) DrillBit

The Report is Generated by DrilIBit Plagiarism Detection Software

Submission I nformation

Author Name MTSOU

Title CSM-6115 Programming with C
Paper/Submission 1D 4886876

Submitted by librarian@mtsou.edu.in
Submission Date 2025-12-11 15:34:56

Total Pages, Total Words 365, 62573

Document type Others

Result Information

Similarity 12 %

- [
Sources Type Report Content
Words <
Internet 111‘;(y
0 . 0
2.69% Quotes
21.9%
Ref/Bib
Journal/ 35.83%
Publicatio
n 9.31%
Exclude I nformation Database Selection
Quotes Excluded Language English
References/Bibliography Excluded Student Papers Yes
Source: Excluded < 14 Words Excluded Journals & publishers Yes
Excluded Source 0% Internet or Web Yes

Excluded Phrases Not Excluded Institution Repository Yes

) DrillBit

DrillBit Similarity Report

A-Satisfactory (0-10%)

B-Upgrade (11-40%)
1 2 42 B C-Poor (41-60%)

D-Unacceptable (61-100%)

SIMILARITY % MATCHED SOURCES GRADE

LOCATION MATCHED DOMAIN % SOURCE TYPE
6 docplayer.net <1 'ntemetData
10 egyankosh.ac.in 1 Publication
11 egyankosh.ac.in 1 Publication
12 egyankosh.ac.in 1 Publication
17 egyankosh.ac.in 1 Publication
18 en.wikipedia.org 1 IntenetData
19 iareac.in 1 Publication
22 egyankosh.ac.in 1 Publication
26 egyankosh.ac.in 1 Publication
27 egyankosh.ac.in 1 Publication
29 egyankosh.ac.in <1 Publication

. egyankosh.ac.in <1 Publication
36 jare.ac.in <1 Publication

38 www.dideshare.net <1 'ntenetData

http://docplayer.net/12125387-About-the-tutorial-audience-prerequisites-copyright-disclaimer.html
https://egyankosh.ac.in/bitstream/123456789/9732/1/Unit-4.pdf
https://egyankosh.ac.in/bitstream/123456789/72709/1/Unit-4.pdf
https://egyankosh.ac.in/bitstream/123456789/9736/1/Unit-6.pdf
https://egyankosh.ac.in/bitstream/123456789/72704/1/Block-1.pdf
https://en.wikipedia.org/wiki/C_(language)
https://www.iare.ac.in/sites/default/files/AERO_PROGRAMMING_FOR_PROBLEM_SOLVING_LECTURE_NOTES.pdf
https://egyankosh.ac.in/bitstream/123456789/72708/1/Unit-3.pdf
https://egyankosh.ac.in/bitstream/123456789/72708/1/Unit-3.pdf
https://egyankosh.ac.in/bitstream/123456789/72712/1/Block-2.pdf
https://egyankosh.ac.in/bitstream/123456789/9732/1/Unit-4.pdf
https://egyankosh.ac.in/bitstream/123456789/72704/1/Block-1.pdf
https://www.iare.ac.in/sites/default/files/AERO_PROGRAMMING_FOR_PROBLEM_SOLVING_COURSE_RESOURCES.pdf
https://www.slideshare.net/31433143/cprogramming-tutorial-71484716

Publication

egyankosh.ac.in

<1

41 egyankosh.ac.in <1
46 dochero.tips <1 'ntemetData
49 moam.info <] IntemetData
51 pdfcookie.com <1 IntemetDaa
54 www.glideshare.net <1 IntemetData
35 pdvpmtasgaon.edu.in <] Publication
58 pdfcookie.com <1 'ntemetData
39 cuh.ac.in <1 Publication
60 egyankosh.ac.in <1 Publication
61 batch.libretexts.org <1 Publication
64 technodocbox.com <] InemetDaa
65 files.geu.ac.in <1 Publication
66 moam.info <1 IntemetDaa
68 docplayer.net <] IntemetData
69 www.dslideshare.net <] IntemetData
70 iareac.n <] Publication
71 docplayer.net <] IntemetData
. edu.anarcho-copy.org <1 Publication
76 Publication

https://egyankosh.ac.in/bitstream/123456789/9737/1/Unit-7.pdf
https://dochero.tips/beginning-lua-with-addons.html
https://moam.info/computational-physics_59b198dc1723dddcc6dae6e2.html
https://pdfcookie.com/documents/c-tutorial-3lkzop0ypelk
https://www.slideshare.net/31433143/cprogramming-tutorial-71484716
http://pdvpmtasgaon.edu.in/uploads/dptcomputer/Let%20us%20c%20-%20yashwantkanetkar.pdf
https://pdfcookie.com/documents/reference-manual-52e1d7qogwv8
https://cuh.ac.in/admin/uploads/files/Minutes-35th%20AC-Full.pdf
https://egyankosh.ac.in/bitstream/123456789/72709/1/Unit-4.pdf
https://batch.libretexts.org/print/Letter/Finished/eng-45646/Full.pdf
https://www.technodocbox.com/C_and_CPP/79141326-21/79141326-2-hours-total-marks-75.html
https://files.geu.ac.in/odl/ciqa/OMC%20101%20Computer%20Fundamentals%20and%20Programming%20Methodology%20Using%20C.pdf
https://moam.info/meaning-in-architecture_5a212e6b1723ddcfcd8d602e.html
http://docplayer.net/4011329-Understanding-computers-an-overview-for-records.html
https://www.slideshare.net/31433143/cprogramming-tutorial-71484716
https://www.iare.ac.in/sites/default/files/AERO_PROGRAMMING_FOR_PROBLEM_SOLVING_LECTURE_NOTES.pdf
http://docplayer.net/11858512-Introduction-to-computers-and-c-programming.html
https://edu.anarcho-copy.org/GNU%20Linux%20-%20Unix-Like/Debian/kali/Kali%20Linux%20Network%20Scanning%20Cookbook%20-%20Hutchens,%20Justin.pdf
https://egyankosh.ac.in/bitstream/123456789/75152/2/Unit-5.pdf

Publication

77 knreddycse.weebly.com <1
78 docplayer.net <1 'ntemetData
80 tailieu.vn <] IntemetData
. docplayer.net <1 IntemetDaa
. COOPERATION AND COMPETITION LEARNING OF <1 Publication
STRATEGIES AND EVOLUTION OF , by POSSAJENNIKQOV, ALEX-
2005
90 pdfcookie.com <1 'ntemetData
. pdfcookie.com <1 ntemetData
93 pdfcookie.com <1 'ntemetData
94 pdfcookie.com <1 IntemetData

https://knreddycse.weebly.com/uploads/5/7/2/0/57207825/c_programming_knreddy.pdf
https://www.docplayer.net/21167998-Arduino-provides-a-standard-form-factor-that-breaks-the-functions-of-the-micro-controller-into-a-more-accessible-package.html
https://m.tailieu.vn/doc/ham-trong-c--522815.html
http://docplayer.net/19399449-A-storage-location-directly-on-the-cpu-used-for-temporary-storage-of-small-amounts-of-data-during-processing.html
https://dx.doi.org/10.1142/S0219198905000636
https://dx.doi.org/10.1142/S0219198905000636
https://dx.doi.org/10.1142/S0219198905000636
https://pdfcookie.com/documents/linux-programming-lecture-notes-1g2w6n1zzdl5
https://pdfcookie.com/documents/cs8251-programming-in-c-notes-nlz1pz6j9925
https://pdfcookie.com/documents/linux-programming-lecture-notes-1g2w6n1zzdl5
https://pdfcookie.com/documents/peugeot-206-owners-manual-2003-r4296mwr4d2n

Course Code:- CSM-6115
Course Name:- Programming with
C

@gramming with C - 1

MASTER OF COMPUTER
APPLICATIONS (MCA)

PROGRAMME DESIGN COMMITTEE

Prof. Masood Parveez
Vice Chancellor — Chairman
MTSOU, Tripura

Prof. Abdul Wadood Siddiqui
Dean Academics
MTSOU, Tripura

Prof. C.R.K. Murty
Professor of Distance Education
IGNOU, New Delhi

Prof. Mohd. Nafees Ahmad Ansari
Director of Distance Education
Aligarh Muslim University, Aligarh

Prof. P.V. Suresh
Professor of Computer Science
IGNOU, New Delhi

Prof. V.V. Subrahmanyam
Professor of Computer Science

IGNOU, New Delhi

Prof. S. Nagakishore Bhavanam
Professor of Computer Science
Mangalayatan University, Jabalpur

Prof. Jawed Wasim
Professor of Computer Science
Mangalayatan University, Aligarh

COURSE WRITERS

Dr. Md. Amir Khusru Akhtar

Associate Professor of Computer Science
MTSOU, Tripura

CSM-6111 Data Communication &
Computer Networks

Dr. Ankur Kumar

Assistant Professor

MTSOU, Tripura

CSM-6112 Computer Organization &
Architecture

Dr. Manish Saxena

Assistant Professor of Computer Science
MTSOU, Tripura

CSM-6113 Discrete Mathematics

Dr. Duvvuri B. K. Kamesh

Assistant Professor of Computer Science
MTSOU, Tripura

CSM-6114 Accountancy and Financial
Management

Mr. Pankaj Kumar

Assistant Professor of Computer Science
Mangalayatan University, Aligarh
CSM-6151 Programming with 'C' & Lab

Ms. Vanshika Singh

Assistant Professor of English

MTSOU, Tripura

ENM-6101 Professional Communication

COURSE EDITORS

Prof. S. Nagakishore Bhavanam
Professor of Computer Science
Mangalayatan University, Jabalpur

Prof. Jawed Wasim
Professor of Computer Science
Mangalayatan University, Aligarh

Dr. Manoj Varshney
Associate Professor of Computer Science
MTSOU, Tripura

Dr. M. P. Mishra
Associate Professor of Computer Science

IGNOU, New Delhi

Dr. Akshay Kumar
Associate Professor of Computer Science
IGNOU, New Delhi

FORMAT EDITORS

Dr. Nitendra Singh
Associate Professor of English
MTSOU, Tripura

Ms. Angela Fatima Mirza
Assistant Professor of English

MTSOU, Tripura

Dr. Faizan
Assistant Professor of English
MTSOU, Tripura

Ms. Vanshika Singh
Assistant Professor of English
MTSOU, Tripura

MATERIAL PRODUCTION

1. Mr. Himanshu Saxena

2. Ms. Rainu Verma

3. Mr. Jeetendra Kumar
4. Mr. Khiresh Sharma

5. Mr. Ankur Kumar Sharma

6. Mr. Pankaj Kumar

Programming with C - 2

CONTENT
Page No.

Block I: Algorithmic Process & Basic of ‘C’ Programming 5-115
Unit-1: Algorithms, General Approaches & Analysis, Program and
Programming Language, Fundamental Stages of Problem Solving, Feature of
Programming Language, Flow Charts.

Unit-2: Learning outcomes, Program and Programming Language,
Introduction to C Language, Programming Format of C.

Unit-3: Creating a C Program, Compilation process in C Program, Link and
Running C Program, Diagrammatic Illustration.

Block II: Operator and Expressions of ‘C’, Control Flow Mechanisms
116-214

Unit—4: Building Blocks — Character set of C, C Tokens, Keywords and

Identifiers of the C. Fundamental elements of ‘C’ — Data Types in C,

Variables.

Unit-5: Logical and Relational — Operators in ‘C’, Expressions in ‘C’ and

Types Conversions in Expressions.

Unit—6: Key Terminologies, Design Control Statements, Loop Control

Statements and Exit Function.

Unit-7: Declaring & Accessing Data FElements, Arrays Declaration,

Initialization and Passing Functions.

Block III: Strings, Tools for Modular Programming and Pointers

215-288
Unit—8: Essential Techniques & Functions, Declaration and Initialization of
Strings, Overview and Applications.
Unit—9: Functions Prototypes, Calling a Function, Return Statement, Sets of
Variables & Storage Classes and Recursion.
Unit—10: Handle Variables and Parameters, Pointer and their Characteristics,
Passing Pointers to Functions and Pointers and Strings.

Programming with C - 3

Block IV: Multiple Data Elements, Pre-processors Directives and Files
289-365

Unit—11: Declaration of Structures, Accessing the Members of a Structure,

Initializing, Function Arguments and Pointers to Structures.

Unit—12: Defining of Unions, Initialization of Unions and Accessing the

Members of an Union.

Unit-13: Translation Phase, ‘C’ Pre-processor, Implement Constants,

Reading from other files and Conditional Selection of code and Pre-Processor

Commands.

Unit—14: File Handling in C using file Pointers, Input and Output using file

Pointers, Sequential Vs Random Access Files and Unbuffered I/O — The

UNIX File Routines.

Programming with C - 4

BLOCK I: ALGORITHMIC PROCESS
BASIC OF ‘C’ PROGRAMMING

UNIT 1

ALGORITHMIC PROCESS

BASICS OF C PROGRAMMING

Basic Structure

1.0
1.1
1.2
1.3

1.4

1.5

1.6
1.7

1.8

Introduction

Objectives

Learning outcomes

Program and Programming Language
1.3.1 Early Developments of Programming
1.3.2 Programming Elements

1.3.3 Design and Implementations
1.3.4 Uses and Properties
Introduction to C Language

1.4.1 History of C language

1.4.2 The Structure of C Program
1.4.3 Features of C language

1.4.4 C Program installation

1.4.5 Tools and Uses

Programming Format of C

1.5.1 Basic format and functions
1.5.2 A simple C programming
Creating a C Program

Compilation process in C Program
1.7.1 The Compiler

1.7.2 Semantic and Syntax Errors
Link and Running C Program

1.8.1 Running Program through Menu
1.8.2 Running Executable File

1.8.3 Linker Errors

1.8.4 Logical and Runtime Errors

Programming with C - 5

1.9 Diagrammatic Illustration
1.10 Conclusion

1.11 Unit based Questions /Answers

1.0 INTRODUCTION

This unit introduces you to problem-solving ideas, particularly as
they apply to computer programming. In this section, we
introduce C, a standardized, industrial value programming
language recognized for its power and portability as an
implementation vehicle for these computer-based problem-
solving methodologies. C's characteristics are designed to
accurately match the capabilities of the targeted CPUs. It has to a
long the history of usage in operating systems and device drivers,
and protocol stacks, but its use in application software is
declining. C is frequently used on computer architectures ranging

from supercomputers to microcontrollers and embedded devices.

Language is the part of method for two people is to be
communicate with one another. To communicate, both parties
must understand the language. Even if the two people do not
speak the same language, a translator can help translate one
language into another that the second person understands. A
computer language, like a translator, allows a user and a machine
to communicate. One version of the computer language is
understood by the user, while the other is understood by the
machine. A translator (or compiler) is necessary to convert from
user form to computer form. A computer language, like any

other, has a grammar known as syntax.

It is an imperative procedural language with a static type system

Programming with C - 6

that supports structured programming, lexical variable scoping,
and recursion. It was meant @ne constructed in such a way that it
provides low-level memory access and language features that
translate effectively to machine instructions while requiring little
runtime support. Despite its low-level capabilities, the language
was meant to promote cross-platform development. With little
changes to its source code, a standards-compliant C program
developed with portability in mind may be generated for a broad
range of computer platforms and operating systems.

This unit offers a concise introduction to programming, with an

emphasis on understanding the concept of a computer.

A computer is an electronic device that receives, processes, and
responds to instructions provided by users. It operates under the
control of a computer program, which guides it in handling and
manipulating data. A program consists of a set of instructions and
data, often developed with the goal of building user-friendly
applications, such as mobile apps. This unit is tailored for
learners who have an interest in programming and aim to pursue

a career in the field.

This unit will explain to you the fundamentals of the

programming language C.

1.1 OBJECTIVES

After completing this unit, you will be able to:

e Gain comprehensive @owledge of the C programming
language.

e Develop logical thinking skills essential for creating

Programming with C - 7

programs and applications using C.

e Understand fundamental programming concepts, enabling
an easier transition to other programming languages in the
future.

e Build a strong foundation in the core principles of C

programming.

e Apply the learned concepts through practical components

designed to provide hands-on experience.

1.2 LEARNING OUTCOMES

Advantages of understanding the concepts from the unit are:

= Understanding a functional hierarchical code organization.

= Ability to define and manage data structures based on
problem subject domain.

= Ability to work with textual information, characters and
strings.

= Ability to work with arrays of complex objects.

= Understanding a concept of object thinking within the
framework of functional model.

= Understanding a concept of functional hierarchical code
organization.

= Understanding a defensive programming concept. Ability to

handle possible errors during program execution.

1.3 PROGRAM AND PROGRAMMING
LANGUAGE

A programming language is a formal language that provides
instructions for computers to perform specific tasks. It is used for

developing software, applications, and controlling computer

Programming with C - 8

systems. Popular programming languages include Java, Python,
C++, JavaScript, and C#. The chosen language depends on the
platform, target audience, and desired output. Programming
languages evolve and change over time, with new ones established
and old ones improved to meet evolving demands. It provides a
notation system for creating computer programs which is
frequently defined by its syntax and semantics. They are usually
specified using a formal language. A language usually has at least
one application, like a compiler or interpreter, that enables
programs written in the language to run. Programming language
theory is a study of the structure, execution, evaluation,
description, and classification of programming languages. @e C

programming language source code for a small computer program.

Programming is a talent that is growing in demand in the
employment market. Anyone who works with technology should
have at least a fundamental grasp of how software works. You can
obtain a career coding, developing software, data architecture, or

building user interfaces if you have a programming background.

While there are many of methods to categorize programming

languages, they typically fall into five basic groups:

@) Procedural Programming Language (PPL): Procedural
language employs a series of statements or instructions to get the
desired result. A procedure is a set of steps; therefore a program
developed in one of these languages will have one or more
procedures. Examples of procedural language includes: C, C++,

Java, Pascal and BASIC.

(i1) Functional Programming Languages (FPL): Rather
than focusing on statement execution, functional languages

concentrate on the output of mathematical functions and

Programming with C - 9

evaluations. Each function--a reusable code module--completes a
defined job and produces a result. The outcome depends on the
data you enter into the function. Among the most prominent
functional programming languages are: Scala, Erlang, Haskell,

Elixir and F#.

(iii) Object-Oriented Programming Languages (OOP): This
language views a program as a collection of objects made up of
data and program components known as attributes and methods.
Objects can be reused both within and outside of a program.
Because code is easy to reuse and scale, it is a common language
type for complicated applications. Among the most common

object-oriented languages are: PHP, C#, Ruby, Java and Python.

(iv) Script-Oriented Languages (SOL): Scripting languages
are used by programmers to automate tedious operations, manage
dynamic online content, and support processes in bigger
applications. Among the most popular scripting languages are:

PHP, Ruby, bash, Perl, Python and Node.js.

) Logic Programming Languages (LPL): A logic
programming language communicates a collection of facts and
rules to advise a computer on how to make decisions rather than
telling it what to do. Logic languages include the following:

Prolog, Absys, Datalog and Alma-O.

1.3.1 Early Developments of Programming

Early computers, like the Colossus, were programmed without a

stored program by altering their circuitry or configuring physical

Programming with C - 10

controllers. Later, programs could be written in machine language,
where the programmer puts each command in a numeric format
that the hardware can directly execute. These programs were read
in decimal or binary form from various sources, such as punched
cards, paper tape, magnetic tape, or switches on the computer's
front panel. First-generation programming languages (1GL) were
later coined to refer to machine languages. Second-generation
programming languages (2GL) or assembly languages were
created, which were tightly linked to the instruction set architecture
of the individual machine. These languages made software more
human-readable and reduced time-consuming and error-prone
address computations. In the 1950s, the first high-level
programming languages (3GL) were developed. Plankalkiil, an
early high-level programming language for computers, was created
by Konrad Zuse between 1943 and 1945 for the German Z3. Short
Code, suggested by John Mauchly in 1949, was one of the earliest
high-level languages ever devised for electronic computers. Short
Code statements, as opposed to machine code, represented
mathematical formulas in a comprehensible format. However,
every time the program was performed, it had to be translated into
machine code, which made the process significantly slower than
executing the comparable machine code. Alick Glennie created
Autocode at the University of Manchester in the early 1950s. As a
programming language, it employs a compiler to translate the
language into machine code automatically. The original code and
compiler were created in 1952 at the University of Manchester for
the Mark 1 computer, and it is regarded as the first compiled high-
level programming language. In 1954, R. A. Brooker created the
"Mark 1 Autocode" for the Mark 1.

Brooker collaborated with the University of Manchester in the

1950s to design an auto code for the Ferranti Mercury. D. F.
Programming with C - 11

Hartley of the University of Cambridge Mathematical Laboratory
created the EDSAC 2 Autocode in 1961, a direct derivation from
Mercury Autocode. Atlas Autocode was created for the University
of Manchester Atlas 1 computer. In 1954, John Backus invented
FORTRAN, the first widely used high-level general-purpose
programming language with a functional implementation. It
remains a popular high-performance computing language, with
programs benchmarking and ranking supercomputers. Grace
Hopper designed FLOW-MATIC, an early programming language,
for the UNIVAC I between 1955 and 1959. Hopper and her team
created a specification for an English programming language and
constructed a prototype in 1955. The FLOW-MATIC compiler was
made public early in 1958 and was almost complete in 1959.
FLOW-MATIC had a significant impact on the architecture of
COBOL because only it as well as its immediate descendent

AIMACO were 1n service at that time.

1.3.2 Programming Elements

Every programming language has certain basic building fragments
for describing data and the operations or transformations that are
done to it (such as adding two integers or selecting an item from a
collection). These primitives are specified via syntactic and
semantic principles which demonstrate their structure and meaning

accordingly.

(1) Syntax: The surface form of a computer language can be
identified as its syntax. Several programming languages are
basically textual; they employ textual sequences of words,
numbers, as well as punctuation, similar to written natural
languages. Some programming languages, alternatively, tend to be

graphical in nature, relying on visual interactions between symbols
Programming with C - 12

to express a program.

The syntax of a language specifies the many symbol combinations
that can be used to create a correctly structured program.
Semantics handles the meaning assigned to a combination of
symbols. Because most languages are textual, this article focuses
on textual syntax. The syntax éa programming language is often
established using a combination of standard expressions and

grammatical structures.

(i1) Semantics: The word semantics (It is the study of meaning
and reference. The word can be applied to various different areas,
including theory, language study, and computer science.) relates to

the meaning of languages rather than their structure (syntax).

(iii)) Type System: A type system specifies how the
programming language categorizes items and expressions into
formats, how those kinds may be manipulated, and how they
interact. A type system's purpose is to identify and typically
enforce a particular level of accuracy in programs written in that
language by recognizing certain erroneous operations. Any sort of
decidable system includes a trade-off: although it rejects many
wrong programs, it may also prevent certain accurate, but rare,
ones. A variety of languages feature type loopholes, which are
generally unchecked casts that can potentially used by the
programmer to expressly enable a normally forbidden action

between distinct types.

In most typed languages, the type system is primarily used to type
check programs; however, a few languages, especially functional

ones, infer types, reducing the need for the programmer to write

Programming with C - 13

type annotations. Type theory is the formal structure and analysis

of type systems.
1.3.3 Design and Implementations

Programming languages have traits with natural languages, such as
having a syntactic form independent from its semantics and
exhibiting language families of related languages branching one
from another. However, because they are artificial creations, they
differ fundamentally from languages that have evolved through
usage. Because @)rogramming language has a clear and limited
definition, it can be thoroughly defined and examined in its
entirety. Natural languages, on the other hand, have changeable
meanings as determined by their users in different groups. While
constructed languages are artificial languages that are built from
the ground up with a specific goal in mind, they lack the exact and
comprehensive semantic definition that a programming language

POSSESSES.

Several programming languages have been developed and created
from scratch, modified to fit new requirements, and integrated with
others. Many have ultimately gone out of favor. Although attempts
have been made to create a single "global" programming language
that suits all needs, none of them have been widely regarded as
fulfilling this function. The range of situations in which languages
are employed necessitates the development of varied programming

languages:

Programs can vary greatly in scale—from simple scripts written by
individual enthusiasts to complex systems developed by large
teams of programmers.

Developers possess a wide range of expertise, from beginners who

prioritize simplicity to advanced professionals capable of handling
Programming with C - 14

intricate designs.

Software must be optimized for performance, memory usage, and
clarity, whether it's running on small microcontrollers or powerful
supercomputers.

Some programs remain unchanged for long periods, while others
undergo frequent updates and modifications.

Developers often have personal or professional preferences,
influenced by their familiarity with certain problem-solving

methods or programming languages.

One recurrent tendency in programming language evolution has
been to offer a greater capacity to handle issues at a higher degree
of abstraction. The early programming languages were inextricably
med to the computer's underlying hardware. As new
programming languages have evolved, capabilities that allow
programmers to express ideas that are further distant from
straightforward translation to underlying hardware instructions
have been added. Because programmers are less dependent on the
computer's complexity, their programs may perform more
computation with less effort from the programmer. As a result,

they can write more functionality per time unit.

Natural-language programming aims to eliminate specialized
language requirements, but its merits are debated. Dijkstra and
Perlis condemn it, while Structured English and SQL use hybrid
techniques. The designers and users of a language must construct a
variety of artifacts that control and facilitate programming practice.
The most important of these artifacts are the language definition

and implementation.

Programming with C - 15

1.3.4 Uses and Properties

Numerous different programming languages have been developed,
mostly in the realm of computing. Individual software projects

frequently employ five or more programming languages.

Programming languages demand a greater degree of precision and
completeness compared to most human forms of communication.
While natural languages tolerate ambiguity and minor errors—
often still conveying the intended meaning—computers lack this
flexibility. They strictly follow the instructions given and cannot
infer what the programmer may have meant. Therefore, the
programming language's syntax, the program itself, and its inputs
must clearly define the expected behavior during execution, within
the scope of the program's control. To express algorithmic ideas
without needing full accuracy for execution, pseudo code is often
used. This method blends everyday language with code-like
constructs to help convey computational logic in a more
understandable way. Programming languages, however, offer a
structured means to define data and outline how it can be
manipulated or processed systematically. Through the abstractions
these languages provide, a programmer can translate complex

concepts into precise, executable instructions.

Fundamentally, programming involves using a set of core building
blocks to represent and solve problems. The process of writing
code entails combining these primitives to create new software or
adapting existing code to suit new requirements or changing
conditions. This creative and logical activity forms the essence of
software development. Programs can be executed automatically in
batch mode or interactively with user input, often through an

interpreter. In interactive scenarios, individual commands are
Programming with C - 16

essentially small programs executed in sequence. Languages that
allow this real-time, line-by-line execution without prior

compilation are commonly known as scripting languages.

1.4 BASICS OF ‘C’ LANGUAGE

It is @e of the most widely used programming languages on the
planet, because the syntax is comparable, if you know C, you will
have no trouble learning other popular programming languages
such as Java, Python, C++, C#, and so on. C is extremely quick
when compared to other programming languages such as Java and
Python. C is a very flexible programming language that may be
utilized in both applications and technology. It is a general-purpose
programming language that was created in 1972 and is still widely
used today. It is quite powerful; it has been used to create systems

for operating systems, databases, applications, and so on.

1.4.1 History of C Language
The creation of C is inextricably linked to the development of the

Unix operating system, which was first developed in assembly
language on a PDP-7 by Dennis Ritchie and Ken Thompson, who
included other ideas from colleagues. They eventually opted to
move the operating system to the PDP-11. The first PDP-11
version of Unix was written in assembly language as well.
Thompson wished to use a programming language to create
utilities for the new platform. He first attempted to create a Fortran
compiler but quickly abandoned the concept. Instead, he designed
BCPL, a simplified version of the recently discovered systems
programming language. Because the official definition of BCPL
was not available at the time, Thompson adjusted the syntax to be
less complex and more comparable to SMALGOL, a simplified
ALGOL. Thompson dubbed the outcome B. B was described as

Programming with C - 17

"BCPL semantics with an abundance of SMALGOL syntax" by

him. B, like BCPL, featured a bootstrapping compiler to make

porting to new machines easier. However, because B was too

sluggish and couldn't make use of PDP-11 characteristics like byte

addressability, few utilities were eventually created in it.

(i)

(i1)

First C and new B launch: In 1971, Ritchie enhanced B to
use PDP-11, introducing New B (NB) as a character data
type. Thompson used NB to design the Unix kernel,
influencing its evolution. NB introduced arrays of int and
char, pointers, arrays of all types, and function return types.
Arrays within expressions were converted to pointers, and
the language was renamed C. Version 2 Unix, commonly
known as Research Unix, contained the C compiler and
several tools written with it.

Mechanisms and modifications of the Unix kernel: The
Unix kernel was largely re-implemented in C in Version 4
Unix, which was published in November 1973. The C
language has gained several significant features by this point,
such as struct types. The preprocessor was created in 1973, at
the request of Alan Snyder, and in acknowledgment of the
utility of the file-inclusion techniques provided in BCPL and
PL/I. Its initial form simply contained files and basic string
replacements: parameter less macro #include and #define.
Soon after, it was expanded to include macros with
arguments and conditional compilation, mainly by Mike

Lesk and subsequently by John Reiser.

Unix was among the first operating system kernels written in a

language other than assembly. In 1961, the Multics system (written
in PL/I) and the Master Control Program (MCP) for the Burroughs
B5000 (written in ALGOL) were examples. Ritchie and Stephen

C. Johnson made additional improvements to the language in 1977

Programming with C - 18

to improve the portability of the Unix operating system. Johnson's
Portable C Compiler was the foundation for various C

implementations on new platforms.

The commented-out int type specifiers might be deleted in K&R C,
but are mandatory in subsequent standards. Function parameter
type examines were not performed because K&R function
declarations did not include any information about function
arguments, although some compilers would issue a warning
message if a local function was called with the incorrect number of
arguments, or if multiple calls to an external function used
different numbers or types of arguments. Separate tools, such as
Unix's lint program, were created to ensure function uniformity
across various source files. Several features were added to the
language in the years after its release, backed by compilers from
AT&T and other manufacturers. These were some examples:

= void functions

= functions that return struct or union kinds

= struct data type allocation

= enumerated types
The vast number of extensions and absence of agreement on a
standard library, along with the popularity of the language and the
fact that not even Unix compilers accurately implemented the

K&R specification, made standardization necessary.

(iii) ISO C and ANSI C: In the late 1970s and 1980s, C was
implemented for various mainframe computers,
minicomputers, and microcomputers, including the IBM PC.
In 1983, the American National Standards Institute (ANSI)
formed a committee, X3J11, to establish a standard
specification of C. The standard was ratified as ANSI

X3.159-1989 "Programming Language C" in 1989, often
Programming with C - 19

(iv)

)

(vi)

referred to as ANSI C, Standard C, or sometimes C89. In
1990, the ANSI C standard was adopted by the International
Organization for Standardization (ISO) as ISO/IEC
9899:1990, also known as C90. The C standardization
process aimed to produce a superset of K&R C,
incorporating unofficial features and additional features. C89
is supported by current C compilers and most modern C code
is based on it.

C99: The C standard was revised in the late 1990s, leading
to the publication of ISO/IEC 9899:1999 in 1999, also
known as "C99". C99 introduced new features such as inline
functions, data types, variable-length arrays, flexible array
members, floating point support, variadic macros, and one-
line comments. Although backwards compatible with C90,
C99 is stricter in some ways. GCC, Solaris Studio, and other
C compilers now support many or all of C99's new features.
Microsoft Visual C++ implements the C89 standard and C99
parts for compatibility with C++11. C99 also requires
support for identifiers using Unicode and suggests support
for raw Unicode names.

Cl11: The C standard, formerly known as "CI1X," was
developed in 2007 and officially released as ISO/IEC
9899:2011 in 2011. It introduced new features like type
generic macros, anonymous structures, Unicode support,
atomic operations, multi-threading, and bounds-checked
functions.

C17 (C standard revision): The latest standard for the C
programming language is C17, which was published in June
2018 as ISO/IEC 9899:2018. It has no new language
attributes, merely technical repairs and explanations of C11
flaws. 201710L is the standard macro STDC_ VERSION .

(vii) C23 (C standard revision): C23 is the informal moniker for

Programming with C - 20

the next main C language standard version (following C17).

It is scheduled to be released in 2024.

(viii)) Embedded C: It has always required nonstandard additions

to the C language in order to handle exotic features like as
fixed-point arithmetic, many different memory banks, and
fundamental 1I/O operations. The C Standards Committee
produced a technical report in 2008 that extended the C
language to solve these difficulties by creating a uniform
standard to which all implementations must comply. It has
features not found in standard C, including as fixed-point
arithmetic, named address spaces, and basic I/O hardware

addressing.

1.4.2 The Structure of ‘C’ Program

®

A ‘C’ program's basic structure is separated into six components, making
it easier to read, edit, document, and comprehend in a specific manner. In
order to build and execute effectively, the C program must adhere to the
guidelines outlined below. In a well-structured C program, debugging is
easy.

Sections of the C Program: A program's proper execution is the
responsibility of six basic components. The following sections are

mentioned:

a) Documentation: This part includes a program description, the
program's name, and the program's_inception date and time. It is
supplied in the form of comments g‘le beginning of the program.
Documentation can be represented in the following ways:

// description, name of the program, programmer name, date, time
etc.

OR

/* description, name of the program, programmer name, date, time
et |@l

Anything placed in comments will be viewed as program
documentation and will not interfere with the supplied code.

Essentially, it provides the reader with an overview of the software.

Programming with C - 21

b)

c)

)

e)

Preprocessor Section: All of the program's header files will be
defined in the program's preprocessing section. Header files allow
us to incorporate better code from others into our own. Before the
compilation process, a copy of these various files is placed into our
software. Example:
#include<stdio.h>

#include<math.h>

Definition: Preprocessors are programs that process our source
code prior to compilation. There are several processes involved in
the creation and implementation of the program. Preprocessor
instructions begin with the symbol '#'. The #define preprocessor is
used to declare a constant that will be used throughout the program.
When the compiler encounters this term, it replaces it with the
actual piece of declared code.

Example:

#define long long 1l

Global Declaration: Global variables, function declarations, and
static variables are all included in the global declaration section.
Variables and functions specified in this scope can be utilized
throughout the application.

Example:

int num = 18;

Main() Function: A main function must be present in every C
program. This section contains the program's main() function.
Declaration and implementation are carried out within the curly
braces in the main program. The return type of the main() function
can be either int or void. The compiler is informed by void() main
that the program will not produce any value. The main() function
instructs the compiler that the code will return a numerical value.
Example:

void main()

OR

int main()

Sub Programs: In this area of the program, user-defined functions
Programming with C - 22

are invoked. @en they are called from the main() function or from
outside the main() function, control of the program is transferred to
the called function. These are specified in accordance with the
programmer's needs.

Example:

int sum(int x, int y)

{
return x+y;
}
(i1) Structure of the C Program with Example:

Example: Below C program to find the sum of 2 numbers:
// Documentation
/**
* file: sum.c
* description: program to find sum.

*/

// Link

#include <stdio.h>

// Definition
#define X 20

// Global Declaration

int sum(int y);

// Main() Function

int main(void)

{

inty = 55;

printf("Sum: %d", sum(y));

return O;

)

// Subprogram

int sum(int y)

Programming with C - 23

{

return y + X;

}

Output:
Sum: 75

Explanation of the aforementioned Program:

The aforesaid software is explained in detail below. With a description

of the program's meaning and application.

Sections

/**
* file: sum.c
* author: you

* description: program to
find sum. */

#include<stdio.h>

#define X 20

int sum(int y)

int main()

(.3

printf(“Sum: %d”,
sum(y));

return 0;

Description

It is the comment section and is part of
the description section of the code.

Header file which is used for standard
input-output. This is the preprocessor
section.

This is the definition section. It allows
the use of constant X in the code.

This is the Global declaration section
includes the function declaration that
can be used anywhere in the program.

main() is the first function that is
executed in the C program.

These curly braces mark the beginning
and end of the main function.

printf() function is used to print the
sum on the screen.

We have used int as the return type so
we have to return 0 which states that
the given program is free from the error
and it can be exited successfully.

Programming with C - 24

Sections Description

int sum(int y) This is the subprogram section. It

includes the user-defined functions that

return y + X; are called in the main() function.

}

Compilation and the execution of a C program involves the
following steps are Program Creation, Compilation of the program,

Execution of the program and output of the Program.

The following are some of the elements we acquired about the

structure of the C Program in this article:

= A C program's basic structure is separated into six
components, making it easier to read, edit, document, and
comprehend in a specific manner.

= In a well-structured C program, debugging is easy.

= A C program is divided into six sections: Documentation,
Preprocessor Section, Definition, Global Declaration, Main()
Function, and Sub Programs.

= The following stages are taken during the compilation and
execution of a C program:

1). Development of a Program

i1). Putting together the program

ii1). The initiative is being carried out.

iv). Result of the program

(iii) Syntax of C Program:

The C standard specifies a formal grammar for C. Line ends are
not normally relevant in C; nevertheless, line boundaries are during
the preprocessing step. Comments can appear within the delimiters
/* and /, or (since C99) after // until the end of the line. Comments

delimited by / and */ do not nest, and if they occur inside string or

Programming with C - 25

character literals, they are not interpreted as comment delimiters.

The declarations and defined functions are found in C source files.
Declarations and statements are included in function definitions.
Declarations either declare new types with keywords like struct,
union, and enum, or assign types to and maybe reserve storage for
new variables by writing a type followed by the variable name.
Built-in types are specified via keywords that include char and int.
Braces (and, sometimes known as "curly brackets") are used

limit the scope of declarations and to serve as a single statement

for structuring controls.

C, being an imperative language, specifies actions using
statements. The most frequent statement is an argument statement,
which consists of an argument to be evaluated preceded by a
semicolon; as a result of the assessment, functions and variables
may be called and new values set. C includes many control-flow
statements designated by reserved keywords to change the regular
sequential execution of statements. If... [otherwise] conditional
execution and do... while, while, and for sequential execution
(looping) provide structured programming. The for statement has
distinct initialization, evaluation, and reinitialization expressions,
which can be omitted in any order. Within the loop, break and
continue can be utilized. Break is used to exit the innermost
contained loop statement, while continue skips to its
reinitialisation. There is also a non-structured goto statement that
goes directly to the function's assigned label. The value of an
integer expression is used to pick a case to be performed by switch.
Unlike numerous other languages, the the control process will

continue to the next case until interrupted by a break.

Expressions in C can employ a variety of integrated operators

and call function, without no restriction on the sequence of
Programming with C - 26

evaluations. All side effects, including variable storage, occur
before the next "sequence point," which includes the conclusion of
each expression statement as well as the entrance to and return
from each function call. Sequence points can also appear during
the assessment of expressions that contain specific operators (&&,
||,?:, and the comma operator). This allows the compiler to
optimize object code at a high level, but it needs greater effort
from programmers to get accurate results. Because of the impact
on existing software, the C standard was unable to remedy many of

these flaws.

143 Features of ‘C’ Language
C is an imperative programming language. Dennis Ritchie was the
first to create it in 1972. It was created primarily as an operational

programming language for creating an operating system.

C language's core characteristics are low-level memory access, a
minimal set of keywords, and an elegant style; these characteristics
make C language excellent for system programming such as

computer operating systems or compiler development.

What are the Most Significant C Language Characteristics?
Here are a few of the most essential C language features:

e Procedural Language Structure: Languages like C follow a
procedural programming approach, where instructions are
executed in a defined sequence. In C, programs are typically
structured into multiple functions, each responsible for a
specific task. This step-by-step execution can make it easier for
beginners to follow the program’s flow. While many new
programmers might assume this is the only programming style,
there are multiple paradigms in the software world, with
object-oriented programming (OOP) being one of the most

prominent alternatives.

Programming with C - 27

Speed and Efficiency: Although modern programming
languages like Python and Java offer more built-in features,
they often compromise on execution speed due to additional
layers of abstraction. C, as a middle-level language, allows
direct interaction with hardware components, making it
exceptionally efficient. Its performance benefits from being
statically typed, which ensures variable types are known at
compile-time, reducing overhead during runtime. This
efficiency and speed are key reasons why C is often
recommended as a starting point for learning programming.
Modular Design and Reusability: C promotes the concept of
modularity by allowing code to be divided into reusable
libraries. These libraries enable developers to manage complex
codebases more efficiently by reusing common functionalities.
The standard C library is a powerful toolset that provides pre-
built solutions for frequently encountered problems, thereby
enhancing development productivity and maintaining cleaner
code architecture.

Versatile and Extensible Language: C is recognized as a
general-purpose programming language with applications
spanning from operating systems (like Windows, Linux, and
i0S) to database engines (such as MySQL and Oracle). Its
robust set of built-in operators and extensive libraries makes it
suitable for a wide range of tasks. As a middle-level language,
it bridges the gap between low-level hardware manipulation
and high-level application development. C programs are also
highly portable across systems, and their extensible nature
means new functionalities can easily be added to existing

codebases.

Programming with C - 28

144 <C’ Program Installation

Installing the C Programming Language Across Different
Operating Systems Setting up a development environment for
C programming varies slightly depending on the operating
system in use. Below is a general guideline for installing C
on popular platforms such as Windows and macOS.

For Windows Users: To begin programming in C on a
Windows system, you'll first need an Integrated Development
Environment (IDE) like Visual Studio Code, Code::Blocks,
or Dev-C++. After selecting and installing your preferred
IDE, @ next step is to install a C compiler. Common options
include GCC via MinGW or Clang, both of which enable you
to compile and execute C programs directly from your
development environment.

For macOS Users: On macOS, one of the most convenient
ways to start programming in C is by installing Xcode.
Xcode is a complete development suite that includes a built-
in C compiler and tools for writing, compiling, and
debugging code. If you prefer not to use Xcode, you can opt
for standalone compilers such as GCC or Clang, which can

be installed using Homebrew, a package manager for macOS.

Linux:

l@ost Linux distributions come with GCC (GNU Compiler
Collection) preinstalled. You can use a terminal or command-
line interface to compile and run C programs.

You can also install an IDE such as Code::Blocks or Dev-C++

if you prefer a graphical development environment.

NOTE: The exact procedures to install C may differ based

on the operating system edition and the tools you use. Make

Programming with C - 29

careful to follow the manufacturer's or community's

directions.

Here's how to install the C programming language on
Windows, macOS, and Linux:

Windows:

Download and install Visual Studio Code from the official
website: https://code.visualstudio.com/download

Download and install MinGW (GCC) from the official website:
https://osdn.net/projects/mingw/releases/

Open Visual Studio Code and go to Extensions, then search for
“C/C++” and install the Microsoft C/C++ extension.

Open the Command Palette (Ctrl + Shift + P) and select
“C/C++: Edit configurations (Ul)”. Add the following

configuration in the “tasks.json” file:

"version": "2.0.0",
"tasks": [
{
"type": "cppbuild",
"label": "C/C++: g++.exe build active file",
"command": "C:\\MinGW\\bin\\g++.exe",
"args": [
"_gh
"${file}",

"$ {fileDirname}\\$ {fileBasenameNoExtension}.exe"
5
"options": {

"ewd": "C:\\MinGW\\bin"
}s

Programming with C - 30

"problemMatcher": [

"$gec"
1,
"group": {
"kind": "build",
"isDefault": true
b

9

Write your first C program, save it with a *“.c” extension,
and press Ctrl + Shift + B to build and run it.
macOS:

Launch Terminal and perform the following command to
install Xcode Command Line Tools:
xcode-select —install

Install GCC by running the following command:

brew install gcc

Write your first C program @a text editor, save it with a
“.c” extension, and compile it using GCC by running the
following command:
gcc -o myProgram myProgram.c

Run your program by typing the following command:

J/myProgram

Linux:

= Most Linux distributions come with GCC preinstalled. You can

check if GCC is installed by running the following command in
a terminal:

gcc --version

= [f GCC is not installed, you can install it using the package

manager of your distribution. For example, on Ubuntu, you can

run the following command:
Programming with C - 31

sudo apt-get install build-essential

= Write your first C program in a text editor, save it with a “.c”

extension, and compile it using GCC by running the following
command:

gcc -0 myProgram myProgram.c

= Run your program by typing the following command:

./myProgram

Note: These examples are intended to be given you as an
idea of how to install C and compile a small application.
The precise methods may differ based on the applications

and operating system versions you are running.

1.4.5 Tools and Uses

¢)

Tools or IDE for ‘C’ program

Though we've covered the relevance and demand for the C
language, in this unitwe'll look in depth at a critical
precondition necessary for conducting programming in the C
language, namely, a C IDE (Integrated Development
Environment). In general, IDEs are designed to make things
simpler for developers and boost their productivity by
including tools such as a code editor, debugging support, a
compiler, auto code completion, and many more. A C IDE
offers you with a full collection of tools for the developing
applications in C languages. There are various C IDEs
accessible for both experienced developers and beginner
programmers to use to program without difficulty, and you
may choose any one of them based on your needs.

Meanwhile, to make your job easier, we've produced a list of
the best C IDEs:

Visual Studio: First and foremost, here is an enlightening a

Integrated and Development Environment (IDE) created by the
Programming with C - 32

b)

©)

IT behemoth, Microsoft. Microsoft's Visual Studio as provides
you a with several impressive capabilities like automated code
completion, code redesigning, syntax highlighting, assistance
with various languages, and many more. Aside from C/C++
and C#, Visual Studio supports a variety of additional
languages via plugins, including JavaScript, TypeScript, XML,
and others, as well as Python, Ruby, and others. Its features are
as follows:

Compatible with: Windows, macOS, and Linux

Code completion using IntelliSense

Built-in Git Integration

Easy Azure Development

Integrated Debugger and VCS support

CLion: CLion is another popular cross-platform C/C++
Integrated Development Environment (IDE) for programmers
that is integrated with the CMake build system and supports
macOS, Linux, and Windows. It was created by JetBrains and
includes a smart C/C++ code editor for improved code help,
safe refactoring and rapid documentation, the ability to test
individual units of source code, effective code and project
management, and so on. In addition to C/C++, CLion supports
numerous more languages via plugins, including Kotlin,
Python, Swift, and others. Its features are as follows:

Integrated debugger

On-the-fly code analysis

Supports Embedded Development

Supports CVS (Concurrent Versions System) & TFS (Team
Foundation Server)

Compatible with: Windows, macOS, and Linux

Eclipse: Eclipse is a well-known brand in the area of
Programming with C - 33

d)

Integrated Development Environments (IDEs). Although it is
best recognized for its outstanding support for Java, Eclipse has
also proven to be a valuable IDE for C and C++. It has several
essential features for C programming, such as code auto-
completion, code refactoring, visual debugging tools, remote
system explorer, and many more. Furthermore, you may
enhance the functionality of Eclipse IDE by incorporating
numerous additional plugins according on your needs. Its

features are as follows:

Open-source & Rich Community

Compatible with: Windows, macOS, and Linux
Easier Project Creation

Supports Static Code Analysis

Easy Debugging

Code::Blocks: Going down the list, we have Code::Blocks,
an open-source C IDE written in C and built with the
wxWidgets GUI toolkit. Code::Blocks has all of the essential
features needed for C and C++ programming, such as syntax
highlighting, a tabbed interface, code completion, code
coverage, simple navigation, debugging support, and so on.
Furthermore, it allows you to include full breakpoint
conditions, which means you may stop the code execution if
the condition is true. The Code::Blocks IDE's source code and
may make changes based on your choices for a C Integrated

Development Environment. Its features are as follows:

Compatible with: Windows, macOS, and Linux
Supports multiple compilers — GCC, Clang, and Visual
C++

Extensible via plugins
Programming with C - 34

e)

Full Breakpoints Support

Open-source & Rich Community

CodeLite: CodeLite is a different open-source C and IDE
(Integrated Development Environment) that many developers
prefer. It improves compiler compatibility by including built-in
assistance with GCC, Clang, and Visual C++, and it is also
compatible with additional languages outside C/C++, such as
PHP, JavaScript (Node.js), and others. CodeLite provides you
with a plethora of useful tools, like code restructuring,
organizing projects, code browsing, syntax highlighting, test
automation, and a lot more. CodeLite also includes a number of
other features like clickable errors, clang-based completion of
code for C projects, and so on. CodeLite also offers a Rapid
Application Development application for creating wxWidgets-

based apps. Its features are as follows:

Compatible with: Windows, macOS, and Linux
Project Management

Interactive Debugger

Valgrind Support

Supports Static Code Analysis

NetBeans: NetBeans, created by the Apache Software
Foundation - Oracle Corporation, is additionally a popular IDE
among C/C++ developers. This open-source and free
Integrated Development Environment (IDE) allows you to
develop C and C++ programs using dynamic and static
libraries. NetBeans provides several C/C++ development
enhancements such as code restructuring, bracket matching,
automated indentation, unit evaluation, and many more.

Furthermore, it provides excellent support for a wide range of
Programming with C - 35

(i)

compilers, including Oracle Solaris Studio, GNU,
CLang/LLVM, Cygwin, MinGW, and others. NetBeans
additionally provides features like as quicker file navigation,
source inspection, packaging, and so on. NetBeans, like
Eclipse, has improved drag and drop functionality, which is
why it is highly recommended for students and beginner-level

C/C++ developers. Its features are as follows:

Free and Open Source

Compatible with: Windows, macOS, Linux, and Solaris
Qt Toolkit Support

Supports Remote Development

Efficient Project Management

Therefore, these are the most recommended IDEs for C
developers, together with their individual features and benefits.
However, before selecting any of the IDEs, you must first
determine your requirements, since this is really important! For
example, if you require a if you are a beginner-level
programmer looking for greater drag-and-drop functionality,

you may use NetBeans or Eclipse; and so on.

Uses of ‘C’ program

Justification for usage in system programming:
C is a programming language that is commonly used in the
implementation of operating systems and embedded system

applications. This is due to numerous factors:

The code generated after compilation processes does not
need many system features and can be invoked in a

straightforward manner from some boot code - it is easy to
Programming with C - 36

execute.

The C language statements and operators typically map
properly on a sequence of commands for the target processor,
resulting in a low run-time interest on system resources - it is
fast to execute.

The C language, with its extensive collection of operators,
can take use of many of the capabilities of target CPUs. Where
a certain CPU contains more exotic instructions, a language
version may be built with perhaps inherent functions to take
advantage of those instructions - it can leverage almost all of
the target CPU's characteristics.

The language allows for the simple overlay of structures
over blocks of data that are binary, enabling the data to be
understood, traversed, and updated - it can create data
structures and even file systems.

The language has a rich collection of operators for integer
computation and logic, as well as perhaps varying sizes
of floating-point values - it can process suitably organized data
effectively.

C is a little language, with only a few statements and few
features that create a lot of target code - it's understandable.

C offers immediate control over the allocation of memory
and deallocation, which provides fair efficiency and predictable
time to memory-handling tasks while eliminating the need to
worry about periodic stop-the-world garbage disposal events -
it has steady performance.

C allows for the usage and implementation of several
memory allocation strategies, such as the standard malloc and
free; a complicated mechanism for various domains; or a
version for an OS kernel which could suit DMA, be used in
interrupt handlers, or incorporate with the virtual memory

system.
Programming with C - 37

b)

Because platform hardware can be accessible via pointers
and type punning, system-specific functions (e.g.
Control/Status Registers, I/O registers) may be set and utilized
with C code - it interacts well with the platform on which it
runs.

Based on the linker and environment, C code may also call
assembly language libraries and be called from assembly
language - it collaborates well with other lower-level programs.

C, as well as its calling conventions and linker structures,
are frequently used in combination with other high-level
languages, with calls to and from C supported - it interoperates
well with other high-level programs.

C has a developed and diverse ecosystem that includes
frameworks, libraries, and open source compilers, debuggers,
and tools, it is the de facto standard. It is likely in that the
drivers already exist in C, or that a similar CPU architecture
exists as a back-end of a C compiler, therefore there is less

motivation to use another language.

Previously used for web development:
C was formerly used for web development, with the Common
Gateway Interface (CGI) acting as a "gateway" to transfer data
between the web application, the server, and the browser. With
its speed, security, and near-universal availability, C may have
been selected over interpreted languages. It is a no longer usual
practice to design websites with C, and there are several

alternative web development tools available.

Some additional languages are written in C as well:
Because of C's widespread availability and efficiency,
compilers, libraries, and interpreters for other programming

languages are frequently written in C. Python, Perl, Ruby, and
Programming with C - 38

d)

PHP, for example, have reference implementations written in

C.

Allows use with computationally demanding libraries:
Although the layer of abstractions from hardware is thin and
the overhead is minimal, C allows programmers to develop
efficient implementation of algorithms and data structures,
which is a key criteria for computationally intensive systems.
The GNU Multi Precision Arithmetic Library, the GNU
Scientific Library, mathematically, and MATLAB, for
example, are written entirely or partially in C. Many languages
enable invoking C library functions; for example, the Python-
based architecture NumPy makes use of C for high-

performance and hardware interaction.

C is used as an intermediate language:
C sometimes can be utilized as an intermediate language by
other language implementations. This method can be employed
for scalability or convenience; utilizing C as an intermediary
language eliminates the need for machine-specific code
generators. C has certain characteristics that aid with the
compilation of produced code, such as line-number
preprocessor directives and optional unnecessary commas at
the end of initializer lists. However, some of C's inadequacies
have encouraged the development of additional C-based
languages, such as C--, that are expressly designed for usage as
intermediate languages. Furthermore, the modern main
compilers GCC and LLVM both provide an intermediate
format that is not C, and both allow front ends for numerous

languages, including C.

Programming with C - 39

¥/ End-user programs:

C is also commonly used to create end-user apps. Such

programs, however, can also be created in more recent higher-

level languages.

1.5 PROGRAMMING FORMAT OF C’

In C, the format specifier informs the compiler about the kind of

data to be written or scanned during input and output operations.

They usually begin with a % symbol and are utilized in formatted

strings in functions such as printf(), scanf(), sprintf(), and so on.

The C programming language has a number of format specifiers

associated with various data types, like %d for int, %c for char,

and so on. This article will go over some of the most often used

formatting specifiers and how to utilize them.

The table below lists the most widely used format specifiers in C:

Description
Format Specifier
%c For character type
%d For signed integer type
%e For scientific notation of floats
%t For floats type
%g For float type with the current
precision
%1 Unsigned integer
%Id or %li Long
%lIf Double
%Lf Long double
Y%lu Unsigned int or Unsigned long
%olli Long long
Y%llu Unsigned long long
%0 Octal representation
%Yop Pointer
%s String
You Unsigned int
Yox Hexadecimal representation
Yon Print nothing
%% Print % character

Programming with C - 40

1.5.1 Basic format and functions

1. Character Format Specifier — %c in C:

In C, the format specifier for the char data type is %c. It @y be

used in C for both formatted input and formatted output.

Syntax:
scanf("%d...", ...);
printf("%d...", ...);
Example:
// C Program to illustrate the %c format
specifier.
#include <stdio.h>
int main()
{
char c;

/l using %c for
character input
scanf("Enter some
character: %c", &c);

// using %c for character
output
printf("The entered
character: %c", &c);
return 0;

}

Input:

Enter some character: A

Output:

The entered character: A

2. Integer Format Specifier (signed) — %d in C:
The signed integer format specifier%d can be used in the scanf()

and print() methods, as well as other functions that employ

formatted text for int data type input and output.

Syntax:
scanf("%d...", ...);
printf("%i...", ...);
Example:
// C Program to demonstrate the use of %d
and %i
#include <stdio.h>
// Driver code
int main()
{
int X;
// taking integer input
Programming with C - 41

scanf("Enter the two
integers: %d", &x);

// printing integer
output
printf("Printed using
%%d: %d\n", x);
printf("Printed using
%%i: %31\n", x);
return O;

}

Input:

Enter the integer: 45

Output:

Printed using %d: 45

Printed using %i: 45

3. Unsigned Integer Format Specifier — %u in C:
The format specifier for the unsigned integer data type is %u.

When we provide the %u a negative integer value, it transforms it
to its first complement.

Syntax:
printf("%u...", ...);
scanf("%u...", ...);
Example: Write a C program below shows how to the use %u in
C.
// C Program to illustrate the how to use %u
#include <stdio.h>
// driver code
int main()
{
unsigned int var;
scanf("Enter an integer: %u", &var);
printf("Entered Unsigned Integer:
%u", var);

// trying to print negative value using %u
printf("Printing -10 using %%u:
%u\n", -10);
return O;

¥

Input:

Enter an integer: 25

Output:

Entered unsigned integer: 25

Printing -10 using %u: 2494692768

Programming with C - 42

4. Floating-point format specifier — %f in C:

The %f is floating point format specifier in C that can be used
inside a formatted string for float data input and output. In addition
to %f, we may use the format specifiers %e or %E to display the
floating point value in exponential form.

Syntax:

printf("%f...", ...);
scanf("%e...", ...);
printf("%E...", ...);

Example:

// Here C program demonstrate to use of %f, %e and %E
#include <stdio.h>

// driver code

int main()
{
float a = 12.67,

printf("Using %%f: %f\n", a);
printf("Using %%e: %e\n", a);
printf("Using %%E, %E", a);
return O;
¥
Output:

Using %f: 12.670000

Using %e: 1.267000e+01

Using %E, 1.267000E+01

5. Unsigned Octal number for integer — %o in C:

In the C program, we may use the%o format specifier to print or

accept input for the unsigned octal integer number.

Syntax:
printf("%o0...", ...);
scanf("%o0...", ...);

Example:
#include <stdio.h>
int main()
{
inta=67;
printf("%o\n", a);
return 0;
¥

Output

103

Programming with C - 43

6. Unsigned Hexadecimal for integer — %x in C:

For hexadecimal integers, the format specifier %x is used the
prepared text. The alphabets in the hexadecimal numerals will be
as an lowercase in this situation. Instead of %X, we use %X for

uppercase alphabet digits.

Syntax:
printf("%x...", ...);
scanf("%X...", ...);

Example:

// Write a C Program to be demonstrate the use of %x and %X
#include <stdio.h>
int main()

{
int a= 15454;
printf("%x\n", a);
printf("%X", a);
return O;
}
Output
3cSe
3CSE

7. String Format Specifier — %s in C:

In C, the %s symbol is used to print strings or to accept strings as

input.
Syntax:
printf("%s...", ...);
scanf("%s...", ...);
Example:
/| C program to illustrate
the use of %s in C
#include <stdio.h>
int main()
{
char a[] = "Hi Raghav";
printf("%s\n", a);
return O;
}
Example:

The operation of %s with scanf() differs slightly from that of printf().
Let's look at this with the aid of the C program below.

// C Program to illustrate the working of %s
with scanf()
#include <stdio.h>

Programming with C - 44

int main()

{
char str[50];

// taking string as input
scanf("Enter the String: %s", str);
printf("Entered String: %s", str);
return O;

}

Example:
Input
Enter the string: Hi Raghav
Output
Hi
As we can see, the string is only searched until it encounters

whitespace. In C, we may avoid this by using scan sets.

8. Address Format Specifier — %p in C:
The C programming language also has a format specifier for

printing addresses/pointers. In C, we may use %p to display

addresses and pointers.

Syntax
printf("%p...", ...);
Example:
#include <stdio.h>
int main()
{
inta=10;
printf("The Memory Address of a:
%p\n",(void*)&a);
return 0;
¥
Output

The Memory Address of a: 0x7{fe9645b3fc
Input and Output Formatting:

The C programming language has certain facilities for formatting
input and output. They are often placed between the % sign and the

format specifier symbol. Here are a few examples:

A negative (-) symbol indicates left alignment.
A number after % defines the minimum field width to be printed; if
the characters are fewer than the width, the leftover space is filled

with space; if it is more, it is displayed as is without truncation.

Programming with C - 45

A period (.) sign denotes the separation between field width and

accuracy.

Precision specifies the number of digits in an integer, the number
of characters in a string, and the number of digits after the decimal
point in a floating value.

Example of I/0O Formatting:
// C Program to demonstrate the formatting
methods.
#include <stdio.h>
int main()
{
char str[] = "beginner";
printf("%20s\n", str);
printf("%-20s\n", str);
printf("%20.5s\n", str);
printf("%-20.5s\n", str);
return O;
}
Output:
beginner
beginner
begin
begin

5.1.2 A simple C programming

C Program To Print Your Own Name:
In this case, we have two approaches for printing
the name:
e Using printf()
e Using scanf()
Input:
Enter Name: Raghav
Output:

Name = Raghav
Examplel:
In this example, we use the printf() function to
print the user name.
// C program to demonstrate printing of
// our own name using printf()
#include <stdio.h>
int main()
{
// print name
printf("Name : Raghav");
return 0;

¥
Output:

Programming with C - 46

Name = Raghav
Example2:

In this example, we use scanf() to accept the user's
name and then print it.

// C program to demonstrate printing of

// our own name using scanf()

#include <stdio.h>

int main()

char name[20];
printf("Enter name: ");
// user input will be taken here
scanf("%s", name);
printf("Your name is %s.", name);
return 0;
}
Output:
Enter Name: Raghav
Name = Raghav

1.6 CREATING A C PROGRAM:

Creating and Editing a C Program Across Operating Systems

C programs can be written and executed on various platforms such
as DOS and UNIX, and are typically saved with the .c extension.
On DOS-based systems, source code can be entered using any
basic text editor like EDIT. For example, to open and edit a file

named testprog.c, the command used would be:

C:\> edit testlprog.c
For those working with Turbo C, the environment includes its own
built-in editor. To launch the Turbo C editor, navigate to the

executable using its full path. For instance:

C:\> turboc\bin\tc
This command runs the Turbo C IDE, allowing users to write and
save their programs within its interface. Files saved this way are

automatically given a .c extension.

On UNIX systems, C source files are also saved with the .c
Programming with C - 47

extension to indicate they are C programs. Programmers often use
editors such as vi, emacs, or xedit to create and modify code. For
example, to edit testprog.c using vi, the following command is

used:

$ vi testprog.c
These editors allow programmers @make changes to the code at

any time during development.

1.7 COMPILATION PROCESS IN C
PROGRAM

Once a program is written, it should be saved with a .c extension,
indicating that it is written in the C programming language. While
C is considered a high-level language, computers do not directly
understand it. Therefore, the next essential step is to convert the
human-readable source code into machine-readable object code.
This conversion is handled by a specialized tool known as a
compiler. Each programming language typically has its own
compiler designed to interpret and translate its syntax into machine
code. The compiler analyzes the source code for any syntax errors

and, if none are found, it proceeds to generate the object code.

However, if the compiler detects any errors in the code, it will not
produce the object file. These errors must be resolved before the
program can be successfully compiled. The process ensures that
only syntactically correct code is translated into executable

instructions that the computer can understand and run.

A flowchart can help visualize this process—starting from writing

and saving the program, followed by compilation, and ending

Programming with C - 48

either in successful object code generation or an error report. This
structured approach highlights the fundamental steps involved in

creating and preparing a C program for execution.

Writing Program

k

Save as .c file

¥

Compile using

Compiler

h 4
Object Code
Generated?

This flowchart represents the sequential steps of writing a program,
saving it with the ".c" extension, using a compiler to compile the
code into object code, and then checking whether the as a object

code was successfully generated or not.
1.7.1 The Compiler

On a UNIX-based system, if your program file is named testprog.c,

you can compile it using a simple command in the terminal:

cc testprog.c

This command compiles the source code and, if no syntax errors
are present, generates an executable file by default named a.out. @
you prefer a custom name for the output file, you can use the -o

option:

cc testprog.c -o testprog

This command compiles the source file and creates an executable
Programming with C - 49

named testprog instead of the default a.out.

On the other hand, if you're using Turbo C in a DOS environment,
the compiler options are available directly through the graphical
menu. Once you compile a program with correct syntax, it
generates an object file with a .obj extension, for example,
testprog.obj. If there are syntax errors, they will be displayed on

the screen, and the object file will not be created.

1.7.2 Semantic and Syntax Errors

Each programming language has its own defined set of
grammatical rules, and any code written in that language must
adhere to those rules. For instance, consider the English sentence:
“Raghav, is playing, with a ball.” This sentence is grammatically
incorrect due to the improper placement of commas. Similarly, in
the C programming language, the code must follow a specific

syntax.

When a C program is compiled, the compiler checks whether the
syntax of the code is valid. If the program contains any syntax
errors, the compiler will highlight them, usually displaying the
corresponding line numbers to help the programmer identify and

fix the issues.

In addition to syntax errors, a C program may also contain
semantic errors. These are logical inconsistencies or meaningless
statements that the compiler may interpret as warnings rather than
errors. Although such programs can still be compiled, it's advisable
to correct these warnings to avoid potential issues during

execution.

Programming with C - 50

For example, if you declare a variable but never use it, the
compiler may display a warning such as “code has no effect.” Even
though it doesn’t stop compilation, unused variables consume
memory unnecessarily and can clutter the code, potentially leading

to confusion or inefficiencies in larger programs.

1.8 LINK AND RUNNING C PROGRAM

Once the compilation process is complete, the next crucial step fp
the program execution cycle is linking. During compilation, the
code is translated into an object file with the .obj extension.
However, this file isn't yet ready to run because it may include
function calls from C's standard libraries—functions that the user

hasn't defined but are referenced in the code through header files.

C programming provides a rich set of standard libraries containing
predefined functions for various common operations. When your
program references one of these functions, the compiler notes its
presence but doesn’t include its actual implementation in the object
file. The linker’s job is to connect these function references to their

actual definitions found in the standard library.

This linking process is essential for creating a complete, executable
program. The linker merges the user-written code with the
compiled versions of the library functions, ensuring that all

external references are resolved properly.
In summary, the linker is a specialized tool that assembles all the

required pieces—both from the user’s code and the standard

libraries—into a single executable file, typically with a .exe

Programming with C - 51

extension. This final file is what users can run to see the output of

their programs.

1.8.1 Running a Program Using Menu Options
When working with TurboC in a DOS environment, a graphical
menu interface appears once the TurboC executable is launched.

This génu offers various options for compiling and running C

programs:

. Link: Performs the linking process after compilation.

. Make: Compiles the program and links it in a single step.
. Run: Executes the compiled program.

Each of these options leads to the creation of an executable file. To
view the output of the program, you need to switch to the user

screen window.

1.8.2 Executing an Executable File

Once an .exe file is successfully generated, it can be run directly.
In the UNIX environment, a powerful utility named make helps
compile complex programs efficiently using a configuration file
known as a make file. For simple programs stored in a single file,
running the following command is sufficient:

make test prog

This command compiles testprog.c, links it with the standard
library (e.g., for using functions like printf), and creates an

executable file named testprog.

In the DOS environment, the .exe file created after successful

compilation and linking can be executed directly from the

Programming with C - 52

command prompt. For instance, if your program file is test.c, and it
compiles successfully to test.exe, you can run it by typing:

c>test

1.8.3 Linker Errors

Sometimes, a program compiles without any syntax errors, but the
executable file isn’t created. This can be due to linker errors.
These errors occur when the compiler recognizes a function
declared in a header file but cannot locate its actual
implementation in the standard library.

Such mismatches—where the declaration exists but the object code
is missing—result in linker errors. These issues must be resolved

for the executable to be generated.

1.8.4 Logical and Runtime Errors
After successful compilation and linking, running the program may

result in one of the following situations:

1. The program runs correctly and displays the expected
output.

2. The program runs, but the output is incorrect.

3. The program fails during execution and stops abruptly.

First Case: Indicates that the program is functioning properly.

Second Case: Points to a logical error—an error in the logic of
the program that leads to wrong results even though the code
compiles and links without issue. These errors are challenging to
spot and fix. Debugging—the process of examining the program
line by line—is essential to identify and correct them. TurboC

provides a tracer tool that assists in debugging.

Programming with C - 53

Example: Consider a program meant to calculate the average of
three numbers:
/* Program to compute average of three numbers
* #include<stdio.h>

main()

{

int a,b,c,sum,avg;

a=10; b=5; ¢=20;

sum = a+b+c; avg = sum / 3;

printf(“The average is %d\n”, avg);

¥

OUTPUT:

The average is 8.

Although the correct average is 8.33, the result shows 8. This
discrepancy is because avg is an integer variable, and integer
division truncates the decimal part. This is a logical error because

the program logic fails to handle decimal results.

. Third Case: When the program crashes during execution,
it’s a runtime error. These errors aren't detected during
compilation or linking but occur when the program runs. They
often stop the execution and generate an error message on the

screen.

Example: Write a program to divide a sum of two numbers by

their difference

/* Program to divide a sum of two numbers by their difference*/
#include <stdio.h>
main()

{

Programming with C - 54

int a,b; float c;

a=10; b=10;

¢ = (atb)/ (a-b);

printf(“The value of the result is %f\n”,c);

}

The program mentioned earlier will compile and link without any
issues. When executed, it will successfully run up to the first printf
statement, and the corresponding message will be displayed on the

screen.

However, as soon as the program attempts to execute the next line
that involves a division by zero, it encounters a runtime error.
Specifically, the system throws an error message like "Divide by

zero", and the program terminates immediately.
Errors like these, which are not detected during the compilation or

linking phases but occur during execution, are referred to as

runtime errors.

Programming with C - 55

1.9 DIAGRAMMATIC ILLUSTRATION

The diagrammatic depiction of the program execution process
is shown in the image below.

Execution of

L J

Initialization

¥

Input Data

Y

Processing |a Processing/ - Loops (for,
. Manipulatio o

Conditiona

A

A flowchart representing the execution process of a, C program is
generally composed of a series of stages. Here's a simple

illustration:

In end this flowchart demonstrates the general flow of a, C
program. It starts with data input (if necessary), followed by
initializing variables, executing the main code or algorithm,
applying conditional statements or loops as needed, calling
functions (if used), processing data, displaying results, and finally,
ending the program. This flow can vary depending on the specific

logic and structure of, the C program being executed.

1.10 CONCLUSION

In this unit, you have gained an understanding of what a program
and a programming language are. You explored how programming
languages are broadly categorized into high-level and low-level
types. You also learned how to define the C programming
language and identify its key features. The historical development

of C was discussed, including its unique position as a middle-level

Programming with C - 56

language that combines aspects of both high-level and low-level

languages.

The advantages of using a high-level language over a low-level
one were highlighted. You practiced converting algorithms and
flowcharts into C programs and explored the steps to write and

save a C program in both UNIX and DOS environments.

Additionally, you learned how to compile and execute C programs
on these platforms. The unit also introduced you to different kinds
of errors encountered during programming—such as syntax,
semantic, logical, linker, and runtime errors—and the strategies to
correct them. You are now capable of writing basic C programs

using arithmetic operations and the printf() function.
With this foundational knowledge in place, you're now prepared to

explore more advanced concepts in C programming in the

upcoming units.

Programming with C - 57

UNIT 2 BUILDING BLOCKS OF C

Function as building blocks

2.0 Introduction

2.1 Objectives

2.2 Character set of C

2.3 C Tokens

2.4 C Programming Keywords
2.5 Identifiers of the C

2.6 Conclusion

2.7 Unit based Questions /Answers

2.0 INTRODUCTION

This unit introduces you to a character set in C programming refers
to the set of characters, including letters, digits, symbols, and
control characters, that can be used to write programs. Initially, C
used the ASCII (American Standard Code for Information
Interchange) character set, which includes 128 characters mapped
to specific numeric values. Extended character sets like UTF-8 and
Unicode accommodate a broader range of characters.
Understanding character sets in C programming is fundamental as
it governs how characters are represented, stored, and manipulated

in programs.

In this unit introduces illustrate that C is a general-purpose
programming language extensively used in games and web
development, machine learning, and data mining applications.
Generally, people think that high-level languages like Python,
Java, and JavaScript have surpassed C in popularity and use in

recent years. Still, C
Programming with C - 58

Languageapplicationsarefrequentlyutilizedallaroundtheglobe. Theu
nderstandingofprogramming is inadequate without the integration
of the C language. Therefore, it tends to dominate the field of

programming.

What you configure out in programming is more important than
what you know. With the technological world constantly changing,
problem-solving is the only talent that allows you to manage
advancements while also evolving. Begin with C, the language
from which most modern programming languages are developed,
to hone your fundamental programming skills and problem-solving
talents. Despite being introduced 50 years ago, C is extensively
used in almost every sector and is recognized as the finest
language for beginners. This begs the question of what C is and

why it is still so widely used.

The C programming language is a procedural language. It was
designed by Dennis Ritchie as a system programming language for
building operating systems. C language' slow-level memory
access, minimal keyword set, and clear style make it ideal for
system programming, such as operating system or compiler
development. C soon established itself as a strong and dependable
programming language, with some of the most well-known names
remaining associated with it today. C is the programming language
used to develop Microsoft Windows, Apple's OS X, and Symbian.
Google's Chromium, MySQL, Oracle, and the bulk of Adobe's
products all employ the C programming language. It is also vital in

our daily lives, since most smart gadgets rely on it.

This unit will explain to you the functional as building blocks of

the programming language C.

Programming with C - 59

2.1 OBJECTIVES

After completing this unit, you will be able to:

= Designed to provide complete knowledge of C language
applications.

= Help to create programs and applications in C.

= Help to understand the basic to advanced concepts
related to Objective — C Programming languages.

= This unit includes a component that is intended to
provide the learner with hands-on experience with

the ideas.

2.2 CHARACTERSET OF C

Understanding character sets in C programming is fundamental as
it governs how characters are represented, stored, and manipulated

in programs. Here's an in-depth look into character sets in C:

Character Set in C Programming:

1. Basics of Character Representation:

ASCII (American Standard Code for Information
Interchange): ASCII is one of the earliest and most widely used
character encoding schemes. It represents characters using 7 bits
(extended ASCII uses 8 bits) and includes control characters,

uppercase and lowercase letters, digits, and special symbols.

Character | ASCII Detail
! 33 Exclamation point or Exclamation mark
w 34 Inverted commas, quote marks or
quotations
35 Hash, number, pound, octothorpe

Programming with C - 60

$ 36 Doller sign or generic currency
% 37 Percent

& 38 Ampersand or and

¢ 39 Single quote or an apostrophe
(40 Open or left parenthesis

) 41 Right or close parenthesis

* 42 Asterisk, often known as a star
+ 43 Plus

s 44 Comma

- 45 Dash, hyphen or minus sign

. 46 Comma, dot or full stop

/ 47 Forward slash, whack slash

: 58 Colon

; 59 Semicolon

< 60 Angle brackets for less than

= 61 Equal sign

> 62 Angle brackets for greater than
? 63 Inquiry mark
@ 64 Asperand, at, or the at symbol
[91 Enable brackets

\ 92 Backslash

1 93 Open bracket

" 94 Circumflex or Caret

- 95 Underscore

96 Open quotation, backquote

{ 123 Open brace, curly bracket

} 125 Close brace, curly bracket

~ 126 Tilde

ii). Unicode: Unicode is a standard for consistent encoding and
representation of text across different languages and
platforms. It uses variable bit lengths (UTF-8, UTF-16,
UTF-32) to accommodate a vast array of characters from

different languages and symbol sets.

2. Character Constants and Escape Sequences:

i) Character Constants: In C, characters can be represented
using single quotes ("). For example, 'A', 'a', 'l', or '$"
These constants are directly mapped to their ASCII or

Unicode values.

Programming with C - 61

ii). Escape Sequences: C also supports escape sequences

(e.g., "\n', \t', "x") to represent special characters or non-
printable characters within strings, enabling easy

manipulation of characters in code.

Character | ASCII Detail
<space> 32 Space
\t 9 Horizontal tab
\n 10 Newline
\v 11 Vertical tab
\f 12 Feed
\r 13 Carriage Return
3. ASCII and Extended ASCII:

i). ASCII Range: Standard ASCII includes characters in the

ii

range 0 to 127. Extended ASCII (using 8 bits) expands this
range to include additional characters, symbols, and special

characters.

). Platform-Specific Variations: Different platforms might
have their own extended ASCII variations, leading to

potential compatibility issues when moving code between

systems.

. Unicode and Multibyte Characters:

. Unicode Encoding Schemes: UTF-8, UTF-16, and UTF-
32 are encoding schemes used to represent Unicode
characters. UTF-8 is widely used due to its compatibility
with ASCII and variable-length encoding.

ii). Multibyte Characters: Characters in Unicode may span

multiple bytes, especially in UTF-16 and UTF-32, leading
to complexities in handling and manipulating multibyte

characters in C programs.

Programming with C - 62

5. Locale and Character Set Functions:

i). Locale-Specific Functions: C provides functions like
‘setlocale()” and “wctomb()" to handle locale-specific

character sets and encoding conversions.

ii). Character Classification Functions: Functions like
‘isalpha()’, ‘isdigit()’, and ‘islower()" allow programmers
to perform character-based operations based on character

classes.

6. Wide Characters and Internationalization:

i). Wide Character Representation: C supports wide
characters ("wchar t') to handle characters beyond the
ASCII range, facilitating internationalization and

localization efforts.

ii) L10n and I18n: Wide character support allows for
localization (L10n) and internationalization (I18n) of
software, enabling the display of text in different languages

and character sets.

7. Challenges and Considerations:

i). Compatibility and Portability: Dealing with different
character sets and encoding schemes can pose challenges,
especially when writing code that needs to be portable

across various systems and locales.

ii). Handling Multibyte Characters: Manipulating and
processing multibyte characters requires careful handling to
avoid unintended behavior or errors in character

manipulation and string processing functions.

Programming with C - 63

8. Best Practices and Recommendations:

i). Use Standard Functions: Utilize standard C library
functions like ‘isalpha()’, ‘tolower()’, and “toupper()’ for
character manipulation to ensure portability and

compatibility.

ii). Avoid Hard-Coding Values: Rely on character constants
and escape sequences instead of hard-coding specific
ASCII or Unicode values for improved readability and

maintainability.

2.3 C TOKENS

Understanding tokens is fundamental in C programming as they
form the building blocks of C code. Tokens represent the smallest
individual units of a C program, aiding in syntax analysis and code

interpretation. Here's an in-depth exploration of C tokens:
p P p

1. Definition and Types of Tokens:

i). Definition: Tokens in C programming are the smallest
individual units constituting a C program. They include keywords,

identifiers, constants, strings, operators, and special symbols.

ii). Types of Tokens: C tokens are categorized into keywords
(e.g., 'int’, "if", "while"), identifiers (user-defined names), constants
(numeric or character literals), strings (sequences of characters
enclosed in double quotes), operators (arithmetic, relational,

logical), and special symbols (punctuation characters).

2. Keywords and Identifiers:

i). Keywords: Keywords are reserved words with predefined
Programming with C - 64

meanings in C. Examples include ‘if’, “else’, ‘for’, ‘“int’, and

‘void’. They cannot be used as identifiers.

ii). Identifiers: Identifiers are user-defined names used to
represent variables, functions, or other entities in a C program.
They consist of letters, digits, and underscores, beginning with a

letter or underscore.

3. Constants:

i). Numeric Constants: Numeric constants represent fixed
numerical values, such as integers ('123°, *-45"), floating-point

numbers ("3.14°, “0.75"), and scientific notation ("2.5e3").

ii). Character Constants: Character constants are single
characters enclosed in single quotes ("'A", *'5", M'%""), representing

their ASCII or Unicode values.

4. Strings and Escape Sequences:

i). String Constants: Strings are sequences of characters enclosed
in double quotes ('"Hello, World!""). They can contain
alphanumeric characters, symbols, and escape sequences ('\n', "\t’,

"\"") for special characters.

ii). Escape Sequences: Escape sequences are special combinations
of characters that represent non-printable or special characters

within strings.

5. Operators:

EUEENAY

i). Arithmetic Operators: Operators such as "+, *-", "* */° "%’

perform arithmetic operations on numeric values.

| Operator | Purpose

Programming with C - 65

+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder after integer division
ii). Relational and Logical Operators: "=, '|=", '>" "< "&&°,

*||” perform comparisons and logical operations.

Operator | Meaning

== §ality
1= equal to

< less than

> greater than
<= less than or equal to
>= greater than or equal to

N

iii). Assignment and Increment/Decrement Operators: "=,

N

+=", '-=", "++, "--" modify variable values.

6. Special Symbols:

Punctuation Characters: Special symbols include punctuation
characters like parentheses “()°, braces "{}, brackets "[]’, commas
', semicolons ;°, and colons “:' used to structure C code and

define blocks, expressions, and statements.

7. Tokenization and Lexical Analysis:

i). Lexical Analysis: The process of breaking down a C program
into tokens is called lexical analysis. Tokenization involves

identifying tokens and categorizing them based on their types.

ii). Tokenization Tools: Lexical analyzers and tokenizers are used
to scan source code, recognize tokens, and pass them to the parser

for further syntactic analysis.

Programming with C - 66

8. Role in Syntax Analysis:

Syntax Parsing: Tokens serve as the input for the parser during
syntax analysis. The parser uses tokens to analyze the structure and

syntax of the program based on predefined grammar rules.

2.4 CPROGRAMMING KEYWORDS

Understanding keywords is crucial in C programming as they are
reserved words with predefined meanings and specific

functionalities. Here's an in-depth exploration of keywords in C:
1. Definition and Importance:

i). Definition: Keywords are reserved words in C with predefined
meanings and functionalities. They serve specific purposes within

the language and %ot be used as identifiers or variable names.

ii). Importance: Keywords play a crucial role in defining the
syntax, structure, and functionality of C programs. They facilitate
control flow, data manipulation, and define the basic elements of

the language.

2. Types of Keywords:

i). Primary Keywords: Primary keywords are fundamental to C
programming and include words like ‘int’, ‘char’, “float’, ‘if’,

‘else’, “while’, ‘for’, ‘switch’, and ‘return’.

ii). Additional Keywords: C has a set of additional keywords
introduced in various C standards (e.g., C99, C11), such as °_Bool’,
" Complex’, ' Imaginary’, and others, providing additional

functionalities or data types.

Programming with C - 67

3. Commonly Used Keywords:

i). Data Type Keywords:

‘int’, ‘char’, “float’, ‘double’, ‘void

define data types used for variable declaration and manipulation.

ii). Control Flow
Keywords: "if", “else’,
‘switch’, ‘case’,

‘default’, “while", “for’,

‘do’, ‘break’,
‘continue’ control the
flow of execution

within the program.

iii). Function
Keywords: ‘return’
specifies the value

returned by a function

to the calling code.

character

character constant consist of a single character, single digit,
or a single special symbol enclosed within a pair of single
inverted commas. i.e. ‘A’,’%’.

integer

An integer constant refers to a sequence of digits. There are.
Three types of integers: decimal, octal and hexadecimal. In
octal notation, write (0) immediately before the octal
representation. For example: 0.76, -076.

In hexadecimal notation, the constant is preceded by O0x.
Example: 0x3E, -0x3E. No commas or blanks are allowed in
integer constants.

real

A real constants consist of three parts : Sign (+ or 0) ,
Number portion (base), exponent portion i.e. +.72 , +72 ,
+7.6E+2 , 24.3e-5

string

A string constant is a sequence of one or more characters
enclosed within a pair of double quotes (" "). If a single
character is enclosed within a pair of double quotes, it will
also be interpreted as a string constant.

Examples: "Welcome To Microtek \n”, “a”, “123”

logical

A logical constant can have either a true value or a false
value. In 'C all the non zero values are treated as true value
while O is treated as false.

iv). Storage Class Keywords: ‘auto’, ‘extern’, 'static’, ‘register’

determine the storage duration and scope of variables.

4. Reserved Status and Restrictions:

i). Reserved Status: Keywords are reserved by the language and

cannot be used as identifiers, function names, or variable names

within the code.

ii). Case Sensitivity: Keywords are case-sensitive in C. For

instance, ‘int" is a keyword, but ‘Int’, 'INT", or 'iNt' are not

recognized as keywords and can be used as identifiers.

Programming with C - 68

5. Evolving Keyword Set:

i). Standardization and Updates: C standards (e.g., C89, C99,
C11) introduce new keywords or modify the behavior of existing

keywords to enhance the language's capabilities.

ii). Backward Compatibility: C standards strive to maintain
backward compatibility, ensuring that code written in older

versions of C remains valid in newer versions.

6. Vendor-Specific Extensions:

Vendor-Specific Keywords: Some C compilers introduce vendor-
specific keywords or extensions to enhance functionality or
optimize code for specific platforms. These keywords might not be

standard across different compilers.

7. Best Practices and Usage:

i). Avoiding Keyword Conflicts: Developers should avoid using
keywords as variable names or identifiers to prevent conflicts and

maintain code readability.

ii). Consistent Use: Adhering to consistent naming conventions
and avoiding ambiguous identifiers or names that resemble

keywords ensures code clarity and avoids potential errors.

8. Role in Program Structure:

Defining Structure: Keywords play a vital role in defining the
structure of C programs, delineating functions, control flow,
variable types, and other essential elements of the language.

Absolutely, let's delve deeper into the significance and

Programming with C - 69

categorization of keywords in C programming;:

Keywords in C Programming: Core Building Blocks

continu | doubl | floa .
auto | break case char R o ¢ int

short | static | typedef | const | default else for long

signe . . ot | registe
i struct union void do enum g &
o r

sizeo | switc | unsigne | volatil

£ h d . while extem if return

1. Significance of Keywords:

i). Precise Functionality: Keywords serve specific purposes and
have well-defined functionalities within the language. They
determine how variables are declared, how control structures

function, and how data types are handled.

ii). Syntax Definition: Keywords form the foundation of C's
syntax, enabling the creation of robust and structured programs by
providing essential components for defining operations and control

flow.

2. Categorization of Keywords:

i). Data Type Keywords: Keywords like ‘int’, ‘char’, “float’,
‘double’, and “void® specify the type of data a variable can hold,

defining its size, storage, and operations.

ii). Control Flow Keywords: These keywords govern the
execution flow within a program, including conditional statements
(if", “else’), looping ("while’, ‘for’, 'do"), and branching ('switch’,

‘case’).

Programming with C - 70

iii). Storage Class Keywords: Keywords such as “auto’, 'static’,
‘extern’, and ‘register’ define the storage duration, scope, and

visibility of variables.

iv). Function Keywords: 'return’ specifies the value returned by a

function to the calling code.

3. Evolving Nature of Keywords:

i). Standard Evolution: Newer C standards introduce additional
keywords or modify the behavior of existing keywords to improve
language capabilities, enhance expressiveness, or introduce new

functionalities.

ii). C11 Additions: C11 introduced keywords like = Bool' for
boolean types, = Noreturn® to indicate that a function does not

return, and °_Thread local® for thread-local storage duration.

4. Special Uses of Keywords:

i). Sizeof" Operator: While not a keyword, ‘sizeof" is a special
operator used to determine the size of a data type or variable in

bytes.

ii). Typedef’ Keyword: “typedef” is used to create new data type

names, improving code readability and abstraction.

5. Avoiding Keyword Misuse:

i). Identifier Naming Conventions: Following consistent naming

conventions helps prevent accidentally using keywords as

Programming with C - 71

identifiers or variable names, reducing potential conflicts and

CITors.

ii). Compiler Warnings: Modern compilers often provide
warnings when keywords are used inappropriately, alerting

developers to potential issues.

6. Platform and Compiler Variations:

i). Platform-Dependent Keywords: Some keywords might
behave differently or have platform-specific implementations

based on the C compiler or the target platform.

ii). Standard Compliance: Different compilers may implement
different versions of the C standard, impacting the availability or

behavior of certain keywords.

7. Extensibility and Custom Keywords:

Extensibility via Macros: In certain cases, developers use
preprocessor macros or naming conventions to emulate keyword-

like behavior, creating custom functionalities or defining macros to

aid in programming tasks.

Programming with C - 72

8. Interplay with Syntax and Program Logic:

i). Syntax Integrity: Keywords provide a framework for ensuring
syntax integrity, guiding the compiler in parsing and understanding

the structure and flow of C programs.

ii). Logical Flow Control: The strategic use of control flow
keywords helps in designing logical program structures, enabling

complex decision-making and looping functionalities.

2.5 IDENTIFIERS OF THE C

C identifiers represent the name in the C program, for example,
variables, functions, arrays, structures, unions, labels, etc. An
identifier can be composed of letters such as uppercase, lowercase
letters, underscore, digits, but the starting letter should be either an
alphabet or an underscore. If the identifier is not used in the
external linkage, then it is called as an internal identifier. If the
identifier is used in the external linkage, then it is called as an

external identifier.

We can say that an identifier is a collection of alphanumeric
characters that begins either with an alphabetical character or an
underscore, which are used to represent various programming
elements such as variables, functions, arrays, structures, unions,
labels, etc. There are 52 alphabetical characters (uppercase and
lowercase), underscore character, and ten numerical digits (0-9)
that represent the identifiers. There is a total of 63 alphanumerical

characters that represent the identifiers.

Programming with C - 73

Rules for constructing C identifiers

The first character of an identifier should be either an alphabet
or an underscore, and then it can be followed by any of the
character, digit, or underscore.

It should not begin with any numerical digit.

In identifiers, both uppercase and lowercase letters are distinct.

Therefore, we can say that identifiers are case sensitive.
Commas or blank spaces cannot be specified within an
identifier.

Keywords cannot be represented as an identifier.

The length of the identifiers should not be more than 31
characters.

Identifiers should be written in such a way that it is meaningful,

short, and easy to read.

Example of Identifiers:

Total, sum, average, m , sum_1, etc.

Example of Invalid Identifiers:

2sum (Starts with a numerical digit)

Types of identifiers
= Internal identifier

= External identifier

Internal Identifier

If the identifier is not used in the external linkage, then it is known

as an internal identifier. The internal identifiers can be local

variables.

Programming with C - 74

External Identifier
If the identifier is used in the external linkage, then it is known as
an external identifier. The external identifiers can be function

names, global variables.

Differences between Keyword and Identifier

Keyword Identifier

Keyword is a pre-defined word. The identifier is a user-defined word.

. . It can be written in both lowercase and
It must be written in a lowercase letter.
uppercase letter.

Its meaning is pre-defined in the c Its meaning is not defined in the ¢
compiler. compiler.

It is a combination of alphabetical It is a combination of alphanumeric
characters. characters.

It does not contain the underscore It can contain the underscore
character. character.

2.6 CONCLUSION

Character sets in C programming are crucial for representing,
storing, and processing characters within programs. Understanding
character encoding schemes, escape sequences, handling wide
characters, and addressing localization challenges are essential for
writing robust and portable C programs that effectively handle
diverse character sets and language requirements. ASCII, the
fundamental character encoding standard, provided a base for
representing text characters in early computing. Unicode, a
comprehensive standard, allows for the representation of a wide
range of characters from different languages and scripts. Multibyte
characters, particularly in UTF-8, enable the representation of
characters beyond the ASCII range, facilitating multilingual
support and text processing in modern computing environments.
Locale functions allow C programs to adapt to users' language and
cultural preferences, affecting formatting and text handling.

Programming with C - 75

Character set functions enable proper manipulation and
classification of characters based on locale-specific rules, which is
crucial for multilingual text processing. Internationalization is the
foundational step in making software adaptable to diverse

languages and cultures, enabling global reach and usability.

Programming with C - 76

UNIT3 APPLICATION AND

INFORMATION
Structure

3.0 Introduction

3.1 Objectives

3.2 Applications of C

3.2.1 Operating Systems

3.2.2 Graphical User Interface

3.2.3 Embedded Systems

3.2.4 Google

3.2.5 Design of a Compiler

3.2.6 Mozilla Firefox and Thunderbird
3.2.7 Gamming and Animations

3.2.8 MySQL

3.3 New Programming Language Platforms

3.4 Translators of high-level languages into machine
language

3.5 C Programming Projects
3.5.1 Basic C Projects
3.5.2 Intermediate C Projects with Source Code
3.5.3 Advanced C Projects with Source Code

3.6 Conclusion

3.7 Unit based Questions /Answers

3.0 INTRODUCTION

In this unit introduces illustrate that C is a general-purpose

programming language extensively used in games and web

development, machine learning, and data mining applications.

Generally, people think that high-level languages like Python,

Programming with C - 77

Java, and JavaScript have surpassed C in popularity and use in
recent years. Still, C Language applications are frequently utilized
all around the globe. The understanding of programming is
inadequate without the integration of the C language. Therefore, it

tends to dominate the field of programming.

What you can figure out in programming is more important than
what you know. With the technological world constantly changing,
problem-solving is the only talent that allows you to manage
advancements while also evolving. Begin with C, the language
from which most modern programming languages are developed,
to hone your fundamental programming skills and problem-solving
talents. Despite being introduced 50 years ago, C is extensively
used in almost every sector and is recognized as the finest
language for beginners. This begs the question of what C is and

why it is still so widely used.

The C programming language is a procedural language. It was
designed by Dennis Ritchie as a system programming language for
building operating systems. C language's low-level memory
access, minimal keyword set, and clear style make it ideal for
system programming, such as operating system or compiler
development. C soon established itself as a strong and dependable
programming language, with some of the most well-known names
remaining associated with it today. C is the programming language
used to develop Microsoft Windows, Apple's OS X, and Symbian.
Google's Chromium, MySQL, Oracle, and the bulk of Adobe's
products all employ the C programming language. It is also vital in

our daily lives, since most smart gadgets rely on it.

Programming with C - 78

This unit will explain to you the applications and information of

language C.

3.1 OBJECTIVES

After completing this unit, you will be able to:

= Designed to provide complete knowledge of C language
applications.
= Help to create programs and applications in C.
= Help to understand the basic to advanced concepts related
to Objective-C Programming languages.
= This unit includes a component that is intended to provide

the learner with hands-on experience with the ideas.

3.2 APPLICATIONS OF C LANGUAGE

The development of system software and desktop applications is
mostly accomplished via the use of C programming. The following

are some examples of C programming applications.

3.2.1 Operating Systems

A high-level programming language built in the C programming
language was used to construct the first operating system, which
was UNIX. Later on, the C programming language was used to

write Microsoft Windows and several Android apps.
the influence of C in operating systems (OS) is immense. Here's an

exploration of how the C programming language is integral to the

development and functionality of operating systems:

Programming with C - 79

The Role of C in Operating Systems:

C programming language holds a pivotal role in the creation,
maintenance, and evolution of operating systems across diverse
computing environments. Its characteristics of efficiency,
portability, and close-to-hardware capabilities make it the language
of choice for OS development. The following are key areas where

C is extensively used within operating systems:

1. Kernel Development:

a) Low-Level System Interaction: C's ability to interact directly
with hardware and manage system resources efficiently makes
it the language of choice for kernel development. It allows
developers to write code that deals with memory management,

process scheduling, interrupt handling, and device drivers.

b) Portability: C's portability enables developers to write OS
kernels that can be easily adapted to different hardware

architectures.

2. Device Drivers:

Hardware Interaction: C is crucial in writing device drivers,
which are essential for enabling communication between hardware
devices and the operating system. Its ability to access and control

hardware directly is vital for efficient device operations.

3. System Utilities:

a) Command-Line Tools: Many system utilities, such as

command-line interfaces and system administration tools, are

Programming with C - 80

written in C due to its efficiency and ability to manage system

resources effectively.

b) File Systems: C is commonly used in developing file system
utilities and functionalities like file I/O operations, directory

management, and file permissions.

4. Portability and Efficiency:

a). Platform Independence: C's portability allows operating
systems written in C to be compiled and run on different
hardware platforms with minimal modifications, making it a

preferred choice for cross-platform development.

b). Efficient Resource Utilization: The language's efficiency in
managing memory and system resources contributes

significantly to the overall performance of the operating system.

5. System Libraries and APIs:

Standard C Library: Operating systems often provide a standard C
library that offers a set of functions and utilities for application
developers. These libraries are typically written in C and provide
essential functionalities like memory allocation, input/output

operations, and string manipulation.

6. OS Maintenance and Evolution:

Ease of Maintenance: C's structured and modular nature simplifies
the maintenance and enhancement of existing operating systems.
New features and improvements can be efficiently added to the

codebase without compromising the system's stability.

Programming with C - 81

7. Operating System Research and Development:

Experimentation and Prototyping: C is commonly used in
academia and research institutions for experimenting with new OS
concepts, prototyping new features, and understanding the

intricacies of OS internals due to its clarity and simplicity.

3.2.2 GUI (Graphical User Interface)

Since the beginning of time, Adobe Photoshop has been one of the
most widely used picture editors. It was created entirely with the
aid of the C programming language. Furthermore, C was used to

develop Adobe Illustrator and Adobe Premiere.

The C programming language, known for its efficiency and
versatility, also plays a crucial role in the development of
Graphical User Interfaces (GUIs). Here's an exploration of how C

is applied in this domain:

Applications of C in Graphical User Interfaces:

Graphical User Interfaces (GUIs) have become an integral part of
modern software applications, providing users with visually
interactive and user-friendly experiences. While languages like
Java and Python are popular for GUI development, C has its own
applications, particularly in scenarios where performance and

system-level interactions are critical.

Programming with C - 82

a). Window Management:

Windowing Systems: C is often used to develop window
management systems that handle the creation, manipulation, and
display of windows on the screen. These systems are fundamental
components of GUIs, allowing users to interact with multiple

applications simultaneously.

b). Widget Toolkits:

Creation of GUI Elements: C is employed in developing widget
toolkits, which are libraries of graphical components (widgets)
such as buttons, textboxes, and sliders. These toolkits provide the
building blocks for constructing GUIs and are often written in C

for efficiency and performance.

¢). Custom Controls and Graphics:

Efficient Rendering: C's low-level capabilities make it suitable
for efficient rendering of graphics and custom controls. It allows
developers to have precise control over the graphical elements and
optimize performance for resource-intensive applications like

video editing software or games.

d). Cross-Platform GUI Development:

Portability: C, with its portability, enables the creation of cross-
platform GUI applications. The same C codebase can be compiled

for different operating systems, reducing development efforts and

ensuring a consistent user experience across platforms.

Programming with C - 83

e). Embedded Systems GUIs:

Resource Constraints:

In embedded systems where resources are limited, C is often
preferred for GUI development due to its efficient use of system
resources. Customized graphical interfaces on devices like medical
equipment, industrial control systems, and IoT devices can be

efficiently implemented using C.

f). Application Interfaces:

Integration with System APIs:

C is used to create GUI applications that seamlessly integrate with
system-level APIs. This is crucial for applications that require
direct interaction with the underlying operating system for tasks
such as file management, process control, and system

configuration.

g). Performance-Critical Applications:

Graphics-Intensive Software:

In applications demanding high performance, such as graphic
design software or 3D modeling tools, C is chosen for its ability to
optimize code and efficiently handle complex calculations and

graphics rendering.

h). Game Development:

Game User Interfaces: C is frequently used in the development of
game user interfaces, where responsiveness and efficiency are

critical. Game menus, heads-up displays (HUDs), and interactive

Programming with C - 84

elements are often implemented in C to ensure a smooth gaming

experience.

i). Integration with Hardware:

Device Interaction: C's capability to interact closely with
hardware is beneficial for GUI applications that involve
communication with peripherals and external devices. This is
particularly relevant in industrial control systems and scientific

instruments.

3.2.3 Embedded Systems
Because it is directly related to the machine hardware, C
programming is often regarded as the best choice for scripting

programs and drivers for embedded systems, among other things.

Embedded systems, found in a wide array of devices from
consumer electronics to industrial machinery, rely heavily on the C
programming language due to its efficiency, close-to-hardware
capabilities, and portability. Here's an exploration of how C is

applied in embedded systems:

a). Applications of C in Embedded Systems:

Embedded systems, characterized by their specialized
functionalities and limited resources, often rely on the efficiency
and control offered by the C programming language. These
systems, deeply integrated into various devices and machinery,

benefit from C in several key areas:

Programming with C - 85

i). Device Control and Drivers:

Hardware Interaction: C's ability to directly access and control
hardware resources makes it ideal for writing device drivers and
interfacing with sensors, actuators, and other peripherals

commonly found in embedded systems.

ii). Real-time Control: Embedded systems often require real-time
control of hardware components, and C's ability to manage timing

and low-level operations efficiently is crucial in such scenarios.

b). System Boot-up and Initialization:

Bootstrap Code: C is used in writing boot code that initializes the
embedded system's hardware components during the startup
process. This includes configuring memory, setting up interrupts,

and initializing essential system components.

¢). Firmware Development:

i). Efficient Code Execution: C's efficiency in utilizing system
resources allows developers to create firmware that operates within
the limited memory and processing power available in embedded

systems.

ii). Portability: C's portability enables firmware written in C to be
casily adapted to different hardware architectures, allowing for

broader use across various devices.

d). Real-time and Control Systems:

i). Real-time Operations: C is employed in developing control

systems that require precise timing and responsiveness, such as in
Programming with C - 86

automotive systems (engine control units), robotics, and industrial

automation.

ii).Predictable Performance: The deterministic behavior of C
allows developers to predict and control system responses, critical

in safety-critical applications.

e). Internet of Things (IoT) Devices:

i). Resource Optimization: C's ability to manage resources
efficiently is valuable in IoT devices where power consumption
and memory utilization need to be optimized for extended battery

life and cost-effectiveness.

ii). Sensor Data Processing: C is used to process sensor data and
control communication protocols in IoT devices, enabling them to

interact with other devices and the internet.

f). Communication Protocols:

i). Low-level Networking: C is utilized in implementing
communication protocols such as Bluetooth, Wi-Fi, and Ethernet,
allowing embedded systems to connect and communicate with

other devices or networks.

ii).Peripheral Communication: C facilitates interaction with
various communication interfaces like SPI, I12C, and UART,
enabling data exchange with external devices or modules.

g). Industrial Automation and Control Systems:

i). Reliability and Stability: C's ability to produce code that is
Programming with C - 87

stable and reliable is critical in industrial automation systems

where precision and consistent performance are paramount.

ii).Customization: C allows for the development of customized
control systems tailored to specific industrial applications,

providing flexibility and adaptability.

h). Automotive and Aerospace Systems:

Safety-Critical Applications: C is used in safety-critical systems
in automotive and aerospace industries due to its ability to produce
predictable and reliable code, essential in ensuring the safety and

functionality of these systems.

3.2.4 Google

You can also use the C/C++ programming language to create the
Google Chrome web browser and the Google File System.
Furthermore, the Google Open Source community includes many
projects that are maintained with the aid of the C/C++

programming language.

When it comes to Google, while the primary languages used in
their vast infrastructure might not be directly C due to the
complexity and scale, C has had a significant influence on the
technologies and projects developed by Google. Here's a look at

some areas where C has played a role in Google's ecosystem:

Applications of C in Google's Technology Landscape:

Google, renowned for its innovative technologies and services,
relies on a diverse array of programming languages and tools to

power its platforms and services. While languages like Java,
Programming with C - 88

Python, and Go are prevalent within Google's infrastructure, C has

influenced various aspects:

a) Systems Programming and Performance-Critical

Components:

i). Low-Level Infrastructure: While not the primary language in
Google's services, C is utilized in critical systems programming,
particularly in performance-critical components of infrastructure,
such as parts of the Google File System (GFS) or certain elements

of the networking stack.

ii). Optimized Code: In cases where efficiency and performance
are paramount, C's ability to produce optimized code is invaluable,

influencing specific parts of Google's core infrastructure.

b) Open Source Projects:

Contributions to Open Source: Google has contributed to various
open source projects written in C. For instance, they've supported
and contributed to projects like the Linux kernel, enhancing its
functionality and performance, which indirectly benefits Google's

infrastructure.

). Embedded and Hardware Projects:

IoT and Hardware Development: While not always directly
associated with Google's primary services, C has applications in
Google's endeavors related to embedded systems, IoT, and
hardware development. Projects like Android Things or hardware-
specific optimizations might involve C programming for firmware

and low-level hardware interactions.

Programming with C - 89

d). Experimentation and Prototyping:

Research and Development: C might be utilized in Google's
research and development efforts, especially in experimental
projects exploring new technologies, algorithms, or prototypes

where performance at a lower level is essential.

e). Legacy Systems and Optimization:

i). Legacy Codebases:* In certain legacy systems that have been
part of Google's infrastructure for a long time, there might still be
components written in C, especially where rewriting or migrating

the code might not be immediately feasible or beneficial.

ii).Performance Optimization: C might be employed in
optimizing certain critical algorithms or functionalities within
Google's services to ensure they operate at their peak performance

levels.

3.2.5 Design of a Compiler

You can widely use the C programming language to develop
compilers, one of its most popular applications. Many other
languages’ compilers were created with the connection between C
and low-level languages in mind, making it easier for the machine
to grasp what was being written. Many prominent compilers, such
as Clang C, Bloodshed Dev-C, Apple C, and MINGW, were

developed with the C programming language.

The development of a compiler involves intricate processes that
necessitate efficient handling of syntax, semantics, and code

generation. C, known for its system-level access and efficiency, is
Programming with C - 90

frequently used in the creation of compilers. Here's an exploration

of how C is applied in compiler design:

Applications of C in Compiler Design:

Compilers, vital in translating high-level programming languages
into machine-readable code, require a meticulous design process.
C, with its system-level capabilities and efficiency, is often

employed in various aspects of compiler development:

1. Lexical Analysis (Lexers):

Tokenization: C's capability to handle strings and characters
efficiently is crucial in building lexers. Lexical analyzers written in
C break down source code into tokens, identifying keywords,

identifiers, literals, and symbols.

2. Syntax Analysis (Parsers):

Parsing Algorithms: C is utilized in implementing parsers that
enforce the grammatical structure of programming languages.
Tools like Bison or Yacc generate C code for parsers, converting

context-free grammars into code structures for syntactic analysis.

3. Semantic Analysis:

i). Type Checking: C's ability to manipulate memory and data
structures is beneficial in implementing type systems and
performing type checking during the semantic analysis phase of

compilation.

ii). Error Detection: C aids in implementing checks for semantic

Programming with C - 91

errors, ensuring the correctness of the code being compiled.

4. Intermediate Code Generation:

Code Representation: C is used to generate intermediate code
representations of source programs. This involves constructing
abstract syntax trees (ASTs) or intermediate code representations

that act as a bridge between the source and target code.

5. Optimization Phase:

Efficient Algorithms: C's efficiency in managing memory and
processing power is crucial in implementing optimization
algorithms. Compilers written in C perform various optimizations
like dead code elimination, loop optimizations, and constant

folding to enhance program efficiency.

6. Code Generation:

Target Machine Independence: C allows for the generation of
target-independent code. Compiler backends written in C produce
machine code or assembly language specific to the target
architecture while abstracting the complexities of hardware

interactions.

7. Integration with System Libraries:

Utilization of Standard C Library: Compiler implementations
often rely on the standard C library to perform various tasks, such

as memory allocation, input/output operations, and string

manipulation.

Programming with C - 92

8. Error Handling and Reporting:

Diagnostic Messages: C is used to implement error handling
mechanisms, generating informative diagnostic messages during

compilation, aiding developers in debugging their code.

9. Portability and Maintenance:

Modular Design: C's structured nature allows for modular and
maintainable compiler codebases. This facilitates easier
enhancements, bug fixes, and porting the compiler to different

platforms.

3.2.6 Mozilla Firefox and Thunderbird

Because Mozilla Firefox and Thunderbird were free and open-
source email client projects, they were included here. As a result,

they were developed in the C/C++ programming language.

Mozilla Firefox and Thunderbird, as flagship products of the
Mozilla Foundation, heavily rely on various programming
languages, including C, for their development. While these
applications predominantly use a mix of languages for different
components, C plays a significant role in their core functionalities

and system-level interactions:

Applications of C in Mozilla Firefox and Thunderbird:

Mozilla Firefox, a widely used web browser, and Thunderbird, an
email client, are developed by the Mozilla Foundation. While these
applications use multiple languages, C is instrumental in several

key areas:
Programming with C - 93

1. Core Engine Development:

Firefox's Gecko Engine: C is used extensively in the development
of Gecko, the rendering engine that powers Firefox. Gecko handles
the display and interpretation of web content, requiring efficient
handling of HTML, CSS, and JavaScript, which C helps facilitate

at a low-level.

2. Performance-Critical Components:

i). Optimization: C is crucial in optimizing critical components of
Firefox and Thunderbird for performance, ensuring smooth and
responsive user experiences while rendering web pages or

managing email data.

ii). System Resource Management: C's ability to manage system
resources efficiently is valuable in handling memory and processor

usage within these applications.

3. Platform-Specific Implementations:

Cross-Platform Compatibility: While Firefox and Thunderbird
are designed to work across different operating systems, C aids in
creating platform-specific implementations for Windows, macOS,
and Linux, allowing for consistent functionality across diverse

environments.

4. Browser and Email Client Interactions:

System Integration: C is used in interfacing with system libraries
and APIs, allowing Firefox and Thunderbird to interact with the

underlying operating system for functionalities like file I/O,
Programming with C - 94

networking, and user interface interactions.

5. Extension and Add-on Development:

SDKs and APIs: Mozilla provides SDKs and APIs for developers
to create extensions and add-ons for Firefox and Thunderbird. C
may be involved in the core components of these SDKs, enabling

developers to extend the functionalities of these applications.

6. Media Handling and Processing:

Audio/Video Support: C plays a role in handling audio and video
codecs, ensuring compatibility and efficient playback of

multimedia content within these applications.

7. Security and Memory Management:

Memory Security: C's low-level capabilities are essential in
managing memory securely, contributing to the overall security
and stability of Firefox and Thunderbird against vulnerabilities like

buffer overflows.

8. Browser Engine Architecture:

Gecko Components: Gecko, being a core component of Firefox,
relies on C for its architecture, allowing efficient handling of web
content and providing the backbone for browser functionalities.

3.2.7 Gaming and Animation

Because the C programming language is based on a compiler and

is thus far quicker than Python or Java, it has gained popularity in
Programming with C - 95

the game industry. Some of the most basic games, such as the Dino
game, Tic-Tac-Toe, and the Snake game, are written in C
programming languages. In addition, doom3, a first-person shooter
horror game developed by id Software in 2004 for Microsoft
Windows and written in C, is one of the most powerful graphics

games ever created.

C programming language holds a significant position in the realm
of gaming and animations due to its performance, system-level
access, and ability to interact closely with hardware. Here's an
exploration of how C is applied in gaming and animation

industries:

Applications of C in Gaming and Animations:

C serves as a cornerstone in gaming and animations, facilitating
the creation of immersive experiences through its efficiency, direct

hardware interaction, and suitability for performance-critical tasks:

1. Game Engines and Development:

i). Core Game Logic: C is extensively used in game engines to
handle the core game logic, ensuring smooth gameplay by

efficiently managing game states, physics, and Al computations.

ii). Graphics Programming: C, coupled with graphics libraries
like OpenGL and DirectX, powers rendering engines, enabling the
creation of visually stunning graphics and effects in games and

animations.

Programming with C - 96

2. Real-Time Rendering and Performance:

i). Graphics Optimization: C's low-level capabilities are crucial
in optimizing graphics rendering pipelines, ensuring real-time
performance in displaying complex scenes, textures, and

animations.

ii). Efficient Memory Management: C's control over memory
allocation and management helps in optimizing resource usage,

which is crucial in graphics-intensive applications.

3. Animation and Simulation:

Animation Frameworks: C is employed in animation frameworks
and tools for creating lifelike character animations and scene

movements, providing the backbone for animation software.

Physics Simulation: C aids in implementing physics engines used
for simulating realistic interactions between objects, characters,

and environments in games and animations.

4. Cross-Platform Development:

Platform Independence: C's portability allows game developers
to write code that can be compiled across multiple platforms,
facilitating cross-platform game releases for various operating

systems and devices.

5. Game AI and Scripting:

i). AI Implementation: C is used to develop artificial intelligence

algorithms for game characters, providing them with behaviors,
Programming with C - 97

decision-making abilities, and interactive responses.

ii). Scripting Engines: In game development, C is utilized to
create scripting engines that allow game designers to implement
dynamic behaviors and game mechanics without recompiling the

entire game codebase.

6. Embedded Systems and Consoles:

i). Console Game Development: C is prevalent in developing
games for gaming consoles due to its performance optimization
and ability to harness the hardware capabilities of consoles like

PlayStation, Xbox, and Nintendo.

ii). IoT and Embedded Gaming: C's efficiency is leveraged in
developing games for embedded systems and IoT devices, catering
to gaming experiences on a diverse range of devices with limited

resources.

7. Tools and Middleware Development:

Game Development Tools: C is used to create development tools,
middleware, and APIs that assist game developers in optimizing

performance, debugging, and creating game assets.

8. Custom Hardware Interactions:

Specialized Peripherals: In applications involving specialized
gaming peripherals or hardware-specific interactions, C enables
direct communication with hardware, allowing developers to create

tailored experiences.

Programming with C - 98

3.2.8 MySQL

MySQL is another open-source project that is used in relational
database management systems (RDBMYS). It was developed in the

C/C++ programming language.

MySQL, an open-source relational database management system,
extensively uses C and C++ in its development for various critical

components. Here's an exploration of how C is applied in MySQL.:

Applications of C in MySQL:

MySQL, a popular RDBMS known for its reliability, performance,
and scalability, leverages the C programming language in several

key areas:

1. Core Database Engine:

C Codebase: The core of MySQL's database engine is primarily
written in C. This includes fundamental functionalities like query
parsing, query optimization, data manipulation, indexing, and

transaction handling.

2. Performance Optimization:

i). Efficient Algorithms: C allows developers to implement high-
performance algorithms for data storage, retrieval, and processing,
ensuring the database engine operates swiftly even with large

datasets.

ii). Memory Management: C's control over memory allocation

and management is crucial in optimizing MySQL's memory usage,
Programming with C - 99

leading to better performance and reduced overhead.

3. System Interaction and Portability:

System-Level Interactions: C enables MySQL to interact closely
with the underlying operating system, facilitating efficient 1I/O

operations, process management, and system calls.

Platform Independence: While MySQL supports various
operating systems, C allows for the development of a codebase that
can be compiled and run across different platforms with minimal

modifications.

4. Custom Extensions and Plugins:

Plugin Architecture: MySQL's plugin architecture, enabling the
development of custom extensions, storage engines, and
functionalities, is often implemented in C to ensure compatibility

and performance.

5. Database Drivers and Connectors:

Native Drivers: C is used in developing native drivers and
connectors (e.g., C API) that enable various programming
languages and applications to interact seamlessly with the MySQL

database.

6. Memory Management and Optimization:

Resource Utilization: C's efficiency in managing resources aids in
optimizing memory allocation and utilization within the database

system, contributing to improved performance and stability.
Programming with C - 100

7. Query Optimization and Execution:

Query Processing: C's capabilities are harnessed in optimizing
and executing SQL queries efficiently, ensuring that complex

queries are processed swiftly and accurately.

8. Security and Stability:

Codebase Robustness: C's structured nature assists in creating a
robust and secure codebase for MySQL, enhancing the database's
stability and resistance to vulnerabilities.

9. Open-Source Contributions:

Community Development: MySQL being an open-source project

welcomes contributions from developers worldwide, many of

whom contribute in C to enhance and extend its functionalities.

3.3 NEW PROGRAMMING LANGUAGE
PLATFORMS

It is not only C that gave rise to C++. This programming language
incorporates all the features of C while also incorporating the
concept of object-oriented programming. Still, it has also given
rise to many other programming languages widely used in today’s
world, such as MATLAB and Mathematica. It makes it possible

for applications to run more quickly on a computer.

New programming language platforms are constantly emerging,
aiming to address modern challenges, enhance developer

productivity, and cater to evolving computing paradigms. Here's a

Programming with C - 101

look at some of the trends and new platforms in the programming

language landscape:

1. Rust:

i). Safety and Performance: Rust has gained attention for its
emphasis on memory safety without sacrificing performance. It
offers a strong type system and ownership model, enabling safer

concurrent programming.

ii). Systems Programming: Rust is favored for system-level
programming, replacing languages like C/C++ in certain scenarios

due to its safety guarantees and efficiency.

2. Swift:

i). IOS Development: Swift, developed by Apple, has become the
primary language for IOS and macOS app development. Known
for its readability and modern syntax, it aims to make

programming for Apple platforms more accessible.

ii). Server-Side Development: Swift is also making headway in
server-side development, offering a concise and powerful language

for building web applications.

3. Kotlin:

i). Android Development: Kotlin has gained popularity as a
modern language for Android app development. Its interoperability
with Java and concise syntax has led to increased adoption within

the Android development community.

Programming with C - 102

ii). Multiplatform Development: Kotlin's multiplatform
capabilities enable developers to write shared code across multiple

platforms, including JVM, Android, iOS, and web.

4. Web Assembly (Wasm):

i). Universal Binary Format: Web Assembly is not a
programming language but a binary instruction format for a stack-
based virtual machine. It enables running code written in multiple

languages on web browsers at near-native speeds.

ii). Cross-Platform Execution: Wasm allows code written in
languages like C/C++, Rust, and others to be compiled and
executed across various platforms beyond the web, including edge

computing and IoT devices.

5. Julia:

i). Scientific Computing: Julia has gained traction in scientific
and numerical computing due to its high performance, easy syntax,
and powerful features for mathematical modeling, data analysis,

and machine learning.

ii).Parallelism and Concurrency: Julia's design includes built-in
support for parallelism and concurrent programming, making it

suitable for computationally intensive tasks.

6. Golang (Go):

i). Concurrent Programming: Go has gained popularity for its
simplicity and built-in support for concurrent programming

through goroutines and channels. It's well-suited for building
Programming with C - 103

scalable and concurrent systems.

ii).Cloud-Native Development: Go is commonly used in cloud-
native development for its efficiency in creating microservices and

distributed systems.

7. Elixir:

i). Functional Programming: Elixir, built on the Erlang VM,
combines the functional programming paradigm with a focus on
fault-tolerance and concurrency. It's used in building highly

scalable and fault-tolerant systems.

ii). Real-Time Applications: Elixir is favored for real-time
applications, such as messaging platforms and IoT systems, where

high concurrency and reliability are essential.

8. Haskell and Functional Languages:

Functional Programming Paradigm: Haskell and other
functional languages continue to be influential due to their
emphasis on immutability, higher-order functions, and type safety.
They're used in academia, research, and niche domains requiring

strong guarantees.

9. Blockchain and Smart Contracts:

Smart Contract Development: Solidity, for Ethereum, and other
domain-specific languages (DSLs) are used in writing smart
contracts for blockchain platforms, facilitating decentralized

applications (dApps) and decentralized finance (DeFi).

Programming with C - 104

10. Low-Code/No-Code Platforms:

Simplifying Development: Low-code/no-code platforms like
Bubble, OutSystems, and others aim to democratize software
development, allowing users with limited coding experience to
create applications using visual interfaces and pre-built

components.

3.4 TRANSLATORS OF HIGH-LEVEL
LANGUAGES INTO MACHINE
LANGUAGE

Interpreters are also computer programs that are used to translate
high-level languages into machine language. You may write
language interpreters in the C programming language. C language
is used to write several computer language interpreters, such as the

Python Interpreter, the MATLAB Interpreter, etc.

C plays a crucial role in the development of translators, such as
compilers and interpreters, responsible for translating high-level
languages into machine-readable code. Here's an exploration of

how C is applied in creating these essential language translators:
Applications of C in Translators of High-Level Languages:

Translators, including compilers and interpreters, are instrumental
in converting human-readable high-level code into machine-
executable instructions. C programming language is widely used in

various aspects of developing these language translators:

1. Compiler Development:

i). Frontend Processing: C is utilized in building the frontend of

compilers responsible for lexical analysis (scanning), syntax
Programming with C - 105

analysis (parsing), and semantic analysis of the source code.

ii). Intermediate Code Generation: Compilers often use C for
generating intermediate representations of code (e.g., abstract
syntax trees - ASTs) before translating them into target machine

code.
2. Interpreter Implementation:

i). Interpreter Loop: C is employed in constructing interpreter
loops, which execute high-level code directly without prior
translation to machine code, interpreting and executing instructions

on-the-fly.

ii). Runtime Environment: Interpreters written in C establish the
runtime environment required to execute high-level language

instructions efficiently.
3. Code Optimization and Generation:

i). Backend Processing: C aids in the backend of compilers,
where it performs code optimization and translation of

intermediate representations into target machine code or bytecode.

ii). Target-Dependent Optimizations: Compilers written in C
often implement optimizations specific to the target architecture,

leveraging C's ability to interact closely with hardware.
4. Development Tools and Utilities:

i). Language-Specific Tools: C is used in creating language-
specific tools and utilities for debugging, profiling, and analyzing

high-level code during translation processes.

ii). Parser Generators: Tools like Bison or Yacc generate C code
Programming with C - 106

for parsers, enabling the implementation of parsers for various

high-level languages.

5. Portability and Cross-Language Support:

i). Portability: C's portability allows for the development of
translators that can be compiled and executed across different

platforms, facilitating cross-platform language translation.

ii). Multilingual Translators: C-based translators can handle
multiple high-level languages, allowing developers to create
compilers or interpreters that support diverse programming

languages.
6. Frameworks and Libraries:

Compiler Frameworks: C provides the groundwork for
developing frameworks and libraries that aid in building
translators, offering reusable components for lexical analysis,

parsing, and code generation.

7. Low-Level System Interactions:

System Calls and Hardware Interaction: C's capability to
interact closely with the underlying system and hardware resources
is valuable in translators needing low-level access for optimization

or system-specific functionality.

8. Open Source Contributions:

Community Development: Many open-source compilers,
interpreters, and related tools are written in C, fostering
contributions from a global community of developers to enhance

and extend these language translators.

Programming with C - 107

3.5 CPROGRAMMING PROJECTS

C programming projects are programs or tools that generate, plan,
and manage various tasks or applications using the C programming
language. Projects can assist you in learning and practicing C skills
like file handling, command line parsing, and make files. Projects
can also combine many applications into a single executable or
library. C projects may be created for a variety of objectives,

including financial management, artistic work, and teaching.

3.5.1 Basic C Projects

There are some basic C Projects which can be simply build:

a). Calculator:

You can build a simple calculator with C using switch cases or if-
else statements. This calculator takes two operands and an
arithmetic operator (+, -, *, /) from the user, however, you can
expand the program to accept more than two operands and one
operator by adding logic. Then, based on the operator entered by
the user, it conducts the computation on the two operands. The
input, however, must be in the format “numberl operatorl

number2” (i.e. 2+4).

b). Student Record management system:

Using C language, you can also create a student management
system. To handle students’ records (like Student’s roll number,
Name, Subject, etc.) it employs files as a database to conduct file
handling activities such as add, search, change, and remove entries.

Programming with C - 108

It appears a simple project but can be handy for schools or colleges

that have to store records of thousands of students.

¢). Calendar:

If you have ever lost track of which day of the week is today or the
number of days in that particular month, you should build a
calendar yourself. The Calendar is written in the C programming
language, and this Calendar assists you in determining the date and
day you require. We can implement it using simple if-else logic
and switch-case statements. The display() function is used to
display the calendar and it can be modified accordingly. It also has
some additional functions. The GitHub link of the calendar has

been provided below.

d). Phone Book:

This Phone book Project generates an external file to permanently
store the user’s data (Name and phone number). The phone book is
a very simple C project that will help you understand the core
concepts of capacity, record keeping, and data structure. This
program will show you how to add, list, edit or alter, look at, and

delete data from a record.

e). Unit Converter Project:

Forgot how to convert degree Fahrenheit to Celsius? Don’t worry.

We have a solution for you. This unit converter converts basic

units such as temperature, currency, and mass.

Programming with C - 109

3.5.2 Intermediate C Projects with Source Code

a). Mini Voting System:

An online voting system is a software platform that enables
organizations to conduct votes and elections securely. A high-
quality online voting system strikes a balance between ballot
security, convenience, and the overall needs of a voting event. By
collecting the input of your group in a systematic and verifiable
manner, online voting tools and online election voting systems
assist you in making crucial decisions. These decisions are
frequently taken on a yearly basis — either during an event (such as
your organization’s AGM) or at a specific time of the year.
Alternatively, you may conduct regular polls among your

colleagues (e.g. anonymous employee feedback surveys).

b). Voting System:

With this voting system, users can enter their preferences and the
total votes and leading candidate can be calculated. It’s a
straightforward C project that’s simple to grasp. Small-scale

election efforts can benefit from this.

¢). Tic-tac-toe Game:

Tic-tac-toe, also known as noughts and crosses or Xs and Os, is a
two-person paper and pencil game in which each player alternates
marking squares in a three-by-three grid with an X or an O. The
winner is the player who successfully places three of their markers
in a horizontal, vertical, or diagonal row. You can implement this
fun game using 2D arrays in the C programming language. It is

important to use arrays while creating a Tic Tac Toe game in the C
Programming with C - 110

programming language. The Xs and Os are stored in separate
arrays and passed across various functions in the code to maintain
track of the game’s progress. You can play the game against the
computer by entering the code here and selecting either X or O.

The source code for the project is given below.

d). Matrix Calculator:

Mathematical operations are an everyday part of our life. Every
day, we will connect with many forms of calculations in our
environment. Matrices are mathematical structures in which
integers are arranged in columns and rows. In actual life, matrices
are used in many applications. The most common application is in
the software sector, where pathfinder algorithms, image processing
algorithms, and other algorithms are developed. Some fundamental
matrix operations are performed in this project, with the user
selecting the operation to be performed on the matrix. The matrices
and their sizes are then entered. It’s worth noting that the project

only considers square matrices.

e). Library Management System:

Library management is a project that manages and preserves
electronic book data based on the demands of students. Both
students and library administrators can use the system to keep track
of all the books available in the library. It allows both the
administrator and the student to look for the desired book. The C
files used to implement the system are: main.c, searchbook.c,

issuebook.c, viewbook.c, and more.

f). Electricity Bill Calculator

The Electricity Cost Calculator project is an application-based
Programming with C - 111

micro project that predicts the following month’s electricity bill
based on the appliances or loads used. Visual studio code was used
to write the code for this project. This project employs a multi-file
and multi-platform strategy (Linux and Windows). People who do
not have a technical understanding of calculating power bills can
use this program to forecast their electricity bills for the coming
months; however, an electricity bill calculator must have the

following features:

= All loads’ power rating
= Unit consumed per day
= Units consumed per month, and

= Total load calculation

g). Movie Ticket Booking System

The project’s goal is to inform a consumer about the MOVIE
TICKET BOOKING SYSTEM so that they can order tickets. The
project was created with the goal of making the process as simple
and quick as possible. The user can book tickets, cancel tickets,
and view all booking records using the system. Our project’s major
purpose is to supply various forms of client facilities as well as
excellent customer service. It should meet nearly all the conditions

for reserving a ticket.

3.5.3 Advanced C Projects with Source Code

a). Snakes and Ladders Game:

Snakes and ladders, also known as Moksha Patam, is an ancient

Indian board game for two or more players that is still considered a

worldwide classic today. It’s played on a gridded game board with
Programming with C - 112

numbered squares. On the board, there are several “ladders” and
“snakes,” each linking two distinct board squares. The dice value
can either be provided by the user or it can be generated randomly.
If after moving, the pointer points to the block where the ladder is,
the pointer is directed to the top of the ladder. If unfortunately, the
pointer points to the mouth of a snake after moving, the pointer is
redirected to the tail of the snake. The objectives and rules of the

game can be summarized as-

Objective — Given a snake and ladder game, write a function that
returns the minimum number of jumps to take the top or

destination position.

You can assume the dice you throw results in always favor of you,

which means you can control the dice.

b). Lexical Analyzer:

The Lexical Analyzer program translates a stream of individual
letters, which are generally grouped as lines, into a stream of
lexical tokens. Tokenization, for example, of source code words
and punctuation symbols. The project’s main goal/purpose is to
take a C file and generate a sequence of tokens that can be utilized
in the next stage of compilation. This should also account for any

error handling requirements that may arise during tokenization.

c). Bus Reservation System:

This system is built on the concept of booking bus tickets in
advance. The user can check the bus schedule, book tickets, cancel
reservations, and check the bus status board using this system.

When purchasing tickets, the user must first enter the bus number,
Programming with C - 113

after which the system will display the entire number of bus seats
along with the passengers’ names, and the user must then enter the

number of tickets, seat number, and person’s name.

We will be using arrays, if-else logic, loop statements, and various

functions like login(), cancel(), etc. to implement the project.

d). Dino Game:

This little project is a modest recreation of the Offline Google
Chrome game Dinosaur Jump. The game can be played at any
moment by the user. The entire project is written in the C
programming language. The X key is used to exit the game, and
the Space bar is used to leap. play and score as many points as you
can; this is a fun, simple game designed specifically for novices,

and it’s simple to use and understand.

e). Pac-Man Game:

Pacman, like other classic games, is simple to play. In this game,
you must consume as many small dots as possible to earn as many
points as possible. The entire game was created using the C
programming language. Graphics were employed in the creation of
this game. To create the game, you have to first define the grid
function to manage the grid structure. To control the movement,
you can define functions such as move right(), move_left(),
move _up() and move down(). C files to add ghosts and their
functionalities, positions check, etc. can be added to make the
game more fun. The customers will find this C Programming game

to be simple to comprehend and manage.

3.6 CONCLUSION

C is clearly not an obsolete programming language, as evidenced
Programming with C - 114

by the fact that many of the world's greatest businesses use it for
their profession or company. On the contrary, it remains the most
popular programming language for developers and back-end
developers throughout the world. This event taught us about the
practical use of C programming. Our research revealed that C is
used in all hardware and software technologies, making it
advantageous for both aspiring software developers and seasoned
software specialists with a good command of C and the ability to

construct sophisticated interfaces.

In this unit, we've gathered several C language projects and ideas
for you. As the world's largest software development community,
GitHub has amassed a massive collection of projects from
programmers who constantly study and evaluate each other's work.
Furthermore, because the platform supports a wide range of
programming languages, there is a wealth of C project ideas on
GitHub for anybody to draw inspiration from. It is your
responsibility as a developer to think outside the box, devise
imaginative solutions utilizing available resources, and contribute
to the future of software. The projects/software are organized
under various topics for the sake of clarity. So, if you're new to
project development, begin by comprehending and evaluating a
little project before moving on to a larger project scope and

application.

Programming with C - 115

BLOCK II: OPERATOR AND
EXPRESSIONS OF ‘C’, CONTROL FLOW
MECHANISMS

UNIT4 FUNDAMENTAL ELEMENTS OF
CC,

Structure

4.0 Introduction

4.1 Objectives

4.2 Data Types in C
4.2.1 Primitive Data Types
4.2.2 User Defined Data Types
4.2.3 Derived Data Types
4.2.4 Lvalues and Rvalues in C

4.3 Variables
4.3.1 Variable definition in C
4.3.2 Declaring Variables
4.3.3 Initialising Variables

4.4 Conclusion

4.5 Unit based Questions /Answers

4.0 INTRODUCTION

In this unit introduces Computer programs usually work with
different types of data and need a way to store the values being
used. These values can be numbers. C language has two ways of
storing number values—Data types and Variables—with many
options for each. Data types and variables are the fundamental
elements of each program. Simply speaking, a program is nothing
else than defining them and manipulating them. A variable is a
data storage location that has a value that can change during
program execution. In contrast, a constant has a fixed value that

Programming with C - 116

can’t change.

This unit is concerned with the basic elements used to construct
simple C program statements. These elements include the C
character set, identifiers and keywords, data types, constants,
variables and arrays, declaration and naming conventions of
variables.

This unit will explain to you the fundamental elements of
language C.

4.1 OBJECTIVES

After completing this unit, you will be able to:

= define identifiers and data types in C;

= know name the identifiers as per the conventions;

= describe memory requirements for different types of
variables; and

= define constants, symbolic constants and their use in

programs.

4.2 DATA TYPES IN ‘C°

Each variable in C has an associated data type. It specifies the
type of data that the variable can store like integer, character,
floating, double, etc. Each data type requires different amounts of
memory and has some specific operations which can be
performed over it. The data type is a collection of data with
values having fixed values, meaning as well as its characteristics.

The data types in C can be classified as follows:

Types Description
Primitive Data | Primitive data types are the most basic data types
Types that are used for representing simple values such

as integers, float, characters etc.

User Defined | The user-defined data types are defined by the

Programming with C - 117

Data Types user himself.

Derived Types | The data types that are derived from the primitive
or built-in data types are referred to as derived
data types.

Types Data Types

Basic Data Type Int, char, float, double

Derived Data Type Array, Pointer, Structure, Union

Enumeration Data Type Enum

Void Data Type Void

4.2.1 Primitive Data Types (Basic Data Types)
The basic data types are integer-based and floating-point based. C

language supports both signed and unsigned literals.

The memory size of the basic data types may change according to

32 or 64-bit operating system.

‘ Data Types in C ‘

g Point

|
Double
Floating

Different data types also have different ranges up to which they
can store numbers. These ranges may vary from compiler to
compiler. Below is a list of ranges along with the memory

requirement and format specifiers on the 32-bit GCC compiler.

Programming with C - 118

i) Data Types and Storage

To store data inside the computer we need to first identify the type
of data elements we need in our program. There are several
different types of data, which may be represented differently

within the computer memory. The data type specifies two things:

1. Permissible range of values that it can store.

2. Memory requirement to store a data type.

C Language provides four basic data types viz. int, char, float and
double. Using these, we can store data in simple ways as single
elements or we can group them together and use different ways (to

be discussed later) to store them as per requirement.

ii). Integer Types

Integers are entire numbers without any fractional or decimal parts,

and the int data type is used to represent them.

It is frequently applied to variables that include values, such
as counts, indices, or other numerical numbers. The int data
type may represent both positive and negative numbers because it

is signed by default.

An int takes up 4 bytes of memory on most devices, allowing it to

store values between around -2 billion and +2 billion.

Data Types Memory Size | Range

Char 1 byte -128 to 127
Signed char 1 byte -128 to 127
Unsigned char 1 byte 0 to 255

Short 2 byte -32,768 to 32,767
Signed short 2 byte -32,768 to 32,767
Unsigned short 2 byte 0 to 65,535

Programming with C - 119

Int 2 byte -32,768 to 32,767

Signed int 2 byte -32,768 to 32,767

Unsigned int 2 byte 0 to 65,535

Short int 2 byte -32,768 to 32,767

Signed short int 2 byte -32,768 to 32,767

Unsigned short int 2 byte 0 to 65,535

Long int 4 byte -2,147,483,648 to 2,147,483,647
Signed long int 4 byte -2,147,483,648 to 2,147,483,647
Unsigned long int 4 byte 0 to 4,294,967,295

Float 4 byte

double 8 byte

Long double 10 byte

Short, long, signed, unsigned are called the data type qualifiers and
can be used with any data type. A short int requires less space than
int and long int may require more space than int. If int and short int

takes 2 bytes, then long int takes 4 bytes.

Unsigned bits use all bits for magnitude; therefore, this type of
number can be larger. For example signed int ranges from —32768
to +32767 and unsigned int ranges from 0 to 65,535. Similarly,
char data type of data is used to store a character. It requires 1 byte.
Signed char values range from —128 to 127 and unsigned char

value range from 0 to 255.

To get the exact size of a type or a variable on a particular
platform, you can use the sizeof operator. The expressions
sizeof(type) yields the storage size of the object or type in bytes.
Given below is an example to get the size of int type on any

machine:

#include <stdio.h>
#include <limits.h>
Int main()

{

Printf(“Storage size for int: %d \n”, sizeof(int));
Return 0;

}

When you compile and execute the above program, it produces the

following result on Linux:

Programming with C - 120

Storage size for int: 4

4.2.2 User Defined Data Types

i). Character

Individual characters are represented by the char data type.
Typically used to hold ASCII or UTF-8 encoding scheme
characters, such as letters, numbers, symbols, or commas. There
are 256 characters that can be represented by a single char, which
takes up one byte of memory. Characters such as'A', 'b',

'S', or '$' are enclosed in single quotes.

Data Type Storage Format Range of Values
Space
Char 1 byte %c ASCII character set (-128 to
127)
Unsigned 1 byte %c ASCII character set (0 to
char 255)

ii). Floating-Point Types

To represent integers, use the floating data type. Floating numbers
can be used to represent fractional units or numbers with decimal

places.

The float type is usually used for variables that require very good
precision but may not be very precise. It can store values with an
accuracy of about 6 decimal places and a range of about 3.4 x

1038 in 4 bytes of memory.

Type St;)irzige Value Range Precision
Float 4 byte 1.2E-38 to 3.4E+38 6 decimal places
Double 8 byte 2.3E-308 to 1.7E+308 15 decimal places
Long 10 byte 3.4E-4932 to 19 decimal places
double 1.1E+4932

The header file float.h defines macros that allow you to use these

values and other details about the binary representation of real
Programming with C - 121

numbers in your programs. The following example prints the

storage space taken by a float type and its range values:

#include <stdio.h>

#include <float.h>

int main()

{

printf("" Storage size for float : %d \n", size of (float));
printf("Minimum @at positive value: %E\n", FLT MIN);
printf("Maximum float positive value: %E\n", FLT MAX);
printf("Precision value: %d\n", FLT DIG);

return 0;

}

iii). Double:

Use two data types to representtwo floating integers. When
additional precision is needed, such as in scientific calculations or
financial applications, it provides greater accuracy compared to

float.

Double type, which uses 8 bytes of memory and has an accuracy of
about 15 decimal places, yields larger values. C treats floating

point numbers as doubles by default if no explicit type is supplied.

Int age = 25;

Char grade = ‘A’;

Flaot temperature = 98.6;
Double pi =3.14159265359;

In the example above, we declare four variables: an int variable for

the person's age, achar variable for the student's grade, a float

Programming with C - 122

variable for the temperature reading, and two variables for

the number pi.
4.2.3 Derived Data Type

Beyond the fundamental data types, C also supports derived data
types, including arrays, pointers, structures, and unions. These data
types give programmers the ability to handle heterogeneous data,

directly modify memory, and build complicated data structures.
Array

An array, a derived data type, lets you store a sequence of fixed-
size elements of the same type. It provides a mechanism for joining

multiple targets of the same data under @ same name.

The index is used to access the elements of the array, with a 0
index for the first entry. The size of the array is fixed at declaration
time and cannot be changed during program execution. The array

components are placed in adjacent memory regions.
Here is an example of declaring and utilizing an array:

#include <stdio.h>
int main() {
int numbers[5]; / Declares an integer array with a size of 5 elemen

ts

// Assign values to the array elements
numbers[0] = 10;
numbers[1] = 20;

numbers[2] = 30;
Programming with C - 123

numbers[3] = 40;
numbers[4] = 50;

// Display the values stored in the array

printf("Values in the array: ");

for (inti=0; 1< 5; i++) {

printf("%d ", numbers[i]);

}

printf("\n");

return O;

}

Output:

Values in the array: 10 20 30 40 50

The void Type

S.No.

Type and Description

Functions returning void

In C programming, some functions are designed not to return any
value. Such functions are declared with a return type of void. This
indicates that the function performs a task but does not send any
result back to the caller.

Example: void exit (int status);

Functions with void Parameters

Some functions in C do not require any input arguments. When no
parameters are needed, void can be specified in the parameter list
to explicitly indicate this.

Example: int rand(void);

Void Pointers

A void * pointer 1@ special type of pointer in C that can hold the
address of any data type, though it does not have a specific type
itself. It is commonly used in functions dealing with raw memory,
such as memory allocation routines.

Example: void *malloc(size_t size);

Programming with C - 124

4.3 VARIABLES

Understanding Variables in C

In C programming, a variable serves as a label for a memory
location that can hold data to be used and modified by a program.
Each variable has a data type, which defines:

e The amount of memory allocated,

e The range of values it can store, and

e The operations that can be performed on it.

Naming Rules for Variables
e Variable names can consist of letters (A-Z, a-z), digits (0-
9), and the underscore () character.
e A variable name must start with Q‘ner a letter or an
underscore.
e C is a case-sensitive language, so Value and value would

be treated as two different variables.

Types of Variables
Based on the fundamental data types introduced earlier, the basic
types of variables include:

« int— for integers,

« float — for floating-point numbers,

e char — for characters,

« double — for double-precision floating-point numbers.

These types dictate the kind of data the variable can store and how

much memory it occupies.

Type _Description
Char | Typically a single octet (one byte). This is an
integer type.

Programming with C - 125

Int The most natural size of integer for the machine.
Float A single-precision floating point value. |
Double A double-precision floating point value.

void Represents the absence of type.

C programming language also allows to define various other types
of variables, which we will cover in subsequent chapters like
Enumeration, Pointer, Array, Structure, Union, etc. For this

chapter, let us study only basic variable types.

Rules for declaring variable name

= Variable name may be a combination of alphabet, digits, or
underscores and its length should not exceed eight characters.

= First character must be an alphabet.

= No commas or blank spaces are allowed in variable name.

= Among the special symbols, only underscore can be used in
variable name.

= Example: emp_age and item_ 4e

4.4 CONCLUSION

C programming language because they define the kinds of
information that variables can hold. They provide the data's size
and format, enabling the compiler to allot memory and carry out
the necessary actions. Data types supported by C include void,
enumeration, derived, and basic types. In addition to floating-point
types like float and double, basic data types in C also include
integer-based kinds like int, char, and short. These forms can
be signed or unsigned, and they fluctuate in size and range. To
create dependable and efficient code, it is crucial to comprehend

the memory size and scope of these types.

Programming with C - 126

A few examples ofderived data types are unions, pointers,
structures, and arrays. Multiple elements of the same kind can be
stored together in contiguous memory due to arrays. Pointers keep
track of memory addresses, allowing for fast data structure
operations and dynamic memory allocation. While unions allow
numerous variables to share the same memory space, structures

group relevant variables together.

Code becomes more legible and maintainable when named
constants are defined using enumeration data
types. Enumerations give named constants integer values to enable
the meaningful representation of related data. The void data type
indicates the lack of a particular type. It is used as a return type for
both functions and function parameters that don't take any
arguments and don't return a value. The void* pointer also

functions as a general pointer that can store addresses of various

types.

C programming requires a solid understanding of data types.
Programmers can ensure adequate memory allocation, avoid data
overflow or truncation, and enhance the readability and
maintainability of their code by selecting the right data type. C
programmers may create effective, dependable, and well-structured
code that satisfies the requirements of their applications by having

a firm understanding of data types.

Programming with C - 127

UNITS OPERATOR AND EXPRESSIONS
OF ‘C’

Structure

5.0 Introduction
5.1 Objectives
5.2 Operators in ‘C’

5.2.1 Assignment Operators

5.2.2 Arithmetic Operators

5.2.3 Relational Operators

5.2.4 Logical Operators

5.2.5 Increment and Decrement Operators

5.2.6 Conditional Operators

5.2.7 Special Operators

5.2.8 Size of Operator

5.2.9 “C’ Short Hand

5.2.10 Priority of Operators

5.3 Expressions in ‘C’

5.3.1 Types Conversion in Expressions
5.3.1.1 Automatic Type Conversion
5.3.1.2 Casting a Value

5.4 Conclusion

5.5 Unit based Questions /Answers

5.0 INTRODUCTION

This unit explores the fundamental building blocks of C
programming: variables, constants, and datatypes, along with their
declaration. We'll then move on to using these declared elements
within expressions. An expression combines operators and

operands to achieve one or more of the following:

Programming with C - 128

e (Calculate a value.
e Identify an object or function.

e Produce side effects.

Essentially, an operator performs an action (or evaluation) on one
or more operands, where an operand is a sub-expression that the

operator acts upon.

This unit will detail the various types of operators available in C,
covering their syntax and usage within the language. Unlike a
basic calculator, computers can also solve logical expressions.
Therefore, in addition to arithmetic operators, C also includes

logical operators, which will be discussed in this unit.

This unit will explain to you the expressions and operators of

language C.

5.1 OBJECTIVES

After completing this unit, you will be able to:

= write and evaluate arithmetic expressions;

= express and evaluate relational expressions;

] write and evaluate logical expressions;

- write and solve compute complex expressions (containing

arithmetic, relational and logical operators), and

= check simple conditions using conditional operators.

5.2 OPERATORSIN ‘C’

In programming, an operator is a special symbol used to perform

Programming with C - 129

operations on variables, operands, or constants. Some operators
require two operands to execute their function, while others can
perform an operation with just a single operand. Operators come in
various forms, including arithmetic, assignment, increment,
decrement, logical, conditional, comma, sizeof, and bitwise
operators, among others. Essentially, an operator acts as an
instruction to the computer, prompting it to carry out specific
mathematical or logical manipulations on data stored in variables,
which are then @erred to as operands. The C programming
language, in particular, is rich in built-in operators, providing a
comprehensive set of these symbols for diverse operations. C
language is rich in built-in operators and provides the following

types of operators:

= Assignment Operators

= Arithmetic Operators

= Relational Operators

= Logical Operators

= Increment and decrement Operators
- Conditional Operators

= Special Operators

5.2.1 Assignment Operators

In this unit, we've come to understand that variables are essentially
named locations within a computer's memory, designated to store
various pieces of data. The fundamental question then arises: how
do we actually place values into these wvariables? The C
programming language provides a crucial mechanism for this
purpose: the assignment operator. This operator's core function is
quite straightforward yet powerful: it takes a value or the result of

an expression found on the right-hand side of an operation and

Programming with C - 130

efficiently stores that information into the designated variable

located on the left-hand side.

The standard syntax for an assignment %ression in C follows a
clear pattern: "Variable = constant / variable / expression;’. A
critical consideration here is data type compatibility. Generally, the
data type of the variable on the left-hand side should align with the
data type of the constant, variable, or expression on the right-hand
side. This ensures that the data being assigned can be properly
understood and stored. However, it's worth noting that C does offer
some flexibility; in certain scenarios, automatic type conversions
are possible, allowing for assignments between slightly different
data types without explicit intervention. For example, you might
assign an integer value to a floating-point variable, and the system

would handle the conversion.

At their heart, assignment operators are indispensable tools used to
effectively transfer the outcome of an operation or a direct value
into a variable for later use. While there are various assignment
operators in C (such as +=', '-=", etc.), the most commonly and
frequently used is the simple equals sign ("="). This foundational
operator is integral to nearly every C program, enabling the

dynamic manipulation and storage of data as a program executes.
An expression with assignment operator is of the following form:
Identifier = expression;

Example:

#include<stdio.h>

void main()
Programming with C - 131

int i;

i=35;

printf ("%d", 1);

i=1i+10;

printf ("in%d", 1);
b
Output will be: 5

10

Expressions like i =i+10; ,1=1i-5; ,1=1*2; ,1=1/6, and i = 1% 10

can be rewritten using shorthand assignment operators.

The shorthand assignment operators are of following type:

V op = expression;

This is equivalent to

V =V op expression;

Example:

I=1+5: is equivalent to

i+ =5;

I=1%* (y+5); isequivalent to i* =

(y+5);

5.2.2 Arithmetic Operators

Programming with C - 132

The basic arithmetic operators in C are the same as in most other
computer languages, and correspond to our usual
mathematical/algebraic symbolism. The following arithmetic

operators are present in C:

Operator Purpose
+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder after integer
division

The division operator (/) in C requires that its second operand is
not zero, even when dealing with non-integer values. Relatedly, the
modulus operator (%) calculates the remainder after the division of
two operands. Like the division operator, its second operand must
also be non-zero. Attempting to divide by zero is an undefined
operation in computer systems and will typically lead to a run-time
error. In C, arithmetic expressions are usually written in a
straightforward, linear fashion; for example, "a divided by b" is

simply expressed as a/b.

The operands used in C's arithmetic expressions can be of various
data types, including integer, float, and double. To effectively
develop C programs, it's essential to grasp the rules governing the
implicit conversion of floating-point and integer values, which are

outlined below:

e When an arithmetic operation occurs between two integers,

the result will always be an integer.
Programming with C - 133

e If an operator acts between two float values, the outcome
will be a float result.

e When an operation involves an integer and a float, the
result will be a float.

e [f the data type is double instead of float, then we get a
result of double data type.

Example:
ifa=25b=4
then a+b=29
a- b=21
a*b=100
a/b=06 (decimal parts truncated)
a%b=1
Example:

#include<stdio.h>

main()
{

9 a=21;

intb=10;

intc ;

c=a+tb;

printf("Value of ¢ is %d\n", ¢); /* Line
1*/

c=a-b;

printf("Value of ¢ is %d\n", ¢); /* Line
2 */

c=a * b;

printf("Value of ¢ is %d\n", ¢); /* Line
3%/

Programming with C - 134

c=a/b;

printf("Value of ¢ is %d\n", ¢); /* Line
4 */
c=a%b;
printf("Value of ¢ is %d\n", ¢); /* Line
5%/
c=at+;
printf("Value of c is %d\n", ¢); /* Line
6 */
c=a-;
printf("Value of ¢ is %d\n", ¢); /* Line
7 */
b
Output will be:
Value of cis 31 /* Line 1 */
Value of cis 11 /* Line 2 */
Value of cis 210 /* Line 3 */
Value of cis 2 /* Line 4 */
Value of ¢ isl /* Line 5 */
Value of c is 21 /* Line 6 */
Value of ¢ is 22 /* Line 7 */

5.2.3 Relational Operators

In C programming, executable statements are designed to perform
actions like calculations or data input/output, or to facilitate
decision-making within a program. We can compare variables
using relational operators. The various C relational operators and
their meanings are summarized below. It's crucial to note that the

equality operator uses two equal signs ("=="), not just one, which is
Programming with C - 135

distinct from the assignment operator ('='). This section also
introduces a basic form of C's "if° control structure, enabling a
program to make decisions based on the outcome of a given
condition. If the condition evaluates to true, the statement within
the "if" body is executed. Conversely, mhe condition is false, the
statement is skipped. Regardless of whether the body statement is
executed, program execution always continues with the statement

immediately following the “if" structure once it completes.

A relational operator is employed to compare two operands,
determining if they are equal, unequal, or if one is greater or less
than the other. These operands can be variables, constants, or
expressions, and the comparison yields a numerical result. There

are six distinct relational operators available in C.

O;pt Description Example

== If the wvalues of two (A == B) is not
operands are equal or not. If | true.

yes, then the condition

becomes true.

= If the values of two (A !=B)istrue. |
operands are equal or not. If
the values are not equal,
then the condition becomes
true.

> If the value of left operand | (A > B) is not
is greater than the value of | true.

right operand. If yes, then
the condition becomes true.
< If the value of left operand | (A <B) is true. T
is less than the value of
right operand. If yes, then
the condition becomes true.
>= If the value of left operand | (A >= B) is not
is greater than or equal to | true.

the value of right operand.
If yes, then the condition
becomes true.

Programming with C - 136

<= @he value of left opera@ (A <= B) is true.
15 less than or equal to
value of right operand. If

yes, then the condition
becomes true.

A simple relation contains only one relational operator and takes

the following form:

ae-1 relational operator ae-2

@lational operators usually appear in statements which are
inquiring about the truth of some particular relationship between
variables. Normally, the relational operators in C are the operators

in the expressions that appear between the parentheses.

For example,

(1) if (this num < minimum sofar) minimum sofar = this num
(i1) if (job == Teacher) salary == minimum wage

(iii)) if (number of legs != &) this bug = insect

(iv) if (degree of polynomial < 2) polynomial = linear

Let a simple C program containing the If statement (will be
introduced in detail in the next unit). It displays the relationship

between two numbers read from the keyboard.

Example:
/*Program to find relationship between two numbers*/

#include<stdio.h>

main ()

{

int a, b;

printf (“Please enter two integers: ”);

scanf (“%d%d”, &a, &Db);

Programming with C - 137

if (a <= b) printf (* %d <= %d\n”,a,b);
else

printf (“%d > %d\n”,a,b);

¥

OUTPUT:

Please enter two integers: 12 17

12 <=17

Example:
/*Program to understand all the operators available in C*/

#include<stdio.h>

main ()

{
Q a=21;
intb=10;
intc;
if(a==b)
{ printf("a is equal to b\n"); /* Line 1 */
¥
else
{
printf("a is not equal to b\n"); /* Line
1%/
¥
if(a<b)
{
printf("a is less than b\n"); /* Line 2 */

}

else

{

printf("a is not less than b\n"); /* Line
Programming with C - 138

2%/
}

if(a>b)

{

printf("a is greater than b\n"); /* Line

3%/
}

else

{

printf("a is not greater than b\n");

/* Line 3 */

b

/* Lets change value of a and b */
a=35;

b =20;

if(a<=b)

{

printf("a is either less than or equal to b\n");
/* Line 4 */

b

if(b>=a)

{

printf("b is either greater than or equal to b\n");
/* Line 5 */

b

¥

OUTPUT:

a is not equal to b /* Line 1 */

a is not less than b /* Line 2 */
ﬁ greater than b /* Line 3 */
Qs either less than or equal to b /* Line

Programming with C - 139

4 */

b is either greater than or equal to b /* Line
5%/
5.2.4 Logical Operators

In C, much like other programming languages, logical operators
are key for evaluating expressions that can either be true or false.
When an expression involves these logical operations, it's assessed
to determine one of those two Boolean outcomes. While we've
only covered simple conditions so far, there's a good chance you'll
need to test multiple conditions when making decisions. If that's
the case, you could string together a bunch of separate if
statements (we'll dive deeper into those later). Luckily, C gives us
logical operators to make things easier, allowing us to combine

those simple conditions into more complex ones.

@Ilowing table shows all the logical operators supported by C
language. Assume variable A holds 1 and variable B holds 0, then:

_Operator] Description Example

&& Called Logical AND (A && B) is
operator. If Dboth the | false.

operands are non-zero, then
the condition becomes true.

I Called Logical OR Operator. | (A || B) is true.
If any of the two operands is
non-zero, then the condition

becomes true.

! Called Logical NOTI (A && B) is
Operator. It is used toI true.

reverse the logical state of

its operand. If a condition is

true, then Logical NOT

operator will make it false.

@us logical operators (AND and OR) combine two conditions and

Programming with C - 140

@ical NOT is used to negate the condition i.e. if the condition is
true, NOT negates it to false and vice versa. Let us consider the

following examples:

(i) Suppose the grade of the student is ‘B’ only if his marks lie
within the range 65 to 75,if the condition would be:

if ((marks >=65) && (marks <= 75))

printf (“Grade is B\n”);

(ii) Suppose we want to check that a student is eligible for
admission if his PCM is greater than 85% or his aggregate is
greater than 90%, then,

if (PCM >=85) ||(aggregate >=90))

printf (“Eligible for admission\n”);

Logical negation (!) enables the programmer to reverse the
meaning of the condition. Unlike the && and || operators, which
combines two conditions (and are therefore Binary operators), the
logical negation operator is a unary operator and has one single
condition as an operand. Let us consider an example:

if !(grade=—="A")

printf (“the next grade is %c\n”, grade);

The parentheses around the condition grade==A are needed
because the logical operator has higher precedence than equality
operator. In a condition if all the operators are present then the
order of evaluation and associativity is provided in the table. The
truth table of the logical AND (&&), OR (J|) and NOT (!) are given

below.

These table show the possible combinations of zero (false) and

nonzero (true) values of X (expressionl) and Y (expression2) and
Programming with C - 141

only one expression in case of NOT operator.

The following table is the truth table for && operator.

Truth table for & & operator

X Y X&&Y
0 0 0
1 0 0
0 1 0

1

—
—_—

The following table is the truth table for | | operator.

Truth table for & & operator
Y X| [Y
0 0
0 1
1 1
1

S = O K

—
—_

The following table is the truth table for | | operator.

Truth table for ! operator

X X
0 1
1 0

The following table is the operator precedence and associativity.

Truth table for (Logical operator precedence and associativity)

Operator Associativity
! Right to left
&& Left to right

|] Left to right

Programming with C - 142

Example:

/*Program to understand all the logical operators available in C*/

#include<stdio.h>

main ()

{

inta=>5;

int b = 20;

intc;

if(a&&b)

{

printf("Line 1 - Condition is true\n");
b

if(al[b)

{

printf("Line 2 - Condition is true\n");
b

/* lets change the value of a and b */
a=0;

b=10;

if(a&&b)

{

printf("Line 3 - Condition is true\n");
¥

else

{

printf("Line 3 - Condition is not true\n");
¥

if (!(a && b))

{

printf("Line 4 - Condition is true\n");

Programming with C - 143

h

OUTPUT:
Condition is true
/* Line 1 */
Condition is true
/* Line 2 */

Condition is not true
/* Line 3 */
Condition is true

/* Line 4 */

5.2.5 Increment and decrement Operators

C boasts two incredibly handy operators, "++* and "--", known as
the increment and decrement operators, respectively. You won't
typically find these quite as prevalent in many other programming
languages, making them a distinctive feature of C. Because they
operate on just one piece of data, they're classified as unary
operators. It's important to remember that these operators must be

applied to variables; you can't use them directly on constants.

At their core, the "++ (increment) operator simply adds one to the
value of its operand, while the '--* (decrement) operator does the
opposite, subtracting one from the operand's value. What's more,
these operators can be employed in a couple of different ways,

which offers flexibility in how they're used within your code.

1) Prefix: When the operator used before the operand, it is termed
as prefix.

e.g. ++A , --B
Programming with C - 144

in this case the value of operand follow First Change Then Use (

F.C.T.U) concept.

2) Postfix: When the operator used before the operand, it is termed
as prefix.

e.g. A++,B—
in this case the value of operand follow First Use Then Change (
F.U.T.C) concept.
Example:

Postfix int N=10, R;

R = N++; // post increment

printf(“R=%d \n N=%d ”, R , N);

it will produce output:

R=11 (Because value
will increment
first, then value
will assign)

N=11

Example:

#include<stdio.h>

Void main ()

{
int R, N=10;
clrscr();
R=++N+ --N + --N + N++ + --N ;
printf(““ R= %d \n N=%d” , R,N);
getch();
¥
The output will be:

R=40
Programming with C - 145

Explanation:

In this example there are for than one increment or decrement
expressions are used, so that it follows the execution order (
postfix > operation > prefix).

In this statement (++N + --N + --N + N++ + --N ;) all prefix
expression execute first ,then it perform operations like
addition/subtraction or assignment etc. and after that it perform all
postfix operations. In the operation the value of all operand will

give last modified value by prefix operations.
5.2.6 Conditional or Ternary Operators

In C programming, the conditional operator (?:) offers a compact
alternative to the traditional if/else statement. It is the only ternary
operator in C, meaning it operates on three operands. These
operands form a conditional expression where the first part is a
condition that is ﬁluated. If this condition is true, the second
operand becomes the result of the expression; mhe condition is
false, the third operand is returned instead. This operator is
especially useful for writing short decision-making expressions in

a more concise and readable format.

The syntax is as follows:

(condition)? (expressionl): (expression2);

If condition is true, expressionl is evaluated else expression2 is

evaluated. Expressionl/Expression2 can also be further conditional

expression i.e. the case of nested if statement.

Programming with C - 146

Let us see the following examples:

1) x= (y<20) ? 9:10;
This means, if(y<20), then x=9 else x=10;

(i1) printf(“%s\n”, grade>=50? “Passed”: “failed”);
The above statement will print “passed” grade>=50 else it
will print “failed”.

(iii) (a>b) ? printf (“a is greater than b \n”): printf (“b is greater
than a \n”); If a is greater than b, then first printf statement

is executed else second printf statement is executed.

Example 1:

= 10;
b=15;
@(a>b?a:b);

In this expression value of b will be assigned to x.

Example 2:
@ 10;
b=15;
x=(a>b)?

printf (“First value is Greater®);
printf (“Second value is greater™);

In this expression the result will be-

5.2.7 Special Operators

The C language provides several special operators, including the
comma operator, the “sizeof operator, pointer operators (‘& and
**%), and member selection operators (*." and ->"). The pointer
operators will be explained in detail when the concept of pointers

is introduced, while the member selection operators will be
Programming with C - 147

covered during the discussion of structures and unions. For now,
the focus will be on understanding the comma operator and the

“sizeof” operator.

Comma Operator

This operator is used to link the related expressions together.

Example:
Int val, x, y;
value = (x= 10, y =5, x+y);
it first assigns 10 to x then 5 to y finally sum

x +y to value.

Size of Operator

The sizeof operator in C is evaluated at compile time and is used to
determine the amount of memory (in bytes) that a given operand
occupies. This operand can be a variable, a constant, or even a data
type qualifier. It helps in understanding the memory requirements

of different data types and expressions during program

development.
Example:
int n;
n = size of (int);
printf(“n=%d,\n”’,n);
n = size of (double);
printf(“n=%d”,n);
Output:
n=2
n=2_8

@gramming with C - 148

5.2.8 Size of Operators

C provides a compile-time unary operator called size of that can be

used to compute the size of any object. The expressions such as:

Size of object and size of (type name)

result in an unsigned integer value equal to the size of the specified
object or type in bytes. The result of the sizeof operator is an
integer that represents the number of bytes needed to store an
object of the operand's type. This object could be a variable, an
array, or a structure. Arrays and structures are examples of data
structures in C, which will be introduced in later units. The
operand can be a basic data type such as int or double, or a derived

type like a pointer or a structure.

Example:
Size of(char) = 1bytes
Size of(int) = 2 bytes

5.2.9 C Short Hand

C has a special shorthand that simplifies coding of certain type of

assignment statements.

Example:

a=at2;

can be written as:

a+=2;
The operator +=tells the compiler that a is assigned the value of a +
2; This shorthand works for all binary operators in C. The general

form is:
Programming with C - 149

variable operator = variable / constant / expression

These operators are listed below:

Operators Examples
Meaning
= a+=2 a=a+2
-= a-= a=a-2
= a*=2 a=a*2
/= a/=2 a=a/2
Y%= a%=2
a=a%?2
Operators Examples

Meaning
&&= a&&=c
a=a&&c
= all=c a=al|c

5.2.10 Priority Operators

Since all the operators we have studied in this unit can be used
together in an expression, C uses a certain hierarchy to solve such
kind of mixed expressions. The hierarchy and associatively of the
operators discussed so far is summarized in Table 6. The operators
written in the same line have the same priority. The higher

precedence operators are written first.

Table: Precedence of the operators

[Operators [Associativity
O) Left to right
| ++ -- (type) size of Right to left
/% Left to right
+- Left to right

Programming with C - 150

<<=>>= Left to right
== |= Left to right

&& Left to right
I Left to right
?: Right to left
= += -= *= /= %= | Left to right
&&= |= Left to right

5.3 EXPRESSIONS IN ‘C°

An expression is a combination of variables, constants, and
operators arranged according to syntax of the language. Some

examples of expressions are:

e.g.
c=(m+n) * (a-b);
temp=(a+b+'c)/(d-c);

Expression is evaluated by using assignment statement.

Such a statement is of the form

Variable = expression ;

The expression is evaluated first, then the value is assigned to the
variable left hand side. But all the relevant variables must be

assigned the values before evaluation of the expression.

5.3.1 Type conversion in Expressions

Type conversion in expressions refers to the process where values
Programming with C - 151

of one data type are transformed into another to ensure
compatibility within operations. This conversion can be implicit,
where the programming language automatically handles the
conversion, or explicit, where the programmer must manually
convert the types using specific functions or methods. Implicit
conversions usually occur in expressions involving mixed data
types, ensuring that operations such as arithmetic or comparisons
are performed correctly. Explicit conversions, often called type
casting, are necessary when the automatic conversions do not yield
the desired outcome or when precision and control over the data
transformation are required. Both types of conversions are crucial
for writing robust and error-free code, ensuring that expressions

evaluate as intended.

5.3.1.1 Automatic Type conversion:

If the operands are different types, the lower type is automatically
converted to the higher type before the operation proceeds. The

result is of the higher type.

Given below is the sequence of rules that are applied while

evaluating expressions.

_@-l Op-2 Result

g double any long double
double any double
float any float
unsigned long int any unsigned long int
long int any long int
unsigned int any unsigned int

The final result of an expression is converted to the type of the
variable on the left of the assignment sign before 'assigning value

to it.

Programming with C - 152

However, the following changes are introduced during the final
assignment.

= float to int causes truncation of the fractional part.

= double to float causes rounding of digits.

= Jong int to int causes dropping of the excess higher order bits.

5.3.1.2 Casting a value:

Casting a value is forcing a type conversion in a way that is
different from the auto conversion. The process is called type cast.

The general form of casting is
(type_desired) expression;

where type desired: standard C data types and expression :

constant, variable or expression.

Example:
#include<stdio.h>
void main()
{
int total marks=500,0b marks=234;
float perl , per2;
perl = (ob_marks / total marks) * 100;
per2 = (float) (ob_marks / total marks) * 100;
printf(* Percentage without type casting = %.2f”,perl);
printf(* Percentage After type casting = %.2f”,per2);
getch();

}

Output:
Percentage without type casting = 0.00
Percentage After type casting = 46.80

Programming with C - 153

In expression per2 = (float) (ob_marks / total marks) * 100;
division is converted to float, otherwise decimal part of the result
of division would be lost and perl would represent a wrong figure

or z€ro.

5.4 CONCLUSION

In this unit, we really dug into the various kinds of operators C
offers—think arithmetic, relational, and logical—and, more
importantly, how they're put to use. As we move forward, you'll
see just how crucial these operators become when we tackle C's

other core building blocks, like control statements and arrays.

We also spent a good deal of time on type conversions. Seriously,
understanding these is absolutely vital! So often, programmers get
those head-scratching, unexpected results (what we call logical
errors), and more often than not, they trace back to improper type
conversions or simply forgetting to explicitly "type cast" to the
desired format. It's a subtle but significant detail that can save a lot

of debugging time.

On top of that, this unit gave us a peek into C's famous shorthand.
C earns its reputation as a compact language precisely because it
lets us write lengthy expressions in a much shorter, more efficient
way. The conditional operator is a perfect example, offering a neat,
condensed alternative to writing out a full if/else statement
(something we'll dive into next). And let's not forget those
increment/decrement operators; they're little gems that really trim

down your code when embedded within expressions.

Given that logical operators are foundational and pop up

everywhere—from all sorts of looping constructs to those crucial
Programming with C - 154

if/else statements we're about to explore—making sure you've got

a solid grasp on them is, frankly, non-negotiable.

Programming with C - 155

UNIT 6 CONTROL FLOW MECHANISMS

Structure

6.0 Introduction

6.1 Objectives

6.2 Decision Control Statements
6.2.1 The if Statement
6.2.2 The if else Statement
6.2.3 The switch Statement

6.3 Loop Control Statements
6.3.1 The while Loop
6.3.2 The do-while Statement
6.3.3 The for Loop
6.3.4 The Nested Loop

6.4 The Goto Statement

6.5 The Break Statement

6.6 The Continue Statement

6.7 The Exit Function

6.8 Conclusion

6.9 Unit based Questions /Answers

6.0 INTRODUCTION

In any computer program, you've got a series of instructions meant
to be carried out. But here's the thing: most programs don't just run
straight through from start to finish. Often, a C program needs to
make a logical check at a certain point. Depending on what that
test reveals, the program will then take one of several possible
actions—this is what we call branching. Similarly, in a selection
process, the program picks and executes a specific block of
statements from a few available options. And if you ever need

group of statements to keep running repeatedly until a certain

Programming with C - 156

condition is met, that's where looping comes in handy. All these
dynamic behaviors are managed through wvarious control

Statements.

These control statements are essentially what dictate the "flow of
control" in your program. They let us specify the exact order in
which the computer should execute each instruction. Generally,
most high-level procedural programming languages rely on three

fundamental types of control statements:

o Sequence instructions
o Selection (or decision) instructions
o Repetition (or loop) instructions

Sequence instruction is pretty straightforward: it just means
executing one instruction after another, exactly in the order they
appear in your code file. This sequential execution is actually C's
default behavior; unless you explicitly tell it otherwise with a
control statement, the computer will simply move from one

instruction to the very next one in line.

Selection, on the other hand, is all about making choices. It means
running different sections of code based on whether a specific
condition is true or false, or based on the value of a variable. This
capability is what allows a program to adapt and take different
actions depending on various situations. C, for its part, offers three
distinct structures specifically designed for these selection

Processes.

= if
@gramming with C - 157

= if...else

= gswitch

Repetition/Looping means executing the same section of code
more than once. A section of code may either be executed a fixed
number of times, or while some condition is true. C provides three

looping statements:

= while

= do...while

= for

This unit introduces you the decision and loop control statements
that are available in C programming language along with some of

the example programs.

This unit will explain to you the expressions and operators of

language C.

6.1 OBJECTIVES

After completing this unit, you will be able to:

= %rk with different control statements;

= know the appropriate use of the various control
statements in programming;

= transfer the control from within the loops;

= use the goto, break and continue statements in the
programs; and

= write programs using branching, looping statements.

Programming with C - 158

6.2 DECISION CONTROL STATEMENT

In a C program, making a decision essentially means the code can,
at a specific point, jump to a different section of the program, all
based on the outcome of an expression. C offers several ways to
implement these decisions. The if...else statement is arguably the
most crucial, as it allows the program to choose between two
distinct courses of action. Interestingly, you can also use this
statement %hout the else part, making it a simpler if statement for
conditional execution. For situations where you need to branch to
multiple alternative code sections based on the value of a single
variable, C provides another powerful decision control statement:

the switch statement.
6.2.1 The if Statement

This control structure serves a clear purpose: to execute an
instruction, or even a whole block of instructions, *only* if a
specific condition is met. When you use an ‘if statement, the
program first evaluates an expression. Then, depending on whether
that expression (which could be a relational check or any other
condition) turns out to be "true" or "false," it directs the program's

flow to a particular statement or a designated group of statements.
Different forms of implementation if-statement are:

= Simple if statement

= Jf-else statement

= Nested if-else statement

= Else if statement

Programming with C - 159

Simple if statement It is used to execute an instruction or block of

instructions only if a condition is fulfilled.

The syntax is as follows:

if (condition)

statement;

where condition is the expression that is to be evaluated. If this
condition is true, statement is executed. If it is false, statement is
ignored (not executed) and the program continues on the next

instruction after the conditional statement.

If we want more than one statement to be executed, then we can
specify a block of statements within the curly bracets { }.

The syntax is as follows:

if (condition)

{

block of statements;

}

Example:

Write a program to calculate the net salary of an employee, if a tax
of 15% is levied on his gross-salary if it exceeds Rs. 10,000/- per

month.

/*Program to calculate the net salary of an employee */

#include<stdio.h>

main()

{

float gross_salary, net_salary;

printf(“’Enter gross salary of an employee\n”);
Programming with C - 160

scanf(“%f ”,&gross_salary);
if(gross_salary<10000)

net_salary = gross_salary;
net_salary=gross_salary @ 15*gross_salary;
printf(‘“\nNet salary is Rs.%.2f\n”, net_salary);
¥

6.2.2 The if_else Statement

If...else statement is used when a different sequence of
instructions is to be executed depending on the logical value (True

/ False) of the condition evaluated.
Its form used in conjunction with if and the syntax is as follows:

if (condition)
Statement _1;
else

Statement_ 2;

statement 3;
Or

if (condition)
{

Statements 1 Block;

}

else

{

Statements 2 Block;

}

Statements 3 Block;
Programming with C - 161

If the initial condition turns out to be true, the set of instructions

within the first block (let's call it *Statements 1 Block") will run.

However, if that condition is false, then the program will skip that

first block and instead execute the “Statements 2 Block' that

follows the “else” part of the statement. Regardless of which block

was executed, the program's control then seamlessly moves on to

‘Statements 3", continuing the regular, sequential flow of the

program.

Example:

#include<stdio.h>
#include<conio.h>

void main()

{

int no;

clrscr();

printf("\n Enter Number :");
scanf("%d",&no);

if(no>0)

{

printf("\n\n Number is greater than 0 !");

}

else

{

if(no==0)

{

printf("\n\n Tt is 0 !"); }
else

{

printf("Number is less than 0 !");

Programming with C - 162

getch();

Output:

Enter Number: 0
It is O!

6.2.3 The switch Statement

This is a fantastic tool for creating multiple or multiway branches
within your program's decision-making process. You see, when
you start using a bunch of nested if-else statements to check many
different conditions, your code can quickly become a tangled mess.
It gets harder to read, and maintaining it becomes a real headache.

To neatly sidestep this problem, C offers the switch statement.

@e switch statement works by taking the value of an expression
and comparing it against a series of predefined "case" values. If it
finds a match, the program's control is then neatly transferred to
that specific point, executing the code associated with that

particular case.
Syntax:

switch(expression)
{

case exprl:
statements;

break;
Programming with C - 163

case expr2:
statements;

break;

case exprn:
statements;
break;
default:

statements;

}

Switch case, break are keywords.
exprl, expr2 are known as 'case labels.'
Statements inside case expression need not to be closed in braces.

break statement causes an exit from switch statement.

default case is optional case. When neither any match found, it

executes.

#include<stdio.h>

#include<conio.h>

void main()

{

int no;

clrscr();

printf("n Enter any number from 1 to 3 :");
scanf("%d",&no);

switch(no)

{

case 1:

Programming with C - 164

printf("n\n Itis 1 !");

break;

case 2:

printf("n\n It is 2 !");

break;

case 3:

printf("n\n It is 3 !");

break;

default:

printf('""\n\n Invalid number !");
}

getch();

}

Output:

Enter any number from 1 to 3 : 3

Itis 3!

a). Rules for declaring switch case:

= The case label should be integer or character constant.

= FEach compound statement of a switch case should contain
break statement to exit from case.

= (Case labels must end with (:) colon.

b). Advantages of switch case:

= Easy to use.

= Easy to find out errors.

= Debugging is made easy in switch case.

= Complexity of %rogram is minimized.

Programming with C - 165

6.3 LOOP CONTROL STATEMENTS

Loop control statements are used when a section of code may
either be executed a fixed number of times, or while some
condition is true. C gives you a choice of three types of loop

statements, while, do- while and for.

= The while loop keeps repeating an action until an
associated condition returns false. This is useful where
the programmer does not know in advance how many
times the loop will be traversed.

= The do while loop is similar, but the condition is
checked after the loop body is executed. This ensures
that the loop body is run at least once.

= The for loop is frequently used, usually where the loop

will be traversed a fixed number of times.

6.3.1 The while Loop

When in a program a single statement or a certain group of
statements are to be executed repeatedly depending upon certain

test condition, then while statement is used.

The syntax is as follows:

while (test condition)

{
body_of the loop;

}

Here, that test condition is essentially an expression that dictates

how long the loop will keep running. The actual body of the

Programming with C - 166

loop—which is a single statement or a group of statements tucked
inside braces—gets executed repeatedly as long as this test
condition evaluates to true. But the moment that condition turns
false, the program's control immediately jumps m of the loop and

moves on to the very first statement that follows the while loop.

It’s worth noting that if the condition happens to be false right
from the very beginning, the loop's body won't ever execute at all.
That's why the @ile loop is sometimes called an entry-control

loop; it always checks the condition before letting you into the

loop's body..
Qut of Loop
l Execute Body of Loop l
’
Example:
#include<stdio.h>
#include<conio.h>
void main()
{
int a;
clrscr();
a=1;
while(a<=5)
{
printf("MCMT \t");
at+=1 //ie.a=a+1

Programming with C - 167

getch();

Output:
MCMT MCMT MCMT MCMT MCMT

6.3.2 The do-while Statement

There's another loop structure that's quite similar to the while
statement, and that's the do...while loop. The main distinction
between the two is that in a do...while loop, the condition that
determines whether to keep looping is checked at the very end of

each cycle, not at the beginning.

This difference has a crucial implication: the body of a do...while
loop is guaranteed to execute at least once before the condition is
even evaluated. After that initial run, the loop continues to repeat
its body @long as the condition remains true. This is in contrast to
a regular while loop, where if the condition is false from the start,
the loop's body won't execute even once. That's precisely why they
do...while loop is also known as an exit-control loop—it checks the

condition as it's trying to exit the loop.

¥
Execute Body of Loop

|

Test false

. Out of Loop
Conditian

Programming with C - 168

Example:

Output:

Infinite loop:

#include<stdio.h>
#include<conio.h>
void main()

{

do

int a;
clrser();
a=1;

printf("MCMT\t"); //'5 times
at=1; /lie.a=a+1
}

while(a<=5);

getch();

)

MCMT MCMT MCMT MCMT MCMT

A looping process, in general, includes the following four steps:

= Setting of a counter.

= Execution of the statements in the loop.

= Testing of a condition for loop execution.

= Incrementing the counter.

Ideally, that test condition is designed to eventually signal the loop

to stop Qd transfer control to the next part of the program.

However, sometimes, for various reasons, it doesn't. When that

happens, the program gets stuck in what's known as an infinite

loop, where the loop's body just keeps executing endlessly.

Obviously, you want to avoid these at all costs! If your program

ever gets caught in such a loop, you can usually force it to stop by

pressing Ctrl + C or Ctrl + Break on your keyboard.

Programming with C - 169

Example:

#include<stdio.h>

void main()

{
int i=1;
while(i<=10)
{
Printf(* i= %d\n”,i);
¥
¥

This program will never terminate as variable i will always be less
than 10. To get the loop terminated, an increment operation (i + +)

will be @uired in the loop.
6.3.3 The for Loop

for statement makes it more convenient to count iterations of a
loop and works well where the number of iterations of the loop is

known before the loop is entered. The syntax is:

; U « e . . o, . .
@ (initialization; test condition; increment or decrement)

{

Statement(s);

H

The primary goal of the for loop is much like the while loop: to
repeatedly execute a statement or a block of code as long as a
certain condition remains true. However, the for loop offers a neat
advantage. It's specifically designed with built-in sections where

you can easily handle the loop's setup (like initializing a counter
Programming with C - 170

variable) and its ongoing maintenance (such as incrementing or
decrementing that control variable). This makes it perfectly suited
for performing actions that involve a counter or a fixed number of

repetitions.

Here's how the for loop executes its actions:

1. Inmitialization: This is the very first thing that happens. You
typically set up your counter variable here (e.g., int i = 0;).

Crucially, this step only executes once when the loop begins.

2. Condition Check: After initialization, the loop immediately

checks its specified condition.

o @the condition is true, the loop will continue its
operations.
o If the condition is false, the loop stops right then

and there, and the program skips over the loop's body, moving

on to whatever code comes after the loop.

3. Execute Loop Body: If the condition from step 2 was true, the
statement or block of statements inside the loop (those curly braces

{}) gets executed.

4. Update (Increment/Decrement): Once the loop's body has
finished executing, the update expression (where you usually
increment or decrement your counter variable, e.g., i++ or i--) is

performed.

5. Loop Back: After the update, the control then jumps back to
step 2 (the condition check), and the cycle repeats until the

condition eventually becomes false.

Programming with C - 171

Copntaer initialization

;'f “"'-\.
e T false

/" BT
= Ipl;f. *}—n- Terminate Lodp
-, onditio -
. >
o

T Eruec

Luepute body of koop

Fedify Cavrter

Features:

More concise

Easy to use

Highly flexible

More than one variable can be initialized.
More than one increments can be applied.

More than two conditions can be used.

Example:

#include<stdio.h>
#include<conio.h>
void main()

{

int a;

clrscr();

for(i=0; i<5; i++);
{
Printf(“MCMT!\t”); // 5 times
}

getch();

}

Output:

Programming with C - 172

MCMT MCMT MCMT MCMT
MCMT

More About for Loop:

The for loop in C has several capabilities that are not found in
other loop constructs. @)re than one variable can be initialized at a

time in the for statement.
The Statement
p=1L
for(n=0;n<17;++n)
can be rewritten as for

p=1,n=0;n<17; ++n)

The increment @tion may also have more than one part as given

in the following

Example:
for(n=1,m=50; n<=m; n=n+1, m=m-j)
p =m/n;
printf ("%d %d %d\n", n, m, p):

6.3.4 The Nested Loop

Loops within loops are called nested loops. An overview of nested

while, for and do .. while loops is given below:

Programming with C - 173

Nested while:

It is required when multiple conditions are to be tested.

The syntax is:

while (condition 1)

Example:

Write a program to generate the following pattern:
1
1 2
1 23
1 23 4

/* Program to print the pattern */
#include<stdio.h>
main()
{
int i,j;
for (i=1;i<=4;++1);
Programming with C - 174

{
printf("%d\n",1);
for(j=1:j<=1;++j);
printf("%d\t".j);

¥

b

Here, an inner for loop is written inside the outer for loop. For
every value of i, j takes the value from 1 to i and then value of i is
incremented and next iteration of outer loop starts ranging j value

from 1 to 1.

Example:

#include<stdio.h>
#include<conio.h>
main()

{

Inti=1,N;
Clrscr();
While(i<=5)

{

N=1;
While(N<=5)
Printf(*“%d”, N);

¥

printf(*\n’");

b

b

Ouput:

1 23 435
Programming with C - 175

—_— = =
NN
W W W W
LN W W

A~ A B~ B

Nested for:

It is used when multiple set of iterations are required.

The syntax is:

Example:

#include
Programming with C - 176

#include

main()

{

inti,N;

clrser();

for(i=1 ;i<=5;i++);
{

for(N=1 ;N<=5; N++);
{

printf(“ %d >, N);

}

printf(“\n”);

b

¥

Ouput:

—_— = = =
NN NN
W W W W W
~ ~ B~ B b
WL W L W WD

6.4 THE GOTO STATEMENT

The goto statement in C provides a way to unconditionally branch
from one point in your program to another. Essentially, it breaks
the normal, step-by-step sequential execution flow. To make this
jump, the goto statement needs a label to pinpoint exactly where it
should transfer control. A label is simply any valid variable name,
and it must always be followed by a colon (:). You place this label

immediately before the statement where you want the program's

Programming with C - 177

execution to resume.

This statement is often referred to as a "jumping statement"
because of its direct, non-sequential nature. While generally
advised @be used sparingly, it can be quite useful for certain
specific situations, particularly when you need to jump out of
deeply nested loops. If an error occurs deep within multiple layers
of loops, a simple break statement might only exit the innermost
loop. In such complex scenarios, the goto statement offers a
powerful way to make a clean, immediate exit from the entire

structure.

The general forms of goto and label statements are:

goto label; label:
———Statements—— —-Ztatements——
labal: =—======= | e

while {condition}
{
for{ ; : 1
{

goto ar;

1
Ll

arr:

Example:

#include<stdio.h>
#include<conio.h>
main()

{

int i=1, j;

clrscr();
while(i<=3)

Programming with C - 178

{

for(j=1;

§<=3; j+4)

{

printf(" I=%d \t J=%d \n", i, j);
if(j==2) goto stop;

}

i=i+1;

6.5 THE BREAK STATEMENT

Sometimes, it is required to jump out of a loop irrespective of the
conditional test value. Break statement is used inside any loop to
allow the control jump to the immediate statement following the

loop.
The syntax is: break;

When you're dealing with nested loops, the break statement acts
specifically to exit only the innermost loop in which it's placed. It
effectively jumps control out of that immediate loop. You'll find
the break statement useful across all types of loops—whether it's a
while, do-while, or for loop—and it's also commonly used within
switch statements. Let's take a look at a program to see how the
break statement works in action.

Example:

#include<stdio.h>
#include<conio.h>
main()

{

Programming with C - 179

int 1i;

clrscr();

for(i=1; i<=20 ; i++);

{

if(i>5)

break;

printf("%d",1); // 5 times only
¥

printf(““ \nOut of loop™);
getch();

}

Output:

12345
Out of loop

6.6 THE CONTINUE STATEMENT

Sometimes, you'll find yourself in a situation where you need to
bypass a specific section of a loop's body, but only when certain
conditions are met. To handle this kind of scenario, C provides the

‘continue’ statement.

While the ‘continue’ statement operates similarly to the ‘break’
statement in terms of altering loop flow, there's a key distinction:
‘continue’ doesn't actually terminate the loop. Instead, when
‘continue’ is encountered, it causes the current iteration to
immediately stop, skipping any remaining statements within that
iteration, and then jumps directly to the beginning of the “next”
iteration. Essentially, it lets you "skip over" a part of the loop's

body and move right on to the next cycle.

Programming with C - 180

The syntax is: continue;

Figure:

while {condition})
| j
continue;

}
Example:

#include<stdio.h>
#include<conio.h>
main()
{
int i;
clrscr();

for(i=1; i<=10; i++)
if(i>=6 && 1 <=8)

continue;
printf("\t%d",1); / 6 to 8 is omitted

}
getch();

}

Output: Q 345910

6.7 THE EXIT() FUNCTION

The exit() function is used to terminate the execution of 'C'

Programming with C - 181

program. It is a standard library function and uses header file
stdlib.h.

The general form of exit() function is
exit (int status);

The difference between break and exit() is that former terminates
the execution of loop in with it is written while exit() terminates

the execution of program itself.

The status (in the general form of exit) is a value returned to the

operation system after the termination. of the program.

The value zero “0” indicates that the termination is normal while

value one “1”” (Non-Zero) indicates different types of errors.
Example:

#include<stdio.h>
#include<conio.h>
main()
{
int 1i;
clrscr();

for(i=1; ; i++)

{
if(i>5)
exit(0);
printf("%d",i); // 5 times only
b
printf(““ \nOut of loop™); // control will not reached
here
getch();
b

Programming with C - 182

Output:
12345

6.8 CONCLUSION

Programs rarely just follow a straight, linear path of instructions
from start to finish. More often than not, they need the ability to
either repeat @ section of code multiple times based on
requirements or make crucial decisions to alter their flow. This is
precisely why C equips us with powerful control and looping
statements. In this unit, we've explored the different looping
structures C offers: the "while' loop, the "do...while" loop, and the

“for’ loop.

Beyond just repeating code, we also looked at statements that give
us finer control. The “break’ statement, for instance, gives us the
power to exit a loop even if its natural termination condition hasn't
been met. This can be super handy for ending an infinite loop or
simply forcing an early exit when needed. Then there's the
‘continue’ statement, which causes the program to skip the
remainder of the “current” iteration of a loop and immediately
jump to the start of the ‘next’ one. And finally, the goto’ statement
allows for an unconditional jump to any other point within your
program. While it offers direct control, it's a feature you should use
with great care, as its execution ignores any structural nesting,

which can sometimes make code harder to follow or debug..

Programming with C - 183

UNIT7 ARRAYS AND STRINGS

Structure

7.0 Introduction

7.1 Objectives

7.2 Array Declaration

7.2.1 Syntax of Array Declaration

7.2.2 Size Specification

7.2.3 Accessing Array Elements

7.3 Array Initialization

7.3.1 Initialization of Array Elements in the

Declaration

7.3.2 Character Array Initialization

7.4 Subscript

7.5 Passing Arrays to Functions

7.6 Processing the Arrays

7.7 Multi-Dimensional Arrays

7.6.1 Multi-Dimensional Arrays Declaration

7.6.2 Initialization Two-Dimensional Arrays

7.8 Declaration and Initialization of Strings

7.9 Display of Strings Using Different Formatting

Techniques

7.10Array of Strings

7.11Built-in String Functions and Applications

7.11.1
7.11.2
7.11.3
7.11.4
7.11.5
7.11.6
7.11.7

Strlen Function
Strcpy Function
Stremp Function
Strcat Function
Strlwr Function
Strrev Function

Strspn Function

7.120ther String Functions

Programming with C - 184

7.13Conclusion

7.14Unit based Questions /Answers

7.0 INTRODUCTION

Let's face it, as programs grow larger and more complex,
managing all that data can quickly become a real headache.
Variable names might get longer just to stay unique, and frankly,
dealing with an ever-increasing list of distinct variable names can
make it tough for a programmer to focus on the truly important
task of writing correct and efficient code. This is where arrays
come in as a lifesaver. They offer a neat mechanism for grouping
several related data items under a single identifier, which

dramatically simplifies the whole data management process.

Think about it: many programming challenges involve working
with multiple, related pieces of data that share common traits—Iike
a list of student marks, a series of temperatures, or a collection of
enrollment numbers. While you could create individual variables
for each item, that would be a tedious and cumbersome approach.
Arrays provide the perfect solution for handling these collections

efficiently.

Now, let's talk about character arrays, which we commonly refer to
as strings. In C, a string is fundamentally just a single-dimensional
array designed to hold characters. C doesn't actually have an
inherent "string" data type built-in; it relies on these character
arrays. Sometimes, you'll need to process individual characters
within a string. However, for many other problems, you'll want to
manipulate strings as complete, cohesive entities. Luckily, C

provides a powerful set of string-oriented library functions for just
Programming with C - 185

this purpose. Most C compilers include these functions (for tasks
like comparing strings, copying them, or concatenating them)
within the "<string.h>" header file. It's important to remember that
these string functions typically operate on character arrays that are
null-terminated—meaning they have a special null character ("\0")

at the very end to mark where the string finishes.

This unit will explain to you the Array elements and String

Functions of language C.

7.1 OBJECTIVES

After completing this unit, you will be able to:

= declare and use arrays of one dimension;

= initialize arrays;

] & subscripts to access individual array elements;

= write programs involving arrays;

= do searching and sorting; and

= handle multi-dimensional arrays.

= define, declare and initialize a string;

= discuss various formatting techniques to display the strings;
and

= discuss various built-in string functions and their use in

manipulation of strings.

7.2 ARRAY DECLARATION

An array is essentially a specific kind of data structure that allows
you to store a fixed-size, ordered collection of items, all of which

must be of the same type. While it's used for holding a collection

Programming with C - 186

of data, it's often more helpful to simply think of an array as a

group of variables, all sharing the same data type.

Instead of going through the tedious process of declaring many
individual variables—Ilike ‘number0’, ‘numberl’, and so on, all the
way up to ‘number99'—you can just declare one single array
variable, perhaps named ‘numbers’. Then, to refer to each
individual spot, you simply use an index (like ‘numbers[0],
‘numbers[1]’, and so forth, up to ‘numbers[99]"). This way, you

access a specific element in the array using its position, or index.

Under the hood, all the elements within an array are stored in
memory locations that are right next to each other, or contiguous.
The very first element always sits at the lowest memory address,
and the last element resides at the highest address within that

allocated block..

me characteristic features of an array.

= Array is a data structure storing a group of elements, all of
which are of the same data type.

= All the elements of an array share the same name, and they are
distinguished from one another with the help of an index.

= Random access to every element using a numeric index
(subscript).

= A simple data structure, used for decades, which is extremely
useful.

= Abstract Data type list is frequently associated with the array

data structure.

The declaration of an array is just like any variable declaration
with additional size part, indicating the number of elements of the

array.
Programming with C - 187

First Element Last Element

| l

Numbers[| Numbers | Numbers[| Numbers

0] [1] 2]] |

7.2.1 Syntax of Array Declaration

To declare an array in C, a programmer specifies the type of the
elements and the number of elements required by an array as
follows:

data_type arrayName [arraySize |;

This particular setup is what we refer to as a single-dimensional
array. When you're declaring one, remember that the ‘arraySize’
(how big it is) absolutely has to be a whole number, a constant, and
larger than zero. As for the “type’ of data it holds, that can be any
of the valid data types C supports.

The following are some of declarations for arrays:

int char [80];
float farr [500];
static int iarr [80];

char charray [40];

There are two restrictions for using arrays in C:

= The amount of storage for a declared array has to be specified
at compile time before execution. This means that an array has

a fixed size.

Programming with C - 188

= The data type of an array applies uniformly to all the
elements; for this reason, an array is called a homogeneous

data structure.

7.2.2 Size Specification

When declaring the size of an array, it's a really good practice to
use a symbolic constant (like a “#define''d value) instead of just
punching in a fixed integer number. Why? Because it makes
modifying your program much, much easier down the line. If you
ever need to change the maximum size of that array, you can
simply update the value of that one symbolic constant, and every
place in your code that refers to it will automatically adjust. It

saves a lot of hassle!.

To declare size as 50 use the following symbolic constant, SIZE,
defined:

#define SIZE 50

This example shows how to declare and read values in an array to

store marks of the students of a class.

Example:

Write a program to declare and read values in an array and display

them.

/* Program to read values in an array*/
include < stdio.h >
define SIZE 5 /* SIZE is a symbolic

constant */
Programming with C - 189

main ()

{

inti=0; /* Loop variable */
int stud_marks[SIZE]; /* array declaration */

/* enter the values of the elements */

for(i = 0;i<size;i++)

{

printf (“Element no. =%d”,i+1);

printf(“ Enter the value of the element:”);
scanf(“%d”,&stud_marks[i]); } printf(‘“\nFollowing
are the values stored in the corresponding array
elements: \n\n”"); for(i = 0; i<size;i++)

{

printf(“Value stored in a[%d] is %d\n™i,
stud marks[i]);

¥

¥

OUTPUT:

Element no. = 1 Enter the value of the element = 11
Element no. = 2 Enter the value of the element = 12
Element no. = 3 Enter the value of the element = 13
Element no. = 4 Enter the value of the element = 14

Element no. = 5 Enter the value of the element = 15

Following are the values stored in the

corresponding array elements:

Value stored in a[0] is 11
Value stored in a[1] is 12

Value stored in a[2] is 13
Programming with C - 190

@lue stored in a[3] is 14
Value stored in a[4] is 15

7.2.3 Accessing Array Elements

To get to a specific item within an array, you essentially "index"
the array's name. This means you put the index number of the
element you want right inside square brackets, immediately

following the array's name.
Example:

double salary = balance[9];

The above statement will take the 10th element from the array and

assign the value to salary variable.
Example:

To use concepts viz. declaration, assignment, and accessing arrays:
#include<stdio.h>
int main ()
{
intn[10]; /* n is an array
of 10 integers */
int 1,j; /* initialize
elements of array n to 0 */
for (1=0;1<10;i++) {n[i]=1+ 100; /* set
element at location i to 1 + 100 */

}

/* output each array element's value */
Programming with C - 191

for G =0;j <10;j++)

{

printf("Element[%d] = %d\n", j, n[j]);
¥

return O;

i

The following Result:

Element[0] = 100
Element[1] =101
Element[2] = 102
Element[3] =103
Element[4] = 104
Element[5] = 105
Element[6] = 106
Element[7] = 107
Element[8] = 108
Element[9] = 109

7.3 ARRAY INITIALIZATION

Arrays can be initialized at the time of declaration. The initial
values must appear in the order in which they will be assigned to
the individual array elements, enclosed within the braces and

separated by commas.

7.3.1 Initialization of Array Elements in the Declaration

The values are assigned to individual array elements enclosed

within the braces and separated by comma.

Programming with C - 192

Syntax of array initialization is:
data type array-name [size | = {val 1, val 2, val n};

val 1 is the value for the first array element, val 2 is the value for

the second element, and val n is the value for the n array element.

Note: When initializing the values at the time of declaration, then

there is no need to specify the size. Let the given example:

int digits [10] = {1,2,3.,4,5,6,7,8,9,10};

int digits[| = {1,2,3,4,5,6,7,8,9,10};

int vector[5] = {12,-2,33,21,13};

float temperature[10] ={ 31.2, 22.3, 41.4, 33.2, 23.3, 32.3, 41.1,
10.8, 11.3, 42.3};

double width[] = { 17.33333456, -1.212121213, 222.191345 };

int height[10] = { 60, 70, 68, 72, 68 };

7.3.2 Character Array Initialization

In C, strings are essentially implemented as arrays of characters.
What's interesting is that they're initialized a bit differently than
other arrays. There's a special little character, called the null
character ("\0"), which C *automatically* places at the very end of
every string. So, when you @ign a string constant to an external
or static character array, you often don't need to specify the array's
size yourself. The compiler is smart enough to figure it out
automatically, and that calculated size will always include room

for that crucial "\O" character tacked on at the end.

Programming with C - 193

Example:

@ar thing [3] = “TIN”;
char thing [] = “TIN”;

The above two statements the assignments are done differently.
The first statement is not a string but simply an array storing three
characters ‘T’, ‘I’ and ‘N’ and is same as writing: char thing [3 | =
{*T°, ‘I, ‘N’}; whereas, the second one is a four character string

TIN\O.

7.4 SUB SCRIPT

To the individual element in an array, a subscript is used. to the

statement used in
Example:
scanf (“ % d”, &stud marks| @

Subscript is an integer type constant or variable name whose value
ranges from 0 to SIZE - 1 where SIZE is the total number of

elements in the array.

Q individual elements of an array of size 5: Consider the
following declarations: char country[| = “India”; int stud[] = {1,
2, 3, 4, 5}; Here both arrays are of size 5. This is because the
country is a char array and initialized by a string constant “India”

and every string constant is terminated by a null character \0’.

Programming with C - 194

Example:

/* Program to find the maximum marks among the marks of 10
students*/

include < stdio.h >

define SIZE 10 /* SIZE is a symbolic constant */
main ()

{

inti=0;

int max = 0;

int stud _marks[SIZE]; /* array declaration */

/* enter the values of the elements */
for(1= 0;i<size;i++)
{
printf(“‘Student no.=%d”,i+1);
printf(* Enter the marks out of 50:);
scanf(“%d”,&stud_marks[i]);
}
@ﬁnd maximum */
for(1 = 0;i<size;i++)
{
If(stud_marks[i]>max)
x = stud marks[i];
}
printf(“‘\n\nThe maximum of the marks obtained among all the 10

students is: %d ”,max); }
OUTPUT:

Student no. = 1 Enter the marks out of 50: 10

Student no. = 2 Enter the marks out of 50: 17
Programming with C - 195

Student no. = 3
Student no. = 4
Student no. = 5
Student no. =
Student no. =
Student no. =
Student no. =

Enter the marks out of 50:
Enter the marks out of 50:
Enter the marks out of 50:
Enter the marks out of 50:
Enter the marks out of 50:
Enter the marks out of 50:
Enter the marks out of 50:

23
40
49
34
37
16
08

Student no. = 10 Enter the marks out of 50: 37

7.5 PASSING ARRAYS TO FUNCTIONS

When you need to send a single-dimensional array as an argument

to a function, C gives you a few options for how you declare that

formal parameter inside the function. Interestingly, all three

common declaration methods end up achieving the same result:

they each signal to the compiler that the function is expecting to

receive an integer pointer. The good news is, you can apply a

similar approach when passing multi-dimensional arrays as formal

parameters as well.

Way-1

Formal parameters as a pointer:

void myFunction(int *param)

{

Programming with C - 196

Way-2

Formal parameters as a sized array:

void myFunction(int param[10])

{

Way-3

Formal parameters as an unsized array:

void myFunction(int param[])

{

Example:

Okay, let's look at an example. Imagine a function designed to
calculate an average: it takes an array as input, along with one
other argument, and then uses those inputs to figure out and return
the average of the numbers provided in that array. Here's how it

would generally work:

double getAverage(int arr[], int size)
{
int i;
Programming with C - 197

double avg;

double sum;

for (i = 0; i < size; ++1)

{
sum += arr[i];

b
avg = sum / size;
return avg;

¥

Now, let us call the function:

#include<stdio.h>

/* function declaration */

double getAverage(int arr[], int size);
int main ()

{

/* an int array with 5 elements */
int balance[5] = {1000, 2, 3, 17, 50};
double avg;

/* pass pointer to the array as an argument */

avg = getAverage(balance, 5) ;

/* output the returned value */
printf("Average value is: %f ", avg);

return O;

}

When the code is compiled together and executed, it produces the
Programming with C - 198

following result: Average value is: 214.400000

7.6 FROCESSING THE ARRAYS

For certain applications the assignment of initial values to elements
of an array is required. This means that the array be defined

globally (extern) or locally as a static array.

Example:

Write a program to display the average marks of each student,

given the marks in 2 subjects for 3 students.

/* Program to display the average marks of 3 students */

include < stdio.h >

define SIZE 3

main()

{

inti=0;

float stud marks1[SIZE]; /* subject larray declaration */
float stud _marks2[SIZE]; /*subject 2 array declaration */
float total marks[SIZE];

float avg[SIZE];

printf(‘““\n Enter the marks in subject-1 out of 50 marks: \n”);
for(1= 0;i<size;i++)

{

printf(‘“‘Student no. =%d”,i+1);

printf(“ Please enter the marks= *);
scanf(“%ft”,&stud_marks2[i]);

b

for(i=0;i<size;i++)

{

Programming with C - 199

total marks[i]=stud marks1[i]+ stud marks2[i];
avg[i]=total marks[i]/2;

printf(“‘Student no.=%d, Average= %f\n”,i+1, avg[i]);
b

}

OUTPUT:

Enter the marks in subject-1out of 50 marks:
Student no. = 1 Enter the marks= 23
Student no. = 2 Enter the marks= 35
Student no. = 3 Enter the marks= 42

Enter the marks in subject-2 out of 50 marks:
Student no. = 1 Enter the marks= 31
Student no. = 2 Enter the marks= 35
Student no. = 3 Enter the marks= 40

Student no. = 1 Average= 27.000000
Student no. = 2 Average= 35.000000
Student no. = 3 Average= 41.000000

7.7 MULTI-DIMENSIONAL ARRAYS

C programming language allows multidimensional arrays. Here is

the general form of a multidimensional array declaration:

type name[sizel][size2]...[sizeN];

Example:

The following declaration creates a three-dimensional integer

array:

Programming with C - 200

int three dim[5][10][4];

Imagine you're diving into the world of programming a chess
game. A standard chessboard, as we know, is an 8-by-8 grid. So,
what's the best way to digitally represent that? You'd likely turn to
a two-dimensional array. This structure perfectly mirrors the
chessboard, allowing you to store the positions of all the chess
pieces. With a two-dimensional array, you use two indices to
pinpoint any single square, which is actually quite similar to how
"algebraic notation" works in chess circles to record games and

problems. It's a pretty intuitive fit!

Here's a cool principle: in theory, there's absolutely no limit to how
many subscripts (or dimensions) an array can have. Any array with
more than one dimension falls under the umbrella of multi-
dimensional arrays. While we humans might struggle to visualize
objects beyond three dimensions, representing and working with
highly multi-dimensional arrays poses no problem whatsoever for

computers. They handle it with ease!

7.7.1 Multi-Dimensional Arrays Declaration

Q declare an array of two dimensions as follows:

datatype array namefsizel[[size2];

In the example of, variable type is the name of some type of

variable, such as int. Also, sizel and size2 are the sizes of the

array’s first and second dimensions, respectively.

Programming with C - 201

Example:

Remember, because C arrays are zero-based, the indices on each
side of the chessboard array run 0 through 7, rather than 1 through
8. The effect is the same: a two-dimensional array of 64 elements.
int chessboard [8][8];

7.7.2 Initialization Two-Dimensional Arrays

The simplest kind of multi-dimensional array you'll encounter is
the two-dimensional array. You can essentially think of it as a list,
where each item on that list is actually another one-dimensional

array.

To declare a two-dimensional integer array of size [x][y], To write

something as:

type arrayName [x [[y |;

For an 'm x n’ array, you're looking at a total of 'm * n' individual
elements. To figure out how much space it will take up in memory,
you simply multiply that total number of elements by Q size of
each individual element. This calculated amount is precisely how
much memory needs to be set aside, or "reserved," for your array.
When these elements are actually stored, they're typically laid out

in memory row by row.
inttable[2][3]={1,2,3,4,5,6 };
It means that element

table [0][0] = 1;
Programming with C - 202

table [0][1] =2;
table [0][2] = 3;
table [1][0] = 4;
table [1][1]=5;
table [1][2] = 6;

The neutral order in which the initial values are assigned can be
altered by including the groups in { } inside main enclosing

brackets, the initialization as:

inttable [2][3]={ {1,2,3}, 36
14,5,6} };

When you're initializing multi-dimensional arrays, the wvalues
placed within the innermost set of braces are assigned to the array
elements where the last subscript (or index) changes most quickly.
If you provide fewer values than a row can hold, the remaining
elements in that row will automatically be filled with zeros. It's
important to remember, though, that you can't supply more values
than the defined size of the row; you must stick within its specified

capacity.

inttable [2][3]={{1,2,3},{4}};

It assigns as

table [0][0] = 1;
table [0][1] = 2;
table [0][2] = 3;
table [1][0] = 4;
table [1][1] = 0;
table [1][2]=0

Programming with C - 203

7.8 DECLARATION AND
INITIALIZATION OF STRINGS

Strings in C are essentially just one-dimensional arrays made up of
characters, with one crucial difference: they're always ended by a
special null character, written as "\O'. This "\0' acts like a sentinel,

signaling the very end of the string.

So, when you declare and initialize a string, say, with the word
"Hello," you're actually creating a null-terminated string that
contains those five letters followed immediately by the "\0'. This
means that the character array you use to hold "Hello" needs to be
one slot larger than the number of characters in the word itself, just

to make room for that essential null terminator.

char greeting[6] = {'"H", 'e', 'I', 'I', '0', "\0'};

The rule of array initialization, they can write the statement as:
char greeting[] = ""Hello"';

In C, strings are essentially collections of characters, digits, and
symbols, all bundled together and enclosed within quotation
marks. Simply put, you can think of a string as a "character array."
A crucial detail is that the very end of every string is always

marked by a special null character, represented as "\0'.

The memory of the string in C/C++:

Programming with C - 204

Index o 1 2 3 a 5

Variable H e | | o \0

Address 023451 23452 Ox23453 Ox23454 23455 | Ox23456

The null character at the end of a string constant. The C compiler
automatically places the "O' at the end of the string when it

initializes the array.

string:

#include

int main ()

{ char greeting[6] = {'"H', 'e','l', 'T', '0’, \0'};
printf("Greeting message: %s\n", greeting);

return O;

}

Result:

Greeting message: Hello

Initialization of Strings:
A string in C is simply a sequence of characters. To declare a

string, specify the data type as char and place the number of

characters in the array in square brackets after the string name.

Programming with C - 205

The syntax is:

char string-name[size];

Example:

char name[20];

char address[25];

char city[15];

The string can be initialized as:

char name[8] = {‘P’, ‘R’, ‘O’, ‘G’, ‘R’, ‘A’, ‘M’, \0’};

Each character of string occupies 1 byte of memory (on 16 bit

computing). The size of character is machine dependent, and varies

from 16 bit computers to 64 bit computers. The characters of

strings are stored in the contiguous (adjacent) memory locations.

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte
1 byte 1 byte
P R o | G | R A M \0
1001 1002 1003 1004 1005 1006
1007 1008

The good news is that the C compiler is smart enough to
automatically insert the null character ("\0") at the end of every
string literal you use. This means you generally don't have to

manually initialize that null terminator yourself.

When working with string constants (those bits of text enclosed in

double quotes), you have a couple of straightforward ways to
Programming with C - 206

handle them. You can directly assign them to ‘char’ pointers.
Alternatively, you can assign a string constant to a "char’ array—
you might even omit the size specification and let the compiler
figure it out, or you can explicitly define the size. Just remember, if
you specify the size, always make sure to leave that extra spot for
the essential null character! Now, let's look at a couple of code

examples to see this in action:

/* Fragment 1 */

{

char *s;

s=hello”;

printf(“%s\n”,s);

¥

/* Fragment 2 */

{

char s[100];
strepy(s, ““ hello”);
printf(“%s\n”,s);

¥

These two fragments produce the same output, but their internal
behaviour is quite different. In fragment 2, you cannot say s =
"hello";. To understand the differences, you have to understand

how the string constant table works in C.

Example:

Write a program to read a name from the keyboard and display
message Hello onto the monitor Program.
/*Program that reads the name and display the hello along with

your name*/

Programming with C - 207

#include main()

{

char name[10];

printf(“\nEnter Your Name : *);
scanf(““%s”, name);
printf(““Hello %s\n”, name);

}

OUTPUT:

Enter Your Name: Raghav
Hello Raghav

7.9 ARRAY OF STRINGS

Array of strings are multiple strings, stored in the form of table.
Declaring array of strings is same as strings, except it will have

additional dimension to store the number of strings. Syntax is:

char array-name[size][size];

Example:

char names[5][10];

where names is the name of the character array and the constant in
first square brackets will gives number of string we are going to
store, and the value in second square bracket will gives the

maximum length of the string.

Programming with C - 208

7.10 BUILT-IN STRING FUNCTION AND
APPLICATIONS

The header file contains some string manipulation functions. The

following is a list of the common string managing functions in C.

7.10.1 Strlen Function

The strlen function returns the length of a string. It takes the string

name as argument. The syntax is as follows:

n = strlen (str);

where str is name of the string and n is the length of the string,

returned by strlen function.

7.10.2 Strcpy Function

In C, you cannot simply assign one character array to another. You
have to copy element by element. The string library contains a
function called strcpy for this purpose. The strcpy function is used
to copy one string to another.

The syntax is:

strepy(strl, str2);

where strl, str2 are two strings. The content of string str2 is copied

on to string strl.

Programming with C - 209

7.10.3 Strcmp Function

The strcmp function, found within C's standard string library, is
specifically designed to compare two strings. It does this by
checking them character by character, starting from the beginning.
The comparison halts either when it finds a difference in the ASCII
values of corresponding characters, or when it reaches the end of

either string.

What it returns is an integer value. This integer tells you about the
relationship between the two strings:
. If stremp returns zero (0), it means the two strings are
identical.
A negative value indicates that the first string is "less
than" the second string (alphabetically, based on ASCII values).
. A positive value signifies that the first string is "greater

than" the second string.

The syntax is:

n = stremp(strl, str2);

where strl and str2 are two strings to be compared and n is

returned value of differed characters.

7.10.4 Strcat Function

The strcat function is used to join one string to another. It takes
two strings as arguments; the characters of the second string will

be appended to the first string.

Programming with C - 210

The syntax is:

I|I

7.10.5 Striwr Function

7.10.6 Strrev Function

7.10.7 Strspn Function

[\
—_
—

The syntax is:
@_— strspn (first, second);

where first and second are two strings to be compared, n is the
number of character from which first string does not match with

second string.

7.11 OTHER STRING SUNCTIONS

strncpy function

The strnepy function same as strcpy. It copies characters of one

string to another string up to the specified length.

The syntax is:
strnepy(strl, str2, 10);
where strl and str2 are two strings. The 10 characters of string str2

are copied onto string strl.
stricmp function

The stricmp function is same as strcmp, except it compares two

strings ignoring the case (lower and upper case).
The syntax is:
Q stricmp(strl, str2);

strncmp function The strncmp function is same as stremp, except it

compares two strings up to a specified length.

The syntax is:

Programming with C - 212

n = strncmp(strl, str2, 10);

where 10 characters of strl and str2 are compared and n is returned

value of differed characters.

strchr function

The strchr funtion takes two arguments (the string and the
character whose address is to be specified) and returns the address

of first occurrence of the character in the given string.
The syntax is:

cp = strchr (str, c);

where str is string and c is character and cp is character pointer.

7.12 CONCLUSION

In this unit, we've learned that as programs expand in size and
complexity, effectively managing data becomes increasingly
challenging. Relying solely on unique, often lengthy variable
names for every piece of data can quickly overwhelm a
programmer and divert focus from the critical task of accurate
coding. This is where arrays prove invaluable. They provide a
unified name for a collection of data items, allowing individual
members to be accessed simply by their index. We've explored the
fundamental purpose of arrays, how to declare them, and how to
assign values. A key characteristic is that @ array elements are
stored in sequential memory locations, and without exception, C
arrays are indexed starting from 0, going @ to one less than their

declared size.

Programming with C - 213

A crucial point about array declarations is their rigidity regarding
size: the dimensions you specify must be constant expressions that
can be determined when the program is compiled, not during
runtime. Regarding initialization, global and static array elements
are automatically set to O by default, whereas elements in
automatic (local) arrays will contain whatever "garbage" values
were previously in those memory locations. Within C, a character
array is specifically employed to represent a character string, with
its end explicitly marked by a byte set to 0, commonly known as a
NULL character ("\0").

At their heart, strings are simply sequences of characters. For them
to behave correctly and be usable with C's string functions, they
absolutely *must* be null-terminated. This means you always need
to account for that \0' when dealing with strings, especially if
you're allocating memory dynamically for them. The ‘string.h’
library provides a wealth of wuseful functions for string
manipulation. However, losing that crucial "\O' character can lead
to significant and hard-to-track bugs. Therefore, it's vital to ensure
you always copy the \0' when duplicating strings, include it when
creating new ones, and verify that any receiving string is
adequately sized to hold the source string plus its "\0'. Lastly, if
you're pointing a character pointer to a sequence of characters,

confirm that those characters are properly terminated with a "\0".

Programming with C - 214

BLOCK III: STRINGS, Z0OLS FOR
MODULAR PROGRAMMING AND
POINTERS
UNIT8 FUNCTIONS
Tools for Modular Programming
8.0 Introduction
8.1 Objectives
8.2 Definition of a Function
8.3 Declaration of a Function
8.4 Function Prototypes
8.5 Calling a Function
8.6 Function Arguments
8.7 The Return Statement
8.7.1 Call by Value
8.7.2 Call by Reference
8.8 Types of Variables and Storage Classes
8.8.1 Automatic Variables
8.8.2 External Variables
8.8.3 Static Variables
8.8.4 Register Variables
8.9 Types of Function Invoking

8.10 Recursion

8.11 Conclusion

8.12 Unit based Questions /Answers

8.0 INTRODUCTION

To make programming simple and easy to debug, we break a larger

program into smaller subprograms which perform ‘well defined

tasks’. These subprograms are called functions. So far we have

defined a single function main ().

Programming with C - 215

After reading this unit you will be able to define many other
functions and the main() function can call up these functions from
several different places within the program, to carry out the

required processing.

Functions are very important tools for Modular Programming,
where we break large programs into small subprograms or modules
(functions in case of C). The use of functions reduces complexity

and makes programming simple and easy to understand.

In this unit, we will discuss how functions are defined and how are
they accessed from the main program? We will also discuss
various types of functions and how to invoke them. And finally
you will learn an interesting and important programming technique

known as Recursion, in which a function calls within itself.

This unit will explain to you the functions of language C.

8.1 OBJECTIVES

After completing ms‘ unit, you will be able to:

" @ need of functions in the programming;

= how to define and declare functions in ‘C’ Language;

= different types of functions and their purpose;

- how the functions are called from other functions;

- how data is transferred through parameter passing, to functions and the

Return statement; recursive functions; and

- the concept of ‘Call by Value’ and its drawbacks.

= understand the concept and use pointers;

= address and use of indirection operators;

- make pointer type declaration, assignment and initialization;
- use null pointer assignment;

- use the pointer arithmetic;

- handle pointers to functions;

Programming with C - 216

- see the underlying unit of arrays and pointers; and

= understand the concept of dynamic memory allocation

8.2 DEFINITION OF A FUNCTION

A function is a &up of statements that together perform a task.
Every C program has at least one function, which is main(), and all

the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you
divide up your code among different functions is up to you, but
logically the division is such that each function performs a specific

task.

A function declaration tells the compiler about a function's name,
return type, and parameters. A function definition provides the

actual body of the function.

The C standard library provides numerous built-in functions that
your program can call. For example, strcat() to concatenate two
strings, memcpy() to copy one memory location to another
location, and I@my more functions. A function can also be referred

as a method or a sub-routine or a procedure, etc.

Functions are the C building blocks where every program activity
occurs. It is a self contained program segment that carries out some
specific, well-defined task. Every C program must have a function.

One of the function must be main().

@e general form of a @wtion definition in C programming
language is as @Iows:
return_type function name(parameter list)

Programming with C - 217

@dy of the function

C functions can be classified into two categories.

Library functions: Predefined in the standard library of C. Need
is just to include the library.

User defined functions: It has to be-developed by the user at the

time of program writing.

Need of user Defined Functions

If a program is divided into functional parts, then each part may be
independently coded and later combined into a single unit. This
approach clearly results in a number of advantages.

= Length of program can be reduced by using function.

= Reusability of function increases.

= Jtis easy to use.

= Debugging is more suitable (easier) for programs.

= Jtis easy to understand the actual logic of a program.

= Highly suited in case of large programs.

= By using functions in a program, it is possible to construct

modular and structured programs.
Example:

/* function returning the max between two numbers */
int max(int numl, int num2)

{

/* local variable declaration */

int result;

Programming with C - 218

if (num1 > num?2)
result = numl;
else

result = num?2;

return result;

}

8.3 DECLARATION OF A FUNCTION

Before defining the function, it is appropriate to declare the
function along with its prototype. In function prototype, the return
value of function, type, and number of arguments are specified.
The declaration of all functions statement should be first
statements in main() or we can also declare globally for accessing
all function within program. The general form of function

declaration is
<return_type> <function_name> ([<argument_list>]);

A function declaration tells the compiler about a function name
and how to call the function. The actual body of the function can
be ined separately. A function declaration has the following

parts:

return_type function name(parameter list);

For the above defined function @x(),the function declaration is as

follows:

int max(int numl, int num?2);

Parameter names are not important in function declaration, only

their type is required, so the following is also a valid declaration:

Programming with C - 219

int max(int ,mt);

Function declaration is required when you define a function in one
source file and you call that function in another file. In such case,
you should declare the function at the top of the file calling the

function.

8.4 FUNCTION PROTOTYPES

Function prototypes are desirable because they facilitate error checking betwe
calls to a function and corresponding function definition. They also help @
compiler to perform automatic type conversions on function parameters. When a
function is called, actual arguments are automatically converted to the types in
function definition using normal rules of assignment.

¢ function Definition is, the task assigned to the function, that user declare.

© general form of a function definition is:

return_type function_name (declarations of formal argument list)

{
local variable declarations;
executable statement 1;
executable statement 2;
executable statement n;
return (expression);

}

Where return_type represents t@ data type of the value which is returned. The
type specification can be omitted if the function returns an integer or a character.
The formal argument list is a list of variables separated by commas that receive

the values from main program when function is called.

The last statement in the body of function is return (expression). It @sed to

return the computed result, if any, to the calling program.

Programming with C - 220

8.5 CALLING A FUNCTION

@function can be called by specifying its name followed by a list
of arguments enclosed in parentheses and separated by commas. If
a function call does not require any arguments, an empty pair of

parenthesis must follow the function name.

@hile creating a C function, you give a definition of what the
function has to do. To use a function, you will have to call that

function to perform the defined task.

When a program calls a function, the program control is
transferred to the called function. A called function performs a
defined task and when its return statement is executed or when its
function-ending closing brace is reached, it returns the program

control back to the main program.

To call a function, you simply need to pass the required parameters
along with the function name, and if the function returns a value,

then you can store the returned value.

Example:

#include<stdio.h>
/* function declaration */

int max(int num1, int num2);

int main ()
{
/* local variable definition */
int a = 100;
int b =200;
int ret;

Programming with C - 221

/* calling a function to get max value */
ret = max(a, b);
printf("Max value is : %d\n", ret);
return O;

H

/* function returning the max between two numbers */
int max(int numl, int num?2)

{

/* local variable declaration */
int result;
if (num1 > num?2)
result = numl;
else
result = num?2;

return result;

The following result:

Max value is: 200

8.6 FUNCTION ARGUMENTS

If a function is to use arguments, it must declare variables that
accept the values of the arguments. These variables are called the

formal parameters of the function.

Formal parameters behave like other local variables inside the
function and are created upon entry into the function and destroyed

upon exit.

While calling a function, there are two ways in which arguments

can be passed to a function:

Programming with C - 222

Call Type Description

U
This method copies the actual value of an argument into the

formal parameter of the function. In this case, changes made

Call by value to the parameter inside the function have no effect on the
argument.
This method copies the address of an argument into the
Call by formal parameter. Inside the function, the address is used to
reference access the actual argument used in the call. This means that

changes made to the parameter affect the argument.

8.7 THE RETURN STATEMENT

Information is returned from the function @the calling portion of
the program via return statement. Its uses control to be returned to
the point from where the function was accessed. The return

statement can take one of the following forms:

return;
or

return (expression);

In the return (expression); statement, the value of the expression is
returned to the calling of the program.
A function can have multiple return statements, each containing

different expression.
Example:

/* Program to convert lowercase character to uppercase */
include
main()
{
char lower, upper;

Programming with C - 223

char Lower_to_upper (char Lower);
printf("n Enter the lowercase character:");
scanf("%c", & Lower);

upper = Lower_to_upper (lower);

printf ("\n The upper case Equivalent is % c", upper);

h
char lower to upper (char ch);
{
char c2;
c2=(cl >="a' && cl <='2") ? (ch-32) : cl;
return (c2);
b
8.7.1 Call by Value

Call by value means sending the values of the arguments to
functions. When a Single value is passed to a function via-an
actual argument, the value of the actual argument is copied into the
function in formal argument, and no matter what the function does
with that value, the value stored in actual argument remains
unchanged. This procedure to pass the value of an argument to a

function is known as passing by value or call by value.

By default, C programming uses call by value to pass arguments.
In general, it means the code within a function cannot alter the
arguments used to call the function. Consider the function swap()

definition as follows.

Example:

/* function definition to swap the values */
#include<stdio.h>

void swap(int x, int y)
Programming with C - 224

{

int temp;

temp = X;

/* save the value of x */

X=Yy;

/* put y into x */

y = temp;

/* put temp into y */

return;

¥

Now, let us call the function swap() by passing actual values as in
the following

Example:

#include<stdio.h>

/* function declaration */

void swap(int X, int y);

int main ()

{

/* local variable definition */

inta = 100;

int b=200;

printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);
/* calling a function to swap the values */
swap(a, b);

printf(" After swap, value of a : %d\n", a);
printf(" After swap, value of b : %d\n", b);

return O;

}

Programming with C - 225

The following Result:

Before swap, value of a: 100
Before swap, value of b: 200
After swap, value of a: 100
After swap, value of b: 200

It shows that there are no changes in the values, though they had

been changed inside the function.

8.7.2 Call by Reference

The call by reference method of passing arguments to a function
copies the address of an argument into the formal parameter. Inside
the function, the address is used to access the actual argument used
in the call. It means the changes made to the parameter affect the

passed argument.

To pass a value by reference, argument pointers are passed to the
functions just like any other value. So accordingly, you need to
declare the function parameters as pointer types as in the following
function swap(), which exchanges the values of the two integer

variables pointed to, by their arguments.

/* function definition to swap the values */
#include<stdio.h>

void swap(int *x, int *y)

{

int temp;

temp = *x; /* save the value at address x */
*X = *y; /* put y into x */

y = temp; / put temp into y */

return;

Programming with C - 226

}

Let us now call the function swap() by passing values by reference

as in the following:

Example:

#include<stdio.h> /* function declaration */
void swap(int *x, int *y);

int main ()

{

/* local variable definition */

int a = 100;

int b =200;

printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);

/* calling a function to swap the values.

* &a indicates pointer to a i.e. address of variable a and
* &b indicates pointer to b i.e. address of variable b. */
swap(&a, &b);

printf(" After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);

return O;

b

The following Result:

Before swap, value of a: 100
Before swap, value of b: 200
After swap, value of a: 200
After swap, value of b: 100

It shows that the change has reflected outside the function as well,
Programming with C - 227

unlike call by value where the changes do not reflect outside the

function.

By default, C uses call by value to pass arguments. In general, it
means the code within a function cannot alter the arguments used

to call the function.

8.8 TYPES OF VARIABLES AND
STORAGE CLASSES

In a program consisting of a number of functions a number of

different types of variables can be found.

Global vs. Static variables: Global variables are recognized
through out the program whereas local valuables are recognized

only within the function where they are defined.

Static vs. Dynamic variables: Retention of value by a local
variable means, that in static, retention of the variable value is lost
once the function is completely executed whereas in certain
conditions the value of the variable has to be retained from the

earlier execution and the execution retained.

The variables can be characterized by their data type and by their
storage class. One way to classify a variable is according to its data
type and the other can be through its storage class. Data type refers
to the type of value represented by a variable whereas storage class
refers to the permanence of a variable and its scope within the
program i.e. portion of the program over which variable is

recognized.

Programming with C - 228

Storage Classes

There are four different storage classes specified in C:
1. Auto (matic)

2. Extern (al)

3. Static

4. Register

The storage class associated with a variable can sometimes be
established by the location of the variable declaration within the

program or by prefixing keywords to variables declarations.

A variable storage class tells us

1) Where the variable would be stored.

2) What will be the initial value of the variable, if the initial value
is not specifically assigned (i.e. the default initial value).

3) What is the scope of the variable, i.e., in which functions the
value of the variable would be available.

4) What is the life of the variables; i.e., how long would the

variable exist.

Example:
auto int a, b;
static int a, b;

extern float f;

8.8.1 Automatic Variables

These variables comes into existence whenever and wherever the
variable is declared. These variables are also called as local
variables, because these are available local to a function. The
storage is in the memory and it has a default value, which is a
garbage value. It is local to the block in which it has been declared

and it life is till the control remains within the block in which the

Programming with C - 229

variable is defined. The key word used is 'auto'.

By default..a variable declared inside a function with storage class

specification is an automatic.

Declaration:
int N;
or

auto int N;

Example:
main()

{

auto int i=10;
printf(“%d”,i);
}

The following Result:
10

8.8.2 External Variables

These are not confined to a single function. Their scope ranges
from the point of declaration to the entire remaining program.
Therefore, their scope may be the entire program or two or more

functions depending upon where they are declared.

Points to remember:

= These are global and can be accessed by any function

within its scope.

= Therefore value may be assigned in one and can be written
in another.

- There is difference in external variable definition and
declaration.

= External Definition is the same as any variable declaration:
= Usually lies outside or before the function accessing it.

Programming with C - 230

= It allocates storage space required.

= Initial values can be assigned.

= The external specifier is not required in external variable
definition.

- A declaration is required if the external variable definition

comes after the function definition.

= A declaration begins with an external specifier.

= Only when external variable is defined is the storage space
allocated.

= External variables can be assigned initial values as a part of

variable definitions, but the values must be constants rather than
expressions.
= If initial value is not included then it is automatically

assigned a value of zero.

Declaration: extern int N;

int i=10; // global main()

variable { (i

main() mr oy 0

(printf(““%d”,i);

int i=2; display();
rintf(“%d”,1); }.

A display():

) S

displ . extern Int 1;

{ISP ay(; printf(*“\n%d”,i);

intf(“\n%d",i); ;

I}’“n (n%d”1); int i=10; //global

The following Result: variable .

> The following Result:
10 2

In the following example, Variable “ 1 is a global variable. If the
global variable declared outside (before function definition), there
is no need to use extern declaration in function that use global
variable. Whereas, if global variable declared outside (after
function definition), it has to be extern declaration within function

that use global variable.

Programming with C - 231

8.8.3 Static Variables

The storage is in the memory and default initial value is zero. It is
local to the block in which it has been defined. The value of the
variable persists between different function calls. The value will
not disappear once the function in which it has been declared
becomes inactive. It is unavailable only when you come out the

program. The key word used is 'static'.

Declaration:

static int N;

Example:

void value()

{

static int a=5;

a=a+t2;

printf("\t%d",a);

b

void main()

{ value();

value ();

value();

getch();

b

The output of the programisnot7 7 7
but it is 7 9 11

8.8.4 Register Variables

The storage of this type of variables is in the CPU registers. It has

a garbage value initially. The scope of the variable is it is local to

Programming with C - 232

the block in which the variable is defined. Its life is till the control
remains in the block in which it is defined. A value stored in a
CPU register cal always be accessed faster than the one which is
stored in memory. Therefore, if a variable is used at many places in
a program it is better to declare its storage class as register. A good
example of frequently used variables is loop counters. The key

word used is 'register’.

Declaration:

register int N;

Example:

main()

{

register int i=10;
printf(“%d”,i);

b

Output: 10

8.9 TYPES OF FUNCTION INVOKING

We categorize a function’s invoking (calling) depending on
arguments or parameters and their returning a value. In simple
words we can divide a function’s invoking into four types
depending on whether parameters are passed to a function or not

and whether a function returns some value or not.

The various types of invoking functions are:
= With no arguments and with no return value.
= With no arguments and with return value

= With arguments and with no return value
Programming with C - 233

= With arguments and with return value.

Let us discuss each category with some examples:

TYPE-1: With no arguments and have no return value

As the name suggests, any function which has no arguments and
does not return any values to the calling function, falls in this
category. These type of functions are confined to themselves i.e.
neither do they receive any data from the calling function nor do
they transfer any data to the calling function. So there is no data
communication between the calling and the called function are

only program control will be transferred.

Example:

/* Program for illustration of the function with no arguments and
no return value*/

/* Function with no arguments and no return value*/
#include<stdio.h>

main()

{

void message();

printf(““Control is in main\n’);

message(); /* Type 1 Function */
printf(““Control is again in main\n”);

h

void message()

{

printf(““Control is in message function\n”);

} /* does not return anything */

Programming with C - 234

OUTPUT:

Control is in main
Control is in message function

Control is again in main

TYPE-2: With no arguments and with return value

Suppose if a function does not receive any data from calling
function but does send some value to the calling function, then it

falls in this category.

Example:

Write a program to find the sum of the first ten natural numbers.

/* Program to find sum of first ten natural numbers */
#include<stdio.h>

int cal_sum()

{

int i, s=0;

for (i=0; i<=10; i++) s=s + i;

return(s); /* function returning sum of first ten
natural numbers */ }

main()

{

int sum,;

sum = cal_sum();

printf(““Sum of first ten natural numbers is % d\n”, sum);

}

Programming with C - 235

OUTPUT:

Sum of first ten natural numbers is 55

TYPE-3: With Arguments and have no return value

If a function includes arguments but does not return anything, it
falls in this category. One way communication takes place between

the calling and the called function.

Before proceeding further, first we discuss the type of arguments

or parameters here. There are two types of arguments:

Actual arguments
Formal arguments

Let us take an example to make this concept clear:

Example:

Write a program to calculate sum of any three given numbers.
#include<stdio.h>

main()

{

int al, a2, a3;

void sum(int, int, int);

printf(“Enter three numbers: “);

scanf (“%d%d%d”,&al,&a2,&a3);

sum (al,a2,a3); /* Type 3 function */
4 /* function to calculate sum of three
numbers */

void sum (int f1, int 2, int £3)
{
int s;
Programming with C - 236

s = fl1+ 2+ £3;

printf (“\nThe sum of the three numbers is %d\n”,s);

}

OUTPUT:

Enter three numbers: 23 34 45 The sum of the three numbers is
102 Here f1, f2, {3 are formal arguments and al, a2, a3 are actual

arguments.

TYPE-4: With arguments function and with return value

In this category two-way communication takes place between the
calling and called function i.e. a function returns a value and also
arguments are passed to it. We modify above Example according

to this category.

Example:

Write a program to calculate sum of three numbers.

/*Program to calculate the sum of three numbers*/

#include<stdio.h>

main()

{

int al, a2, a3, result;

int sum(int, int, int);

printf(“Please enter any 3 numbers:\n”);

scanf (“%d %d %d”, & al, &a2, &a3);

result = sum (al,a2,a3); /*
function call */

printf (“Sum of the given numbers is : %d\n”, result); } /*
Programming with C - 237

Function to calculate the sum of three numbers */
int sum (int f1, int 2, int £3)
{ return(f1+ 2 + £3); /* function

returns a value */ }

OUTPUT:
Please enter any 3 numbers: 3 4 5

Sum of the given numbers is: 12

8.10 RECURSION

Recursion is a process by which function calls itself repeatedly,
until some specified condition has been satisfied. The process is
used for repetitive computation in which each action is stated in

terms of previous result.

In order to solve a problem recursively, two conditions must be
satisfied:
= Problem must be written in recursive form.

= Problem statement must include a stopping condition.

Recursive Function Definition:
Recursive function is a function that contains a call to itself. C

supports creating recursive function with ease and efficient.

Recursive function must have at least one exit condition that can
be satisfied. Otherwise, the recursive function will call itself
repeatedly until the runtime stack overflows. Recursive function
allows you to divide your complex problem into identical single
simple cases which can handle easily. This is also a well-known

computer programming technique.

Programming with C - 238

Example:

include<stdio.h>

long unsigned int factorial(long unsigned int number)
{

if(number <= 1)

return 1;

else

return number * factorial(number - 1);

}

void main()

{

long unsigned int N,F;

clrser();

printf(“Enter any Number for Calculate Factorial : *);
scanf(“%lu”,&N); F=factorial(\N);

printf(‘““\nFactorial of %]lu is : %lu”,N,F);

getch();

}

Output:

Enter any Number for Calculate Factorial : 5

Factorial of 5is: 120

Process diagram of Program:

Programming with C - 239

F = factorial(3] 3 feall)
o factorial(]
[umber
=63
Ailrumber <=1)
return 1; Z (call) facroriall)
elcg
a return 3* % —I——b 2
[resturn] factarial{ |
Hinumber <=1} i Rumbsr
refurn 1;
z else Ly [eall] II
refrm 2% - | H{number <=1}
[return) l_hT_'—rnTum 1
else
[return} et 3.
Example2:

/* display numbers from 1 to 10 using recursive function */

include<stdio.h>
void display(int n)
{

If (number > 10)
return;

else
printf(“%d\n”,n);
display(n+1);

}

void main()

{

clrser();

printf(“Numbers from 1 to 10 \n”);

display(1); //1 is a starting number

getch();
¥

8.11 CONCLUSION

In this unit, we learnt about “Functions”: definition, declaration,

prototypes, types, function calls datatypes

and storage classes,

Programming with C - 240

types function invoking and lastly Recursion. All these subtopics
must have given you a clear idea of how to create and call
functions from other functions, how to send values through
arguments, and how to return values to the called function. We
have seen that the functions, which do not return any value, must

be declared as “void”, return type.

A function can return only one value at a time, although it can have
many return statements. A function can return any of the data type
specified in ‘C’. Any variable declared in functions are local to it
and are created with function call and destroyed with function
return. The actual and formal arguments should match in type,
order and number. A recursive function should have a terminating
condition i.e. function should return a value instead of a repetitive

function call.

Programming with C - 241

UNIT9 POINTERS

Structure

9.0 Introduction

9.1 Objectives

9.2 Pointer and their Characteristics

9.3 Address and Indirection Operators

9.4 Pointer Type Declaration and Assignment
9.4.1 Pointer to a Pointer
9.4.2 Null Pointer Assignment

9.5 Pointer Arithmetic

9.6 Passing Pointers to Functions
9.6.1 A Function returning more than one value
9.6.2 Function returning a Pointer

9.7 Arrays and Pointers

9.8 Array of Pointer

9.9 Pointers and Strings

9.10 Conclusion

9.11 Unit based Questions /Answers

9.0 INTRODUCTION

If you want to be proficient in the writing of code in the C
programming language, you must have a thorough working
knowledge of how to use pointers. One of those things, beginners
in C find difficult is the concept of pointers. The purpose of this
unit is to provide an introduction to pointers and their efficient use
in the C programming. Actually, the main difficulty lies with the

C’s pointer terminology than the actual concept.

C uses pointers in three main ways. First, they are used to create
dynamic data structures: data structures built up from blocks of

Programming with C - 242

memory allocated from the heap at run-time. Second, C uses
pointers to handle variable parameters passed to functions. And
third, pointers in C provide an alternative means of accessing
information stored in arrays, which is especially valuable when

you work with strings.

A normal variable is a location in memory that can hold a value.
For example, when you declare a variable i as an integer, four
bytes of memory is set aside for it. In your program, you refer to
that location in memory by the name i. At the machine level, that
location has a memory address, at which the four bytes can hold
one integer value. A pointer is a variable that points to another
variable. This means that it holds the memory address of another
variable. Put another way, the pointer does not hold a value in the
traditional sense; instead, it holds the address of another variable. It

points to that other variable by holding its address.

Because a pointer holds an address rather than a value, it has two
parts. The pointer itself holds the address. That addresses points to
a value. There is the pointer and the value pointed to. As long as
you’re careful to ensure that the pointers in your programs always
point to valid memory locations, pointers can be useful, powerful,

and relatively trouble-free tools.

We will start this unit with a basic introduction to pointers and the
concepts surrounding pointers, and then move on to the three
techniques described above. Thorough knowledge of the pointers
is very much essential for your future courses like the data

structures, design and analysis of algorithms etc.

This unit will explain to you the expressions and operators of

language C.

Programming with C - 243

9.1 OBJECTIVES

After completing this unit, you will be able to:

= understand the concept and use pointers;

= address and use of indirection operators;

= make pointer type declaration, assignment and initialization;
= use null pointer assignment;

= use the pointer arithmetic;

= handle pointers to functions;

= see the underlying unit of arrays and pointers; and

= understand the concept of dynamic memory allocation

9.2 POINTER AND THEIR
CHARACTERISTICS

Pointers in C are easy and fun to learn. Some C programming tasks
are performed more easily with pointers, and other tasks, such as
dynamic memory allocation, cannot be performed without using
pointers. So it becomes necessary to learn pointers to become a
perfect C programmer. Let's start learning them in simple and easy

steps.

As you know, every variable is a memory location and every
memory location has its address defined which can be accessed
using ampersand (&) operator, which denotes an address in
memory. Consider the following example, which prints the address

of the variables defined:

Example:

#include<stdio.h>

int main ()

{

Programming with C - 244

int varl;

char var2[10];

printf("Address of varl variable: %x\n", &varl);
printf("Address of var2 variable: %x\n", &var2);
return O;

}

The following Result:

Address of varl variable: bff5a400
Address of var2 variable: bff5a3f6

Define Pointers:

A pointer is a variable whose value is the address of another
variable, i.e., direct address of the memory location. Like any
variable or constant, you must declare a pointer before using it to
store any variable address. The general form of a pointer variable

declaration is:

Type *var-name;

Here, type is the pointer's base type; it must be a valid C data type
and var-name is the name of the pointer variable. The asterisk *
used to declare a pointer is the same asterisk used for
multiplication. However, in this statement, the asterisk is being
used to designate a variable as a pointer. Take a look at some of

the valid pointer declarations:

int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */
float *fp; /* pointer to a float */
char *ch; /* pointer to a character */

The actual data type of the value of all pointers, whether integer,
Programming with C - 245

float, character, or otherwise, is the same, a long hexadecimal
number that represents a memory address. The only difference
between pointers of different data types is the data type of the

variable or constant that the pointer points to.

An ordinary variable is a location in memory that can hold a value.
For example, when you declare a variable num as an integer, the
compiler sets aside 2 bytes of memory (depends up the PC) to hold
the value of the integer. In your program, you refer to that location
in memory by the name num. At the machine level that location

has a memory address.
int num = 100;

We can access the value 100 either by the name num or by its
memory address. Since addresses are simply digits, they can be
stored in any other variable. Such variables that hold addresses of
other variables are called Pointers. In other words, a pointer is
simply a variable that contains an address, which is a location of
another variable in memory. A pointer variable “points to” another
variable by holding its address. Since a pointer holds an address
rather than a value, it has two parts. The pointer itself holds the
address. That addresses points to a value. There is a pointer and the
value pointed to. This fact can be a little confusing until you get
comfortable with it, but once you get familiar with it, then it is
extremely easy and very powerful. One good way to visualize this

concept is to examine the figure.

Programming with C - 246

— T }

ch

Lemp

pirl

— pir2

Concept of Pointer Variables
Characteristic features of Pointers:
With the use of pointers in programming,
= The program execution time will be faster as the data is
manipulated with the help of addresses directly.
= Will save the memory space.
= The memory access will be very efficient.

= Dynamic memory is allocated.

9.3 ADDRESS AND INDIRECTION
OPERATORS

Now we will consider how to determine the address of a variable.
The operator that is available in C for this purpose is “&” (address
of) operator. The operator & and the immediately preceding
variable returns the address of the variable associated with it. C’s
other unary pointer operator is the “*”, also called as value at
address or indirection operator. It returns a value stored at that
address. Let us look into the illustrative example given below to

understand how they are useful.

Example:

Write a program to print the address associated with a variable and
Programming with C - 247

value stored at that address.

/*Program to print the address associated with a variable and value
stored at that address*/

include<stdio.h>

main()

{

int qty = 5;

printf ("Address of qty = %u\n",&qty);
printf ("Value of qty = %d \n",qty);
printf("Value of qty = %d",*(&qty));

}

OUTPUT:

Address of qty = 65524

Value of qty =5

Value of qty =5

94 POINTER TYPES DECLARATION
AND ASSIGNMENT

We have seen in the previous section that &qty returns the address

of qty and this address can be stored in a variable as shown below:
ptr = &qty;

In C, every variable must be declared for its data type before it is
used. Even this holds good for the pointers too. We know that ptr
is not an ordinary variable like any integer variable. We declare the
data type of the pointer variable as that of the type of the data that
will be stored at the address to which it is pointing to. Since ptr is a
variable, which contains the address of an integer variable qty, it

can be declared as:

int *ptr;
Programming with C - 248

where ptr is called a pointer variable. In C, we define a pointer
variable by preceding its name with an asterisk(*). The “*”
informs the compiler that we want a pointer variable, i.e. to set
aside the bytes that are required to store the address in memory.
The int says that we intend to use our pointer variable to store the

address of an integer. Consider the following memory map:

pir qty #— Variable
65524 100 Value
» -—
65511 65524 4+ Address

Example:

/* Program below demonstrates the relationships we have
discussed so far */

include<stdio.h>

main()

{

int qty = 5;

int *ptr; /* declares ptr as a pointer variable that points to an
integer variable */

ptr = &qty; /* assigning qty’s address to ptr -> Pointer
Assignment */

printf ("Address of qty = %u \n", &qty);

printf ("Address of qty = %u \n", ptr);

printf ("Address of ptr = %u \n", &ptr);

printf ("Value of ptr = %d \n", ptr);

printf ("Value of qty = %d \n", qty);

printf ("Value of qty = %d \n", *(&qty));

printf ("Value of qty = %d", *ptr);

b

Programming with C - 249

OUTPUT:

Address of qty = 65524
Address of ptr = 65522
Value of ptr = 65524
Value of gty =5

Value of qty =5

Value of qty =5

Example:

/* Program that tries to reference the value of a pointer even
though the pointer is uninitialized */

include<stdio.h>

main()

{

int *p; /* a pointer to an integer */

*p=10;

printf(“‘the value is %d”, *p);

printf(“‘the value is %u”,p);

}

9.4.1 Pointer to a Pointer

The concept of pointer can be extended further. As we have seen
earlier, a pointer variable can be assigned the address of an
ordinary variable. Now, this variable itself could be another
pointer. This means that a pointer can contain address of another

pointer. The following program will makes you the concept clear.

Example:

/* Program that declares a pointer to a pointer */

Programming with C - 250

include<stdio.h>

main()

{

inti=100;

int *pi;

int **pii;

pi = &i;

pii = π

printf ("Address of i = %u \n", &i);
printf ("Address of i = %u \n", pi);
printf ("Address of i = %u \n", *pii);
printf ("Address of pi = %u \n", &pi);
printf ("Address of pi = %u \n", pii);
printf ("Address of pii = %u \n", &pii);
printf ("Value of i = %d \n", 1);
printf ("Value of i = %d \n", *(&i));
printf ("Value of i = %d \n", *pi);
printf ("Value of i = %d", **pii);

¥

OUTPUT:

Address of i = 65524
Address of i = 65524
Address of i = 65524
Address of pi = 65522
Address of pi = 65522
Address of pii = 65520

Value of 1 = 100
Value of 1 =100
Value of 1 = 100

Programming with C - 251

Value of 1 = 100

Consider the following memory map for the above shown

example:
pii pi i
65522 65524 100
G3520 65522 65524

9.4.2 Null Pointer Assignment

- — — — Vanahle

a— Value

——— Address

It does make sense to assign an integer value to a pointer variable.

An exception is an assignment of 0, which is sometimes used to

indicate some special condition. A macro is used to represent a null

pointer. That macro goes under the name NULL.

Thus, setting the value of a pointer using the NULL, as with an

assignment statement such as ptr = NULL, tells that the pointer has

become a null pointer. Similarly, as one can test the condition for

an integer value as zero or not, like if (i == 0), as well we can test

the condition for a null pointer using if (ptr == NULL) or you can

even set a pointer to NULL to indicate that it’s no longer in use.

Example:

include<stdio.h>

define NULL 0

main()

{
int *pi = NULL;

printf(“The value of pi is %u”, pi);

}

Programming with C - 252

OUTPUT:

The value of pi is O

9.5 POINTER ARITHMETIC

A pointer in C is an address, which is a numeric value. Therefore,
you can perform arithmetic operations on a pointer just as you can
on a numeric value. There are four arithmetic operators that can be

used on pointers: ++, --, +, and —.

To understand pointer arithmetic, let us consider that ptr is an
integer pointer which points to the address 1000. Assuming 32-bit
integers, let us perform the following arithmetic operation on the

pointer:

ptr++

The ptr will point to the location 1004 because each time ptr is
incremented, it will point to the next integer location which is 4
bytes next to the current location. This operation will move the
pointer to the next memory location without impacting the actual

value at the memory location.

If ptr points to a character whose address is 1000, then the above
operation will point to the location 1001 because the next character

will be available at 1001.

a) Incrementing a Pointer:
We prefer using a pointer in our program instead of an array
because the variable pointer can be incremented, unlike the array

name which cannot be incremented because it is a constant pointer.

Programming with C - 253

The following program increments the variable pointer to access

each succeeding element of the array:

Example:
#include<stdio.h>
const int MAX = 3;
int main ()
{
int var[] = {10, 100, 200};
int 1, *ptr;
/* let us have array address in pointer */
ptr = var;
for (i=0;1<MAX; i++)
{
printf("Address of var[%d] = %x\n", i, ptr);
printf("Value of var[%d] = %d\n", i, *ptr);

/* move to the next location */ ptr++;

}

return O;

}

The following result:
Address of var[0] = bf882b30
Value of var[0] = 10
Address of var[1] = bf882b34
Value of var[1] = 100
Address of var[2] = bf882b38
Value of var[2] = 200

b) Incrementing a Pointer:

The same considerations apply to decrementing a pointer, which

decreases its value by the number of bytes of its data type as

shown below:

Programming with C - 254

Example:
#include<stdio.h>

const int MAX = 3;

int main ()

{

int var[] = {10, 100, 200};
int 1, *ptr;

/* let us have array address in pointer */
ptr = &var[MAX-1];
for (i=MAX;i>0;i--)
{
printf("Address of var[%d] = %x\n", i, ptr);
printf("Value of var[%d] = %d\n", i, *ptr);
/* move to the previous location */
ptr--;
¥
return 0;
¥
The following result:

Address of var[3] = bfedbcd8

Value of var[3] = 200

Address of var[2] = bfedbcd4

Value of var[2] = 100

Address of var[1] = bfedbcd0

Value of var[1] = 10

9.6 PASSING POINTERS TO FUNCTIONS

C programming allows in the FUNCITONS that arguments can

generally be passed to functions in one of the two following ways:

1. Pass by value method

Programming with C - 255

2. Pass by reference method

In the first method, when arguments are passed by value, a copy of
the values of actual arguments is passed to the calling function.
Thus, any changes made to the variables inside the function will

have no effect on variables used in the actual argument list.

However, when arguments are passed by reference (i.e. when a
pointer is passed as an argument to a function), the address of a
variable is passed. The contents of that address can be accessed
freely, either in the called or calling function. Therefore, the
function called by reference can change the value of the variable

used in the call.

Example:
Write a program to swap the values using the pass by value and

pass by reference methods.

/* Program that illustrates the difference between ordinary
arguments, which are passed by value, and pointer arguments,
which are passed by reference */

include<stdio.h>

main()

{

intx =10;

inty = 20;

void swapVal (int, int); /* function prototype
*/

void swapRef (int*, int*); /*function prototype*/

printf("PASS BY VALUE METHOD\n");
printf ("Before calling function swapVal x=%d y=%d",x,y);
swapVal (X, y); /* copy of the arguments are

passed */
Programming with C - 256

printf("\n After calling function swapVal x=%d y=%d",x,y);
printf("\n\n PASS BY REFERENCE METHOD");
printf ("\n Before calling function swapRef x=%d y=%d",x,y);
swapRef (&x,&y); /*address of arguments are passed */
printf("\nAfter calling function swapRef x=%d y=%d",x,y);
¥
/* Function using the pass by value method */
void swapVal (int x, int y)
{
int temp;
temp = X;
X=y;
y = temp;
printf ("\nWithin function swapVal x=%d y=%d",x,y);
return;
b
/*Function using the pass by reference method*/
void swapRef (int *px, int *py)
{
int temp;
temp = *px;
*px = *py;
*py = temp;
printf ("\nWithin function swapRef *px=%d *py=%d",*px,*py);
return;

}
OUTPUT

PASS BY VALUE METHOD

Before calling function swapVal x=10 y=20
Within function swapVal x=20 y=10
After calling function swapVal x=10 y=20

Programming with C - 257

PASS BY REFERENCE METHOD

Before calling function swapRef x=10 y=20
Within function swapRef *px=20 *py=10
After calling function swapRef x=20 y=10

In the function swapVal, arguments x and y are passed by value.
So, any changes to the arguments are local to the function in which
the changes occur. Note the values of x and y remain unchanged
even after exchanging the values of x and y inside the function

swapVal.

9.6.1 A Function returning more than one value

Using call by reference method we can make a function return
more than one value at a time, which is not possible in the call by
value method. The following program will makes you the concept

very clear.

Example:

Write a program to find the perimeter and area of a rectangle, if

length and breadth are given by the user.

/* Program to find the perimeter and area of a rectangle™/
#include<stdio.h>

void main()

{

float len,br;

float peri, ar;

void periarea(float length, float breadth, float *, float *);

printf("\nEnter the length and breadth of a rectangle in metres:
Programming with C - 258

\n");

scanf("%f %f",&len,&br); periarea(len,br,&peri,&ar);
printf("\nPerimeter of the rectangle is %f metres", peri);
printf("\nArea of the rectangle is %f sq. metres", ar);

¥

void periarea(float length, float breadth, float *perimeter, float
*area)

{

*perimeter = 2 * (length +breadth);

*area = length * breadth;

}

OUTPUT:

Enter the length and breadth of a rectangle in metres: 23.0 3.0
Perimeter of the rectangle is 52.000000 metres

Area of the rectangle is 69.000000 sq. metres

9.6.2 Function returning a Pointer

A function can also return a pointer to the calling program, the way
it returns an int, a float or any other data type. To return a pointer,
a function must explicitly mention in the calling program as well
as in the function prototype.

To declare a function returning a pointer as

Example:

int * myFunction()

{

Programming with C - 259

Second point to remember is that, it is to return the address of a
local variable outside the function, so you would have to define the

local variable as static variable.

Now, consider the following function which will generate 10
random numbers and return them using an array name which

represents a pointer, i.e., address of first array element.

#include<stdio.h>
#include<time.h>
/* function to generate and retrun random numbers. */
int * getRandom()
{
static int r[10];
int 1i;
/* set the seed */
srand((unsigned)time(NULL));
for (1=0;1<10; ++i)
{
r[i] = rand();
printf("%d\n", r[i]);
¥
return r;
b
/* main function to call above defined function */
int main ()
{
/* a pointer to an int */
int *p;
int 1i;
p = getRandom();
for (1=0;1<10; i++)
Programming with C - 260

{
printf("*(p + [%d]) : %d\n", 1, *(p + 1));
¥

return O;

}

The following result:

1523198053
1187214107
1108300978
430494959
1421301276
930971084
123250484
106932140
1604461820
149169022

*(p + [0]) : 1523198053
*(p+[1]): 1187214107
*(p + [2]) : 1108300978
*(p + [3]) : 430494959
*(p +[4]) : 1421301276
*(p + [5]) : 930971084
*(p +[6]) : 123250484
*(p + [7]) : 106932140
*(p + [8]) : 1604461820
*(p +[9]) : 149169022

Programming with C - 261

9.7 ARRAYS AND POINTER

Pointers and arrays are so closely related. An array declaration such as
int arr[5] will lead the compiler to pick an address to store a sequence of
5 integers, and arr is a name for that address. The array name in this case
is the address where the sequence of integers starts. Note that the value is
not the first integer in the sequence, nor is it the sequence in its entirety.

The value is just an address.

Now, if arr is a one-dimensional array, then the address of the first array
element can be written as & arr[0] or simply arr. Moreover, the address
of the second array element can be written as & arr[1] or simply (arr+1).
In general, address of array element (i+1) can be expressed as either
&arr] i] or as (arr+ i). Thus, we have two different ways for writing the
address of an array element. In the latter case i.e, expression (arr+ i) is a
symbolic representation for an address rather than an arithmetic
expression. Since &arr[i] and (ar+ 1) both represent the address of the ith
element of arr, so arr[i] and *(ar + i) both represent the contents of that

address i.e., the value of i th element of arr.

Note that it is not possible to assign an arbitrary address to an array name
or to an array element. Thus, expressions such as arr, (arr+ i) and arr[1]
cannot appear on the left side of an assignment statement. Thus we

cannot write a statement such as:

&arr[0] = &arr[1]; /* Invalid */
However, we can assign the value of one array element to another

through a pointer, for example,

ptr = &arr[0]; /* ptr is a pointer to arr[0] */
arr[1] = *ptr; /* Assigning the value stored at address
to arr[1] */

Programming with C - 262

Example:

/* Program that accesses array elements of a one-dimensional array using
pointers */

include<stdio.h>

main()

{

int arr[5] = {10, 20, 30, 40, 50};

int 1i;

for (i=0;1<5;i++)

{

printf ("i=%d\t arr[i]=%d\t *(arr+i)=%d\t", i, arr[i], *(arr+i));
printf ("&arr[i]=%u\t arr+i=%u\n", &arr[i], (arr+i));

¥

¥

OUTPUT:

i=0 arr[i]=10 *(arr+i)=10 &arr[i]=65516 arr+i=65516
i=1 arr[i]=20 *(arr+i)=20 &art[i]=65518 arr+i=65518
i=2 arr[i]=30 *(arr+i)=30 &arr[i]=65520 arr+i=65520
i=3 arr[i]=40 *(arr+i)=40 &art[i]=65522 arr+i=65522
i=4 arr[i]=50 *(arr+i)=50 &arr[i]=65524 arr+i=65524

Note that i is added to a pointer value (address) pointing to integer data
type (i.e., the array name) the result is the pointer is increased by i times
the size (in bytes) of integer data type. Observe the addresses 65516,
65518 and so on. So if ptr is a char pointer, containing addresses a, then

ptr+1 is a+1. If ptr is a float pointer, then ptr+ 1 is a+ 4.

Pointers and Multidimensional Arrays C allows multidimensional arrays,
lays them out in memory as contiguous locations, and does more behind
the scenes address arithmetic. Consider a 2-dimensional array.

intarr[3][3]={{1, 2,3}, {4,5, 6}, {7, 8, 9}};

The compiler treats a 2 dimensional array as an array of arrays. As you

know, an array name is a pointer to the first element within the array. So,

Programming with C - 263

arr points to the first 3-element array, which is actually the first row (i.e.,
row 0) of the two-dimensional array. Similarly, (arr + 1) points to the
second 3-element array (i.e., row 1) and so on. The value of this pointer,
*(arr + 1), refers to the entire row. Since row 1 is a onelldimensional
array, (arr + 1) is actually a pointer to the first element in row 1. Now
add 2 to this pointer. Hence, (*(arr + 1) + 2) is a pointer to element 2
(i.e., the third element) in row 1. The value of this pointer, *(*(arr + 1) +
2), refers to the element in column 2 of row 1. These relationships are

illustrated below:

i First 1-d array
{arr+ 1y —— 4 5 o Second 1-d array
{amr+2] -l 7 8 9 Third 1= array

*larr+ 2) *(*arr+2) + 2)

9.8 ARRAY OF POINTER

The way there can be an array of integers, or an array of float
numbers, similarly, there can be array of pointers too. Since a
pointer contains an address, an array of pointers would be a
collection of addresses. For example, a multidimensional array can
be expressed in terms of an array of pointers rather than a pointer

to a group of contiguous arrays.

Two-dimensional array can be defined as a one-dimensional array

of integer pointers by writing:

int *arr[3];

rather than the conventional array definition,
Programming with C - 264

int arr[3][5];

Similarly, an n-dimensional array can be defined as (n-1)-

dimensional array of pointers by writing

data-type *arr[subscript 1] [subscript 2].... [subscript n-1];

The subscriptl, subscript2 indicate the maximum number of

elements associated with each subscript.

Example:

#include<stdio.h>

const int MAX = 3;

int main ()

{

int var[] = {10, 100, 200};

int 1i;

for (1= 0; 1 < MAX; i++)

{

printf("Value of var[%d] = %d\n", i, var[i]);
¥

return O;

b

The following result:

Value of var[0] = 10
Value of var[1] = 100
Value of var[2] = 200

Programming with C - 265

There may be a situation when we want to maintain an array,
which can store pointers to an int or char or any other data type
available. Following is the declaration of an array of pointers to an

integer:

int *ptr[MAX];

It declares ptr as an array of MAX integer pointers. Thus, each
element in ptr holds a pointer to an int value. The following
example uses three integers, which are stored in an array of

pointers, as follows:

#include<stdio.h>

const int MAX = 3;

int main ()

{

int var[] = {10, 100, 200},

int i, *ptr MAX];

for (1=0;1<MAX; it++)

{

ptr[i] = &var[i]; /* assign the address of integer. */
}

for (1=0;1<MAX; it++)

{

printf("Value of var[%d] = %d\n", i, *ptr[i]);
}

return O;

}

The following result:

Value of var[0] = 10

Value of var[1] = 100
Programming with C - 266

Value of var[2] = 200

9.9 POINTERS AND STRINGS

As we have seen in strings, a string in C is an array of characters
ending in the null character (written as "\0'), which specifies where
the string terminates in memory. Like in one-dimensional arrays, a
string can be accessed via a pointer to the first character in the
string. The value of a string is the (constant) address of its first
character. Thus, it is appropriate to say that a string is a constant
pointer. A string can be declared as a character array or a variable

of type char *. The declarations can be done as shown below:

char country[| ="INDIA";
char *country = "INDIA";

Each initialize a variable to the string “INDIA”. The second
declaration creates a pointer variable country that points to the

letter I in the string "INDIA" somewhere in memory.

Once the base address is obtained in the pointer variable country,
*country would yield the value at this address, which gets printed

through,

printf ("%s", *country);

Here is a program that dynamically allocates memory to a
character pointer using the library function malloc at run-time. An
advantage of doing this way is that a fixed block of memory need
not be reserved in advance, as is done when initializing a

conventional character array.

Programming with C - 267

Example:

Write a program to test whether the given string is a palindrome or

not.

/* Program tests a string for a palindrome using pointer notation */
#include<stdio.h>

include<conio.h>

include<stdlib.h>

main()

{

char *palin, c;

int i, count;

short int palindrome(char,int); /*Function Prototype
*/

palin = (char *) malloc (20 * sizeof(char));

printf("nEnter a word: ");

do

{

¢ = getchar();

palin[i]=c;

i++;
b

while (¢ !'="\n");

1=1-1;

palin[i] ="\0'; count = i;

if (palindrome(palin,count) == 1);

printf ("nEntered word is not a palindrome.");
else

printf ("\nEntered word is a palindrome");

}

Programming with C - 268

short int palindrome(char *palin, int len)

{

shortinti=0, j = 0;
for(i=0 , j=len-1;
i<len/2;i++,j--);

{

if (palin[i] == palin[j]);
continue;

else

return(1);

b

return(0);

}

OUTPUT:

Enter a word: malayalam
Entered word is a palindrome.

Enter a word: abcdba

Entered word is not a palindrome.

9.10 CONCLUSION

In this unit, about pointers, pointer arithmetic, passing pointers to

functions, relation to arrays and the concept of dynamic memory

allocation. A pointer is simply a variable that contains an address

which is a location of another variable in memory. The unary

operator &, when preceded by any variable returns its address. C’s

other unary pointer operator is *, when preceded by a pointer

variable returns a value stored at that address.

Pointers are often passed to a function as arguments by reference.

Programming with C - 269

This allows data items within the calling function to be accessed,
altered by the called function, and then returned to the calling
function in the altered form. There is an intimate relationship
between pointers and arrays as an array name is really a pointer to
the first element in the array. Access to the elements of array using
pointers is enabled by adding the respective subscript to the pointer
value (i.e. address of zeroth element) and the expression preceded

with an indirection operator.

As pointer declaration does not allocate memory to store the
objects it points at, therefore, memory is allocated at run time
known as dynamic memory allocation. The library routine malloc

can be used for this purpose.

Programming with C - 270

UNIT 10 STRUCTURES AND UNIONS

Multiple Data Elements

9.0 Introduction

9.1 Objectives

9.2 Declaration of Structures

9.3 Accessing the Members of a Structure
9.4 Initializing Structures

9.5 Structures as Function Arguments
9.6 Structures and Arrays

9.7 Pointers to Structures

9.8 Unions

9.9 Initializing an Union

9.10 Accessing the Members of an Union
9.11 Conclusion

9.12 Unit based Questions /Answers

10.0 INTRODUCTION

To store numbers, characters, strings, and even large sets of these
primitives using arrays, but what if we want to store collections of

different kinds of data that are somehow related.

For example, a file about an employee will probably have his/her
name, age, the hours of work, salary, etc. Physically, all of that is
usually stored in someone’s filing cabinet. In programming, Let’s
say you have a group of employees, and you want to make a
database! It just wouldn’t do to have tons of loose variables
hanging all over the place. Then we need to have a single data
entity where we will be able to store all the related information

together. But this can’t be achieved by using the arrays alone, as in

Programming with C - 271

the case of arrays, we can group multiple data elements that are of
the same data type, and is stored in consecutive memory locations,

and is individually accessed by a subscript.

The Structure is commonly referred to as a user-defined data type.
C’s structures allow you to store multiple variables of any type in
one place (the structure). A structure can contain any of C’s data
types, including arrays and other structures. Each variable within a
structure is called a member of the structure. They can hold any
number of variables, and you can make arrays of structures. This
flexibility makes structures ideally useful for creating databases in
C. Similar to the structure there is another user defined data type
called Union which allows the programmer to view a single
storage in more than one way i.e., a variable declared as union can
store within its storage space, the data of different types, at
different times. In this unit, we will be discussing the user-defined

data type structures and unions.

This unit will be discussing the user-defined data type Structures

and Unions of language C.

10.1 OBJECTIVES

After completing this unit, you will be able to:

= declare and initialize the members of the structures;
= access the members of the structures;

® pass the structures as function arguments;

= declare the array of structures;

= declare and define union; and

= perform all operations on the variables of type Union.

Programming with C - 272

10.2 DECLARATION OF STRUCTURES

Arrays allow to define type of variables that can hold several data
items of the same kind. Similarly, structure is another user-defined
data type available in C that allows to combine data items of

different kinds.

To declare a structure you must start with the keyword struct
followed by the structure name or structure tag and within the
braces the list of the structure’s member variables. Note that the

structure declaration does not actually create any variables.
The syntax for the structure declaration is:

struct structure-tag

{

datatype variablel;
datatype variable2;
dataype variable 3;

i3

The structure tag is optional and each member definition is a
normal variable definition, such as int i; or float f; or any other
valid variable definition. At the end of the structure's definition,
before the final semicolon, you can specify one or more structure
variables but it is optional. Here is the way you would declare the

Book structure:
Example:

struct Books

Programming with C - 273

{
char title[50];

char author[50];
char subject[100];
int book_id; } book;

This defines a structure which can be referred to either as struct
books or Books, whichever you prefer. Strictly speaking, you don’t
need a tag name both before and after the braces if you are not
going to use one or the other. But it is a standard practice to put
them both in and to give them the same name, but the one after the
braces starts with an uppercase letter. The typedef statement
doesn’t occupy storage: it simply defines a new type. Variables
that are declared with the typedef above will be of type struct
book.

10.3 ACCESSING THE MEMBERS OF A
STRUCTURE

To access any member of a structure, we use the member access
operator (.). The member access operator is coded as a period
between the structure variable name and the structure member that
we wish to access. You would use the keyword struct to define

variables of structure type.

The following syntax shows how to use a structure:
structurevariable. member-name;

struct coordinate

{

int x;

Programming with C - 274

inty;
35

Thus, to have the structure named first refer to a screen location

that has coordinates x=50, y=100, write as:

first.x = 50;
first.y = 100;

To display the screen locations stored in the structure second, to

write,

printf ("' %d,%d", second.x, second.y);

The individual members of the structure behave like ordinary date

elements and can be accessed accordingly.

Example:

#include<stdio.h>

#include<string.h>

struct Books

{

char title[50];
char author[50];
char subject[100];
int book_id;

3

int main()

{

Programming with C - 275

struct Books Book1; /* Declare Book1 of type Book */
struct Books Book2; /* Declare Book2 of type Book */

/* book 1 specification */

strepy(Bookl title, "C Programming");

strepy(Book1.author, "Nuha Ali");

strepy(Book1.subject, "C Programming Tutorial");
Bookl1.book id = 6495407;

/* book 2 specification */

strepy(Book?2.title, "Telecom Billing");

strecpy(Book2.author, "Zara Ali");

strepy(Book2.subject, "Telecom Billing Tutorial");
Book2.book id = 6495700;

/* print Book1 info */

printf("Book 1 title : %s\n", Bookl .title);

printf("Book 1 author : %s\n", Book1.author);
printf("Book 1 subject : %s\n", Book1.subject);
printf("Book 1 book id : %d\n", Book1.book id);

/* print Book2 info */

printf("Book 2 title : %s\n", Book?2.title);

printf("Book 2 author : %s\n", Book2.author);
printf("Book 2 subject : %s\n", Book2.subject);
printf("Book 2 book id : %d\n", Book2.book id);

return O;

}

Programming with C - 276

The following result:

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book _id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial
Book 2 book _id : 6495700

10.4 INITIALIZING STRUCTURES

C wvariable types, structures can be initialized when they’re
declared. This procedure is similar to that for initializing arrays.
The structure declaration is followed by an equal sign and a list of
initialization values is separated by commas and enclosed in

braces.

Example:

struct customer

{
char firm[20];

char contact[25];

}

struct sale

{

struct customer buyerl;

char item [20];

Programming with C - 277

float amt;

b

mysale = {

{ "XYZ Industries", "Tyran Adams"};
"toolskit";

600.00
¥

These statements perform the following initializations:

the structure member mysale.buyerl.firm is initialized to the string
“XYZ Industries™.

the structure member mysale.buyerl.contact is initialized to the
string “Tyran Adams”.

the structure member mysale.item is initialized to the string
"toolskit".

the structure member mysale.amount is initialized to the amount

600.00.

10.5 STRUCTURES AS FUNCTION
ARGUMENTS

C is a structured programming language and the basic concept in it
is the modularity of the programs. This concept is supported by the
functions in C language. Let us look into the techniques of passing
the structures to the functions. This can be achieved in primarily
two ways: Firstly, to pass them as simple parameter values by
passing the structure name and secondly, through pointers. We will
be concentrating on the first method in this unit and passing using
pointers will be taken up in the next unit. Like other data types, a

structure can be passed as an argument to a function. The program

Programming with C - 278

listing given below shows how to do this. It uses a function to

display data on the screen.

Example:

#include<stdio.h>
#include<string.h>
struct Books

{

char title[50];

char author[50];
char subject[100];
int book id; };

/* function declaration */

void printBook(struct Books book);

int main()

{

struct Books Book1; /* Declare Bookl of type
Book */

struct Books Book2; /* Declare Book2 of type
Book */

/* book 1 specification */

strepy(Bookl .title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

strecpy(Bookl1.subject, "C Programming Tutorial");

Bookl.book id = 6495407,

/* book 2 specification */

Programming with C - 279

strepy(Book?2.title, "Telecom Billing");

strepy(Book2.author, "Zara Ali");

strepy(Book2.subject, "Telecom Billing Tutorial");
Book2.book_id = 6495700;

/* print Book1 info */
printBook(Book1);

/* Print Book2 info */
printBook(Book?2);
return O;

b
void printBook(struct Books book);

{

printf("Book title : %s\n", book.title);

printf("Book author : %s\n", book.author);
printf("Book subject : %s\n", book.subject);
printf("Book book id : %d\n", book.book id);

}

The following result:

Book title : C Programming

Book author : Nuha Ali Book

subject : C Programming Tutorial Book
book id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book _id : 6495700

Programming with C - 280

10.7 POINTERS TO STRUCTURES

To define pointers to structures in the same way as you define

pointer to any other variable:

struct Books *struct_pointer;

Now, you can store the address of a structure variable in the above-
defined pointer variable. To find the address of a structure variable,

place the ‘&’ operator before the structure's name as:

struct_pointer = &Bookl;

To access the members of a structure using a pointer to that

structure, to operator as:

struct_pointer -> title;

Let us rewrite the example using structure pointer.

#include<stdio.h>

#include<string.h>
struct Books

{

char title[50];

char author[50];
char subject[100];
int book_id;

3

/* function declaration */

Programming with C - 281

void printBook(struct Books *book);

int main()

{

struct Books Bookl1; /* Declare Book1 of type Book */
struct Books Book2; /* Declare Book?2 of type Book */

/* book 1 specification */

strepy(Book . title, "C Programming");

strepy(Book1.author, "Nuha Ali");

strepy(Book1.subject, "C Programming Tutorial");
Bookl.book id = 6495407,

/* book 2 specification */

strepy(Book?2.title, "Telecom Billing™);

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");
Book2.book_id = 6495700;

/* print Book1 info by passing address of Book1 */
printBook(&Book1);

/* print Book?2 info by passing address of Book2 */
printBook(&Book?2);

return O;

¥
void printBook(struct Books *book)

{

printf("Book title : %s\n", book->title);

printf("Book author : %s\n", book->author);
printf("Book subject : %s\n", book->subject);
printf("Book book id : %d\n", book->book id);

}

Programming with C - 282

The following result:

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial
Book book id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial
Book book _id : 6495700

10.8 UNIONS

A union is a special data type available in C that allows storing
different data types in the same memory location. You can define a
union with many members, but only one member can contain a
value at any given time. Unions provide an efficient way of using

the same memory location for multiple purposes.

Example:

In case of the support price of shares you require only the latest
quotations. And only the ones that have changed need to be stored.
So if we declare a structure for all the scripts, it will only lead to
crowding of the memory space. Hence it is beneficial if we allocate
space to only one of the members. This is achieved with the
concepts of the UNIONS.

UNIONS are similar to STRUCTURES in all respects but differ in
the concept of storage space. A UNION is declared and used in the

same way as the structures.

A union can be declared using the syntax:
Programming with C - 283

union union-tag {
datatype variablel;
datatype variable2;

Example:

union temp {
int X;
chary;

float z;

¥

In this case a float is the member which requires the largest space
to store its value hence the space required for float (4 bytes) is

allocated to the union.

10.9 INITIALIZING AN UNION

Initializing a union in programming involves declaring a union
variable and assigning initial values to its members. A union is a
data structure that allows storing different data types in the same

memory location.

Example:

union date_tag {

char complete date [9];
struct part_date tag {
char month[2];

Programming with C - 284

char break valuel;
char day[2];

char break value2;
char year[2];

H

parrt_date;

}
date = {“01/01/05”};

Example:

dats. floatValus

(data.stringValus,

, data.floatValue);

; data.stringvValua);

10.10 ACCESSING THE MEMBERS OF AN

UNION

To access any member of a union, we use the member access

operator (.). The member access operator is coded as a period

between the union variable name and the union member that we

wish to access. You would use the keyword union to define

Programming with C - 285

variables of union type.

The following example to use unions in a program:

#include<stdio.h>

#include<string.h>

union Data

{

int 1i;

float f;

char str[20];

)5

int main()

{

union Data data;
data.i = 10;

data.f = 220.5;

strepy(data.str, "C Programming");
printf("data.i : %d\n", data.i);
printf("data.f : %f\n", data.f);
printf("data.str : %s\n", data.str);

return O;

}

The following result:

data.i: 1917853763
data.f : 4122360580327794860452759994368.000000

data.str : C Programming

Here, the values of i and f members of union got corrupted because

the final value assigned to the variable has occupied the memory

Programming with C - 286

location and this is the reason that the value of str member is

getting printed very well.

Now, use one variable at a time which is the main purpose of

having unions:

#include<stdio.h>
#include<string.h>
union Data

{

int i;

float f;

char str[20];

¥

int main()

{

union Data data;

data.i = 10;

printf("data.i : %d\n", data.i);
data.f = 220.5;

printf("data.f : %f\n", data.f);
strepy(data.str, "C Programming");
printf("data.str : %s\n", data.str);

return 0;

}

The following result:
data.i: 10
data.f : 220.500000

data.str : C Programming

Programming with C - 287

10.11 CONCLUSION

In this unit, we have learnt how to use structures, a data type that
you design to meet the needs of a program. A structure can contain
any of C’s data types, including other structures, pointers, and
arrays. Each data item within a structure, called a member, is
accessed using the structure member operator (.) between the
structure name and the member name. Structures can be used

individually, and can also be used in arrays.

Unions were presented as being similar to structures. The main
difference between a union and a structure is that the union stores
all its members in the same area. This means that only one member

of a union can be used at a time.

Programming with C - 288

BLOCK IV: MULTIPLE DATA ELEMENTS,
PRE-PROCESSORS DIRECTIVES AND

FILES

UNIT 11

PREPROCESSORS DIRECTIVES

Structure
11.0
11.1
11.2

11.3
11.4

11.6

11.7

11.8
11.9

Introduction

Objectives

‘C’ Preprocessor

11.2.1 # Description of Pre-Processors

11.2.2 Pre-Processors Examples

define to Implement Constants

define to Create Functional Macros

11.4.1 Caution is using Macros

Pre-Processor Operators

11.5.1 The Macro Continuation (\) Operator

11.5.2 The Stringize (#) Operator

11.5.3 The Token Passing (##) Operator

11.5.4 The Defined () Operator

Reading from other Files using #include

Conditional Selection of Code using #ifdef

11.7.1 Using #ifdef for different computer types

11.7.2 Using #ifdef to temporarily remove program
statements

Other Pre-Processor Commands

Pre-defined Names defined by Pre-Processor

11.10Macros Vs Functions

11.11 Conclusion

11.12 Unit based Questions /Answers

Programming with C - 289

11.0 INTRODUCTION

This unit discusses theoretically, the “preprocessor” is a translation
phase that is applied to the source code before the compiler gets its
hands on it. The C Preprocessor is not part of the compiler, but is a
separate step in the compilation process. C Preprocessor is just a
text substitution tool, which filters your source code before it is
compiled. The preprocessor more or less provides its own
language, which can be a very powerful tool for the programmer.
All preprocessor directives or commands begin with the symbol #.

The preprocessor makes programs easier to develop, read and
modify. The preprocessor makes C code portable between different

machine architectures & customizes the language.

The preprocessor performs textual substitutions on your source

code in three ways:

File inclusion: Inserting the contents of another file into your

source file, as if you had typed it all in there.

Macro substitution: Replacing instances of one piece of text with
another. Conditional compilation: Arranging that, depending on
various circumstances, certain parts of your source code are seen
or not seen by the compiler at all. The next three sections will

introduce these three preprocessing functions.

The syntax of the preprocessor is different from the syntax of the
rest of C program in several respects. The C preprocessor is not
restricted to use with C programs, and programmers who use other
languages may also find it useful. However, it is tuned to recognize

features of the C language like comments and strings.

Programming with C - 290

This unit will be discussing the separate step compilation process

of language C.

11.1 OBJECTIVES

After completing this unit, you will be able to:

= define, declare preprocessor directives;

= discuss various preprocessing directives, for example file
inclusion, macro substitution, and conditional compilation; and

= discuss various syntaxes of preprocessor directives and their

applications.

11.2 “C’ Pre-Processors

The C Preprocessor is not a part of the compiler, but is a separate
step in the compilation process. In simple terms, a C Preprocessor
is just a text substitution tool and it instructs the compiler to do
required preprocessing before the actual compilation. We'll refer to

the C Preprocessor as CPP.

11.2.1 # Description of Pre-Processors

All preprocessor commands begin with a hash symbol (#). It must
be the first nonblank character, and for readability, a preprocessor
directive should begin in the first column. The following section

lists down all the important preprocessor directives:

Directive Description

#define Substitutes a preprocessor macro.

#include Inserts a particular header from another file.
#undef Undefines a preprocessor macro.

#ifdef Returns true if this macro is defined.
#ifndef Returns true if this macro is not defined.

Programming with C - 291

#if Tests if a compile time condition is true.

#else The alternative for #if.

#elif #else and #if in one statement.
#endif Ends preprocessor conditional.
#error Prints error message on stderr.

Issues special commands to the compiler, using a
#pragma .
standardized method.

11.2.2 Pre-Processors Examples

Analyze the following examples to understand various directives.
#define MAX_ARRAY_LENGTH 20

This directive tells the CPP to replace instances of
MAX ARRAY_LENGTH with 20. Use #define for constants to
increase readability.

#include <stdio.h>

#include "myheader.h"

These directives tell the CPP to get stdio.h from System Libraries
and add the text to the current source file. The next line tells CPP
to get myheader.h from the local directory and add the content to
the current source file.

#undef FILE_SIZE

#define FILE_SIZE 42

It tells the CPP to undefine existing FILE SIZE and define it as
42.

Programming with C - 292

#ifndef MESSAGE

#define MESSAGE "You wish!"

#endif

It tells the CPP to define MESSAGE only if MESSAGE isn't
already defined.

#ifdef DEBUG

/* Your debugging statements here */

#endif

It tells the CPP to process the statements enclosed if DEBUG is
defined. This is useful if you pass the -DDEBUG flag to the gcc
compiler at the time of compilation. This will define DEBUG, so

you can turn debugging on and off on[Ithe-fly during compilation.

11.3 # DEFINE TO IMPLEMENT
CONSTANTS

The preprocessor allows us to customize the language. For
example to replace { and } of C language to begin and end as
block-statement delimiters (as like the case in PASCAL) we can

achieve this by writing:

define begin {
define end }

Programming with C - 293

During compilation all occurrences of begin and end get replaced
by corresponding { and }. So the subsequent C compilation stage
does not know any difference!

#define is used to define constants.

The syntax is:

define <literal> <replacement-value>

literal is identifier which is replaced with replacement-value in the

program.

Example:
#define MAXSIZE 256
#define PI 3.142857

The C preprocessor simply searches through the C code before it is

compiled and replaces every instance of MAXSIZE with 256.

define FALSE 0
define TRUE 'FALSE

The literal TRUE is substituted by !FALSE and FALSE is
substituted by the value 0 at every occurrence, before compilation
of the program. Since the values of the literal are constant

throughout the program, they are called as constant.

define can be rewritten as:

define <constant-name> <replacement-value>

Let us consider few examples:

define M 5

define SUBJECTS 6

define PI 3.142857
define COUNTRY INDIA

Note that no semicolon (;) need to be placed as the delimiter at the

Programming with C - 294

end of a # define line. This is just one of the ways that the syntax
of the preprocessor is different from the rest of C statements
(commands).

If you unintentionally place the semicolon at the end as below:
#define MAXLINE 100; /* WRONG */

and if you declare as shown below in the declaration section,

char linefMAXLINE];

the preprocessor will expand it to:

char line[100;]; /* WRONG */

114 # DEFINE TO CREATE
FUNCTIONAL MACROS

One of the powerful functions of the CPP is the ability to simulate

functions using parameterized macros.

For example, we might have some code to square a number as

follows:
int square(int x)

{

return x * x;

}

We can rewrite the above code using a macro as follows:

#define square(x) ((x) * (x))

Macros with arguments must be defined using the #define

directive before they can be used.
The argument list is enclosed in parentheses and must immediately

follow the macro name. Spaces are not allowed between the macro

name and open parenthesis.

Programming with C - 295

Example-1:
#include <stdio.h>

#define MAX(x,y) ((x) > (¥) ? (x) : (¥))

int main(void)
{
printf("Max between 20 and 10 is %d\n", MAX(10, 20));

return 0;

}

The following result:

Max between 20 and 10 is 20.

Example-2:
/* Program to find the square of a number using marco*/
#include <stdio.h>
define SQUARE(x) (x*x)
main()
{
int v,y;
printf("Enter any number to find its square: ");
scanf("%d", &v);
y = SQUARE(v);
printf("\nThe square of %d is %d", v, y);
b

The following result:
Enter any number to find its square: 10

The square of 10 is 100.

Programming with C - 296

11.4.1 Caution is using Macros

It should be very careful in using Macros. In particular the textual
substitution means that arithmetic expressions are liable to be
corrupted by the order of evaluation rules (precedence rules). Here
is an example of a macro, which won’t work.

#define DOUBLE(n) n+n

Now if we have a statement,

z=DOUBLE(p) * q;

This will be expanded to

z=p+tp*q;

And since * has a higher priority than +, the compiler will treat it
as:

z=p+(*q;

The problem can be solved using a more robust definition of
DOUBLE.

#define DOUBLE(n) (n+n)

Here, the braces around the definition force the expression to be
evaluated before any surrounding operators are applied. This

should make the macro more reliable.

11.5 PRE-PROCESSOR OPERATORS

The C preprocessor offers the following operators to help create

macros:

11.5.1 The Macro Continuation (\)Operator

A macro is normally confined to a single line. The macro

continuation operator (\) is used to continue a macro that is too

Programming with C - 297

long for a single line.

Example:

#define message for(a, b) \
printf(#a " and " #b ": We love you!\n")

11.5.2 The Stringize (#)Operator

The stringize or number-sign operator (#), when used within a
macro definition, converts a macro parameter into a string
constant. This operator may be used only in a macro having a

specified argument or parameter list.

Example:
#include #define message for(a, b) \
printf(#a " and " #b ": We love you!\n")
int main(void)
{
message for(Carole, Debra);

return O;

}

The following result:

Carole and Debra: We love you!

11.5.3 The Token Passing (##)Operator

The token-pasting operator (##) within a macro definition
combines two arguments. It permits two separate tokens in the

macro definition to be joined into a single token.
Programming with C - 298

Example:
#include <stdio.h>
#define tokenpaster(n) printf ("token" #n " = %.d",
token##n)
int main(void)
{
int token34 = 40;
tokenpaster(34);

return 0;

}

The following result:

token34 = 40

It happened so because this example results in the following actual
output from the preprocessor:
printf ("token34 = %d", token34);

This example shows the concatenation of token##n into token34

and here we have used both stringize and token-pasting.

11.5.4 The Defined() Operator

The preprocessor defined operator is used in constant expressions
to determine if an identifier is defined using #define. If the
specified identifier is defined, the value is true (non-zero). If the

symbol is not defined, the value is false (zero).

The defined operator is:

#include <stdio.h>

#if !defined (MESSAGE)
Programming with C - 299

#define MESSAGE "Well-done!"

#endif

int main(void)

{

printf("Here is the message: %s\n", MESSAGE);

return 0;

}

The following result:

Here is the message: Well-done!

11.6 READING FROM OTHER FILES
USING #INCLUDE

The preprocessor directive #include is an instruction to read in the
entire contents of another file at that point. This is generally used
to read in header files for library functions. Header files contain
details of functions and types used within the library. They must be
included before the program can make use of the library functions.
The syntax is:

#include <filename.h>
or

#include “filename.h”

The contents of the file “filename.h™ to be read, parsed, and

compiled at that point. The difference between the suing of # and *

2

is that, where the preprocessor searches for the filename.h. For
the files enclosed in < > (less than and greater than symbols) the

search will be done in standard directories (include directory)

e 9

where the libraries are stored. And in case of files enclosed in

(double quotes) search will be done in “current directory” or the

(332

directory containing the source file. Therefore, is normally used

for header files you’ve written, and # is normally used for headers
Programming with C - 300

which are provided for you (which someone else has written).

Library header file names are enclosed in angle brackets, < >.
These tell the preprocessor to look for the header file in the
standard location for library definitions. This is /usr/include for
most UNIX systems. And c:/tc/include for turbo compilers on DOS
/ WINDOWS based systems.

Use of #include for the programmer in multi-file programs, where
certain information is required at the beginning of each program
file. This can be put into a file by name “globals.h” and included in

each program file by the following line:
#include "globals.h"

If we want to make use of inbuilt functions related to input and
output operations, no need to write the prototype and definition of
the functions. We can simply include the file by writing:

#include <stdio.h>
Placing common declarations and definitions into header files
means that if they always change, they only have to be changed in

one place, which is a much more feasible system.

What should you put in header files?
= External declarations of global variables and
functions.
= Structure definitions.

= Typedef declarations

11.7 CONDITIONAL SELECTION OF
CODE USING #IFDEF

The preprocessor has a conditional statement similar to C’s if-else.

Programming with C - 301

It can be used to selectively include statements in a program. The
commands for conditional selection are; #ifdef, #else and #endif.
#ifdef

The syntax is:

#ifdef IDENTIFIER NAME

{

statements;

/

This will accept a name as an argument, and returns true if the
name has a current definition. The name may be defined using a #
define, the -d option of the compiler, or certain names which are
automatically defined by the UNIX environment. If the identifier is
defined then the statements below #ifdef will be executed

#else

The syntax is:

#else

{

statements;

/

#else is optional and ends the block started with #ifdef. It is used to
create a 2 way optional selection. If the identifier is not defined
then the statements below #else will be executed.

#endif

Ends the block started by #ifdef or #else.

Where the #ifdef is true, statements between it and a following
#else or #endif are included in the program. Where it is false, and
there is a following #else, statements between the #else and the

following #endif are included.

Programming with C - 302

Example:

Define a macro to find maximum of 3 or 2 numbers using #ifdef ,
#else

/* Program to find maximum of 2 numbers using #ifdef*/
#include <stdio.h>

#define TWO

main()

{

inta, b, c;

clrscr();

#ifdef TWO

{

printf("n Enter two numbers: \n");

scanf("%d %d", &a,&Db);

if(a>b)

printf("\n Maximum of two numbers is %d", a);

else

printf("\n Maximum is of two numbers is %d", b);

b

#endif

}
/* end of main*/

The following result:

Enter two numbers: 33 22

Maximum of two numbers is 33

11.7.1 Using #ifdef for different computer type

Conditional selection is rarely performed using #define values.

This is often used where two different computer types implement a
Programming with C - 303

feature in different ways. It allows the programmer to produce a

program, which will run on either type.

#include <stdio.h>
main()

{

#ifdef HP

{
printf("This is a HP system \n");

......................... /* code for HP systems*/

#ifdef SUN

{

printf("This is a SUN system \n");

......................... /* code for SUN Systems */

#endif
¥

11.7.2 Using #ifdef to temporarily remove program statements

#ifdef also provides a useful means of temporarily “blanking out”
lines of a program. The lines in the program are preceded by #ifdef
NEVER and followed by #endif. Of course, you should ensure that
the name NEVER isn’t defined anywhere.

#include <stdio.h>

main()

Programming with C - 304

#ifdef NEVER

{ oo
......................... /* code is skipped */
#endif
b
11.8 OTHER PRE-PROCESSOR

COMMANDS

Other preprocessor commands are:

#ifndef If this macro is not defined
#if Test if a compile time condition is true
#else The alternative for #if. This is part of an #if

preprocessor statement and works in the same way with #if that the
regular C else does with the regular if.

>

#elif enables us to establish an “if...else...if ..” sequence for

testing multiple conditions.

line #line number "string" — informs the preprocessor that the
number is the next number of line of input. "string" is optional and
names the next line of input. This is most often used with programs
that translate other languages to C. For example, error messages
produced by the C compiler can reference the file name and line
numbers of the original source files instead of the intermediate C

(translated) source files.

#pragma It is used to turn on or off certain features. Pragmas
vary from compiler to compiler. Pragmas available with Microsoft

C compilers deals with formatting source listing and placing
Programming with C - 305

comments in the object file generated by the compiler. Pragmas
available with Turbo C compilers allows to write assembly

language statements in C program.

A control line of the form

fipragma token-sequence

This causes the processor to perform an implementation-dependent

action. An unrecognized pragma is ignored.

11.9 Pre-defined Names defined by Pre-
Processor

ANSI C defines a number of macros. Although each one is
available for use in programming, the predefined macros should

not be directly modified.

Macro Description

_DATE The current date as a character literal in "MMM
DD YYYY" format.

_TIME _ The current time as a character literal in
"HH:MM:SS" format.

_FILE This contains the current filename as a string
literal.

_LINE This contains the current line number as a decimal
constant.

STDC Defined as 1 when the compiler complies with the
ANSI standard.

Example:

#include <stdio.h>

main()

{

printf("File :%s\n", FILE);
printf("Date :%s\n", DATE);
printf("Time :%s\n", TIME);

printf("Line :%d\n", LINE);
Programming with C - 306

printf("ANSI :%d\n", STDC);

¥

When the file test.c is compiled and executed, it produces
the following result:

File
Date :Dec 04 2023
Time :13:26:14
Line :8 ANSI:1

test.c

11.10 MACROS VS FUNCTIONS

We have discussed about macros, any computations that can be
done on macros can also be done on functions. But there is a
difference in implementations and in some cases it will be

appropriate to use macros than function and vice versa.

Macros

Functions

Macro calls are replaced with macro
expansions (meaning).

In function call, the control is
passed to a function definition
along with arguments, and
definition is processed and value
may be returned to call.

Macros run programs faster but

increase the program size.

Functions make program size

smaller and compact.

If macro is called 100 numbers of
times, the size of the program will

increase.

If function is called 100 numbers
of times, the program size will not

increase.

It is better to use Macros, when the

definition is very small in size.

It is better to use functions, when
the definition is bigger in size.

11.11 CONCLUSION

The preprocessor makes programs easier to develop and modify.
The preprocessor makes C code more portable between different
machine architectures and customize the language. The C
Preprocessor is not part of the compiler, but is a separate step in

Programming with C - 307

the compilation process. All preprocessor lines begin with #. C
Preprocessor is just a text substitution tool on your source code in
three ways: File inclusion, Macro substitution, and Conditional
compilation. File inclusion - inserts the contents of another file into
your source file. Macro Substitution - replaces instances of one
piece of text with another. Conditional Compilation - arranges

source code depending on various circumstances.

Programming with C - 308

UNIT 12 DYNAMIC MEMORY
ALLOCATIONS

Allocation and De-allocation of Memory

12.0 Introduction

12.1 Objectives

12.2 Dynamic Memory Allocation

12.3 Resizing and Releasing Memory

12.4 Introduction to Memory Allocation in ‘C’
12.4.1 Static Memory Allocation
12.4.2 Dynamic Memory Allocation
12.4.3 Difference Static & Dynamic Memory

Allocation

12.5 malloc() stands for “memory allocation”

12.6 calloc() stands for “contiguous allocation”

12.7 realloc() stands for “reallocate allocation™

12.8 free() stands for release allocation

12.9 Conclusion

12.10 Unit based Questions /Answers

12.0 INTRODUCTION

This unit discusses dynamic memory allocation in the C
programming language is a crucial aspect of managing memory
resources during program execution. Unlike static memory
allocation, which occurs at compile time, dynamic memory
allocation allows for the allocation and deallocation of memory at
runtime, offering flexibility in memory usage. Much of the power
of pointers stems from their ability to track dynamically allocated
memory. The management of this memory through pointers forms
the basis for many operations, including those used to manipulate

complex data structures.

Programming with C - 309

C program executes within a runtime system. This is typically the
environment provided by an operating system. The runtime system

supports the stack and heap along with other program behavior.

Memory management is central to all programs. Sometimes
memory is managed by the runtime system implicitly, such as
when memory is allocated for automatic variables. In this case,
variables are allocated to the enclosing function’s stack frame. In
the case of static and global variables, memory is placed in the
application’s data segment, where it is zeroed out. This is a
separate area from executable code and other data managed by the
runtime system. Instead of having to allocate memory to
accommodate the largest possible size for a data structure, only the

actual amount required needs to be allocated.

This unit will be discussing the dynamic memory allocation

process of language C.

12.1 OBJECTIVES

After completing this unit, you will be able to:
= Learn how to allocate and free memory, and to control

dynamic arrays of any type of data in general and structures in
particular.

= Practice and train with dynamic memory in the world of work
oriented applications.

= To know about the pointer arithmetic

= How to create and use array of pointers.

12.2 DYNAMIC MEMORY ALLOCATION

The Creating and maintaining dynamic structures requires dynamic

Programming with C - 310

memory allocation the ability for a program to obtain more
memory space at execution time to hold new values, and to release
space no longer needed. While doing programming, if you are
aware about the size of an array, then it is easy and you can define

it as an array.

Example:

To store a name of any person, it can go max 100 characters as
follows:

char name[100]

But now let us consider a situation where you have no idea about
the length of the text you need to store, for example you want to
store a detailed description about a topic. Here we need to define a
pointer to character without defining how much memory is

required and later based on requirement we can allocate memory.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
char name[100];
char *description;
strcpy(name, "Raghav Rai");
/* allocate memory dynamically */
description = malloc(200 * sizeof(char));
if(description == NULL)
{
fprintf(stderr, "Error - wunable to allocate required
memory\n");
¥

Programming with C - 311

else

{

strepy(description, "Raghav Rai a MVM student in class
11th");

¥

printf("Name = %s\n", name);

printf("Description: %s\n", description);

}

The following result:
Name = Raghav Rai
Description: Raghav Rai a MVM student in class 11th

In case this program can be written using calloc(); only thing is

you need to replace malloc with calloc as follows:

calloc(200, sizeof(char));

The complete control and pass any size value while allocating

memory, unlike arrays where once the size is defined, then after

you cannot change it.

12.3 RESIZING AND RELEASING
MEMORY

When your program comes out, operating system automatically
release all the memory allocated by your program but as a good
practice when you are not in need of memory anymore then you

should release that memory by calling the function free().

Alternatively, you can increase or decrease the size of an allocated

memory block by calling the function realloc().

Programming with C - 312

Lets the program once again and make use of realloc() and free()

functions:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
char name[100];
char *description;

strcpy(name, "Raghav Rai");

/* allocate memory dynamically */

description = malloc(30 * sizeof(char));

if(description == NULL)

{

fprintf(stderr, "Error - unable to allocate required
memory\n");

¥

else

{

strepy(description, " Raghav Rai a MVM student in class
11th.");

}

/* suppose you want to store bigger description */

description = realloc(description, 100 * sizeof(char));

if(description == NULL)

{

fprintf(stderr, "Error - wunable to allocate required
memory\n");

}

else

{

Programming with C - 313

strcat(description, "He is in class 11th");

¥

printf("Name = %s\n", name);
printf("Description: %s\n", description);
/* release memory using free() function */

free(description);

}

The following result:
Name = Raghav Rai
Description: Raghav Rai a MVM student. He is in class 11th

This example without re-allocating extra memory, and strcat()
function will give an error due to lack of available memory in

description.

12.4 INTRODUCTION TO MEMORY
ALLOCATION IN ‘C°

Memory allocations, in general, mean where computer programs
and services are executed to reserve partially or complete space or
virtual memory of a computer, this process is known as memory

allocation.

This process is hardware operation and is achieved by memory
management through Operating systems and software applications.
In general, there are static and dynamic memory allocations,
whereas, in C programming language, we will see about dynamic
memory allocation where programs are allocated during run time
in memory and static memory allocation is a process of allocating
memory while writing the C program which means memory is

allocated at compile time.

Programming with C - 314

12.4.1 Static Memory Allocation in ‘C’

As we discussed static memory allocation is the allocation of
memory for the data variables when the computer programs start.
This type of allocation is applied to only global variables, file
scope variables and also to those variables that are declared as
static. This type of allocation is having a drawback when you are
allocating memory we should know the exact memory before
allocating as this process allocates fixed memory and cannot be

changed after allocating.

There are a few features of static memory allocation. They are: this
type of allocation allocates variables permanently; hence the
memory in this type of allocation cannot be reused and is,
therefore, less efficient. This allocation uses the stack for

implementing the allocation process.

Example:

#include <stdio.h>

void play
{
int X;
¥
int main()
{
int y;
int c[10];
return 1;
b

A variable can internally or externally be declared as static in

which its value persists until the end of the program, where this
Programming with C - 315

can be done using the keyword static before the wvariable
declaration. There can be internal or external static variables that

are declared inside or outside the function.

Example:

#include<stdio.h>

void stat(void);

int main()
{
int i;
for(i=1; i<=3 ; i++)
stat();
return 1;
¥
void stat(void)
{

static int n = 0;
n=n+l;

printf("n = %d""\n", n);

The following result:

n=1
n=2
n=23

12.4.2 Dynamic Memory Allocation in ‘C’

As discussed above dynamic memory allocation is allocation of
memory during runtime or during program execution. Dynamic
memory allocation provides different functions in the C

programming language.

Programming with C - 316

High Address

Stack
Dynamic
Heap } Memory
Allocation
Executable

Instructions

Static Variable /
Automatic Variable

Low Address

a). Stack: In this section, local variable or automatic variable and
information regarding the address of function call are
stored such as stack pointer.

b). Heap: This is the part of memory where dynamic memory
allocation take place. Now for dynamic memory allocation
following standard library functions are essential that are
defined in the standard library.

12.4.3 Difference Static & Dynamic Memory Allocation

Let's understand the difference between static memory allocation

and dynamic memory allocation.

Dynamic Memory
Static Memory Allocation
Allocation

Memory is allocated at| Memory is allocated at run

compile time. time.

Memory cannot be | Memory can be increased
increased while executing | while executing program.

program.

Used in array. Used in linked list.

Methods used for dynamic memory allocation.

malloc() allocates single block of requested

memory.

Programming with C - 317

calloc() allocates multiple block of requested

memory.

realloc() reallocates the memory occupied by

malloc() or calloc() function.

rree() free the dynamically allocated memory.

12.5 MALLOC(STANDS FOR MEMORY
ALLOCATION

The malloc() function allocates single block of requested memory
at runtime. This function reserves a block of memory of given size
and returns a pointer of type void. This means that we can assign it
to any type of pointer using typecasting. It doesn't initialize
memory at execution time, so it has garbage value initially. If it

fails to locate enough space (memory) it returns a NULL pointer.

Syntax:
ptr=(cast-type*)malloc(byte-size)

Example:

int *x; x = (int*)malloc(100 * sizeof(int)); //memory
space allocated to variable x

free(x); //releases the memory
allocated to variable x

This statement will allocate either 200 or 400 according to size of
int 2 or 4 bytes respectively and the pointer points to the address of

first byte of memory.

Example:
#include <stdio.h>

#include <stdlib.h>

Programming with C - 318

int main()
{
int num, i,
*ptr, sum = 0;
printf("Enter number of elements: ");
scanf("%d", &num);
ptr = (int*) malloc(num * sizeof(int)); //memory
allocated using malloc
if(ptr == NULL)
{
printf("Error! memory not allocated.");
exit(0);
¥
printf("Enter elements of array: ");
for(i = 0; i < num; ++i)
{
scanf("%d", ptr + 1);
sum += *(ptr + i);
¥
printf("Sum = %d", sum);
free(ptr);

return O;

}

12.6 CALLOC() STANDS FOR MEMORY
ALLOCATION

Calloc() is another memory allocation function that is used for
allocating memory at runtime. calloc function is normally used for
allocating memory to derived data types such as arrays and
structures. The calloc() function allocates multiple block of

requested memory.

Programming with C - 319

It initially initialize (sets) all bytes to zero.If it fails to locate
enough space(memory) it returns a NULL pointer. The only
difference between malloc() and calloc() is that, malloc() allocates
single block of memory whereas calloc() allocates multiple blocks

of memory each of same size.

Syntax:
ptr = (cast-type*)calloc(n/number, element-size);
calloc() required 2 arguments of type count, size-type.
Count will provide number of elements; size-type is data type size
Example:
int*arr;
arr=(int*)calloc(10, sizeof(int)); // 20 byte
cahr*str; str=(char*)calloc(50, siceof(char)); // 50 byte
Example:
struct employee
{
char *name;
int salary;
35
typedef struct employee emp;
emp *el;
el = (emp*)calloc(30,sizeof(emp));
Example:
#include <stdio.h>
#include <stdlib.h>
int main()
{
int num, i, *ptr, sum = 0;
printf("Enter number of elements: ");
scanf("%d", &num);

ptr = (int*) calloc(num, sizeof(int));
Programming with C - 320

if(ptr == NULL)

{

printf("Error! memory not allocated.");
exit(0);

}

printf("Enter elements of array: ");
for(i = 0; 1 < num; ++1)

{

scanf("%d", ptr + 1);

sum += *(ptr + i);

}

printf("Sum = %d", sum);
free(ptr);

return O;

}

12.7 REALLOC(STANDS FOR MEMORY
ALLOCATION

Changes memory size that is already allocated to a variable. Or If
the previously allocated memory is insufficient or more than
required, you can change the previously allocated memory size

using realloc().

If memory is not sufficient for malloc() or calloc(), you can
reallocate the memory by realloc() function. In short, it changes the
memory size. By using realloc() we can create the memory
dynamically at middle stage. Generally by using realloc() we can
reallocation the memory. Realloc() required 2 arguments of type
void*, size type. Void* will indicates previous block base address,
size-type is data type size. Realloc() will creates the memory in

bytes format and initial value is garbage.

Programming with C - 321

Syntax:

ptr=realloc(ptr, new-size)

Example:
int *x;
x=(int*)malloc(50 * sizeof(int));

x=(int*)realloc(x,100); //allocated a new memory to variable x

Example:

void*realloc(void*, size-type);
int *arr;

arr=(int*)calloc(5, sizeof(int));

arr=(int*)realloc(arr,sizeof(int)*10);

Example:
#include <stdio.h>
#include <stdlib.h>

int main()

int *ptr, i, nl, n2;

printf("Enter size of array: ");

scanf("%d", &nl);

ptr = (int*) malloc(nl * sizeof(int));
printf("Address of previously allocated memory: ");
for(i=0; i <nl; ++i)

printf("%u\t",ptr + 1);

printf("\nEnter new size of array: ");

scanf("%d", &n2);

ptr = realloc(ptr, n2);

Programming with C - 322

for(i = 0; 1 <n2; ++i)
printf("%u\t", ptr + 1);
return O;

}

12.8 FREE() STANDS FOR MEMORY

ALLOCATION

When your program comes out, operating system automatically

release all the memory allocated by your program but as a good

practice when you are not in need of memory anymore then you

should release that memory by calling the function free().

The memory occupied by malloc() or calloc() functions must be

released by calling free() function. Otherwise, it will consume

memory until program exit. Or Dynamically allocated memory

created with either calloc() or malloc() doesn't get freed on its own.

You must explicitly use free() to release the space.

Syntax:

free(ptr);

Example:

#include

#include

int main()

{

int num, i, *ptr, sum = 0;
printf("Enter number of elements: ");
scanf("%d", &num);

ptr = (int*) malloc(num * sizeof(int));

allocated using malloc

//memory

Programming with C - 323

if(ptr == NULL)

{

printf("Error! memory not allocated.");
exit(0);

}

printf("Enter elements of array: ");
for(i = 0; i < num; ++1)

{

scanf("%d", ptr + 1);

sum += *(ptr + 1);

}

printf("Sum = %d", sum);
free(ptr);

return O;

}

12.9 CONCLUSION

Memory allocation in C programming language is simple using

static memory allocation which allocates memory during compile

time or we can say before the program execution and it also has

another type known as dynamic memory allocation which allocates

memory during run time or allocating memory during program

execution which uses four different functions such as malloc(),

calloc(), free() and realloc(). There are different pros and cons of

both methods.

Programming with C - 324

UNIT 13
TECHNIQUES

ERROR HANDLING

Structure

13.0
13.1
13.2

13.3
13.4
13.5
13.6
13.7
13.8
139

Introduction

Objectives

Error Handling in ‘C’

13.2.1 NSError

13.2.2 Patterns for error handling
13.2.3 Errno values and meaning
Different types of errors exit in ‘C’
The Perror () Function

The Sterror () Function

Uses of Ferror Function

The uses of clearer () Function
Divide by Zero Errors

Program Exit Status

13.10 Conclusion

13.11 Unit based Questions /Answers

13.0

INTRODUCTION

This unit discusses as such, C programming does not provide

direct support for error handling but being a sytem programming

language, it provides you access at lower level in the form of

return values. Most of the C or even Unix function calls return -1

or NULL in case of any error and set an error code errno. It is set

as a global variable and indicates an error occurred during any

function call. You can find various error codes defined in header

file. So a C programmer can check the returned values and can

take appropriate action depending on the return value. It is a good

practice to set errno to 0 at the time of initializing a program. A

Programming with C - 325

value of 0 indicates that there is no error in the program.

This unit will be discussing the error handling system process of

language C.

13.1 OBJECTIVES

After completing this unit, you will be able to:

= ‘C’ programming error handling is provided with NSError
class available in Foundation framework.

= An NSError object encapsulates richer and more extensible

error information than is possible using only an error code or error

string.
= An NSError object are an error domain (represented by a
string)
= A domain-specific error code and a user info dictionary

containing application specific information.

13.2 ERROR HANDLING IN ‘C’

Error handling is a big part of writing software, and when it is done
poorly, the software becomes difficult to extend and to maintain.
Programming languages like C++ or Java provide an exceptions
and destructors that make error handling easier. Such mechanisms
are not natively available for C, and literature on good error

handling in C is widely scattered over the internet.

Errors are the problems or the faults that occur in the program,
which makes the behavior of the program abnormal, and
experienced developers can also make these faults. Programming

errors are also known as the bugs or faults, and the process of

Programming with C - 326

removing these bugs is known as debugging.

13.2.1 NSError

C programs use NSError objects to convey information about
runtime errors that users need to be informed about. In most cases,
a program displays this error information in a dialog or sheet. But
it may also interpret the information and either ask the user to
attempt to recover from the error or attempt to correct the error on

its own.

NSError Object consists of —
Domain: The Error domain can be one of the predefined NSError
domains an arbitrary string describing a custom domain and

domain must not be nil.

Code: The error code for the error.
User Info: The User Info dictionary for the error and user Info

may be nil.

Example:

NSString *domain =
@"com.MyCompany.MyApplication. ErrorDomain";

NSString *desc = NSLocalizedString(@'"Unable to complete the
process", @"");

NSDictionary *userInfo = @{ NSLocalizedDescriptionKey : desc
}3

NSError *error = [NSError errorWithDomain:domain code: 101

userInfo:userInfo];

13.2.2 Pattern for Error Handling
A collected knowledge on good error handling in the form of C

error-handling patterns and a running example that applies the
Programming with C - 327

patterns. The patterns provide good practice design decisions and

elaborate on when to apply them and which consequences they

bring. For a programmer, these patterns remove the burden of

making many fine-grained decisions. Instead, a programmer can

rely on the knowledge presented in these patterns and use them as

a starting point to write good code.

Hardls

Figure: An overview of the patterns and their relationships

Pattern_Name

Description

Function Split

The function has several responsibilities, which
makes the function hard to read and maintain.
Therefore, split it up. Take a part of a function
that seems useful on its own, create a new
function with that, and call that function.

Guard Clause

The function is hard to read and maintain
because it mixes pre-condition checks with the
main program logic of the function. Therefore,
check whether you have mandatory pre-
conditions and immediately return from the
function if these pre-conditions are not met.

Samurai Principle

When returning error information, you assume
that the caller checks for this information.
However, the caller can simply omit this check
and the error might go unnoticed. Therefore,
return from a function victorious or not at all.
If there is a situation for which you know that
an error cannot be handled, then abort the
program.

Goto Error
Handling

Code gets difficult to read and maintain if it
acquires and cleans up multiple resources at
different places within a function. Therefore,
have all resource cleanup and error handling at
the end of the function. If a resource cannot be

Programming with C - 328

acquired, use the goto statement to jump to
the resource cleanup code.

Cleanup Record

It is difficult to make a piece of code easy to
read and maintain if this code acquires and
cleans up multiple resources, particularly if
those resources depend on one another.
Therefore, call resource acquisition functions
as long as they succeed, and store which
functions require cleanup. Call the cleanup
functions depending on these stored values.

Object-Based
Error Handling

Having multiple responsibilities in one
function, such as resource acquisition, resource
cleanup, and usage of that resource, makes that
code difficult to implement, read, maintain,
and test. Therefore, put initialization and
cleanup into separate functions, similar to the
concept of constructors and destructors in
object-oriented programming.

13.2.3 Errno Values and Meaning

errno is a global variable indicating the error occurred during any

function call and it is defined inside <errno.h> header file. When a

function is called in C, a variable named errno is automatically

assigned a code (value) which can be used to identify the type of

error that has been encountered. Different codes values for errno

mean different types of errors.

error value Error

1 Operation not permitted

2 No such file or directory

3 No such process

4 Interrupted system call

5 I/0 error

6 No such device or address

7 The argument list is too long

8 Exec format error

9 Bad file number

10 No child processes

11 Try again

12 Out of memory

13 Permission denied
Example:

#include <errno.h>

#include <stdio.h>

Programming with C - 329

int main()

// If a file is opened which does not exist,
// then it will be an error and corresponding

// errno value will be set

FILE* fp;

// opening a file which does not exist
fp = fopen("Error Handling.txt", "r");
printf("Value of errno: %d\n", errno);

return 0;

}

13.3 DIFFERENT TYPES OF ERRORS
EXIT IN ‘C’

These errors are detected either during the time of compilation or
execution. Thus, the errors must be removed from the program for

the successful execution of the program.

There are mainly five types of errors exist in C programming:
= Syntax error

= Run-time error

= Linker error

= Logical error

= Semantic error

a). Syntax error:

Syntax errors are also known as the compilation errors as they
occurred at the compilation time, or we can say that the syntax
errors are thrown by the compilers. These errors are mainly

occurred due to the mistakes while typing or do not follow the

Programming with C - 330

syntax of the specified programming language. These mistakes are
generally made by beginners only because they are new to the

language. These errors can be easily debugged or corrected.

The syntax errors are:
= If miss the parenthesis (}) while writing the code.
= Displaying the value of a variable without its declaration.
= If miss the semicolon (;) at the end of the statement.
Example:
#include <stdio.h>
int main()
{
a=10;
printf("The value of a is : %d", a);

return O;

The following result:

Example:

#include <stdio.h>

int main()

{
a=2;
if(.) // syntax error
printf("a is greater than 1”);

return O;

}

The following result:

main.c: In function “main”:

iF(.)

-

b). Run-time error:
Sometimes the errors exist during the execution-time even after the
successful compilation known as run-time errors. When the
program is running, and it is not able to perform the operation is
the main cause of the run-time error. The division by zero is the
common example of the run-time error. These errors are very
difficult to find, as the compiler does not point to these errors.
#include <stdio.h>
int main()
{

int a=2;

int b=2/0;

printf("The value of b is : %d", b);

return O;

}

The following result:

n:14:12: warning: division by zero [-Wdiv-by-zero]

ating point exception

¢). Linker error:
Linker errors are mainly generated when the executable file of the
program is not created. This can be happened either due to the

wrong function prototyping or usage of the wrong header file. For

Programming with C - 332

example, the main.c file contains the sub() function whose
declaration and definition is done in some other file such as func.c.
During the compilation, the compiler finds the sub() function
in func.c file, SO it generates two object files,
i.c., main.o and func.o. At the execution time, if the definition
of sub() function is not found in the func.o file, then the linker
error will be thrown. The most common linker error that occurs is
that we use Main() instead of main().
#include <stdio.h>
int Main()
{

int a=78;

printf("The value of a is : %d", a);

return 0;

}

The following result:

Logical error:
The logical error is an error that leads to an undesired output.
These errors produce the incorrect output, but they are error-free,
known as logical errors. These types of mistakes are mainly done
by beginners. The occurrence of these errors mainly depends upon
the logical thinking of the developer. If the programmers sound
logically good, then there will be fewer chances of these errors.
#include <stdio.h>
int main()
{

int sum=0; // variable initialization

int k=1;

Programming with C - 333

for(int i=1;i<=10;i++); // logical error, as we put the semicolon a
fter loop
{
sum=sum-+Kk;
k++;
¥
printf("The value of sum is %d", sum);

return O;

The following result:

Semantic error:
Semantic errors are the errors that occurred when the statements
are not understandable by the compiler.
The following can be the cases for the semantic error:
Use of a un-initialized variable.
int i;
i=i+2;
Type compatibility
int b = "Error Handling";
Errors in expressions
inta, b, c;
atb=c;
Array index out of bound
int a[10];
a[10] = 34;
#include <stdio.h>

int main()
Programming with C - 334

{

int a,b,c;

a=2;

b=3;

c=1;

at+b=c; // semantic error
return O;

}

The following result:

main.c: In function "main”®:

atb=c;

13.4 THE PERROR () FUNCTION

The perror() function is used to show the error description. It displays the
string you pass to it, followed by a colon, a space, and then the textual

representation of the current errno value.

Syntax

void perror(const char *str);

Parameters
str: It is a string containing a custom message to be printed before the error
message itself.
Example
// C implementation to see how perror() function is used to
// print the error messages.
#include <errno.h>
#include <stdio.h>
#include <string.h>
int main()
{
FILE* fp;
// If a file is opened which does not exist,

// then it will be an error and corresponding

Programming with C - 335

// errno value will be set

fp = fopen(" Error Handling.txt ", "r");
// opening a file which does

// not exist.

printf("Value of errno: %d\n ", errno);

perror("Message from perror");

return 0;

The following result:
Value of errno: 2

Message from perror: No such file or directory

13.5 THE STERROR () FUNCTION

The strerror() function is also used to show the error description.
This function returns a pointer to the textual representation of the

current errno value.

Syntax
char *strerror(int errnum);
Parameters
errnum: It is the error number (errno).
Example:
// C implementation to see how strerror() function is used
// to print the error messages.
#include <errno.h>
#include <stdio.h>
#include <string.h>
int main()

{

FILE* fp;

// 1f a file is opened which does not exist,

Programming with C - 336

// then it will be an error and corresponding
// errno value will be set
fp = fopen(" Error Handling.txt ", "r");
// opening a file which does
// not exist.
printf("Value of errno: %d\n", errno);
printf("The error message is : %s\n", strerror(errno));

return O;

The following result:
Value of errno: 2

The error message is: No such file or directory

13.6 USES OF FERROR () FUNCTION

The ferror() function is used to check whether an error occurred

during a file operation.

Syntax

int ferror(FILE *stream);

Parameters

stream: It is the pointer that points to the FILE for which we want
to check the error.

Return Value

It returns a non-zero value if an error occurred, otherwise it

returns 0.

Example
// C program to demonstrate the ferror() function
#include <stdio.h>

int main()

Programming with C - 337

// Open the file in read mode
FILE* file = fopen("nonexistent_file.txt", "r");
if (file == NULL)

// Print an error message

// if file opening fails

perror("Error opening file");

// Return with non-zero exit status to

// indicate an error

return 1;
b

int c;
// Process the character
// Add your code here to perform operations on each
// character read from the file
while ((c = fgetc(file)) != EOF) {
b
if (ferror(file)) {

// Print an error message if an error occurred

// during file reading

printf(

"An error occurred while reading the file.\n");

b
else {

// Print success message if file reading completed

// without errors

printf("File read successfully.\n");
b
// Close the file
fclose(file);

// Return with zero exit status to indicate successful

Programming with C - 338

// execution
return O;
}
The following result:

Error opening file: No such file or directory

137 THE USES OF CLEARER ()
FUNCTION

The clearerr() function is used to clear both end-of-file and error

indicators for a file stream.

Syntax

void clearerr(FILE *stream);

Parameters

stream: It is the pointer that points to the FILE for which we want

to check the error.

Example
#include <stdio.h>
int main()
{
FILE* file = fopen("file.txt", "r");
// Open the file in read mode
if (file == NULL)

// Print an error message
// if file opening fails
perror("Error opening file");
// Return with non-zero exit status to
// indicate an error
return 1;

Programming with C - 339

}

// Perform file operations
// Add your code here to perform operations on the
// opened file
if (ferror(file)) {
// Print an error message
// if an error occurred
// during file operations
printf(" An error occurred while performing file "
"operations.\n");
¥
// Clear the error indicators for the
// file stream
clearerr(file);
// Continue with file operations
// Add your code here to continue with further
// operations on the file
// Close the file
fclose(file);

return O;

13.8 DIVIDE BY ZERO ERRORS
FUNCTION

A common pitfall made by C programmers is not checking if a
divisor is zero before a division command. Division by zero leads
to undefined behavior, there is no C language construct that can
do anything about it. Your best bet is to not divide by zero in the

first place, by checking the denominator.

Programming with C - 340

Example:
// C program to check and rectify
// divide by zero condition
#include <stdio.h>
#include <stdlib.h>
void function(int);
int main()
{
int x =0;
function(x);
return O;

}

void function(int x)

{
float fx;
if (x ==0) {
printf("Division by Zero is not allowed");
fprintf(stderr, "Division by zero! Exiting...\n");
exit(EXIT_FAILURE);
b

else

fx=10/x;

printf("f(x) is: %.5f", fX);
b
b

The following result:

Division by zero! Exiting

Programming with C - 341

13.9 PROGRAM EXIT STATUS

Exit status is the value returned by the program after its execution
is completed which tells the status of the execution of the

program.

The C standard specifies two

constants: EXIT _SUCCESS and EXIT_FAILURE, that may be
passed to exit() to indicate successful or unsuccessful termination,
respectively. These are macros defined in <stdlib.h> header file.
Example:

// C implementation which shows the

// use of EXIT SUCCESS and EXIT FAILURE.
#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main ()

FILE* fp;
fp = fopen("filedoesnotexist.txt", "rb");
if (fp == NULL)

printf("Value of errno: %d\n", errno);
printf("Error opening the file: %s\n",
strerror(errno));
perror("Error printed by perror");
exit(EXIT_FAILURE);
printf("I will not be printed\n");

}

else

Programming with C - 342

{
fclose(fp);

exit(EXIT_SUCCESS);
printf("I will not be printed\n");
}

return O;
b
The following result:
Value of errno: 2
Error opening the file: No such file or directory
Error printed by perror: No such file or directory

13.9 CONCLUSION

This chapter showed you how to perform error handling in C.
Function Split tells you to split your functions into smaller parts to
make error handling of these parts easier. A Guard Clause for your
functions checks pre-conditions of your function and returns
immediately if they are not met. This leaves fewer error-handling
obligations for the rest of that function. Instead of returning from
the function, you could also abort the program, adhering to the
Samurai Principle. When it comes to more complex error handling
a€’particularly in combination with acquiring and releasing
resources a€’you have several options. Goto Error Handling makes
it possible to jump forward in your function to an error-handling
section. Instead of jumping, Cleanup Record stores the info, which
resources require cleanup, and performs it by the end of the
function. A method of resource acquisition that is closer to object-
oriented programming is Object-Based Error Handling, which uses
separate initialization and cleanup functions similar to the concept

of constructors and destructors.

Programming with C - 343

With these error-handling patterns in your repertoire, you now
have the skill to write small programs that handle error situations

in a way that ensures the code stays maintainable.

Programming with C - 344

UNIT 14 STANDARDS I/0 OPERATIONS
Methods of working with Files

14.0 Introduction

14.1 Objectives

14.2 Introduction to Input and Output
14.3 Standard Input/Output System
14.3.1 A File using the Function fopen()
14.3.2 A File using the Function fclose()
14.4 Character Input and Output in Files
14.4.1 The getchar() Function
14.4.2 The putchar() Function
14.4.3 Printf(format, values)
14.4.4 Printf Substitution Types
14.4.5 Printf Substitution Modifier
14.5 String Input/Output Functions
14.6 Block Input/Output Functions
14.7 Sequential Vs Random Access Files
14.8 Positioning the File Pointer
14.9 The Unbuffered I/O
14.10 Conclusion

14.11 Unit based Questions /Answers

14.0 INTRODUCTION

This unit discusses The examples we have seen so far in the
previous units deal with standard input and output. When data is
stored using variables, the data is lost when the program exits
unless something is done to save it. This unit discusses methods of
working with files, and a data structure to store data. C views file
simply as a sequential stream of bytes. Each file ends either with
an end-of-file marker or at a specified byte number recorded in a

Programming with C - 345

system maintained, administrative data structure. C supports two
types of files called binary files and text files. The difference
between these two files is in terms of storage. In text files,
everything is stored in terms of text i.e. even if we store an integer
54; it will be stored as a 3-byte string - “54\0”. In a text file certain
character translations may occur. For example a newline(\n)
character may be converted to a carriage return, linefeed pair. This
is what Turbo C does. Therefore, there may not be one to one
relationship between the characters that are read or written and
those in the external device. A binary file contains data that was
written in the same format used to store internally in main

memory.

The fact that a numeric value is in a standard length makes binary
files easier to handle. No special string to numeric conversions is
necessary. The disk I/O in C is accomplished through the use of
library functions. The ANSI standard, which is followed by
TURBO C, defines one complete set of I/O functions. But since
originally C was written for the UNIX operating system, UNIX
standard defines a second system of routines that handles 1/0
operations. The first method, defined by both standards, is called a
buffered file system. The second is the unbuffered file system.

This unit will be discussing the buffered file functions of
language C.

14.1 OBJECTIVES

After completing this unit, you will be able to:

= define the concept of file pointer and file storage in C;

Programming with C - 346

= create text and binary files in C;

= read and write from text and binary files;
= deal with large set of Data such as File of Records; and
= perform operations on files such as count number of words in

a file, search a word in a file, compare two files etc.

14.2 INTRODUCTION TO INPUT AND
OuUTPUT

There are no in-built input or output statements in the C language.
This means that all input and output must be done by calling
functions, at least some of which must be written in a language
other than C. There is, however, a standard library of functions that
allow /O to be done in a relatively uniform manner for all C
implementations without the need to know how it is being done in

any particular case.

This standard library is known as the "stdio" library and can be
considered to be an extension to the C language itself. To be able
to use the functions within this library it is necessary to insert the
following prellprocessor statement at the start of the program

source code:

#include <stdio.h>

The following functions are part of the "stdio" library

getchar for reading single characters from the standard

input, usually the keyboard.

gets for reading a whole line of characters from the standard

input, usually the keyboard.
Programming with C - 347

putchar for writing single characters to the standard output,

usually the screen.

printf for writing more complex, formatted output to the standard

output.

Functions getchar, putchar and printf are used extensively in the

program and the many other input and output.

14.3 STANDARD INPUT/OUTPUT
SYSTEM

A sequential stream of bytes ending with an end-of-file marker is
what is called a file. When the file is opened the stream is
associated with the file. By default, three files and their streams are
automatically opened when program execution begins - the
standard input, standard output, and the standard error. Streams
provide communication channels between files and programs. For
example, the standard input stream enables a program to read data
from the keyboard, and the standard output stream enables to write
data on the screen. Opening a file returns a pointer to a FILE
structure (defined in <stdio.h>) that contains information, such as
size, current file pointer position, type of file etc., to perform
operations on the file. This structure also contains an integer called
a file descriptor which is an index into the table maintained by the
operating system namely, the open file table. Each element of this
table contains a block called file control block (FCB) used by the

operating system to administer a particular file.

The standard input, standard output and the standard error are
manipulated using file pointers stdin, stdout and stderr. The set of
functions which we are now going to discuss come under the

Programming with C - 348

category of buffered file system. This file system is referred to as
buffered because, the routines maintain all the disk buffers
required for reading / writing automatically. To access any file, we
need to declare a pointer to FILE structure and then associate it

with the particular file.

1t is declared as follows:

FILE *fp;

14.3.1 A File using the Function fopen()

Once a file pointer variables has been declared, the next step is to
open a file. The fopen() function opens a stream for use and links a
file with that stream. This function returns a file pointer, described
in the previous section.

The syntax is:

FILE *fopen(char *filename,*mode);

where mode is a string, containing the desired open status. The
filename must be a string of characters that provide a valid file
name for the operating system and may include a path

specification.

Example:

#include <stdio.h>

main ()

{

FILE *fp;

if ((fp=fopen(*“filel.dat™, “r”’))==NULL)
{

Programming with C - 349

printf(“FILE DOES NOT EXIST\n”);
exit(0);

b

b

14.3.2 A File using the Function fclose()

When the processing of the file is finished, the file should be

closed using the fclose() function,
The syntax is:

int fclose(FILE *fptr);

This function flushes any unwritten data for stream, discards any

unread buffered input, frees any automatically allocated buffer, and

then closes the stream. The return value is O if the file is closed

successfully or a constant EOF, an end-of file marker, if an error

occurred. This constant is also defined in. If the function fclose() is

not called explicitly, the operating system normally will close the

file when the program execution terminates.

Example:

#include <stdio.h>

main ()

{

FILE *fp;

if ((fp=fopen(“filel.dat”, “r”))==NULL)
{

printf(“FILE DOES NOT EXIST\n”);
exit(0);

Programming with C - 350

/* close the file */

fclose(fp);
¥

14.4 CHARACTER INPUT AND OUTPUT
IN FILES

ANSI C provides a set of functions for reading and writing
character by character or one byte at a time. These functions are

defined in the standard library. They are:

= The getchar() Function

= The putchar() Function

= The Printf() Function

= The Scanf() Function

= Printf Substitution Types

= Printf Substitution Modifier

14.4.1 The getchar() Function

This will get a character from the keyboard, waiting as long as
required for a key to be pressed. When the character is found it's
corresponding bit pattern (usually the ASCII value) is assigned to

abc.

This function is:
abc = getchar();
getc() is used to read a character from a file and putc() is used to

write a character to a file.

Their syntax is:

Programming with C - 351

int putc(int ch, FILE *stream);
int getc(FILE *stream);

If the function encounters an error, such as an end of file marker, it
returns the value EOF (this type of error is unusual from a
keyboard!). EOF is a constant defined in the stdio.h header file

described in section C

EOF is equivalent to -1 on most systems.
It is possible to use getchar without assigning the resulting value to
any variable, such as in the statement:

getchar();

14.4.2 The putchar() Function

putchar outputs a character to the screen as follows:
putchar(character _expression);

This will output to the screen whatever character has a bit pattern

that corresponds to the value of the specified parameter in the ().

Example:
int fred = 65;
putchar('x"); /* outputs character 'x' */

putchar(fred); /* outputs character 'A' */

1. putchar('x"); is not the same as putchar(x);

The former outputs the character 'x'.

The latter looks at the variable called x and prints the character
with a bit pattern that corresponds to the value stored in x.

2.'x'is not the same as "x".

"x" is a string as used in printf.

3. putchar(2); will not put a 2 onto the screen.

The bit pattern of the number 2 does not correspond to the ASCII
Programming with C - 352

value of a character that is "printable".
i.e. Nothing will appear on the screen.
Their syntax is:

int fgetc(FILE *stream);

int fputc(int c, FILE *stream);

14.4.3 The Printf() Function

printf outputs a string of characters to the

eg. printf(""\nHello World"');

1. A string is a collection of one or more characters with a hidden
zero byte at the end.

2. A string with one character in it is not the same as a single

character. Double quotes, enclose a string, single quotes
enclose a character.

3. The \n in the above example makes sure the output is on a new
line...... otherwise it would have continued where it previously
left off.

4. If the string contains a %d then the output is modified by
substituting the value of the next parameter in place of the %d.

For each further %d another parameter value is substituted.

eg. printf(""Add %d and %d to get %d.",a,b,a+b);

An expression can be used for a printf parameter as in a+b .

14.4.4 The Scanf() Function
The int scanf(const char *format, ...) function reads the input from
the standard input stream stdin and scans that input according to

the format provided.

Programming with C - 353

The format can be a simple constant string, but you can specify
%s, %d, %c, %f, etc., to print or read strings, integer, character, or
float, respectively. There are many other formatting options
available which can be used based on requirements.

Example:

#include <stdio.h>

int main()

{

char str[100];

int i;

printf("Enter a value :");

scanf("%s %d", str, &i);

printf("\nYou entered: %s %d ", str, 1);

return O;

}

14.4.5 Printf Substitution Types

Wherever a % is found in the printf output string the next character
will be

%d will substitute the decimal value of the next parameter.
Other % character substitutions cause the next parameter to be
interpreted in different forms.

%u output as an unsigned decimal number

%o output as an octal number %x output as a hexadecimal
number

%c output as a character %s output as a string

%f output as a real number with 6 decimal places

%e output as a real number in scientific notation

%g output as a real number in ordinary or scientific notation,
whichever takes the least space

%% output a '%' character

Programming with C - 354

14.4.6 Printf Substitution Modifier
The normal %d output will substitute the minimum number of

digits with a leading - if it is negative.

This may not be neat or convenient if, say, a table of figures is to
be output, but, a field width modifier can be used to specify how

many character positions the substituted value will take up.

eg. printf(""Height is %5d metres'',size);

There will always be five characters substituted for the %5d, if the
value is between -999 and 9999 then the output will be padded

with spaces on the left.

Any print type can have a field width modifier.

eg. printf(""Gender: %5c\n"", sex);

A further modifier can alter the number of decimal places output

for real numbers printed with a %f, %e or %g, in the form:

printf("Average is %10.5fAin"", xyz);

Where: 10 gives the total width of the field including digits, the

decimal point and possible - sign.

.5 gives the number of digits after the decimal point.

14.5 STRING INPUT/OUTPUT
FUNCTIONS

The file then each time we will need to call character input
function, instead C provides some string input/output functions

with the help of which we can read/write a set of characters at one
Programming with C - 355

time.

These are defined in the standard library:

- fgets()
= fputs()

These functions are used to read and write strings.

The syntax is:

int fputs(char *str, FILE *stream);

char *fgets(char *str, int num, FILE *stream);

The integer parameter in fgets() is used to indicate that at most
num-1 characters are to be read, terminating at end-of-file or end-
of-line. The end-of-line character will be placed in the string str
before the string terminator, if it is read. If end-of-file is
encountered as the first character, EOF is returned, otherwise str is
returned. The fputs() function returns a non-negative number or

EOF if unsuccessful.

Example:

/*Program to read a file and count the number of lines in the file */
#include <stdio.h>

#include <conio.h>

#include <process.h>

void main()

{

FILE *fp;

int cnt=0;

char str[80];

/* open a file in read mode */
Programming with C - 356

if ((fp=fopen("lines.dat","r"))== NULL)

{

printf("File does not exist\n");

exit(0);

H

/* read the file till end of file is encountered */
while(!(feof(fp)))

{ fgets(str,80,1p); /*reads at most 80 characters in str */
cnt++; /* increment the counter after reading a line
*/

h

h

/* print the number of lines */

printf(“The number of lines in the file is :%d\n”,cnt);
fclose(fp);

b

14.6 BLOCK INPUT/OUTPUT FUNCTIONS

Block Input / Output functions read/write a block from to a file. A
block can be a record, a set of records or an array. These functions

are also defined in standard library.

= fread()
= fwrite()

These two functions allow reading and writing of blocks of data.

The syntax is:

int fread(void *buf, int num_bytes, int count, FILE *fp);
int fwrite(void *buf, int num_bytes, int count, FILE *fp);

Programming with C - 357

In case of fread(), buf is the pointer to a memory area that receives
the data from the file and in fwrite(), it is the pointer to the
information to be written to the file. These functions are quite
helpful in case of binary files. Generally these functions are used to

read or write array of records from or to a file.

/* Program to illustrate the fread() and fwrite() functions*/
#include <stdio.h>

#include <conio.h>

#include <process.h>

#include <string.h>

void main()

{

struct stud

{

char name[30];

int age;

int roll_no;

¥

s[30],st;

int 1i;

FILE *fp;

/*opening the file in write mode*/
if((fp=fopen("sud.dat","w"))== NULL)
{

printf("Error while creating a file\n");
exit(0);

¥

/* reading an array of students */
for(i=0;1<30:i++)

scanf("%s %d %d",s[i].name,s[i].age,s[i].roll_no);

/* writing to a file*/
Programming with C - 358

fwrite(s,sizeof(struct stud),30,fp);

fclose(fp);

/* opening a file in read mode */
fp=fopen("stud.dat","r");

/* reading from a file and writing on the screen */
while(!feof(fp))

{

fread(&st,sizeof(struct stud), 1,fp);

fprintf("%s %d %d",st.name,st.age,st.roll_no);

b
fclose(fp);
b

Example:

Give the output of the following code fragment:
#include <stdio.h>

#include <process.h>

#include <conio.h>

main()

{

FILE * fp1, * {p2;

double a,b,c;

fpl=fopen(“filel”, “w”);
fp2=fopen(“file2”, “w”);
fprintf(fpl,”1 5.34 —4E02”);
fprintf(fp2,”-2\n1.245\n3.234e02\n”);
fclose(fpl);

fclose(fp2);

fpl=fopen(“filel”, “r”);
fp2=fopen(“file2”,r”);
fscanf(fp1,“%lf %lf %lf”,&a,&b,&c);
printf(“%101f %101f %101f”,a,b,c);

fscanf(fp2,”%lf %lf %lf”,&a,&b,&c);
Programming with C - 359

printf(“%10.1e %101f %101f”,a,b,c);
fclose(fpl);

fclose(fp2);

H

14.7 SEQUENTIAL Vs RANDOM ACCESS
FILES

C supports two type of files — text and binary files, also two types
of file systems — buffered and unbuffered file system. It can also
differentiate in terms of the type of file access as Sequential access
files and random access files. Sequential access files allow reading
the data from the file in sequential manner which means that data

can only be read in sequence.

Example: We have considered till now in this unit are performing
sequential access. Random access files allow reading data from
any location in the file. To achieve this purpose, C defines a set of

functions to manipulate the position of the file pointer.

14.8 POINTIONING THE FILE POINTER

To random access files, C requires a function with the help of
which the file pointer can be positioned at any random location in

the file. Such a function defined in the standard library is:

The function fseek() is used to set the file position. Its prototype

is:

int fseek(FILE *fp, long offset, int pos);

The first argument is the pointer to a file. The second argument is
Programming with C - 360

the number of bytes to move the file pointer, counting from zero.
This argument can be positive, negative or zero depending on the
desired movement. The third parameter is a flag indicating from

where in the file to compute the offset.

It can have three values:

SEEK SET(or value 0) the beginning of the file,
SEEK_ CUR(or value 1) the current position and
SEEK END(or value 2) the end of the file

These three constants are defined in <sstdio.h>. If successful
fseek() returns zero. Another function rewind() is used to reset the

file position to the beginning of the file.

Its prototype is:

void rewind(FILE *fp);

fseek(fp,0,SEEK SET);

Another function ftell() is used to tell the position of the file

pointer.

Its prototype is:
long ftell(FILE *fp);
It returns —1 on error and the position of the file pointer if

successful.

14.9 THE UNBUFFERED 1/O

The buffered /O system uses buffered input and output, that is, the
operating system handles the details of data retrieval and storage,
the system stores data temporarily (buffers it) in order to optimize
file system access. The buffered I/O functions are handled directly

as system calls without buffering by the operating system. That is
Programming with C - 361

why they are also known as low level functions. This is referred to
as unbuffered I/O system because the programmer must provide
and maintain all disk buffers, the routines do not do it

automatically.

The low level functions are defined in the header file <io.h>.

These functions do not use file pointer of type FILE to access a
particular file, but they use directly the file descriptors, as

explained earlier, of type integer. They are also called handles.

a). Opening and closing of files
The function used to open a file is open(). Its prototype is:
int open(char *filename, int mode, int access);

Here mode indicates one of the following macros in <fentl.h>.

Mode:

O_RDONLY Read only
O_WRONLY Write only
O_RDWR Read / Write

The access parameter is used in UNIX environment for providing
the access to particular users and is just included here for
compatibility and can be set to zero. open() function returns —1 on
failure.

int fd;

if ((fd=open(filename,mode,0)) == -1)

{

printf(“‘cannot open file\n);

exit(1);

}

Programming with C - 362

If the file does not exist, open() the function will not create it. The
function creat() is used which will create new files and re-write old
ones. The prototype is:

int creat(char *filename, int access);

It returns a file descriptor; if successful else it returns —1. It is not
an error to create an already existing file, the function will just
truncate its length to zero. The access parameter is used to provide
permissions to the users in the UNIX environment. The function
close() is used to close a file.

The prototype is:

int close(int fd);

It returns zero if successful and —1 if not.

b). Reading, Writing and Positioning in File

The functions read() and write() are used to read from and write to
a file. The prototypes is:

int read(int fd, void *buf, int size);

int write(int fd, void *buf, int size);

The first parameter is the file descriptor returned by open(), the
second parameter holds the data which must be typecast to the
format needed by the program, the third parameter indicates the
number of bytes to transferred. The return value tells how many
bytes are actually transferred. If this value is —1, then an error must

have occurred.

/* Program to copy one file to another file to illustrate the
functions*/
include <stdio.h>

include <io.h>

Programming with C - 363

#include <process.h>

typedef char arr[80];

typedef char name[30];

main()

{

arr buf;

name fname, sname;

int fd1,fd2,size;

/* check for the command line arguments */
if (argc!=3)

{

printf("Invalid number of arguments\n");
exit(0);

j

if ((fd1=open(argv[1],0_RDONLY))0)

{

printf("Error in opening file %s \n",argv[1]);
exit(0);

b

if ((fd2=creat(argv[2],0))<0)

printf("Error in opening file %s \n",argv[2]);
exit(0);

h

open(argv[2],0_ WRONLY);
size=read(fd1,buf,80); /* read till end of file */
while (size>0)

{

write(fd2,buf,80);

size=read(fd1,buf,80);

h

close(fd1l);

close(fd2);
Programming with C - 364

14.10 CONCLUSION

In this unit, we have learnt about files and how C handles them.
We have discussed the buffered as well as unbuffered file systems.
The available functions in the standard library have been
discussed. This unit provided you an ample set of programs to start
with. We have also tried to differentiate between sequential access

as well as random access file.

The file pointers assigned to standard input, standard output and
standard error are stdin, stdout, and stderr respectively. The unit
clearly explains the different Files type of modes oof opening the
file. As seen there are several functions available to read/write
from the file. The usage of a particular function depends on the
application. After reading this unit one must be able to handle large

data bases in the form of files.

Programming with C - 365

