every effort to provide each key a unique

address, collisions—two keys hashing to the same index—can nevertheless happen. In hash-

based indexing, strategies like chaining or open addressing are used to control collisions and

guarantee reliable data retrieval mechanisms.

 Caching Management: In order to improve access speeds, data is temporarily cached via caching

methods, where hashing is essential. It makes retrieval processes more efficient by storing cached objects

in hash tables, which enables speedy lookup of recently used items.

Using Hash Tables to Put Caches in Place

1. LRU Cache (Least Recently Used):

 Concept: When an LRU cache fills up, it starts with the least recently used items and removes

them one at a time.

 Implementation with Hash Tables:

o Hash Map: The cache makes use of a hash map, in which values hold the content that

has been cached (such as a web page or file contents) and keys represent the identifier

of the cached item (such as a URL or file name).

o Doubly Linked List: In addition, a doubly linked list makes sure that the items that

have been accessed the most recently are at the head of the list by maintaining the order

of access.

2. Instances and Advantages for Performance:

o Online Browser Caching: To save online pages, pictures, and scripts, contemporary

web browsers employ caches. The browser uses a hash table lookup to swiftly obtain

content from its cache when a user returns to a page. This lowers bandwidth use and

loading times.

o

o

Operating System Caches: To speed up disk access times, operating systems use

caches for frequently accessed file system data. Cache data blocks are indexed using

hash tables, facilitating quick lookup and retrieval.

Database Caching: Caches are used by database systems to hold the answers to

frequently asked queries. Hash tables speed up query response times by effectively

managing query IDs and stored results.

3. Performance Advantages

 Quick Access: Hash tables offer insertion, deletion, and lookup operations with average-case

from the cache is efficient and consistent.





Space Efficiency: By compactly storing key-value pairs, hash tables maximize memory use,

enabling caches to hold vast amounts of data with fast access times.

Scalability: Because hash tables can split data evenly among buckets and manage collisions

well, they continue to operate at a steady pace even as the number of cached items increases.

constant-time O (1) complexity. This guarantees that, irrespective of the cache size, data access

 Compiler Design: Symbol tables are essential data structures in compiler design that are used to store

and organize information about symbols (such as variables, functions, and identifiers) that are

encountered during compilation. Because hash tables may quickly look up values based on mapped

symbols to attributes or information, they are essential for effectively implementing and using symbol

tables. An outline of how hash tables are used in compiler symbol tables is provided below:

Hash tables' function in symbol tables

1. Effective Search and Insertion:

o Hashing Mechanism: To find their storage location in the hash table, symbols are hashed using

a hash function.

o Quick Access: During compilation stages such as parsing, semantic analysis, and code

generation, hash tables guarantee fast access to symbol information by offering average-case

constant-time O (1) complexity for lookups and insertions.

2. Handling Declarations and Scope:

o Scope Management: By classifying symbols according to their lexical scope (local, global,

o Collision Handling: Even with enormous symbol tables, collisions can be effectively handled

using methods like chaining (using linked lists) or open addressing (probing), which ensure

minimum influence on lookup performance.

Illustrations and Significance

o

o

o

Lexical Analysis: The compiler uses hash tables to identify tokens (such as keywords,

identifiers, and literals) and stores them in the symbol table. This makes it possible for later

compiler stages to quickly access and validate symbols.

Semantic Analysis: Hash tables help to ensure proper usage throughout the program by

confirming symbol definitions and types. For example, comparing function prototypes and

variable declarations to definitions kept in the symbol table.

Improving Compiler Performance: Compiler efficiency is increased when symbol tables are

managed effectively using hash tables. Compilers are able to efficiently handle big codebases

by decreasing lookup times and memory cost, which enhances compilation responsiveness and

speed.

Relevance to the Design of Compilers

o Error Detection: By helping to identify mistakes like undeclared variables or conflicting

declarations, hash tables improve the compiler's capacity to give developers precise diagnostics

and error messages.

o Code Optimization: Symbol tables play a crucial role in code optimization stages, when

function-level), hash tables make scope management easier.

compilers examine and modify code to increase efficiency. Hash tables guarantee that all symbol

dependencies and references are appropriately taken into account during efficient code

generation.

In compiler symbol tables, hashing is essential because it allows variable names or identifiers

to be promptly resolved in terms of their characteristics or memory locations throughout the

compilation and execution stages.

 Data Deduplication: By taking advantage of hash functions' special characteristics, duplicate data saved

across many systems can be found and removed. This is a summary of the use of hash functions in data

deduplication, including practical applications and efficiency considerations:

Data Deduplication Using Hash Functions

1. Hashing chunks of data:

o Hash Function Selection: The process of selecting an appropriate hash function involves taking

into account several aspects, such as uniformity of distribution and collision resistance.

Cryptographic hashes like MD5, SHA-1, and SHA-256 are popular options, as are non-

cryptographic hashes like MurmurHash.

o

o

Chunking Data: Chunking data is the process of dividing large files or information into smaller

bits or chunks.

Computing Hashes: A unique hash value, which is typically expressed as a fixed-length

hexadecimal string, is produced by hashing each piece of data using the chosen hash algorithm.

2. Recognizing Duplicates

o Comparing generated hash values allows for the identification of duplicate chunks. Hash values

are identical when data chunks are identical.

o Effective Lookup: To store and retrieve hash values of previously processed data chunks fast,

hash tables or hash-based data structures (such as hash maps) are used.

3. Reducing Redundancy

o Keeping Unique Data: The storage system only keeps unique chunks (chunks with unique hash

values) permanently. We locate and remove duplicate pieces.

o Storage Optimization: Deduplication saves a lot of storage space by storing only one copy of

Examples and Thoughts on Efficiency

o

o

o

Cloud Storage: Data deduplication employing hash functions in cloud storage systems

optimizes storage use amongst several users and organizations sharing storage resources. By

identifying duplicate files or chunks at the data center level, redundant data storage is reduced.

Backup Systems: To cut down on backup times and storage expenses, backup systems make

use of hash-based deduplication techniques. Backup systems are able to handle massive

amounts of data backups with efficiency by recognizing and preserving distinct data blocks.

Efficiency: The effectiveness of the deduplication algorithm and the collision resistance of the

selected hash function determine the efficiency of data deduplication. Accurate detection of

each unique chunk. This is especially useful in contexts where there is a lot of data redundancy.

duplicate data is ensured by hash algorithms with low collision probabilities, and quick lookup

and comparison operations are provided by effective hash table implementations.

 Storage of Passwords: One essential cybersecurity practice is to store and secure passwords using

hashing algorithms to prevent unauthorized access to user credentials. Here are some examples of secure

hash algorithms and their uses, as well as a summary of how hashing is used to save passwords:

1. Password hashing:

o

o

Hash Function Selection: Secure hash functions are selected based on their cryptographic

characteristics, such as resistance to collisions and preimages. A few examples include bcrypt,

Argon2, SHA-3, SHA-256 (Secure Hash Algorithm 256-bit), and PBKDF2 (Password-Based

Key Derivation Function 2).

Salting: Before hashing a password, a unique random value known as a salt is applied to protect

against assaults such as rainbow table attacks. By using salting, two users with the same

password will nonetheless have distinct hashed results.

2. Keeping Passwords Hashed:

o Storage of Hashed Passwords: The database only contains the hashed password and, if

applicable, the salt that goes with it, rather than the plaintext passwords.

authentication, and the resulting hash is compared to the hash that has been stored. If they line

up, the password is regarded as legitimate.

o

Applications and Examples of Secure Hash Algorithms

o

o

o

SHA-256: This popular cryptographic hash algorithm generates a hash value of 256 bits, or 32

bytes. It belongs to the SHA-2 family and is regarded as safe for use in hashing passwords,

among other purposes.

bcrypt: The Blowfish cipher is the foundation of the bcrypt password hashing algorithm. It is

immune to brute-force attacks because it includes a cost element (work factor) that establishes

the computational complexity of the hashing operation.

Argon2: The Password Hashing Competition (PHC) winner, Argon2 is built to fend off side-

channel and GPU-accelerated attacks alike. By offering customizable options to modify

memory consumption and processing duration, it makes brute-force attacks more challenging.

Uses

o Web authentication: Hash functions are used by websites and web apps to safely store user

passwords. Hashed passwords shield user accounts against intrusion even in the event that the

database is compromised.

o Database security: By hashing passwords prior to database storage, confidential data is

shielded against security lapses and unwanted access by bad actors.

Techniques for Hashing Passwords

Verification: The user-entered password is hashed with the salt that has been stored during

o Compliance Requirements: In order to safeguard user data and guarantee privacy compliance,

a number of cybersecurity standards and laws (such as GDPR and HIPAA) require the adoption

of secure password storage methods like hashing.

 Security and cryptography: In many applications, hash functions are essential for preserving data

integrity and guaranteeing the legitimacy of data. This study examines the role that hashing methods,

such as the Secure Hash Algorithm (SHA), have in maintaining data integrity:

o

o

Hash Functions as Digital Fingerprints: From any size of input data, hash functions like SHA-

256 produce fixed-size hash values, or digests. These hash values function as distinct checksums

or digital fingerprints of the original material.

Identifying Data Alterations: Hashing values can be calculated at the sender and recipient

ends when data is sent over networks or kept in databases. It confirms that no changes have

been made to the data during transmission if the hash value received and the hash value

computed at the sender's end match.

o Use Cases: Applications where data integrity is crucial, including the following, heavily utilize

hashing.

. File Integrity Checking: By comparing hash values, hashing verifies that files are

received exactly as sent before sending them over the internet.

. Digital Signatures: Hashing functions produce a message digest, which is then signed

. Password Storage: Hashing secures passwords before storing them in databases by

transforming them into hash values. The password entered by the user is hashed and

compared with the hash value that has been stored during authentication.

Hash Function Examples

o The Secure Hash Algorithm (SHA) family of hash functions, which includes SHA-1, SHA-256,

SHA-384, and SHA-512, is extensively utilized. They are intended to be collision-resistant,

which means it is computationally impossible to find two separate inputs that result in the same

hash value. They produce hash values of specified lengths (256 bits for SHA-256, for example).

Message Digest Algorithm 5, or MD5, was once extensively used for digital signatures and

integrity verification even though it was less secure than SHA-256. A 128-bit hash value is

generated.

o

Maintaining Data Integrity

o Checksums and Validation: Hash values are used as checksums to verify the integrity of the

data. It is simple to identify changes since even a small change in the input data produces a

drastically different hash value.

Verification of Data Integrity

using a private key in digital signature technology. By using the public key of the

signer, the recipient can confirm the message's integrity.

o Cryptographic Strength: SHA-256 and other contemporary hash functions are resistant to a

variety of assaults, including collision attacks, in which two different inputs result in the same

hash value.

14.6 Conclusion

contemporary computing and data management. Rapid data retrieval and storage procedures are made possible by

hashing, which offers an effective way to map data items to unique identifiers. Potential conflicts inside hash

tables are efficiently controlled by means of collision resolution techniques like chaining and open addressing,

guaranteeing the integrity and performance of data structures even in the face of heavy loads.

Furthermore, hashing finds use in a wide range of fields, including security protocols, compiler design, database

indexing, and caching techniques. Every application makes use of hashing algorithms' speed and dependability to

improve system performance and optimize data access. Recognizing these uses emphasizes how crucial it is to

understand hashing and related methods in computer science and other fields.

Robust data storage and retrieval solutions are still essential as long as technology keeps developing. Hashing is

the foundation of many contemporary data structures and algorithms, especially when combined with efficient

collision resolution techniques. Professionals and students alike can help solve increasingly difficult

computational problems and create more effective systems by grasping these ideas.

14.7 Questions and Answers

1. How does hashing function in data storage and what does it entail?

Answer: The process of mapping arbitrary-sized data to fixed-size values—usually integers—known as hash

codes is called hashing. To create the hash code, which is used as an index to quickly store or retrieve data in a

hash table, the data must first be subjected to a hash function.

2. What are collision resolution methods, and what makes hashing require them?

Answer: In response to a question like this, collision resolution techniques are ways to deal with scenarios in

which two or more different data pieces produce the same hash code. Among the methods are open addressing

(identifying different locations within the hash table) and chaining (using linked lists or other structures at the

preserving the efficiency and integrity of hash tables.

3. Chaining and open addressing for hash table collision resolution are compared and contrasted.

In summary, research on hashing and collision resolution methods shows how important a role they play in

same hash index). Because they guarantee that all data can be saved and retrieved correctly, they are essential to

Answer: The process of chaining entails building linked lists or other structures to hold numerous data components

with the same hash code at each index of the hash table. Although it is easy to implement, there may be more

memory overhead. Open addressing, on the other hand, looks for different places to put colliding components

directly within the hash table. It is more memory-efficient but can cause clustering and calls for cautious probing

techniques like linear or quadratic probing.

4. What are the primary uses of hashing for storing and retrieving data?

Answer: The answer is that hashing is widely employed in symbol tables in compilers to effectively handle

identifiers, caching systems to store frequently accessed data, and database indexing for speedy data retrieval. It

is also essential to cryptographic algorithms that verify data integrity and secure passwords.

5. Describe the idea of the quality of a hash function. How should a hash function be designed?

Answer: To reduce collisions, a good hash function should distribute hash codes evenly throughout the hash table.

It should be resistant to hash collisions from identical inputs (avalanche effect), computationally efficient, and

deterministic (same input creates same output). Division, multiplication, and cryptographic hash functions like

SHA (Secure Hash Algorithm) are a few examples.

14.8 References











Bjarne Stroustrup, "The C++ Programming Language"

Herb Sutter, "Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions"

Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo, "C++ Primer"

Scott Meyers, "Effective C++: 55 Specific Ways to Improve Your Programs and Designs"

Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and Reference"

Unit – 15: Advanced Data Structures

15.0 Introduction

15.1 Objectives

15.2 Scapegoat Trees

15.3 Tries

15.4 Binary Tries

15.5 X-Fast Tries

15.6 Conclusion

15.7 Questions and Answers

15.8 References

15.0 Introduction

In the ever-evolving field of computer science, advanced data structures play a pivotal role in optimizing

performance and solving complex problems. This unit delves into several sophisticated data structures, each with

unique characteristics and applications. We will explore Scapegoat Trees, a self-balancing binary search tree that

matching.

Understanding these advanced data structures is essential for enhancing the efficiency of algorithms, particularly

in scenarios that require fast data access and manipulation. Scapegoat Trees provide a robust method for

maintaining balanced trees without the need for frequent rotations, while Tries and their derivatives excel in tasks

such as dictionary implementation, autocomplete features, and IP routing.

By the end of this unit, you will gain a comprehensive understanding of these advanced data structures, their

implementation, and practical applications. This knowledge will enable you to make informed decisions about

selecting the appropriate data structure for specific computational problems, ultimately improving the

performance and scalability of your software solutions.

offers an efficient alternative to other balanced trees. Additionally, we will cover Tries and their variants, including

Binary Tries, X-Fast Tries, and Y-Fast Tries, which are crucial for efficient information retrieval and prefix

15.1 Objectives

After completing this unit, you will be able to understand,











Understand the concept and properties of Scapegoat Trees.

Explore the structure and properties of Tries.

Understand the structure and properties specific to Binary Tries.

Explore the structure and properties unique to X-Fast Tries.

Discuss the theoretical and practical applications of Y-Fast Tries in computational problems.

15.2 Scapegoat Trees

Scapegoat trees are a type of self-balancing binary search tree designed to maintain an efficient average-case

performance with logarithmic depth. Unlike other balanced trees such as AVL or Red-Black trees, scapegoat trees

do not perform rebalancing after every insertion or deletion. Instead, they monitor the tree's balance and only

rebalance when the tree becomes significantly unbalanced. The key concept is to identify a scapegoat node, whose

subtree is then rebuilt to restore balance. This approach simplifies the implementation while ensuring that the tree

remains reasonably balanced over time, providing efficient average-case time complexity for insertion, deletion,

and search operations.

The insertion process in a scapegoat tree involves standard BST insertion followed by a check for imbalance,

follows standard BST procedures but includes periodic rebalancing to maintain overall tree balance. The tree

maintains a balance factor, typically a constant between 0 and 1, which helps determine when rebalancing is

needed. This method ensures that most operations are performed in O (log n) time on average, with occasional O

(n) operations when rebalancing is required, making scapegoat trees suitable for applications like database

indexing and memory management where dynamic data and efficient performance are crucial.

Characteristics of scapegoat trees

Scapegoat trees possess several distinctive characteristics that differentiate them from other self-balancing binary

search trees:

1. Amortized Rebalancing: Scapegoat trees do not rebalance after every insertion or deletion. Instead,

they perform rebalancing operations in an amortized manner, meaning that the cost of rebalancing is

spread out over multiple operations. This helps maintain efficient performance over a sequence of

operations without the overhead of constant rebalancing.

which may trigger the identification and rebalancing of the scapegoat subtree if necessary. Deletion similarly

2. Balance Factor: A scapegoat tree maintains a balance factor, denoted by α, which is typically a constant

between 0 and 1 (commonly set to 2/3). This balance factor is used to determine whether a node in the

tree is unbalanced. If the size of a subtree exceeds a certain threshold relative to α, the subtree is identified

for rebalancing.

3. Scapegoat Identification: When the tree detects an imbalance, it identifies a scapegoat node. A

scapegoat node is an ancestor of the recently inserted or deleted node whose subtree size violates the

balance factor. The subtree rooted at the scapegoat node is then rebuilt to restore balance. This approach

ensures that the tree does not become excessively unbalanced.

4. Efficient Average-Case Performance: Scapegoat trees are designed to provide efficient average-case

time complexity for insertion, deletion, and search operations. While individual rebalancing operations

This ensures that the tree performs well in practical applications.

5. Simple Implementation: Compared to other balanced trees like AVL or Red-Black trees, scapegoat trees

have a simpler implementation. They avoid the need for complex rotations and color properties, making

them easier to implement and understand while still maintaining balanced tree properties.

Operations on Scapegoat Trees

Scapegoat trees involve several operations such as insertion, deletion, and searching. Below are the key operations

along with their algorithms in C++.

1. Insertion

The insertion operation involves adding a new node to the tree and checking if the tree remains balanced. If the

balance condition is violated, a scapegoat node is identified and the subtree is rebuilt.

Algorithm:

1. Insert the new node as in a standard binary search tree.

2. Check if the tree is unbalanced.

3. If unbalanced, identify the scapegoat node.

4. Rebuild the subtree rooted at the scapegoat node.

C++ Implementation:

#include <iostream>
#include <vector>
#include <algorithm>

template<typename T>
class ScapegoatTree {
public:

struct Node {
T key;
Node *left, *right;

can be costly, occurring in O (n) time, the amortized cost remains O (log n) over a series of operations.

Node(T k) : key(k), left(nullptr), right(nullptr) {}
};

ScapegoatTree(double alpha) : root(nullptr), alpha(alpha), maxSize(0) {}

void insert(T key) {
root = insert(root, key);
if (size(root) > maxSize) maxSize = size(root);

}

private:
Node* root;
double alpha;
int maxSize;

Node* insert(Node* node, T key) {
if (!node) return new Node(key);

if (key < node->key) node->left = insert(node->left, key);
else node->right = insert(node->right, key);

if (!isBalanced(node)) {
node = rebuild(node);

}
return node;

}

bool isBalanced(Node* node) {
return size(node) <= alpha * size(parent(node));

}

Node* parent(Node* node) {
// Function to find the parent of a node.
// This function's implementation depends on the context and additional

bookkeeping.
return nullptr;

}

Node* rebuild(Node* node) {
std::vector<Node*> nodes;
flatten(node, nodes);
return buildTree(nodes, 0, nodes.size());

}

void flatten(Node* node, std::vector<Node*>& nodes) {
if (!node) return;
flatten(node->left, nodes);
nodes.push_back(node);
flatten(node->right, nodes);

}

Node* buildTree(std::vector<Node*>& nodes, int start, int end) {
if (start >= end) return nullptr;
int mid = (start + end) / 2;
Node* node = nodes[mid];
node->left = buildTree(nodes, start, mid);
node->right = buildTree(nodes, mid + 1, end);
return node;

}

int size(Node* node) {
if (!node) return 0;
return 1 + size(node->left) + size(node->right);

}
};

2. Deletion

The deletion operation involves removing a node and checking the balance of the tree. If the tree becomes

unbalanced, it is restructured to maintain balance.

Algorithm:

1. Delete the node as in a standard binary search tree.

2. Check if the tree is unbalanced.

3. If unbalanced, rebuild the entire tree if the current size is less than half of the maximum size.

C++ Implementation:

#include <iostream>
#include <vector>
#include <algorithm>
template<typename T>
class ScapegoatTree {
public:

struct Node {
T key;
Node *left, *right;
Node(T k) : key(k), left(nullptr), right(nullptr) {}

};
ScapegoatTree(double alpha) : root(nullptr), alpha(alpha), maxSize(0) {}
void insert(T key) {

root = insert(root, key);
if (size(root) > maxSize) maxSize = size(root);

}
void remove(T key) {

root = remove(root, key);
if (size(root) < maxSize / 2) {

root = rebuild(root);
maxSize = size(root);

}
}

private:
Node* root;
double alpha;
int maxSize;
Node* insert(Node* node, T key) {

if (!node) return new Node(key);
if (key < node->key) node->left = insert(node->left, key);
else node->right = insert(node->right, key);

if (!isBalanced(node)) {
node = rebuild(node);

}
return node;

}
Node* remove(Node* node, T key) {

if (!node) return nullptr;
if (key < node->key) node->left = remove(node->left, key);

else if (key > node->key) node->right = remove(node->right, key);
else {

if (!node->left) {
Node* rightChild = node->right;
delete node;
return rightChild;

} else if (!node->right) {
Node* leftChild = node->left;
delete node;
return leftChild;

} else {
Node* minNode = findMin(node->right);
node->key = minNode->key;
node->right = remove(node->right, minNode->key);

}
}
if (!isBalanced(node)) {

node = rebuild(node);
}
return node;

}
Node* findMin(Node* node) {

while (node && node->left) {
node = node->left;

}
return node;

}
bool isBalanced(Node* node) {

return size(node) <= alpha * size(parent(node));
}
Node* parent(Node* node) {

// Function to find the parent of a node.
// This function's implementation depends on the context and additional bookkeeping.
return nullptr;

}
Node* rebuild(Node* node) {

std::vector<Node*> nodes;
flatten(node, nodes);
return buildTree(nodes, 0, nodes.size());

}
void flatten(Node* node, std::vector<Node*>& nodes) {

if (!node) return;
flatten(node->left, nodes);
nodes.push_back(node);
flatten(node->right, nodes);

}
Node* buildTree(std::vector<Node*>& nodes, int start, int end) {

if (start >= end) return nullptr;
int mid = (start + end) / 2;
Node* node = nodes[mid];
node->left = buildTree(nodes, start, mid);
node->right = buildTree(nodes, mid + 1, end);
return node;

}
int size(Node* node) {

if (!node) return 0;
return 1 + size(node->left) + size(node->right);

}
};

3. Searching

The search operation is similar to that in a standard binary search tree, where we traverse the tree based on the

comparison of the search key with the node keys.

C++ Implementation:

template<typename T>
class ScapegoatTree {
public:

struct Node {
T key;
Node *left, *right;
Node(T k) : key(k), left(nullptr), right(nullptr) {}

};
ScapegoatTree(double alpha) : root(nullptr), alpha(alpha), maxSize(0) {}
void insert(T key) {

root = insert(root, key);
if (size(root) > maxSize) maxSize = size(root);

}
bool search(T key) {

return search(root, key);
}

private:
Node* root;
double alpha;
int maxSize;
Node* insert(Node* node, T key) {

if (!node) return new Node(key);
if (key < node->key) node->left = insert(node->left, key);
else node->right = insert(node->right, key);
if (!isBalanced(node)) {

node = rebuild(node);
}
return node;

}
bool search(Node* node, T key) {

if (!node) return false;
if (node->key == key) return true;
if (key < node->key) return search(node->left, key);
return search(node->right, key);

}
bool isBalanced(Node* node) {

return size(node) <= alpha * size(parent(node));
}
Node* parent(Node* node) {

// Function to find the parent of a node.
// This function's implementation depends on the context and additional bookkeeping.
return nullptr;

}
Node* rebuild(Node* node) {

std::vector<Node*> nodes;
flatten(node, nodes);
return buildTree(nodes, 0, nodes.size());

}
void flatten(Node* node, std::vector<Node*>& nodes) {

if (!node) return;
flatten(node->left, nodes);
nodes.push_back(node);

flatten(node->right, nodes);
}
Node* buildTree(std::vector<Node*>& nodes, int start, int end) {

if (start >= end) return nullptr;
int mid = (start + end) / 2;
Node* node = nodes[mid];
node->left = buildTree(nodes, start, mid);
node->right = buildTree(nodes, mid + 1, end);
return node;

}
int size(Node* node) {

if (!node) return 0;
return 1 + size(node->left) + size(node->right);

}
};

Balancing and Restructuring

Balancing and restructuring are essential aspects of maintaining the efficiency of scapegoat trees. These processes

ensure that the tree remains balanced, providing efficient access times for insertion, deletion, and search

operations. Below are the details about the conditions for imbalance and techniques for rebalancing.

Conditions for Imbalance

A scapegoat tree becomes imbalanced when a node's subtree size exceeds a certain threshold compared to its

parameter is used to maintain a balance between the left and right subtrees of any node. The imbalance condition

can be defined as:

 Imbalance Condition: A node v in a scapegoat tree is considered unbalanced if the size of any of its

child subtrees exceeds α\alphaα times the size of v's subtree.

When an imbalance is detected, the subtree rooted at the scapegoat node is rebuilt to restore balance. The

techniques for rebalancing involve the following steps:

1. Identify the Scapegoat Node:

o Traverse up from the newly inserted or deleted node to find the first ancestor node that violates

the balance condition.

2. Rebuild the Subtree:

o

o

Algorithm for Rebalancing:

1. Identify the Scapegoat Node:

parent. Specifically, the imbalance condition is determined by a parameter α\alphaα, where 0 < α < 1. This

Techniques for Rebalancing

Flatten the subtree rooted at the scapegoat node into a sorted array.

Rebuild the balanced subtree from the sorted array.

o

o

Start from the node where the imbalance is detected.

Move up the tree to find the first node that violates the balance condition.

2. Flatten the Subtree:

o Perform an in-order traversal of the subtree rooted at the scapegoat node to create a sorted array

of nodes.

3. Rebuild the Subtree:

o

o

Use the sorted array to construct a balanced subtree.

Recursively split the array to ensure the tree remains balanced.

C++ Implementation:

#include <iostream>
#include <vector>
#include <algorithm>
template<typename T>
class ScapegoatTree {
public:

struct Node {
T key;
Node *left, *right;
Node(T k) : key(k), left(nullptr), right(nullptr) {}

};
ScapegoatTree(double alpha) : root(nullptr), alpha(alpha), maxSize(0) {}
void insert(T key) {

root = insert(root, key);
if (size(root) > maxSize) maxSize = size(root);

}
void remove(T key) {

root = remove(root, key);
if (size(root) < maxSize / 2) {

root = rebuild(root);
maxSize = size(root);

}
}

private:
Node* root;
double alpha;
int maxSize;
Node* insert(Node* node, T key) {

if (!node) return new Node(key);
if (key < node->key) node->left = insert(node->left, key);
else node->right = insert(node->right, key);
if (!isBalanced(node)) {

node = rebuild(node);
}
return node;

}
Node* remove(Node* node, T key) {

if (!node) return nullptr;
if (key < node->key) node->left = remove(node->left, key);
else if (key > node->key) node->right = remove(node->right, key);
else {

if (!node->left) {
Node* rightChild = node->right;
delete node;
return rightChild;

} else if (!node->right) {
Node* leftChild = node->left;
delete node;
return leftChild;

} else {
Node* minNode = findMin(node->right);
node->key = minNode->key;
node->right = remove(node->right, minNode->key);

}
}
if (!isBalanced(node)) {

node = rebuild(node);
}
return node;

}
Node* findMin(Node* node) {

while (node && node->left) {
node = node->left;

}
return node;

}
bool isBalanced(Node* node) {

return size(node) <= alpha * size(parent(node));
}
Node* parent(Node* node) {

// Function to find the parent of a node.
// This function's implementation depends on the context and additional bookkeeping.
return nullptr;

}
Node* rebuild(Node* node) {

std::vector<Node*> nodes;
flatten(node, nodes);
return buildTree(nodes, 0, nodes.size());

}
void flatten(Node* node, std::vector<Node*>& nodes) {

if (!node) return;
flatten(node->left, nodes);
nodes.push_back(node);
flatten(node->right, nodes);

}
Node* buildTree(std::vector<Node*>& nodes, int start, int end) {

if (start >= end) return nullptr;
int mid = (start + end) / 2;
Node* node = nodes[mid];
node->left = buildTree(nodes, start, mid);
node->right = buildTree(nodes, mid + 1, end);
return node;

}
int size(Node* node) {

if (!node) return 0;
return 1 + size(node->left) + size(node->right);

}
};

Time Complexity Analysis

Here's a breakdown of the time complexity analysis for the operations in a Scapegoat Tree:

1. Insertion (insert function):

o

o

Average Case: O(log n)

Worst Case (Rebuilding): O(n log n) due to the need to rebuild the tree when a rebalance

condition is violated.

2. Deletion (remove function):

o

o

Average Case: O(log n)

Worst Case (Rebuilding): O(n log n) due to potential tree rebuilds.

3. Search (assuming balanced tree):

o

o

Average Case: O(log n)

Worst Case: O(log n)

4. Rebuilding (rebuild function):

Time Complexity: O(n)

5. Size Calculation (size function):

Time Complexity: O(n)

o

o

Explanation:

 Insertion and Deletion: In the average case, insertion and deletion operations perform in O(log n) time

due to the binary search tree properties of the Scapegoat Tree. However, when the tree needs rebalancing

(when the size condition is violated), rebuilding the tree takes O(n log n) time as it involves flattening

the subtree and reconstructing it. This worst-case scenario occurs when the tree becomes highly

unbalanced.





Search: Searching in a balanced Scapegoat Tree also operates in O(log n) time in both average and worst

cases, similar to standard binary search trees.

Rebuilding: The rebuild function is triggered when an imbalance is detected and requires flattening the

subtree and reconstructing it in sorted order, resulting in a time complexity of O(n), where n is the number

of nodes in the subtree.

 Size Calculation: The size function computes the number of nodes in a subtree, requiring traversal of all

nodes, leading to a time complexity of O(n).

Applications

Scapegoat Trees find applications in scenarios where a balance between efficient search, insertion, and deletion

operations is crucial, and where the tree structure needs to adapt dynamically to changing data sizes. Some

common applications include:

They provide logarithmic time complexity for search operations, making them suitable for fast retrieval

of indexed data.

2. Dynamic Data Structures: Due to their self-adjusting nature, Scapegoat Trees are employed in

applications where the dataset size varies over time. This includes real-time systems, web servers, and

applications handling streams of data.

3. File Systems: They are used in file systems for managing directory structures efficiently. Scapegoat

Trees allow quick lookup and modification of file paths, ensuring efficient file management operations.

4. Networking: In networking applications, Scapegoat Trees can be used for routing tables, where fast

lookup and updates are essential for handling network traffic and routing decisions.

5. Compiler Design: Scapegoat Trees are utilized in compilers for symbol table management. They

facilitate quick insertion and retrieval of identifiers and variables during the compilation process.

15.3 Tries

Tries, also known as prefix trees or digital trees, are tree-based data structures used for efficient storage and

retrieval of strings or keys. Each node in a trie represents a character, and paths from the root to the leaf nodes

correspond to sequences of characters (strings). This structure allows for rapid prefix-based operations such as

search, insert, and delete. Tries are particularly useful in scenarios where fast autocomplete functionalities or

efficient dictionary lookups are required.

Operations on tries involve traversing the tree from the root based on the characters of the key being processed.

following the path corresponding to the characters of the search key; if the path exists to a leaf node, the key is

present. Deletion can be more complex as it might involve pruning nodes that are no longer part of any stored

key's path. Tries are space-efficient when keys share common prefixes but can consume more memory compared

to other data structures when dealing with large alphabets or sparse data. They find applications in areas such as

autocomplete systems, spell-checking, IP routing tables, and data compression algorithms like Huffman coding.

Trie Node Structure

1. Database Indexing: Scapegoat Trees are used in database systems for indexing large datasets efficiently.

6. Key-Value Stores: In systems like distributed databases and key-value stores, Scapegoat Trees offer an

efficient data structure for storing and retrieving key-value pairs with logarithmic time complexity.

Insertion involves creating new nodes as necessary to build the path for a new key. Searching in a trie involves

Key properties of tries include:

length of the key being searched. This efficiency arises because the search operation involves following

a path from the root to a leaf or until no further nodes can be traversed.

3. Insertion and Deletion: Inserting a key into a trie involves creating nodes as necessary to form the path

correspond to any other keys' prefixes.

4. Space Efficiency: Tries can be memory-intensive, especially for large alphabets or sparse data, due to

the potentially large number of nodes. However, they are efficient in scenarios where keys share common

prefixes, thereby reducing redundant storage of prefixes.

5. Applications: Tries find applications in various domains such as autocomplete systems, spell-checking,

IP routing tables, and database indexing. They are particularly useful in scenarios requiring fast prefix

Operations on Tries

Here's a brief overview of operations on tries:

Starting from the root, each character in the key determines the path through the trie. If a path

typically set to indicate that the key exists in the trie.

1. Prefix-based Storage: Tries excel in storing keys with common prefixes efficiently. Each node along a

path in the trie corresponds to a character in the key, allowing for rapid prefix-based operations.

2. Search Complexity: Searching in a trie is efficient, typically in O(m) time complexity, where m is the

for the key. Deletion can be more complex, potentially requiring the removal of nodes if they no longer

matching or predictive text functionality.

1. Insertion: Inserting a new key into a trie involves traversing the trie based on the characters of the key.

corresponding to the key doesn't exist, new nodes are created. At the end of the key, a flag or marker is

Insertion: The insert function iterates through each character of the word. If the character doesn't exist

in the current node's children map, it creates a new node. At the end of the word, it marks the

isEndOfWord flag as true.

2. Deletion: Deleting a key from a trie requires traversing the trie similarly to insertion, but instead of

adding nodes, nodes corresponding to the key may be removed. This operation can be more complex

than insertion because nodes might need to be pruned to maintain trie properties. Removal typically

involves checking if the key exists, then removing nodes upwards if they are no longer needed.

Deletion: The remove function calls a helper function deleteHelper, which recursively traverses the Trie

until the end of the word. If the word is found, it marks isEndOfWord as false. If a node has no children

after deletion, its mapping in the parent's children map is erased recursively.

the root, each character determines the next node to visit. If the key exists in the trie, the search will

successfully find the key by following the path corresponding to its characters. If any character path is

missing during traversal, the search concludes that the key is not present in the trie.

Searching: The search function traverses the Trie starting from the root. It checks if each character of

the word exists in the children map of the current node. If it reaches the end of the word and isEndOfWord

is true, it returns true; otherwise, false.

3. Searching: Searching in a trie involves traversing nodes based on the characters of the key. Starting from

Types of Tries







Standard Tries (Prefix Trees): Standard Tries, also known as Prefix Trees, are fundamental data

structures where each node represents a single character of the stored keys. They efficiently support

operations like insertion, deletion, and searching based on prefixes. Standard Tries are versatile and used

in scenarios where efficient prefix-based lookups are required, such as autocomplete systems and

dictionary implementations.

Compressed Tries: Compressed Tries, also called Radix Trees or Compact Prefix Trees, optimize space

by compressing nodes that have a single child into one. This compression reduces memory usage

compared to Standard Tries while maintaining fast prefix search capabilities. Compressed Tries are

useful in applications where storage efficiency is critical, such as in memory-constrained environments

or when storing large sets of keys with common prefixes.

Suffix Tries: Suffix Tries store all suffixes of a given text string. Each node represents a suffix rather

than a prefix. They are particularly useful in string processing tasks like pattern matching, substring

search, and text indexing. Suffix Tries facilitate fast searches for specific patterns within a text corpus

and are integral to algorithms like the construction of suffix arrays and suffix trees.

15.4 Binary Tries

Binary Tries, also known as Radix Tries or Patricia Tries, are specialized data structures that store keys in a binary

format rather than a character-by-character manner like Standard Tries. In Binary Tries, each node represents a

typically represented in binary form, such as IP addresses or binary-encoded data.

The nodes in Binary Tries can have up to two children, representing '0' and '1' branches corresponding to the

binary digits. This binary representation ensures that searches, insertions, and deletions in Binary Tries operate

applications where keys are binary data or where efficient bitwise operations are required, such as in network

routing tables or database indexing systems that handle binary-coded data formats. Their structure lends itself well

to scenarios where memory efficiency and quick lookup times are crucial.

bit in the binary representation of the key. This approach allows for efficient storage and retrieval of keys that are

efficiently, often in logarithmic time relative to the length of the keys. Binary Tries are particularly useful in

Structure and properties of binary tries

Binary Tries, also known as Radix Tries or Patricia Tries, are structured similarly to standard tries but are

optimized for storing keys represented in binary format. Here's an outline of their structure and properties:

1. Node Structure: Each node in a Binary Trie contains:

o Children Pointers: Typically two pointers, representing '0' and '1', corresponding to the binary

digits.

o

2. Properties:

o

o

o

o

Binary Representation: Keys are stored in a compressed binary format, where each node

Efficient Storage: Compared to standard tries, binary tries can save space by combining nodes

along paths that share prefixes.

them suitable for applications requiring fast lookups based on binary data.

Operations: Binary tries support operations such as insertion, deletion, and searching, typically

in logarithmic time relative to the length of the keys.

Operations on Binary Tries

Binary Tries, also known as Patricia Tries, are a type of trie data structure optimized for storing keys that can be

represented as sequences of bits. Here’s how insertion, deletion, and searching operations are typically

implemented in Binary Tries:

Insertion

Algorithm: Insert (Binary Trie T, Key k)

1. Initialization: Start from the root of the trie.

2. Traversal: For each bit in the key k:

o If the current node does not have a child corresponding to the current bit of k, create a new node

and attach it as a child.

o Move to the child node corresponding to the current bit.

3. Leaf Node Marking: Once all bits of k are processed, mark the current node as a leaf node and store k

in it.

Key: Optionally, a node may store part or all of the key associated with the node.

represents a bit in the key.

Prefix Matching: Like standard tries, binary tries support prefix matching efficiently, making



end of the insertion, a leaf node is marked with k.

Deletion

Algorithm: Delete (Binary Trie T, Key k)

1. Traversal: Start from the root and traverse the trie following the bits of k.

2. Marking for Deletion: If k exists in the trie (i.e., you reach a leaf node marked with k):

o Mark the leaf node as deleted or remove the key from the leaf node.

3. Pruning: Check if any parent node of the leaf node can be pruned (i.e., it has no other children). If so,

continue pruning up to the root as long as it does not violate trie properties.

Deletion: Deletes a key k from the trie by finding the leaf node marked with k and removing it. It then prunes

Insertion: Inserts a key k into the trie by following the bits of k and creating nodes as necessary. At the

unnecessary nodes from the trie to maintain efficiency.

Searching

Algorithm: Search (Binary Trie T, Key k)

1. Traversal: Start from the root and follow the bits of k.

2. Existence Check: If all bits of k are found in the trie:

o

o

Check if the node corresponding to the last bit of k is a leaf node and not marked as deleted.

Return true if k is found; otherwise, return false.

Searching: Searches for a key k in the trie by following the bits of k. It checks if k exists by ensuring

that the path ends at a leaf node marked with k and not deleted.

15.5 X-Fast Tries

X-Fast Tries are a type of data structure that extends the concept of binary tries (or Patricia Tries) to efficiently

support dynamic sets of keys drawn from a universe of size U. They are designed to provide fast operations for

Structure and Properties

X-Fast Tries are structured as a hierarchical set of binary search trees where each level iii corresponds to a trie

storing keys of length iii. At the lowest level, the leaves store the actual keys, and each internal node at level iii

maintains pointers to predecessor and successor nodes in the trie. This structure allows for rapid traversal and

query operations.

Operations on X-Fast Tries

X-Fast Tries are advanced data structures that support efficient operations on dynamic sets of keys. Here's how

each operation is performed:

Insertion

1. Search for Insertion Point:

searching, insertion, deletion, and predecessor/successor queries, all in O (log log U) time complexity.

o

o

Begin at the root of the X-Fast Trie and traverse down through levels according to the bits of

the key being inserted.

Determine the path in the trie that matches the key's bits until you reach the leaf level.

2. Update Predecessor and Successor Pointers:

o Once the correct leaf node is found (or created if the key doesn't exist), update the predecessor

and successor pointers at each level of the trie.

o Ensure that these pointers correctly reflect the position of the new key relative to existing keys

in the trie.

3. Balance and Maintenance:

o Adjust the trie structure as necessary to maintain the O (log log U) time complexity for

predecessor/successor queries.

o This may involve splitting nodes or merging nodes to balance the trie.

Deletion

1. Search for the Key:

o Start at the root and traverse the trie to locate the node that contains the key to be deleted.

2. Adjust Predecessor and Successor Pointers:

o

o Ensure that the trie remains balanced and maintains the desired time complexity for queries.

3. Remove the Key:

o

o

Once the correct node is found, remove the key from the trie structure.

Adjust the trie as needed to maintain its integrity and balance.

Update the predecessor and successor pointers at each level to reflect the removal of the key.

Searching

1. Search Operation:

o Begin at the root of the trie and traverse down through levels according to the bits of the search

o Follow the path in the trie that matches the bits of the key until you reach the leaf level.

2. Validation:

o

o

Check if the key exists in the leaf node reached by the traversal.

If the key is found, return the corresponding data or indicate its presence.

3. Handling Non-existent Keys:

o If the key is not found during the traversal, handle the search operation accordingly (e.g.,

returning a null value or indicating absence).

15.6 Conclusion

Fast Tries, we have explored their unique characteristics and operations. Each structure offers distinct advantages

in terms of efficiency and applicability across different problem domains.

Scapegoat Trees provide a balanced tree structure with efficient insertion, deletion, and search operations,

leveraging a dynamic resizing mechanism to maintain balance. Tries, known for their suitability in string-related

key.

Since the introduction of advanced data structures like Scapegoat Trees, Tries, Binary Tries, X-Fast Tries, and Y-

applications, offer fast prefix search capabilities and are used extensively in dictionary implementations and

autocomplete features. Binary Tries extend this concept to binary structures, accommodating more diverse data

The introduction of X-Fast Tries introduces a hierarchical approach to searching, leveraging hash tables at multiple

of X-Fast Tries, particularly in terms of space complexity and query performance.

In conclusion, these advanced data structures represent significant advancements in data management and

algorithm design, catering to modern computational needs across various industries. Understanding their

intricacies and applications equips developers with powerful tools to tackle complex data organization and

15.7 Questions and Answers

1. What are the main characteristics of Scapegoat Trees?

Answer: Scapegoat Trees are self-balancing binary search trees that maintain balance through periodic rebuilding.

They ensure that no node's height exceeds a certain threshold, balancing the tree by performing partial or complete

2. How do Tries differ from traditional binary search trees?

Answer: Tries are specialized tree-like data structures used for storing associative arrays, typically strings. Unlike

binary search trees that compare entire keys, Tries store characters of keys at each node, enabling efficient prefix-

based searching. This makes Tries especially useful for applications like autocomplete and spell checkers.

3. What are Binary Tries and how are they utilized?

Answer: Binary Tries are a variation of Tries optimized for binary data. Each node in a Binary Trie represents a

bit in the key, leading to a maximum tree height equal to the bit-length of the keys. They are commonly used in

networking for IP routing and prefix matching due to their efficient handling of binary data.

4. Explain the concept of X-Fast Tries.

Answer: X-Fast Tries are advanced data structures that use a combination of Trie structures and hash tables to

achieve efficient lookups, insertions, and deletions. They reduce the height of the Trie by storing nodes at various

levels in hash tables, allowing for faster access times compared to traditional Tries.

types and enhancing search efficiency.

levels for rapid data retrieval. Similarly, Y-Fast Tries further optimize this structure by addressing the limitations

retrieval challenges effectively.

rebuilds when necessary. This results in efficient insertion, deletion, and search operations with guaranteed

logarithmic time complexity.

5. What advantages do Y-Fast Tries offer over X-Fast Tries?

hierarchical structure where elements are grouped into buckets, each managed by a balanced binary search tree.

This allows for efficient space usage while maintaining fast query performance.

6. In what scenarios would you prefer using a Scapegoat Tree over other balanced trees like AVL or Red-

Black Trees?

Answer: Scapegoat Trees are particularly useful when insertions and deletions are more frequent and when

predictable performance is essential. Their periodic rebalancing mechanism can be advantageous in environments

where maintaining strict balance at all times (like in AVL or Red-Black Trees) might introduce overhead.

7. Can you give an example of a real-world application of Tries?

Answer: One common real-world application of Tries is in implementing autocomplete features in search engines.

As users type in search queries, the Trie structure allows for efficient prefix matching, quickly suggesting possible

15.8 References











Bjarne Stroustrup, "The C++ Programming Language"

Herb Sutter, "Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions"

Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo, "C++ Primer"

Scott Meyers, "Effective C++: 55 Specific Ways to Improve Your Programs and Designs"

Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and Reference"

Answer: Y-Fast Tries improve upon X-Fast Tries by further optimizing space and query efficiency. They use a

completions based on the input provided so far.

Unit – 16:

16.0 Introduction

16.1 Objectives

16.2 File structures

16.3 Sequential File Organization

16.4 Direct (Random) File Organization

16.5 Indexed Sequential File Organization

16.6 File Operations

16.7 Applications

16.8 Conclusion

16.9 Questions and Answers

16.10 References

16.0 Introduction

In the realm of data management, efficient storage, organization, and retrieval of information are paramount. File

structures play a critical role in achieving these objectives by providing systematic methods to manage data within

files. The selection of an appropriate file structure can greatly impact the performance, accessibility, and overall

efficiency of data handling operations.

This unit delves into various file structures, including sequential, direct (random), and indexed sequential file

organizations. Each of these structures offers distinct advantages and is suitable for different types of applications,

depending on the specific requirements of data access patterns and storage needs. Understanding these structures

is essential for optimizing data storage and retrieval processes in various computing environments.

Moreover, we will explore fundamental file operations that are crucial for manipulating and managing files

examine practical applications of these file structures in real-world scenarios, highlighting their significance in

database management systems, information retrieval systems, and file management systems. This comprehensive

effectively. This includes file creation, opening, closing, reading, writing, and deletion. Additionally, we will

overview will provide a solid foundation for understanding the importance of file structures and their practical

applications in data management.

16.1 Objectives

After completing this unit, you will be able to understand,

 Understand Different File Structures: Gain a comprehensive understanding of various file structures,

including sequential, direct (random), and indexed sequential file organizations, and their respective

advantages and disadvantages.





Learn File Operations: Explore the fundamental file operations such as creation, opening, closing,

reading, writing, and deletion, and understand their implementation and usage in different file structures.

Analyze File Organization Types: Examine the characteristics, benefits, and limitations of different file

performance.





Apply Knowledge to Real-World Scenarios: Investigate practical applications of different file

structures in various domains such as database management systems, information retrieval systems, and

file management systems, and understand how to choose the appropriate file structure for specific use

cases.

Develop Skills in Implementing Algorithms: Gain hands-on experience in implementing algorithms

for file operations and file structures, particularly in the C++ programming language, to solidify

theoretical knowledge through practical application.

16.2 File structures

File structures in data structures encompass various methodologies for organizing and managing data within

computer systems. At its core, file structures refer to how data is stored, accessed, and manipulated in files, which

are logical collections of records.

File structures refer to the organization and layout of data in computer files, essential for efficient data storage,

retrieval, and management. The structure of a file determines how data is stored within it, the methods used to

access and modify that data, and the overall efficiency of operations performed on the file.

The primary components of file structures include:

1. Record Format: Defines how data is organized within each record, specifying the type and order of

fields (data elements) stored in the file. Records can be of fixed length or variable length, depending on

the application's requirements.

organization types, and understand how they impact data storage, retrieval efficiency, and overall system

A record format defines how data is structured and organized within each record in a file. It specifies

the layout, type, and order of data elements (fields) stored in the record. The format chosen depends on

the nature of the data being stored and the requirements of the application accessing the file.

Key aspects of a record format include:

1. Field Definition: Each field represents a data item of a specific type (integer, floating-point number,

string, etc.). Fields are typically defined with a fixed length or a maximum length for variable-length

fields.

2. Field Order: Specifies the sequence in which fields are arranged within the record. This order is

crucial for correctly interpreting and accessing the data during read and write operations.

3. Field Attributes: Attributes such as field names, data types (e.g., integer, character, date), and

constraints (e.g., maximum length, allowed values) are defined to ensure data integrity and facilitate

efficient querying and manipulation.

4. Delimiter or Separator: In some formats, especially text-based ones, fields may be separated by

delimiters (e.g., commas, tabs, spaces) or have fixed positions within the record structure.

5. Padding: Padding refers to the addition of extra characters or bytes to ensure that each field occupies

its allotted space within the record. This helps maintain alignment and facilitates efficient storage

and retrieval operations.

2. File Organization: File organization refers to the way data is stored and structured within files on a

computer's storage system. It encompasses various methods and techniques designed to optimize data

access, retrieval, and management. The choice of file organization depends on factors such as the type

of data, access patterns, and efficiency considerations. It describes how records are physically arranged

within the file. Common file organizations include sequential, indexed sequential, direct (or hashed), and

more complex structures like B-trees for large-scale databases. Each organization method offers different

3. Access Methods: Determine how data can be retrieved from or stored into the file. Sequential access

reads data in order from start to end, making it suitable for batch processing. Direct access allows quick

retrieval of records based on their storage location, beneficial for random access operations. Indexed

access combines the benefits of both, using a separate index structure to facilitate fast lookups based on

keys.

Access methods in the context of file organization refer to the techniques and algorithms used to retrieve

and manipulate data stored within files. These methods are crucial for efficient data access and retrieval

in computer systems. Here’s an overview of common access methods:

Types of Access Methods:

1. Sequential Access:

trade-offs in terms of access speed, storage efficiency, and ease of modification.

o

o

Description: In sequential access, data is accessed in a linear or sequential manner, starting

from the beginning of the file and proceeding sequentially to the end.

Usage: Suitable for applications that process data in a batch mode or require full file scans, such

as processing logs or sequential data streams.

o

o Disadvantages: Not efficient for random access or frequent updates, as accessing data out of

sequence requires scanning through all preceding records.

2. Direct Access:

o Description: Direct access allows data to be accessed randomly by specifying a key or address

associated with each record. This method enables quick retrieval and modification of specific

records without needing to traverse others.

o

o

o

Usage: Ideal for applications that require frequent random access to data, such as databases and

real-time systems.

Advantages: Enables fast retrieval and modification of records using direct addressing based

on keys or addresses.

Disadvantages: More complex to implement compared to sequential access; may lead to

fragmentation of data and increased storage overhead.

3. Indexed Access:

o Description: Indexed access combines the benefits of sequential and direct access methods. It

involves maintaining an index structure alongside the main data file, which maps keys to

physical addresses or offsets of records.

o

o

o

Usage: Suitable for applications that require both sequential and random access patterns,

Advantages: Provides efficient retrieval and modification operations using indexed lookup,

supports both sequential and random access patterns.

Disadvantages: Requires additional storage for maintaining index structures; insertion and

deletion operations may be slower due to index maintenance.

4. Hashing:

o Description: Hashing involves mapping keys directly to addresses using a hash function, which

calculates the storage location based on the key's value. It enables rapid access to data by

o Usage: Commonly used in hash tables and hash-based data structures for fast data retrieval and

storage.

Advantages: Simple to implement and efficient for reading large amounts of data sequentially.

balancing efficient access with flexibility.

reducing search time to constant time complexity.

o

o

Advantages: Provides constant-time average access for retrieval and insertion operations,

efficient for large datasets.

Disadvantages: Collision handling (when two keys hash to the same address) requires

additional processing; not suitable for range queries or ordered data retrieval.

16.3 Sequential File Organization

Sequential file organization is a method of storing and accessing data records in a sequential order, typically based

on their physical placement in the file. Here's a detailed explanation of sequential file organization:

Overview and Characteristics:

Sequential file organization arranges data records consecutively in the order they are added to the file. Each record

is stored immediately after the previous one, forming a continuous sequence. Key characteristics include:







Storage Structure: Data records are stored one after another in a linear fashion within the file. This

layout simplifies appending new records but complicates insertion and deletion operations, as they may

require shifting subsequent records.

continuing to the end. This means to access a specific record, all preceding records must be read

Applications: Sequential files are suitable for applications where data is processed in batches or where

and batch processing applications.

Access Method: Data access is performed sequentially, starting from the beginning of the file and

sequentially.

data is primarily read sequentially, such as log files, transaction processing systems with archival needs,

(Image Source: Javat Point)

Operations and Usage:

Sequential files support basic operations tailored to their access pattern:







Reading: Data is read sequentially from the beginning of the file to the end. This operation is efficient

for processing large volumes of data sequentially without requiring random access.

Writing: New records are typically appended to the end of the file, which simplifies insertion. However,

modifying or deleting existing records may require rewriting the entire file after the modification point.

Searching: Sequential searching involves scanning the file from the start until the desired record is

found. This process can be slow for large files or when the record is located towards the end of the file.

Advantages and Disadvantages:

 Advantages:

o

o

o

Simple and easy to implement.

Requires less overhead compared to indexed or direct access methods.

 Disadvantages:

o Inefficient for random access operations, as accessing records out of sequence requires scanning

through all preceding records.

o

Efficient for applications that primarily read data sequentially.

Insertions and deletions may be slow and costly, especially in large files.

o Not suitable for applications requiring frequent updates or random access patterns.

16.4 Direct (Random) File Organization

Direct file organization, also known as random file organization, is a method of organizing data in a file that

where records are stored in a linear sequence, direct file organization uses indexing or hashing techniques to

facilitate rapid access to specific records. Here’s a detailed explanation of direct file organization:

Overview and Characteristics:

Direct file organization employs indexing or hashing to map record keys to specific locations within the file. Key

characteristics include:









to directly locate the record within the file, bypassing the need to sequentially read through preceding

records.

location based on the record's key. This allows for rapid calculation of the record's storage location and

retrieval.

Access Method: Accessing records in a direct file involves using the record's key to determine its

location in the file. This method enables efficient random access, where any record can be retrieved

directly without scanning through other records.

Applications: Direct file organization is suitable for applications requiring frequent and rapid access to

specific data records, such as database systems, file systems, and data retrieval systems.

allows for direct access to any record based on its unique identifier or key. Unlike sequential file organization

Indexing: Each record in the file is assigned a unique key, which serves as an index. This index is used

Hashing: Alternatively, records may be stored in the file using a hashing function that computes a

(Image Source: JavatPoint)

Operations and Usage:

Direct file organization supports operations tailored to random access patterns:







Reading: Records can be retrieved directly using their unique keys, making retrieval operations efficient

even for large files.

Writing: New records can be added directly into the file at their designated locations based on their keys.

Updating: Existing records can be modified or deleted efficiently by directly accessing and modifying

their locations in the file.

Advantages and Disadvantages:

 Advantages:

o

o

o

Enables rapid access to specific records without scanning through other records.

Efficient for applications requiring frequent data retrieval based on specific criteria.

Supports direct insertion, deletion, and modification operations.

 Disadvantages:

o

o

o

Requires additional overhead for maintaining and updating indexes or hash tables.

Complexities may arise in handling collisions in hashing-based implementations.

This operation requires updating the index or hash table accordingly.

Initial setup and maintenance of indexes or hash tables can introduce additional complexity.

16.5 Indexed Sequential File Organization

Indexed Sequential File Organization combines the benefits of both sequential and direct (random) file

organization methods. It is designed to optimize data retrieval and storage efficiency by using indexing for fast

access and maintaining sequential order to support range queries and efficient sequential processing. Here’s a

detailed explanation of Indexed Sequential File Organization:

Overview and Characteristics:

Indexed Sequential File Organization organizes records in a sequential manner on disk while maintaining an index

structure that allows for direct access to individual records based on keys. Key characteristics include:









Sequential Storage: Records are stored sequentially on disk, which facilitates efficient sequential

processing of data.

Indexing: Each record has a unique key, and an index is maintained separately to map these keys to their

physical locations in the file. This index enables fast direct access to specific records.

Access Method: Records can be accessed directly using their keys through the index, allowing for rapid

retrieval operations similar to direct file organization.

Hybrid Approach: Combines the benefits of sequential organization (efficient sequential processing)

with direct organization (rapid access to individual records).

(Image Source: Geeeksforgeeks)

Operations and Usage:

Indexed Sequential File Organization supports various operations tailored to both random and sequential access

patterns:









Indexing Structure: Typically, a B-tree or a multi-level index structure is used to maintain efficient

access to records. This structure optimizes searches, insertions, and deletions.

Reading: Records can be retrieved directly using their keys, leveraging the index structure for rapid

access.

updated to reflect the new record's location.

Updating: Existing records can be modified or deleted, with updates managed both in the sequential file

and the index structure.

Advantages and Disadvantages:

 Advantages:

o

o

o

Supports fast access to individual records based on keys through indexing.

Suitable for applications requiring both random and sequential access patterns.

 Disadvantages:

o

o

Requires additional overhead for maintaining and updating index structures.

Complexities may arise in managing and balancing index structures, especially in distributed or

large-scale systems.

o Initial setup and maintenance of indexes can be resource-intensive.

16.6 File Operations

File operations encompass a range of activities involved in managing files within a computer system, typically

handled by operating systems or file management libraries. These operations are fundamental for reading, writing,

and manipulating data stored in files. Here's an overview of key file operations:

File Operations:

1. File Creation:

o Definition: Creating a new file involves allocating space in the file system and establishing

metadata structures to manage the file.

o Process: Typically, the operating system or application creates a file by specifying a name,

location, and sometimes initial content or attributes.

Writing: New records are appended to the end of the file sequentially, while the index structure is

Facilitates efficient range queries by maintaining sequential order.

Algorithm:

Explanation:

 CreateFile:

o Opens the file specified by filename for writing ("w" mode), which creates the file

if it does not already exist.

o

o

o

Prints a success message if the file was created.

Closes the file after creation.

Here's how this algorithm can be implemented in C++:

Implementation in C++

Checks if the file was opened successfully.

2. Opening and Closing Files:

Opening: Accessing a file to perform read or write operations. o

. Process: Applications request file access by providing a file path or identifier, which

Implementation:

the operating system verifies and grants if permissions allow.

o Closing: Releasing resources associated with the file after operations are complete.

.

Implementation:

3. Reading from Files:

o

o Process: Applications specify read operations, which involve positioning the file pointer to the

desired location within the file and transferring data to memory buffers.

Process: Ensures that all data buffers are flushed and file locks, if any, are released.

Definition: Retrieving data stored in a file for processing or display.

Algorithm:

ReadFromFile:











Opens the file specified by filename for reading ("r" mode).

Reads each line from the file until the end of the file (EndOfFile).

Prints each line to the console.

Closes the file after reading.

4. Writing to Files:

o

o

Definition: Storing new data or modifying existing data in a file.

Process: Applications specify write operations, which involve positioning the file pointer and

transferring data from memory buffers to the specified location in the file.

Algorithm:

Checks if the file was opened successfully.

WriteToFile:









Opens the file specified by filename for writing ("w" mode).

Writes the data string to the file.

Closes the file after writing.

5. Updating and Modifying Files:

o

o

Definition: Changing or appending data within a file.

and then written back to the file.

16.7 Applications

Database Management Systems (DBMS)

File structures are integral to the efficiency and effectiveness of Database Management Systems. Here’s how

different file structures are applied:

1. Sequential Files:

o Backup and Archival: Sequential files are ideal for creating backups and archives of data

because they allow for easy and efficient sequential reading and writing.

o Batch Processing: Used in situations where data processing can occur in batches, such as end-

of-day processing in banking systems.

Checks if the file was opened successfully.

Process: Combines reading and writing operations, where data is read, modified in memory,

2. Indexed Sequential Files:

o Transaction Processing Systems: Often used in transaction processing systems where quick

access to records is required, but the records are processed in a sequential manner. The index

allows for quick lookup, while the sequential nature aids in efficient data management.

o Customer Relationship Management (CRM): Enables fast access to customer records while

maintaining an ordered structure for efficient bulk operations.

3. Direct (Random) Files:

o High-Performance Applications: Used in applications requiring rapid access to individual

records, such as real-time systems in finance and stock trading.

o Database Indexing: Implements hash-based indexing where direct access to records is

essential.

Information Retrieval Systems

In information retrieval systems, efficient data storage and quick access are crucial:

1. Sequential Files:

o

o

Log Files: Ideal for maintaining log files where entries are recorded in sequence over time.

Historical Data Archives: Useful for archiving historical data that is not frequently accessed

2. Indexed Sequential Files:

o Search Engines: Used in search engines to store indexed data, allowing quick search operations

while maintaining an ordered index for efficient retrieval.

o Library Systems: In library management systems, indexed sequential files help in organizing

3. Direct (Random) Files:

o Document Management Systems: Used for storing and retrieving documents where each

document needs to be accessed directly without scanning through other records.

o User Profile Management: In systems managing large user bases, direct files facilitate quick

access to individual user profiles.

File Management Systems

File management systems rely heavily on the underlying file structures to ensure efficient file storage, access, and

management:

1. Sequential Files:

but needs to be stored efficiently.

and retrieving book records efficiently.

o

o

Tape Storage Systems: Commonly used in tape storage systems where data is stored

sequentially for backup and archival purposes.

Simple Log Files: Used for simple log file management in operating systems and applications.

2. Indexed Sequential Files:

o File Indexing: Helps in creating indexes of large file directories, allowing for quick searches

and organized storage.

o Metadata Management: Used in systems that need to maintain and retrieve file metadata

3. Direct (Random) Files:

o Operating System File Systems: Employed in operating systems to manage files and

o Database Index Files: Used for managing database index files where direct access to index

entries is critical for performance.

16.8 Conclusion

In this unit, we delved into the essential concepts of file structures and their organization within the context of

data management systems. We explored the various types of file organizations, including sequential, direct

(random), and indexed sequential file organizations, highlighting their unique characteristics and use cases.

elements in the design and implementation of robust data systems.

We also covered the fundamental file operations that underpin these file structures, such as creation, opening,

closing, reading, writing, and deletion. Mastery of these operations is essential for effective data management,

ensuring that data is accurately and efficiently manipulated within different organizational contexts. By examining

the implementation details, particularly in the C++ programming language, we bridged the gap between theoretical

knowledge and practical application, providing a comprehensive view of how these concepts are realized in real-

world systems.

management systems, information retrieval systems, and file management systems. These applications underscore

the importance of choosing the right file organization method to meet specific needs and performance

requirements. The insights gained from this unit equip us with the knowledge to design and implement efficient

file management strategies, ensuring optimal data handling and retrieval in diverse computational environments.

efficiently.

directories where rapid access to files is necessary.

Understanding these structures is crucial for optimizing data access and storage efficiency, which are foundational

Finally, we discussed the applications of various file structures in different domains, including database

16.9 Questions and Answers

1. What are the main types of file organizations covered in this unit?

Answer: The main types of file organizations covered in this unit are:







Sequential File Organization: Data is stored in a linear sequence, making it simple and efficient for

reading large blocks of sequential data.

Direct (Random) File Organization: Data is accessed directly using a key or address, providing quick

retrieval but requiring more complex management.

Indexed Sequential File Organization: Combines the advantages of both sequential and direct access

by maintaining an index to allow for fast searches and sequential data processing.

2. What are the key advantages of sequential file organization?

Answer: Sequential file organization offers several advantages:







Simplicity in implementation and management.

Minimal overhead for file management, as no indexing or hashing is required.

3. How does direct file organization improve data retrieval times?

Answer: Direct file organization improves data retrieval times by using a key or address to directly access the

required to locate and retrieve specific records.

4. What is an indexed sequential file organization, and how does it work?

Answer: Indexed sequential file organization is a hybrid approach that combines sequential and direct access

methods. It maintains an index that allows for quick searches and random access to data records while still

enabling efficient sequential data processing. The index maps keys to their corresponding storage locations,

providing the benefits of both quick searches and organized sequential data management.

5. What are some common file operations discussed in this unit?

Answer: Common file operations discussed include:





File Creation: Establishing a new file in the storage system.

Opening and Closing Files: Preparing a file for reading or writing and properly closing it after

operations are complete.

 Reading and Writing: Accessing data from a file and modifying or adding data to a file.

Efficient for operations that process large volumes of data sequentially.

desired data record. This eliminates the need to search through data sequentially, significantly reducing the time

 Deletion: Removing a file or specific data records from the storage system.

6. Why is it important to understand different file structures and their applications?

Answer: Understanding different file structures and their applications is crucial because it allows for the selection

of the most appropriate file organization method based on the specific needs and performance requirements of an

application. This ensures optimal data handling, efficient storage, and quick retrieval, which are vital for the

overall performance and reliability of data management systems.

16.10 References











Bjarne Stroustrup, "The C++ Programming Language"

Herb Sutter, "Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions"

Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo, "C++ Primer"

Scott Meyers, "Effective C++: 55 Specific Ways to Improve Your Programs and Designs"

Nicolai M. Josuttis, "C++ Standard Library: A Tutorial and Reference"

