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Block I: Representation of Information and Basic Building Blocks

Unit — 1: Basics of Computers

1.0 Introduction
1.1 Objectives
1.2 Introduction to Computer
1.2.1 Computer Applications
1.3 Computer Generations
1.4 Number System
1.5 Conversion Techniques
1.6 Character Codes
1.7 Conclusion
1.8 Unit Based Questions & Answers

1.9 References

1.0 Introduction

In today's digital age, computers have become an integral part of our daily lives. From simple calculations to
complex simulations, computers have revolutionized the way we work, communicate, and entertain ourselves.
Understanding the basics of computers and their underlying technology is essential for anyone seeking to navigate

this digital landscape.

This unit aims to provide a comprehensive introduction to the fundamentals of computers, covering topics such
as computer applications, generations, number systems, conversion techniques, and character codes. By the end
of this unit, students will have a solid understanding of the principles that underlie computer systems and be able

to apply this knowledge in practical ways.

In this introduction, we will set the stage for the topics that will be covered in this unit. We will explore the various

applications of computers, the different generations of computer technology, and the basic concepts of number




systems and character codes. This foundation will provide a solid base for understanding the more advanced topics

that will be covered in subsequent units.

1.1 Objectives

By the end of this unit, students will be able to understand,

e  Understand the basic components and applications of computers

e Identify and describe the different generations of computer technology

e Explain the concept of number systems and perform conversions between different number systems
(binary, decimal, hexadecimal)

e  Understand the importance of character codes and their uses

e Apply knowledge of computer fundamentals to real-world scenarios

e Analyze and solve problems related to computer systems and technology

e Develop critical thinking skills in understanding computer concepts and terminology

1.2 Introduction to Computer

@omputer is an electronic device that manipulates information (@a‘ca. It has the ability to store, retrieve, and
process da@Computers can be used to type documents, send emails, play games, and browse the Web. They are
also used t0 handle spreadsheets, accounting, database management, presentations, and more.

Basic Functions of a Computer

Computers perform four primary functions:

1. Input: The process of entering data and inStructions into a computer system. Input devices include

keyboards, mice, scanners, and microphones.

2. Processing: The manipulation of data by the computer's central processing unit (CPU) to convert data

into information. This includes performing calculations, making decisions, and executing programs.

3. Storage: Saving data and instructions in the computer's memory for future use. There are two main types

of storage:

o Primary Storage (RAM - Random Access Memory): Temporary storage used while the

computer is running.

o Secondary Storage (HDD, SSD, USB drives): Permanent storage used to save data and

programs.




4. Output: The process of displaying or producing information from the computer. Output devices include

monitors, printers, speakers, and projectors.

The block diagram (@ computer is composed of numerous important parts.

The Arithmetical and Logical Unit is in charge of using arithmetical and logical expressions to do calculations

and make judgments.

e Control Unit (CU): This part of the computer system is responsible for monitoring and controlling the
overall processes to make sure they are planned and executed properly.

e Registers: Integrated into the CPU, registers are little, fast memory modules. They are in charge of
keeping track of the information and commands that the CPU is currently processing.

e Memory Unit: The memory unit functions as the computer system's storage component, holding data
and program statements for both short- and long-term storage.

e Input and Output Unit: The input and output unit is in charge of transmitting and receiving data,
enabling communication between the computer and external devices, and displaying information to the

user, usually via a display.
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Types of Computers

A variety of computers are offered in different weights, sizes, and designs. They can do a variety of jobs because
of their size and shape. They fit into a variety of categories. The computers are designed by qualified computer
architects who fulfill certain specifications. Different sizes and forms are utilized by computers in households and

hospitals. The many categories of computers will be discussed in the sections that follow. An advanced computer's




capacity is based on how well it can process data or manage tasks. The following standards are applied in order

to evaluate their performance:

B

The amount of information which can be stored in memory.
The computer's internal operations are at a fast pace
The quantity and variety of peripheral devices.

The computer has various software alternatives from which to pick

In the past, a computer's capacity was mostly determined by its physical size: the larger the machine, the higher

the volume. Dimensions, pace of operation, and ratio in computer language are now proportionate. Smaller

machines are now produced thanks to recent technological advancements, enabling packaging of comparable

speed and versatility in a smaller footprint.

Micro Computers: A revolutionary age in technology began in 1971 with the introduction of mass-
produced silicon chips, which made it possible to incorporate computational capabilities into a wide
range of equipment. Large-scale integration of silicon chip-powered microcomputers transformed their
capabilities. These chips remarkably reduced the amount of processing power available to tiny sizes; a
microprocessor small enough to fit through the eye of a needle serves as evidence of this progress. The
creation of semiconductor-based silicon chips was essential to the advancement of microcomputer
memories. These microcomputers coordinated stored program control in digital computer systems using
a combination of microprocessors, programmable ROM, and RAM. These microcomputers, sometimes
referred to as personal computers or PCs, are now widely available and provide compact, affordable
solutions for both personal and business use in homes and businesses.

Mini Computers: Thanks to advancements in technology throughout the 1960s, producers were able to
meet the growing need for independent devices such as minicomputers, which filled the gap left by larger
computers being unfeasible to complete.

Often referred to as mini mainframe computers, these systems offered faster operating speeds and larger
storage capacities than their microcomputer equivalents.

Minicomputers combined many desktop drives and were capable of supporting a large number of high-

speed input/output devices, which allowed for the direct processing of large data files.

Operating systems designed specifically for minicomputers supported virtual storage and
multiprogramming, allowing several applications to run simultaneously. These systems were able to
adjust and meet a variety of user needs because of their inherent flexibility. Although they couldn't match
the raw power of larger or medium-sized computers, minicomputers were nonetheless useful because

they struck a good balance between size and capabilities, making them a flexible option.

Medium-sized Computers: Compared to smaller computer systems, medium-sized computers provide
faster operating speeds and larger storage capacities. Medium-sized computer systems outperform their
smaller counterparts in terms of storage capacity and operating performance. The expansion of a
computer's data processing capacity by adding extra components, such as memory and peripherals, is

what defines its expandability.




Large Computers: These machines represent the pinnacle of speed and adaptability, uently with
minimal user intervention required for control systems. Large computer systems come :@ wide range
of configurations, from lone processing units to massive national computer networks that integrate
massive devices. Large computers' internal operating speeds are expressed in nanoseconds, which
highlights their rapidity, while the speeds of smaller computers are expressed in microseconds, which
shows a relative difference in processing velocity.

Mainframe Computers: puters known as mainframes are enormous, multi-user computers
designed to process millionsc(@lstructions per second and have the capacity to access enormous amounts
of data. Because of their skill at handling huge data volumes, they are preferred by big businesses, airline
reservation systems, and hospitals. A mainframe allows users to centrally store vast volumes of data,
facilitating processing and access from several computers spread across various locations.

But many find it financially impracticable and prohibitively expensive to purchase a mainframe for
personal usage. These systems are usually too expensive and large for individual purchasers to afford.
Mainframes are the second largest computers in terms of size and capability among all computer families.
Supercomputers: Supercomputers are the modern equivalent of the ultimate computer power, needed
to process massive amounts of data and decipher intricate patterns across many scientific fields. These
devices are essential to vital applications like the creation of nuclear weapons and accurate weather
forecasting. Their strength is in handling enormous volumes of scientific data, which makes it possible
to perform complex physical simulations, quantum physics, weather forecasting, molecular modeling,
and climate research.

Supercomputers, which can process hundreds of millions to trillions of instructions per second, are
greatly sought after, especially by governments due to their extensive computational capabilities across
various domains. They are essential resources for many businesses, helping with everything from product
design to animation.

One of the most prominent instances is the PARAM supercomputer series, which was developed by
India's Center for Development of Advanced Computing (CDAC) and boasts astounding processing rates
of up to 1 trillion instructions per second. These supercomputers represent the pinnacle of computing
technology, facilitating breakthroughs in a variety of fields and advancing scientific and industrial

innovation as well as computational intensity.

1.2.1 Computer Applications

Scientific Research

Computers ;@' a crucial role in scientific research by providing the computational power needed for complex

simulations, data analysis, and modeling.

Simulations and Modeling: Used in fields like physics, chemistry, and biology to simulate real-world

phenomena, such as climate models, molecular modeling, and astrophysical simulations.




e Data Analysis: Processing large datasets from experiments and observations, such as genomic data in

bioinformatics or particle collision data in physics.

e Artificial Intelligence (AI) and Machine Learning (ML): Applied to identify patterns and make

predictions in various scientific disciplines.
Business Applications
Computers enhance business operations by improving efficiency, accuracy, and decision-making.

e  Office Productivity: Applications like word processors, spreadsheets, and presentation software help

with day-to-day tasks.

o Enterprise Resource Planning (ERP): Integrates various business processes like accounting, HR, and

supply chain management.

e Customer Relationship Management (CRM): Manages interactions with customers, improves

customer service, and drives sales growth.

e Data Analysis and Business Intelligence: Analyzes business data to support strategic decision-making

and identify market trends.
Education
Computers revolutionize education by providing new learning methods, resources, and tools.

e E-Learning Platforms: Online courses, virtual classrooms, and educational software enable remote

learning and self-paced education.

e Multimedia Resources: Interactive videos, animations, and simulations enhance understanding of

complex subjects.

e Research and Collaboration: Access to online journals, libraries, and collaborative tools facilitate

research and group projects.

e Administrative Systems: Manage student information, scheduling, and communication within

educational institutions.
Entertainment

Computers offer a wide range of entertainment options, transforming how people consume media and engage in

leisure activities.

e Gaming: High-performance computers and gaming consoles support advanced video games with

realistic graphics and complex gameplay.

e Streaming Services: Platforms like Netflix, YouTube, and Spotify provide on-demand access to movies,

TV shows, and music.




e Social Media: Websites and applications like Facebook, Instagram, and Twitter connect people and allow

for content sharing and communication.

e Virtual Reality (VR) and Augmented Reality (AR): Offer immersive experiences in gaming,

education, and virtual tours.
Healthcare
Computers improve patient care, streamline operations, and advance medical research.

e Electronic Health Records (EHR): Digitally store patient information, making it easily accessible to

healthcare providers.

e  Medical Imaging: Advanced imaging techniques like MRI, CT scans, and ultrasound rely on computer

processing for accurate results.
e Telemedicine: Enables remote consultations and monitoring, expanding access to healthcare services.

e  Medical Research: Analyzes clinical data, supports drug discovery, and helps in understanding diseases

through computational biology and bioinformatics.

1.3 Computer Generations

The development of computers, which started in the sixteenth century, led to the creation of modern technology.

The computer that we use now has likewise changed rapidly throughout time.

Computers underwent five major stages known as "Generations of Computers" throughout this time. A new
generation of computers has different designs and sizes from their predecessors, but they also have better
processing and capabilities. Phase differentiation is determined by the application of switching circuits. These

generations include:

e The first generation of computers, which ran from 1940 to 1956.

e The Second Computer Generation ran from 1956 to 1963.

e The Third Generation of Computers, produced between 1964 and 1971.
e Systems that have been around since 1971.

e Computers from the fifth generation forward and beyond.
First Generation (1940s-1956s)

Vacuum tubes are a defining characteristic of early computers. Filaments were used as an electronic source in the
delicate glass apparatus known as a vacuum tube. It is possible through the manipulation and amplification of
electronic impulses. These vacuum tubes were used for control, storage, and calculation. J. created the Electronic
Numerical Integrator and Computer (ENIAC), the first electronic computer with a general-purpose programming.

John V. Mauchly attends the University of Pennsylvania, as does Presper Eckert. The ENIAC was a 30-foot-long,




30-ton device that required 150,000 watts of electricity to operate. It also had 10,000 capacitors, 70,000 registers,
and 18,000 vacuum tubes. Air conditioning was necessary for first-generation computers to function properly
since they were too big and unwieldy to install, requiring a huge room. They also used to release a lot of heat.
Programs produced in high-level programming languages must be translated into assembly or machine language
by a compiler. A program that translates assembly language programs into machine language is called an

assembler, also referred to as an assembly language compiler.

Before the ENIAC was finished, Von Neumann created the Electronic Discrete Variable Automatic Computer
(EDVAC), which had the ability to store data and programs. The computer operated significantly more swiftly as
a result of its immediate access to both data and commands. Another benefit of instruction storage was that it
made it possible for computers to reason internally. The 1952 Universal Automatic Computer (UNIVAC), created

by Eckert and Mauchly, was thought to be the world's first extremely lucrative computer.
Example: UNIVAC-1, EDVAC, and ENIAC
Second Generation (1956s-1963s)

The underlying technology of the second generation of computers was magnetic core memory combined with
solid-state components (transistors and diodes). The transistor may open or close an integrated circuit and magnify
signals. It is made of materials known as semiconductors. Transistors are a product of Bell Labs and are utilized
in all digital circuits, particularly those in computers. In the initial generation of computers, transistors replaced
the heavy electric tubes. Vacuum tubes and transistors are similar in that both use solid materials to transfer
electrons instead of a vacuum. Semiconducting material transistors controlled the flow of electricity via the circuit.
Simultaneously, they might make computers faster, more powerful, and smaller. They use less electricity, generate
less heat, and are less expensive than vacuum tubes. Minimal production costs were also maintained.
The second generation of computers saw the development of the central processor unit (CPU), memory,
programming grammar, and input and output devices. Developers were able to define commands in words by
switching from the mysterious binary machine syntax to figurative, or assembly, languages in gadgets of the
second generation. These were the first systems to use magnetic core architecture instead of magnetic drum
technology, and they were also the first to store programs in memory. High-level programming languages like
FORTRAN (1956), ALGOL (1958), and COBOL (1959) were created during the second generation.
PDP-8, IBM 1400 series, IBM 1620, IBM 7090, and CDC 3600 are a few examples.

Third Generation (1964s-1971s)

Third-generation computers were first released in 1964. The efficiency and productivity of computers were
significantly increased by the placement and shrinking of transistors on silicon chips, commonly known as

semiconductors. Integrated Circuits were used by them (ICs).

A turning point in the development of computers and technology was the discovery of integrated circuits. Chips

is the term used to describe these integrated circuits.

Due to its atomic structure, silicon is a great semiconductor element that is utilized as a building block for the
production of semiconductors, computer chips, silicon diodes, and other electrical circuits and switching devices.

It is possible to introduce or mix silicon with other elements—Ilike phosphorous, arsenic, or boron—to alter its




conductive properties. A typical chip, which is smaller than 14 square inches, can have millions of transistors and
other electrical components on it. Printed circuit boards, which are electronic panels, are used in computers to
hold a large number of chips. There are numerous varieties of chips. Microprocessors, or CPU chips, are capable

of processing an entire system, whereas memory chips are limited to storing blank memory.

Many transistors, records, and resistors assembled on a single thin silicon sheet make form an integrated circuit
(IC). Two methods for creating integrated circuits are medium-scale insertion (MSI) and small-scale inclusion
(SSI). The advent of multilayer printed circuitry and the replacement of slower core memory with faster solid-
state memories superseded core memory. Because it can integrate multiple circuits into a single chip, IC

technology was also known as microelectronics technology.

This generation of machines has very fast processing speeds, a big amount of memory, low cost, and small size.
During this time, more sophisticated languages were developed, such as Basic (Beginners All-purpose Symbolic

Instruction Code).

This generation's main advantages included new input/output devices, improved secondary storage devices, and
solid-state circuitry. The speed of the computer increased with the extra circuitry. During this era, minicomputers

were also developed.

A few examples are IBM 360,370, B6500, and NCR 395. These days, arithmetic and logical operations could be

finished in nanoseconds or microseconds.
Fourth Generation (1970s-Present)

In 1971, fourth-generation computers were introduced e@ result of the creation of computing components using
large scale integration (LSI). Microprocessors are silicon devices used to generate LSI circuits. The circuitry
needed to carry out arithmetic, logic, and control functions on a single chip is found in a microprocessor. The
fourth generation of computers can calculate more than equivalent-sized third-generation computers because of
microprocessors. The ability to fit a computer's central processing unit (CPU) on a single semiconductor is made
possible by advancements in microprocessor technology. We refer to these devices as microcomputers. In the past,

VLSI circuits mostly replaced LSI circuits.

In the first generation, something might have required a full room, but it might now fit in your palm. When the
Intel 4004 microprocessor was created in 1971, it included every component of a computer, including the

input/output controllers, storage, and main processing unit.

Microelectronics and other computer technologies, such as multiprocessing, multiprogramming, time-sharing,
quick operation, and cloud storage, were the main innovations of this generation. High-speed vector processors at
this period changed the paradigm for high-performance computing. Most time-shared mainframe systems were
equipped with workstations and microcomputers. Consequently, the computer that was once somewhat large may

now be set up on a table. It is a fourth-generation computer, the personal computer.
Throughout this time, computer networks developed.

Examples are Alter 8800 and Apple II.




Fifth Generation (Present and Beyond)

Artificial intelligence-powered fifth-generation computers are still in the development stages, although they have
already been used for various tasks, like speech recognition. Artificial Intelligence (Al) is a subfield of computer
science that focuses on teaching machines to think and behave like people. Computers are now unable to fully
exhibit artificial intelligence, or to mimic human behavior. The most advancements have been made in the gaming
sector. Right now, the best computer chess programs are able to defeat human players. The fastest-growing area
of computational intelligence is artificial neural networks, which have shown promise in a number of applications

including speech recognition and natural language processing.

Al languages are frequently referred to as programming languages because they are typically utilized for Al
applications. The two most popular ones are LISP and Prolog. The fifth generation of computers is incredibly fast.
Developers turned their primary attention to parallel processing in their research and development of fifth-
generation computers. Up until recently, vector computations and pipeline construction were the only tasks that
could be done in parallel. Machines with hundreds of processors were introduced in this age, enabling them to
work on different portions of a same program. The development of ever-more-powerful computing devices is still
ongoing. This kind of computer is expected to be able to converse with its user in plain language, retain enormous

knowledge bases, search through them rapidly, make deft decisions, and come to logical conclusions.

1.4 Number System

Words and characters make up the language that we speak to one another. Words, letters, and numbers make sense

to us. Computers are not meant to handle this kind of data, though. Only numbers are understood by computers.

Thus, data is turned into electronic pulses when entered. Every pulse is recognized as a code, which ASCII then
converts into a numeric format. It assigns a numerical value (number) that a computer can comprehend to each
number, character, and symbol. Therefore, one needs to be knowledgeable with number systems in order to grasp

the language of computers.
Computers employ one of the following number systems:

e  Binary number system
e  Octal number system
e  Decimal number system

e Hexadecimal number system
1. Binary System (Base 2)

The binary system uses only two digits, 0 and 1, to represent numbers. It is the foundation of all modern computing

systems because computers operate using binary logic.




Its base is two because it only has the numbers "0" and "1." As a result, there are only two kinds of electronic
pulses in this number system: those that indicate "0" and "1," respectively, and those that do not. A bit is a single
digit. A byte (11001010) is a group of eight bits, whereas a nibble is a group of four bits (1101). Each binary

number's place corresponds to a certain power of the number system's base (2).

e Advantages: Direct correspondence with digital logic and electronic devices.

¢ Disadvantages: Lengthy illustration for massive numbers, limited expressiveness for decimal fractions.
2. gal System (Base 8)

The octal system uses eight digits, from 0 to 7, to represent niimbers. It is often used as a shorthand representation

of binary numbers since 8 is a power of 2.

Its base is eight since it consists of eight digits (0, 1, 2, 3, 4, 5, 6, 7). An octal number's digits each correspond to
a certain power of its base %Any octal number may be converted into a binary number using the three bits (23
S

= 8) of the binary number em, since there are only eight digits. Long binary numbers can also be shortened

using this number method. A single octal digit can represent all three binary digits.

e Advantages: Consolidated example of binary values, readability, especially contexts.

e Disadvantages: Less usually used, more intuitive than hexadecimal.
3. Decimal System (Base 10)

This number system's base is ten since it has ten digits: (@, 2,3,4,5,6,7,8,9. The highest value of a digit in
this number system is nine, while the lowest value is zero. Each digit in a decimal number indicates a certain
power of the number system's base (10) at that point. We frequently utilize this number system in our daily lives.

It can be used to represent any number.

e Advantages: Easily understable, modern for vast arithmetic.

¢ Disadvantages: Inadequate for binary data, constrained expressiveness for non-decimal fractions.
4. Hexadecimal System (Base 16)

The hexadecimal system uses sixteen digits, from 0 to 9 and A to F (where A=10, B=11, ..., F=15), to represent

numbers. It is commonly used in computing as a more human-friendly representation of binary-coded values.

There are 16 digits in this numeral system, ranging from 0 to 9 and A to F. Thus, sixteen is its basis. 10 to 15
decimal places are represented by the alphabets A through F. A hexadecimal integer's location corresponds to a
certain power of base (16) in the number system. Aggshexadecimal number may be converted into a binary number
using the four bits (24=16) of the binary number @v‘am, since there are only sixteen digits. Because it employs

both alphabets and numeric digits, it is often referred to as the alphanumeric number system.

e Advantages: Compact representation of binary, widely utilized in programming.

o Disadvantages: Intimidating for beginners, decimal is more user-friendly than hexadecimal.

Importance of Number Systems in Computer Science




In computer technology, it is crucial to comprehend specific range structures for a number of reasons.

Memory Management: Binary systems are used by computers to manage their memory. Being able to
convert between binary, octal, decimal, and hexadecimal allows one to work with memory and storage
in an efficient manner.

Programming: Hexadecimal is frequently used in programming to represent binary-coded numbers and
memory addresses. For bitwise operations, octal and binary representations are essential.

Data Transmission: In computer architecture, binary is crucial for record transmission. Miles are often
converted to binary for processing efficiency when records are saved or sent.

Debugging: Hexadecimal is a low-level programming language that is typically used in debugging.
Hexadecimal format is often used for memory dumps and machine code.

Digital electronics: Since circuits in this field are mostly based on binary signals, it is necessary to
understand binary.

Representation of Colors: Hexadecimal is widely used in graphics and web development to represent
colorations. A set of hexadecimal digits is used to represent each RGB coloration element.

Hashing and Encryption: Binary models are necessary in cybersecurity since many hash tables and

encryption methods process binary data.

1.5 Conversion Techniques

Binary to Octal: Group binary digits in sets of three, starting from the right.
Example: Convert binary 1011 to decimal.
Solution:
1011, =1 x 22 4+0x29 4+ 1 x2 1 x
1 xB4+0x4d4+1x24+1x1
B+0+2+1
11,
Decimal to Binary
Example: Convert decimal 13 to binary.

Solution:

e Divide 13 by 2: quotient = 6, remainder = 1
e Divide 6 by 2: quotient = 3, remainder = 0
e Divide 3 by 2: quotient = 1, remainder = 1

e Divide 1 by 2: quotient = 0, remainder = 1




Read remainders in reverse order: 1101
So, 1310 =(1101)2

Octal to Decimal

Example: Convert octal 21 to decimal.

Solution:

16+ 1

l T (1]
Decimal to Octal
Example: Convert decimal 29 to octal.
Solution:

e Divide 29 by 8: quotient = 3, remainder = 5

e Divide 3 by 8: quotient = 0, remainder = 3
Read remainders in reverse order: 35
So, 2910 = 35
Hexadecimal to Decimal
Example: Convert hexadecimal 1F to decimal.
Solution:
1Fg =1 x 16" + F = 16"
(Mote: F' = 15)
1x164+15x1

16 + 15
3l

Decimal to Hexadecimal
Example: Convert decimal 47 to hexadecimal.

Solution:

e Divide 47 by 16: quotient = 2, remainder = 15 (F in hexadecimal)
e Divide 2 by 16: quotient = 0, remainder = 2




Read remainders in reverse order: 2F

So, 4710=2F1s

Binary to Octal

Example: Convert binary 110110 to octal.
Solution:

o  Group binary digits in sets of three, starting from the right: 110 110

e  Convert each group to its octal equivalent:

o 110, — 6,

o 1105 — Gy

50, 1101104 = Gy

Octal to Binary
Example: Convert octal 73 to binary.
Solution:
e Convert each octal digit to its three-digit binary equivalent:
e T3 =111,
e Jg =011
Combine the binary groups: 111011

S0, Tds = 111011,

Binary to Hexadecimal
Example: Convert binary 101101 to hexadecimal.
Solution:
e  Group binary digits in sets of four, starting from the right: 0010 1101

e  Convert each group to its hexadecimal equivalent:

o 0010, = 2,
o 1101, = Dy

So, 101101, = 2D,




e Hexadecimal to Binary

Example: Convert hexadecimal 3A to binary.
Solution:

1. Convert each hexadecimal digit to its four-digit binary equivalent:

o Jis = 00112

- ."l||'. 1“1“‘:
Combine the binary groups: 00111010

S0, 34,5 = 00111010,

Number System Relationship

The following table depicts t@ relationship between decimal, binary, octal and hexadecimal number systems.

HEXADECIMAL DECIMAL OCTAL BINARY
@ 0 0 0000
1 1 0001
2 2 2 0010
3 3 3 0011
4 4 4 0100
5 5 5 0101
6 6 6 0110
7 7 @ 0111
8 8 1000
9 9 11 1001
A 10 12 1010
B 11 13 1011
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1111
1.6 Character Codes

Character codes are a way to represent characters, such as letters, digits, and symbols, using numerical codes.
These codes are used by computers to store, process, and communicate text data. Each character is assigned a

unique numerical value, known as a code point, which is used to represent that character in computer systems.




Why are Character Codes used?
Character codes are essential in computing because they enable:

1. Text Storage: Computers can store text data efficiently using numerical codes, which take up less space

than the actual characters.

2. Text Processing: Character codes allow computers to perform operations on text data, such as sorting,

searching, and manipulating text.

3. Communication: Character codes enable different computer systems to communicate with each other,

by providing a standard way to represent text data.

4. Encoding: Character codes are used to encode text data into a format that can be transmitted over

networks, stored on devices, and displayed on screens.

5. Decoding: Character codes are used to decode encoded text data back into its original form, allowing

computers to interpret and display text correctly.
There are some character code given below:
BCD (Binary-Coded Decimal)

BCD is a way to represent decimal numbers using binary code. It uses 4 bits to represent each decimal digit, with

each bit corresponding to a decimal value.

Representation:
Decimal Digit BCD Representation

@ 0000

0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Example: The decimal number 123 would be represented in BCD as:
0001 0010 0011

Usage: BCD is commonly used in financial and commercial applications, such as accounting and inventory

management.

Limitations: BCD is less efficient than binary representation, as it requires more bits to represent the same

number.




ASCII (American Standard Code for Information Interchange)

ASCII is a character encoding standard that represents text data using binary code. It assigns a unique binary code

to each character, including letters, digits, and special characters.

ASCII Table:
Character ASCII Code

A 65

B 66

[@ 67

a 97

98

99

0 48

1 49

2 50

! 33

@ 64

# 35

Significance: ASCII is widely used in computers and devices to represent text data. It is the basis for many other

character encoding standards.
Example: The string "Hello" would be represented in ASCII as:

H-72
e-101
1-108
1-108
o-111

EBCDIC (Extended Binary Coded Decimal Interchange Code)

EBCDIC is a character encoding standard developed by IBM for their mainframe computers. It is an extension of

the BCD code, with additional characters and symbols.

Representation: EBCDIC uses 8 bits to represent each character, with the first 4 bits representing the zone

(category) and the last 4 bits representing the digit or character.
Comparison with ASCII:
o EBCDIC is specific to IBM mainframes, while ASCII is widely used across different platforms.

e EBCDIC has a larger character set than ASCII, including additional symbols and graphics.




e EBCDIC is less efficient than ASCII, requiring more bits to represent the same character.
Example: The string "Hello" would be represented in EBCDIC as:

H - 200
e-109
1-121
1-121
o-147

1.7 Conclusion

As we conclude this unit, we reflect on the significant journey we've undertaken to explore the fundamental
concepts of computers. From the basic components that make up a computer system to the various applications
that have transformed the way we live, work, and communicate, we've gained a deeper understanding of the

technology that drives our modern world.

We've traced the evolution of computers through the generations, from the early mainframes to the sleek, portable
devices of today, and examined the number systems and character codes that enable computers to process and
store information. We've seen how computers have revolutionized industries, transformed businesses, and

connected people across the globe.

Through this unit, we've developed a solid foundation in computer fundamentals, which will serve as a
springboard for further learning and exploration in the field of computer science. We've acquired a vocabulary of
key terms and concepts, a understanding of the underlying principles, and a appreciation for the impact of

computers on our daily lives.

As we move forward in this rapidly changing digital landscape, we're equipped with the knowledge and skills to
navigate the exciting world of computers and technology. We're prepared to embrace new technologies, to
innovate, and to shape the future of computing. The journey ahead promises to be thrilling, and we're ready to

take on the challenges and opportunities that come our way.

1.8 Unit Based Questions & Answers

1. What is the basic component of a computer system that performs calculations and executes instructions?

Answer: The Central Processing Unit (CPU) is the brain of the computer and performs calculations, executes
instructions, and controls the other components. It takes in instructions, decodes them, and carries out the

necessary actions.




2. Which generation of computers introduced the use of transistors?

Answer: The second generation of computers (1956-1963) introduced the use of transistors, which replaced
vacuum tubes. Transistors were smaller, faster, and more reliable, leading to significant improvements in computer

performance.
3. What is the binary number system based on?

Answer: The binary number system is based on two digits: 0 and 1. This system uses bits (binary digits) to
represent information, with each bit having a value of either 0 or 1. Binary is the fundamental language of

computers.
4. What is the purpose of character codes in computing?

Answer: Character codes are used to represent characters, such as letters, symbols, and digits, using numerical

codes. This allows computers to store, process, and communicate text data efficiently.
5. What is the most common character code used in computing?

Answer: ASCII (American Standard Code for Information Interchange) is the most widely used cha@er code in

computing. It assigns a unique numerical value to each character, making it possible for computers t& understand

and exchange text data.
6. What is the process of converting data from one number system to another called?

Answer: The process of converting data from one number system to another is called data conversion or numerical
conversion. This is necessary when working with different computer systems or programming languages that use

different number systems.
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2.0 Introduction

In digital electronics and computer engineering, understanding

algebra, and combinational circuits is essential. These concepts

mlmental concepts such as logic gates, Boolean

the backbone of modern computing systems,

enabling the design and implementation of complex circuits that perform various tasks efficiently and reliably.




This unit delves into several key components and techniques within digital electronics. Starting with an
exploration of logic gates, which are the basic building blocks of digital circuits, we move on to Boolean algebra—
a mathematical framework used to analyze and design these circuits. The unit further covers Karnaugh map (K-

map) simplification techniques, which offer systematic methods for minimizing Boolean expressions.

Combinational circuits like half adders and full adders are introduced, illustrating how simple logic elements can
perform arithmetic operations crucial for computing. Multiplexers and demultiplexers are then explored,
demonstrating their roles in data selection and distribution within digital systems. Decoders and encoders are

discussed next, highlighting their applications in tasks such as memory addressing and data conversion.

Through a structured approach, this unit aims to provide a comprehensive understanding of these foundational
concepts and their practical applications in digital electronics. Unit-based questions and answers are included to

reinforce learning and assessment, ensuring a thorough grasp of the material covered.

2.1 Objectives

After completing this unit, students will able to understand,

e Understand Logic Gates: Explore the fundamental types (@)gic gates (AND, OR, NOT, NAND, NOR,
XOR, XNOR) and their truth tables.

e Apply Boolean Algebra: Apply Boolean laws and theorems (commutative, associative, distributive, De

Morgan's) to simplify Boolean expressions.

e Master K-map Simplification: Learn the concept of Karnaugh maps (K-maps) and their importance in

simplifying Boolean expressions.

e Study Half Adder and Full Adder: Understand the structure and operation of half adders and full

adders.

e Explore Multiplexers (MUX) and Demultiplexers (DEMUX): Define the function and operation of

multiplexers in selecting one of several input signals based on a control signal.

2.2 @gic Gates

Logic gates are the building blocks of digital electronics and computer systems. They are electronic circuits that
perform logica@;rations on one or more input signals to produce an output signal. There are seven basic types

of logic gates: , OR, NOT, NAND, NOR, XOR, and XNOR.

1. AND Gate




The AND gate produces an output of 1 only if all the input signals are 1.

A Dl
Q
B Qe
Truth Table:
A B Output
0 0 0
0 1 0
1 0 0
1 1 1
2. OR Gate
@ OR gate produces an output of 1 if any of the input signals are 1.
A
out
B
Truth Table:
A B Output
0 0 0
0 1 1
1 0 1
1 1 1




3. NOT Gate (Inverter)

The NOT gate produces an output that is the opposite of the input signal.

A out

Truth Table:
A Output
0 1
1 0

4. NAND Gate

The NAND gate produces an output of 1 only if none of the input signals are 1.

A
Y
B
Truth Table:
A B Output
0 0 1
0 1 1
1 0 1
1 1 0
5. NOR Gate

The NOR gate produces an output of 1 if all the input signals are 0.




B
Truth Table:
A B Output
0 0 1
0 1 0
1 0 0
1 1 0
6. XOR Gate

The XOR gate produces an output of 1 if the input signals are different.

g out
Truth Table:
A B Output
0 0 0
0 1 1
1 0 1
1 1 0




7. XNOR Gate

The XNOR gate produces an output of 1 if the input signals are the same.

g out
Truth Table:
A B Output
0 0 1
0 1 0
1 0 0
1 1 1

Gate-Level Minimization

Gate-Level Minimization (GLM) is a technique used to simplify digital circuits by @wing the number of logic
gates required to implement a particular function. The goal is to minimize the complexity of the circuit while

maintaining its functionality.
GLM involves:

1. Simplifying Boolean expressions: Using laws and theorems of Boolean algebra to simplify the Boolean

expression representing the digital circuit.
2. Removing redundant gates: Identifying and removing gates that don't affect the output of the circuit.
3. Combining gates: Merging multiple gates into a single gate or a smaller number of gates.

4. Optimizing gate configuration: Reconfiguring the gates to reduce the overall number of gates and

improve performance.
Some common techniques used in GLM include:

1. Karnaugh Maps (K-maps): A graphical method for simplifying Boolean expressions and identifying

prime implicants.
2. Quine-McCluskey Algorithm: A tabular method for minimizing Boolean expressions.

3. Espresso Algorithm: A computer-aided design (CAD) tool for minimizing digital circuits.




GLM is important because it:

1. Reduces circuit complexity: Fewer gates mean less power consumption, reduced area, and increased

performance.
2. Improves reliability: Less complex circuits are less prone to errors and faults.

3. Reduces cost: Fewer gates and reduced complexity lead to lower manufacturing costs.

Gate-level minimization is the process of simplifying a digital circuit to reduce the number of gates and improve

performance. This can be done using various techniques such as:
e Karnaugh maps (K-maps)
¢ Quine-McCluskey algorithm
e  Espresso algorithm

These techniques help to minimize the number of gates required to implement a digital circuit, reducing the overall

cost and improving performance.

2.3 Boolean Algebra

Boolean algebra is a branch of mathematics that deals with logical operations and their representations. It is named
after George Boole, who introduced this concept in the mid-19th century. Boolean algebra is used to analyze and
simplify digital circuits, computer networks, and logical statements. It consists of logical operators, variables, and

constants that follow specific rules and laws.
Boolean Laws and Theorems

Boolean laws and theorems are fundamental properties that govern Boolean algebra. These laws and theorems

help in simplifying and manipulating Boolean expressions. Here are some of the key Boolean laws and theorems:
Here are all the Boolean laws:
1. Commutative Laws
e OR:A+B=B+A
e AND:AB=BA
2. Associative Laws
e OR:(A+B)+C=A+B+C)

e AND: (AB)C=A(BC)




3. Distributive Laws
e OR:AB+C)=AB+AC
e AND:A+BC=(A+B)(A+C)
4. Identity Laws
e OR:A+0=A
e AND:Al=A
e OR:A+I1=1
e AND:A0O=0
5. Complement Laws
o A=A
o A=A
6. Involution Law
e (A)=A
7. De Morgan's Laws
e !(A+B)=!AIB
e I(AB)=!A+!B
8. Absorption Laws
e AA+B)=A
e A+AB=A
9. Simplification Laws
e A+!A=1
e AlA=0
10. Consensus Laws
e AB+!AC=AB+C
e A+BC=A+!AB+C
11. Boolean Algebra Theorems

e (A+B)A'+B)=AA+BB




e (A+B)A+B)=A
Boolean Expressions and Equation Simplification

Boolean expressions are formed using logical operators, variables, and constants. Simplifying Boolean

expressions involves applying Boolean laws and theorems to reduce the complexity of the expression.

e Simplification: Simplifying a Boolean expression means reducing it to its simplest form without

changing its original meaning.

e Equation: A Boolean equation is a statement that two Boolean expressions are equal.
Simplification techniques include:

e Removing redundant parentheses

e Applying De Morgan's theorem

e Using distributive law

e  Combining like terms
Example for the simplification:

Simplifying Boolean expressions and equations involves applying Boolean laws and theorems to reduce the

complexity of the expression. Here are some examples:
Example 1: Simplifying a Boolean Expression
Expression: (A + B) (A + C)
Step 1: Apply the distributive law
(A+B)(A+C)=A(A+C)+B(A+C)
Step 2: Simplify
A(A+C)+B(A+C)=A"2+AC+AB+BC
Step 3: Remove redundant terms (A2 = A)
A"2+AC+AB+BC=A+AC+AB+BC
Simplified Expression: A + AC + AB +BC
Example 2: Simplifying a Boolean Equation
Equation: AB+AC=A(B+C)
Step 1: Apply the distributive law

A(B+C)=AB+AC




Step 2: Equate the two expressions
AB+AC=AB+AC
Simplified Equation: True (the equation is always true)
Example 3: Simplifying a Boolean Expression with De Morgan's Theorem
Expression: !(A + B)
Step 1: Apply De Morgan's theorem
I(A+B)=1AIB
Simplified Expression: !A!B
Example 4: Simplifying a Boolean Equation with Redundant Parentheses
Equation: (A+B)+C=A+ (B +C)
Step 1: Remove redundant parentheses
(A+B)+C=A+B+C
Step 2: Equate the two expressions
A+B+C=A+B+C
Simplified Equation: True (the equation is always true)

These examples demonstrate how to simplify Boolean expressions and equations using Boolean laws and
theorems. By applying these techniques, we can reduce the complexity of Boolean expressions and equations,

making them easier to analyze and understand.

2.4 K-map Simplification

Boolean expressions can be systematically made simpler with the K-map. The minimal expression, which is the
simplest POS and SOP expression, can be found with the aid of the K-map approach. A simplified cookbook is
offered by the K-map.

A K-map, like a truth table, lists every possible combination of input variable values and matching output values.
In K-map, on the other hand, the values are kept in the array's cells. Every input variable has a binary value that

is kept in each cell.

When creating expressions with 2, 3, 4, and 5 variables, the K-map approach is employed. The Quine-McClusky
approach is another technique for simplification that is utilized for bigger numbers of variables. The total number

of variable input combinations is comparable to the number of cells in a K-map. For instance, if there are three




variables, there are 23=8 cells, and if there are four variables, there are 24 cells. K-map accepts both the POS and
SOP versions. The Os and 1s are used to fill the K-map grid. Creating groups is the solution to the K-map. The

expressions are solved using K-map in the following steps:

e Initially, we determine the K-map based on the quantity of variables.

e  Determine the expression's maxterm and minterm.

e Put 1 in each of the K-map's SOP cells corresponding to the minterms.

e Put 0 in the block's POS cells corresponding to the maxterm.

e Next, we aim to cover as many elements as we can in a single group by forming rectangular groups with
total terms in the power of two, such as 2, 4, §,...

e We locate the product words and compile them into the SOP form with the aid of these groupings.
2.4.1 2-Variable K-map

There is a total of 4 variables in a 2-variable K-map. There are two variables in the 2-variable K-map. The

following figure shows the structure of the 2-variable K-map:

e There is only one way to arrange four neighboring minterms in the above image.

e Grouping two adjacent minterms can take the following forms: {(m0, m1), (m2, m3), (m0, m2), and (ml,
m3)}.

2.4.2 3-variable K-map

An array with eight cells represents the three-variable K-map. In this instance, the variables were A, B, and C.
Any letter can be used to represent a variable in its name. Variaples A and B's binary values are on the left, whereas
variable C's values are across the top. The binary values o;@nd B at the left side of the same row paired with
the value of C at the top of the same column make up the value of the given cell. For instance, the binary values

of the cells in the bottom right corner and upper left corners, respectively, are 101 and 000, respectively.




2.4.3 The 4-Variable Karnaugh Map

An array of 16 cells represents the 4-variable K-map. The binary values of C and D are across the top, and A and
B are down the left. The binary values of A and B at the left side of the same row paired with the binary values of
C and D at the top of the same column represent the value of the given cell. For instance, the binary values of the

cells in the lower right corner (1010) and upper right corner (0010) are respectively.

Simplification of Boolean expressions using Karnaugh Map

K-map accepts both SOP and POS versions, as is well known. Thus, the minterm and maxterm solutions are the
two potential solutions for the K-map. Now let's get started by learning how to determine the K-map's minterm

and maxterm solutions.

Karnaugh Maps (K-maps) provide a visual method for simplifying Boolean expressions. They help identify

patterns and groups of 1s or Os in the truth table, making it easier to minimize the expression.

Steps to Simplify Boolean Expressions Using K-maps




1. Create the K-map: Draw a grid for the K-map corresponding to the number of variables in the

expression.
2. Fill the K-map: Place the 1s and Os in the K-map according to the truth table.

3.  Group the 1s (for SOP) or 0s (for POS): Form groups of 1, 2, 4, 8, etc. Each group should be as large

as possible.

4.  Write the simplified expression: Write the Boolean expression for each group and combine them using

OR (for SOP) or AND (for POS).

Example: 3-Variable K-map Simplification

Truth Table
A B C ¥
0 0 1
1 0 1
0 1 0

Step 1: Create the K-map

For 3 variables (A, B, C), the K-map is a 2x4 grid:

Step 2: Fill the K-map

Step 3: Group the 1s

Group the adjacent 1s in rectangles. Remember, groups must be powers of two (1, 2, 4, 8, etc.) and can wrap

around edges.




We can form the following groups:
e Group 1: (0,1), (1,1), (1,0), (0,0)
e  Group 2: (1,1), (1,0)

Step 4: Write the simplified expression

For Group 1:
e  Variable B changes (0,1,0), so B is eliminated.
e  Expression for Group 1: A

For Group 2:
e Variable A changes (0,1), so A is eliminated.
e  Expression for Group 2: B.C

Final simplified expression:

Y=A+B.C
2.4.4 Don't Care Conditions

In some Boolean functions, certain input combinations never occur or the output doesn't matter. These are known
as "don't care" conditions, represented by an 'X' in the truth table. Don't care conditions can be used in Karnaugh

Maps (K-maps) to simplify expressions further by allowing flexibility in grouping Is.
Example: Simplifying with Don't Care Conditions

Truth Table




Step 1: Create the K-map

For 3 variables (A, B, C), the K-map is a 2x4 grid:

Step 2: Fill the K-map

Step 3: Group the 1s and Xs

We can form groups using 1s and Xs to simplify the expression. Xs can be treated as either 0 or 1 to form the

largest groups.

e Group 1:(0,0), (0,1), (1,0), (1,1)
e Group 2: (1,0), (1,1)

Step 4: Write the simplified expression




For Group 1:

e Variable C changes (0,1), so C is eliminated.
e Expression for Group 1: A

For Group 2:
e Variable A changes (0,1), so A is eliminated.
e  Expression for Group 2: B.C

Final simplified expression:

Essential Prime Implicants

Essential prime implicants are the groups in a K-map that cover at least one 'l' that no other group covers. These

are necessary for the simplified expression.

Example: Finding Essential Prime Implicants

Truth Table
A B = Y
0 0 0 1
0 0 1
0 1 0
0 1 1 I
0 0 0
0 1 0

Step 1: Create the K-map

For 3 variables (A, B, C), the K-map is a 2x4 grid:

Step 2: Fill the K-map




Step 3: Group the 1s

We can form the following groups:

Step 4: Identify Essential Prime Implicants
e Group 1: (0,0), (0,1) > A.B
e Group2:(0,0),(1,1) > C
e  Group 3:(0,0), (0,1), (0,10) » B. A

Here, Group 1 and Group 2 are essential prime implicants because they cover unique 1s that no other group
covers.

Final Simplified Expression:
Combining the essential prime implicants, the final simplified expression is:
Y=AB+ C+B.A

2.5 Half Adder

A fundamental building component for adding two numbers as inputs and producing two outputs is the half-adder.
The OR operation of two single-bit binary values is carried out by the adder. The half adder has two output states,

"carry" and "sum," and two input states, the augent and addent bits.

Block Diagram:
A " ———*Sum
Half Adder
B - t—————Carry

Truth table:




Inputs Outputs
A B Sum | Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

In the table above,

e The input states are "A" and "B," while the output states are "sum" and "carry."
e When none of the inputs is 1, the carry output is 0.
e  The'sum' bit defines the least important part of the sum.

e  The sum and carry have the following SOP form:
Sum =x"y + xy'
Carry = xy
Design of Half Adder Circuit:

As can be seen, the block diagram has two inputs and two outputs. The half adder's input states are represented
%ﬁle augent and addent bits, while its output states are carry and sum. The two logic gates listed below are used
il the design of the half adder:

e 2-gate AND input.
e 2-input Exclusive-OR Gate or Ex-OR Gate 2.

The Half Adder is designed by combining the 'XOR' and 'AND' gates and provide the sum and carry.

A Yrﬁhh\\ o SUM

Be ouT

® COUT

Half-Adder Circuit

There is the following Boolean expression of Half Adder circuit:




e Sum=A XOR B (A+B)
e Carry=AAND B (A.B)

Half Adder Applications

Half adders are fundamental components in various digital systems and arithmetic circuits. Here are some key

applications:
1. Binary Addition: Half adders are used to perform basic binary addition of single-bit numbers.

2. Building Full Adders: Multiple half adders can be combined to create full adders, which can add multi-

bit binary numbers.

3. Arithmetic Logic Units (ALUs): ALUs in processors use half adders and full adders to perform

arithmetic operations.

4. Digital Counters: Half adders are used in the design of digital counters and registers.

2.6 Full Adder

Only two numbers can be added using the half adder. In order to solve this issue, the full adder was created. The
three 1-bit binary values A, B, and carry C are added using the whole adder. There are two output stages—sum

and carry—and three input states in the entire adder.

Block diagram:

Sum

Full Adder

Carry

cin

Truth Table




Inputs Outputs
A B Cin Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 b | 1 1 1
In the above truth table,

e These are the input variables: "A" and "B." These variables stand for the two important bits that will be
added.

e The third input, "Cin," stands for the carry. The carry bit is obtained from the preceding lower significant
place.

e The output variables that define the output values are 'Sum' and 'Carry'.

e  All conceivable combinations of 0 and 1 that can occur in these variables are indicated by the eight rows

under the input variable.

Design of Full Adder:
QuTPUT
o E— : [——»sum
INPUT Half-Adder Half-Adder
Circuit A CircuitB | ¢
B— c in—» —
OR Gate afry
Cour

-

The building of the whole adder circuit is shown in the block diagram above. The OR gate is used to merge the
two half-adder circuits in the circuit above. A and B are the two single-bit binary inputs of the first half adder. As
is well known, the half adder generates the outputs sum and carry. In the second half adder, the 'Carry' output of
the first adder will be the second input, and the 'Sum' output of the first adder will be the first input. 'Sum' and
'Carry' will once more be provided by the second half adder. The 'Sum' bit is the result of the complete adder
circuit. We feed the "Carry" outputs from the first and second adders into the OR gate in order to determine the

final output of the "Carry." The final execution of the entire adder circuit will result from the OR gate.

e The last 'Carry' bit is to represent the MSB.
e The'AND' and 'XOR' gates combined with an OR gate can be used to build the entire adder logic circuit.
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Full-Adder Circuit

The diagram above depicts the entire adder's actual logic circuit. A Boolean statement can also be used to express

the complete adder circuit architecture.

Sum:

Perform the XOR operation of input A and B.
Perform the XOR operation of the outcome with carry. So, the sum is (A XOR B) XOR Cin which is also
represented as: (A @ B) @ Cin

Perform the '"AND' operation of input A and B.
Perform the 'XOR' operation of input A and B.

Perform the 'OR' operations of both the outputs that come from the previous two steps. So the 'Carry' can
be represented as: A.B + (A @ B)

Full Adder Applications

Full adders are crucial components in various digital systems and arithmetic circuits. Here are some key

applications:

1.

Multi-bit Binary Addition: Full adders can be connected in series to add multi-bit binary numbers.
Arithmetic Logic Units (ALUs): ALUs in processors use full adders to perform arithmetic operations.
Digital Counters: @ adders are used in the design of digital counters and registers.

Binary Multipliers: Full adders are used in binary multipliers for performing addition of partial

products.

Subtraction Circuits: Full adders can be modified to perform binary subtraction.

2.7 Multiplexer




A combinational circuit with twon input lines and one output line is called a multiplexer. A combinational circuit
with numerous inputs and one output is what a multiplexer is, put simply. The input lines provide the binary data,
which is then sent to the output line. One of these data inputs will be connected to the output based on the values

of the selection lines.

There are n selection lines and 2n input lines, as opposed to an encoder and a decoder. Thus, there are 2N potential

combinations of inputs in total. Another term for a multiplexer is Mux.
The multiplexer comes in different varieties, which include the following:
2x1 Multiplexer:

There are just two inputs (A0 and A1), one selection line (S0), and one output (Y) in a 2x1 multiplexer. One of
these two inputs will be connected to the output based on the combination of inputs that are present at selection

line SO. Below are the 2x1 multiplexer's block diagram and truth table.

Block diagram:
Enable
(E)
A
2x1
p 3 Output
Multiplexer wﬁ
Apg———
Select (S)
Truth Table:
INPUTS Output
So ¥
0 Ag
1 Ay

The logical expression of the term Y is as follows:
Y =So'. Ao+ So. A1

Logical circuit of the above expression is given below:
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MUX Applications
Multiplexers have various applications in digital systems, including:
1. Data Routing:

o Multiplexers are used to select one of several data sources and route it to a single output line.

This is common in communication systems and digital signal processing.
2. Memory Addressing:

o Inmemory systems, multiplexers are used to select specific memory locations based on address

lines, allowing data read and write operations.
3. Control Signal Selection:

o Multiplexers can be used to select control signals in microprocessor design, enabling different

operations based on the instruction set.
4. Analog-to-Digital Conversion:

o Multiplexers are used in analog-to-digital converters (ADCs) to select different analog input

signals for conversion to digital form.
5. Data Compression:

o Indata compression techniques, multiplexers can be used to combine multiple data streams into

a single stream, reducing bandwidth requirements.

2.8 Demultiplexer




One input line and two or more output lines make up a combinational circuit known as a demultiplexer. A single-
input, multi-output combinational circuit is all that the multiplexer is. The single input lines provide the
information, which is then sent to the output line. One of these outputs will be connected to the input based on the

values of the selection lines. The de-multiplexer is the other multiplexer.

There are two n outputs and n selection lines, in contrast to an encoder and a decoder. Thus, the available

combinations of inputs are 2n in total. De-multiplexer is handled similarly to De-mux.
The following are some of the different types of demultiplexers:
1x2 De-multiplexer:

There are just two outputs (YO and Y1), one selection line (SO), and one input (A) in the 1 to 2 De-multiplexer.
The input will be connected to one of the outputs based on the selected value. Below are the 1x2 multiplexer's

block diagram and truth table.

Block Diagram:
E
r
Output
 —
Input 1‘2
e
A De-Multiplexer
— Y,
Select 5
Truth Table:
INPUTS Output
So Y1 Yo
0 0 A
1 A

The logical expression of the term Y is as follows:




Yo=So'"A
Y 1=So.A

Logical circuit of the above expressions is given below:

4 (]

DEMUX Applications
Demultiplexers have various applications in digital systems, including:
1. Data Routing:

o Demultiplexers are used to take a single input and distribute it to multiple output lines based on
control signals. This is essential for data distribution in communication systems and digital

signal processing.
2. Memory Decoding:

o Inmemory systems, demultiplexers are used to decode memory address lines and select specific

memory locations for read or write operations.
3. Display Drivers:

o Demultiplexers can be used in display systems to select individual segments or rows in a multi-

segment display.
4. Analog Multiplexing:

o In analog systems, demultiplexers are used to select different analog signals for processing or

routing.




2.9 Decoder

Decoders are combinational circuits that convert binary data into two or more output lines. N input lines are used
to transmit the binary data. The binary informatio@?‘-bit coding is defined by the output lines. To put it simply,
the Decoder reverses the actions of the Encoder. simplicity, only one input line is active at a time. The binary

data is equivalent to the generated 2N-bit output code.

There are various types of decoders which are as follows:
2 to 4-line decoder:

There are three inputs (A0, A1, and E) and four outputs (Y0, Y1, Y2, and Y3) in the 2 to 4 line decoder. When the
enable 'E' is set to 1, one of these four outputs will be 1 for each combination of inputs. Below are the 2 to 4 line

decoder's block diagram and truth table.

Block Diagram:

Truth Table:




Enable INPUTS OUTPUTS
E Ay Ag Yi AF! Y1 Yo
X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

The logical expression of the term Y0, YO0, Y2, and Y3 is as follows:

Y3=EA1Aq

Y,=EA1.Ap’
Y,=EA7'Ag
YO=E.A' Ag'

Logical circuit of the above expressions is given below:

Ao
A

Decoder Applications




Decoders have numerous applications in digital systems, some of which include:
1. Memory Address Decoding:

o Decoders are used to select specific memory locations based on the address lines. This is crucial

in memory management and access.

o Example: In a 16x4 memory chip, a 4-to-16 decoder can select one of the 16 memory locations

based on the 4-bit address input.

2. Demultiplexing: Decoders are used to route a single input signal to one of many output lines, functioning

as a demultiplexer.

3. Instruction Decoding: In microprocessors, decoders are used to decode instruction codes into control

signals, enabling specific operations based on the instruction set.

4. Digital Display Systems: Decoders are used in digital displays to convert binary input codes to

corresponding display outputs, such as in seven-segment displays.

5. Data Routing: In communication systems, decoders help route data signals to the correct destination

based on encoded address information.

2.10 Encoders

@oders are combinational circuits that convert binary information into N output lines. 2N input lines are used to
transmit the binary data. The binary informat@s N-bit coding is defined in the output lines. To put it simply, the
Encoder reverses the actions of the Decoder. simplicity, only one input line is active at a time. The binary data

is equivalent to the generated N-bit output code.

2"Input Lines

N Output Lines

Encoder

1

]

There are various types of encoders which are as follows:

4 to 2-line Encoder:




An encoder with a 4 to 2 line has two outputs (A0 and A1) and four inputs (Y0, Y1, Y2, and Y3). To obtain the
corresponding binary code on the output side, one input line at a time in four input lines is set to true. The 4 to 2

line encoder's truth table and block schematic are shown below.

Block Diagram:
Truth Table:
INPUTS OUTPUTS

Ys Y: Y1 Yo Ay Ao
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 1 1

The logical expression of the term A0 and Al is as follows:

A1=YstY2
Ao=Y3tY

Logical circuit of the above expressions is given below:

¥3—

Y1

Encoder Applications




Encoders have numerous applications in digital systems, some of which include:

1. Data Compression: Encoders can be used to compress data by reducing the number of bits required to

represent information. This is useful in digital communication and storage.

2. Keyboard Encoding: Keyboards use encoders to convert key presses into binary codes that represent

each key. These binary codes are then processed by the computer to determine which key was pressed.

3.  Multiplexing: Encoders can be used in multiplexing systems to encode multiple input signals into a

smaller number of output lines, enabling efficient data transmission.

4. Priority Encoders: Priority encoders assign priority to inputs, encoding the highest-priority input that

is active. These are used in interrupt systems to handle multiple interrupt signals.

2.11 Conclusion

In this unit on digital electronics, we have explored foundational concepts that are crucial for understanding and
designing digital circuits. We began by examining logic gates, which form the basic building blocks of digital
systems. Understanding their operations and truth tables provided insights into how logical decisions are made

within electronic circuits.

Moving forward, we delved into Boolean algebra, which serves as a formal method for simplifying and analyzing
Boolean expressions. By applying Boolean laws and theorems such as De Morgan's and the distributive law, we

learned systematic approaches to optimize circuit designs, ensuring efficient use of resources.

A significant portion of our study focused on combinational circuits, including half adders and full adders, which
are essential for performing basic arithmetic operations in digital computing. These circuits not only showcased
the application of logic gates and Boolean algebra but also illustrated how complex tasks can be broken down into

simpler components within digital systems.

Lastly, we explored multiplexers, demultiplexers, decoders, and encoders—devices that enable data selection,
distribution, and conversion in digital systems. Understanding their functionalities and applications highlighted

their role in enhancing the efficiency and versatility of modern electronic devices.

By mastering these concepts and tools, learners are equipped to analyze, design, and optimize digital circuits
effectively. This unit has laid a solid foundation for further exploration in digital electronics, providing practical

skills that are essential for both academic study and professional practice in the field.

2.12 Unit Based Questions & Answers

1. Explain the function of an XOR gate and provide its truth table.




Answer: An XOR gate outputs true (1) when the number of true inputs differs (exactly one is true), and outputs

false (0) when both inputs are the same (both true or both false). The truth table is:

2. Simplify the Boolean expression: A'B + AB’ + AB.

Answer: Apply Boolean algebra laws step-by-step:

A'B+ AB'+ AB = A'B + AB' + AB (original expression}
= A'B + AB' + AB(1) (identity: AR — AB(1))
- A'B + AB' + AB(1 + B) (Distributive law)

A'B+ AB' + AB (Absorption: AB(1 + B) — ABR)
= A'B + AB' (Idempotent law: AB + AB' = A(B + B') = A)
— B(4' + A) (Distributive law)

B1 (Complement law: A" + 4 — 1)

B (Identity law: B1 — B)

3. Explain the function of a half adder and provide its truth table.

Answer: A half adder adds two single-bit binary numbers (A and B) and produces a sum (S) and carry-out (C).
Truth table:

4. What are logic gates? Explain the function of each of the following gates: AND, OR, NOT, NAND, NOR,
XOR, and XNOR.

Answer: Logic gates are fundamental building blocks of digital circuits that perform Boolean operations on one

or more binary inputs to produce a single binary output. Here are the functions of each gate:
e AND Gate: Outputs true (1) only if all inputs are true.
e  OR Gate: Outputs true (1) if at least one input is true.
e NOT Gate: Inverts the input; outputs true (1) if the input is false (0), and vice versa.

e NAND Gate: Inverts the output of an AND gate; outputs false (0) only if all inputs are true.
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NOR Gate: Inverts the output of an OR gate; outputs true (1) only if all inputs are false.

XOR Gate: Outputs true (1) if exactly one input is true.

XNOR Gate: Outputs true (1) if all inputs are the same (either all true or all false).

5. Define Boolean algebra. How is Boolean algebra used in digital circuit design? Provide examples of Boolean
expressions and their simplification using Boolean laws.

Answer: Boolean algebra is a mathematical system used to analyze and simplify Boolean expressions. It consists
of basic operations (AND, OR, NOT) and laws (commutative, associative, distributive, De Morgan's) that govern
these operations. In digital circuit design, Boolean algebra helps in optimizing circuits by reducing the number of

gates and improving efficiency. Example:
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3.0 Introduction

Digital electronics form the backbone of modern technology, enabling the creation and operation of computers,
communication systems, and a myriad of electronic devices. Central to these systems are logic circuits, which
process binary information using various components such as combinational logic circuits, flip-flops, registers,
and counters. Understanding these components and their design principles is crucial for anyone involved in the

design and implementation of digital systems.

This unit delves into the core elements of digital electronics, starting with combinational logic circuit design,
which involves creating circuits that generate outputs based solely on current inputs. We then explore flip-flops,
which are essential for storing binary data and forming the building blocks of sequential circuits. The discussion

extends to registers, which store multiple bits of data and facilitate data manipulation and transfer within digital




systems. Finally, we examine counters, which play a critical role in timing, sequencing, and frequency division in

digital circuits.

By the end of this unit, you will have a comprehensive understanding of these fundamental components, their

operations, and their applications in various digital systems. This knowledge will equip you with the skills

necessary to design and analyze complex digital circuits effectively.

3.1 Objectives

Understand (@mbinational Logic Circuit Design: Comprehend the principles of combinational logic
circuits and their design methodologies.

Master Flip-Flops: Explain the operation and characteristics of various types of flip-flops, including
SR, JK, D, and T flip-flops.

Gain Proficiency in Registers: Understand the applications of registers in data storage and
manipulation, including SISO, SIPO, PISO, and PIPO configurations.

Understand and Design Counters: Understand the concept of modulo-N counting and create state
diagrams for counters.

Apply Knowledge in Practical Applications: Identify the applications of combinational circuits, flip-

flops, registers, and counters in real-world digital systems.

3.2 Combinational Logic Circuit Design

A combinational circuit in digital electronics is a type of logic circuit where the output at any instant of time is

determined solely by the present combination of input signals. In other words, the output depends only on the

current state of its inputs, with no memory or feedback involved. Combinational circuits are fundamental building

blocks used extensively in digital systems for various tasks such as data processing, arithmetic operations, and

logical decisions.

Characteristics of Combinational Circuits:

1.

No Feedback: Combinational circuits do not have any form of feedback; hence, their outputs depend

strictly on the current input values.

Deterministic Output: For a given set of input values, a combinational circuit will always produce the

same output values. There are no timing dependencies or sequential states affecting the output.

Logic Gates and Boolean Algebra: Combinational circuits are constructed using basic logic gates
(AND, OR, NOT, etc.) and are governed by principles of Boolean algebra. Boolean expressions are used

to describe and simplify the logic implemented by these circuits.




Examples of Combinational Circuits:
1. Multiplexer (MUX):

o A multiplexer selects one of several input lines and forwards it to a single output line based on
a control signal. It is designed using logic gates to enable data routing in digital systems. For

example, a 4-to-1 MUX selects one of four data inputs based on a 2-bit control signal.
Decoder:

o Adecoder takes a binary-coded input and activates one of several output lines based on the input
code. It is typically used for memory address decoding, where different memory locations are

accessed based on the binary address input.
Adder (Half Adder and Full Adder):

o Adders z@ combinational circuits used for arithmetic operations. A half adder adds two single-
bit binary numbers, producing a sum and a carry-out. A full adder adds two binary numbers

along with a carry-in, producing a sum and a carry-out.
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Encoder:

o An encoder performs the opposite function of a decoder. It converts multiple input signals into

a coded output, typically used in data compression and error detection applications.
Advantages and Applications:

e Speed: Combinational circuits operate at high speeds since the output is determined instantly by the

inputs.
e Simplicity: They are relatively simple to design and understand compared to sequential circuits.

e  Versatility: Used in various applications such as arithmetic operations, data routing, address decoding,

and logical decision-making in digital systems.




3.3 Flip-Flops

A flip flop is a circuit that has two stable states. These stable states are utilized to hold binary data, which is
modifiable by the application of different inputs. The basic components of the digital system are the flip flops.
Examples of data storage components are latches and flip flops. The flip flop is the fundamental storage element
of a sequential logical circuit. Although they function differently, latches and flip flops are the fundamental

components of storage. The following categories of flip flops exist:
3.3.1 SR Flip Flop:

The SR flip flop is a bistable device with one bit of memory that accepts two inputs: SET and RESET. The device
is set or an output of 1 is produced by the SET input 'S', and the device is reset or an output of 0 is produced by

the RESET input 'R'. The labels S and R designate the inputs for SET and RESET, respectively.

"Set-Reset" flip flops are known as SR flip flops. Resetting the flip flop to its initial state from its current state
with an output of 'Q' is accomplished using the reset input. The logic levels "0" and "1" determine the set and reset

conditions that determine this output.

A simple flip flop that feeds feedback back to its opposing input from both of its outputs is the NAND gate SR
flip flop. The single data bit in the memory circuit is stored in this circuit. Thus, the SR flip flop has three inputs
in total—"S," "R," and "Q," as well as the current output. The present history or state is relevant to this output,
'Q". Since the device can be "flipped" to a logic set state or "flopped" back to the opposing logic reset state, the

term "flip-flop" refers to how the gadget actually operates.
The NAND Gate SR Flip-Flop

By connecting two cross-coupled 2-input NAND gates, we may create a set-reset flip flop. Feedback is supplied
in the SR flip flop circuit from each output to one of the other NAND gate inputs. The gadget thus has two inputs,
Set ('S') and Reset ('R"), and two outputs, Q and Q', correspondingly. The S-R flip flop's circuit and block diagrams

are shown below.

Block diagram:

Symbol

Circuit Diagram:
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The Set State

The NAND gate Y in the preceding diagram has an input of 0, which will result in the output Q' 1, when the input
R is set to false or 0 and the input S is set to true or 1. When the value of Q' is passed to the NAND gate 'X' as
input 'A', both of the gate's inputs are now 1(S=A=1), resulting in the output 'Q' 0.

At this point, the inputs of NAND gate "Y' are R=1 and B=0 if the input R is changed to 1 and 'S' stays at 1. Since
one of the inputs in this case is also 0, Q's output is 1. Thus, Q=0 and Q'=1 are used to set or latch the flip flop

circuit.
Reset State

In the second stable condition, the output Q is 1, and the output Q' is 0. It is determined by S =0 and R = 1. The
NAND gate 'X' has a zero input and a one output, Q. As input B, output Q is faded to NAND gate Y. Since NAND
gate Y's two inputs are both set to 1, Q' = 0.

Hence, if the input S is modified to 0 but 'R' stays at 1, the result Q' will also be 0 and the state will remain
unchanged. Thus, the flip flop circuit's reset state has been created, and the set/reset actions are specified in the

truth table that follows:

The S-R flip flop is the simplest and easiest circuit to understand.

Truth Table:
s R Y Y
0 Q 0 1
0 1 0 1
1 0 1 0
1 1 - e
3.3.2 JK Flip Flop

The Set-Reset flip flop, also known as the SR flip flop, offers many benefits. However, it has the following issues

when switching:




o  This circumstance is never encountered when the inputs for Set 'S' and Reset 'R’ are both set to 0.

e Incorrect latching happens when the enable input is set to 1, and the Set or Reset inputs alter their state.
These two issues with the SR Flip Flop are eliminated by the JK Flip Flop.

One of the most popular flip flips in digital circuits is the JK flip flop. The JK flip flop, which has two inputs
named "J" and "K," is a universal flip flop. The 'S' and 'R' of an SR flip flop stand for Set and Reset, respectively,
although J and K do not. The independent letters J and K were selected to set the flip flop design apart from other

varieties.

The JK flip flop functions similarly to the SR flip flop. Instead of "S" and "R," the JK flip flop has "J" and "K"
flip flops. The primary distinction between an SR flip flop and a JK flip flop is that an SR flip flop generates
invalid states as outputs when both of its inputs are set to 1, whereas a JK flip flop does not produce any invalid

states when either of its inputs is set to 1.

The JK Flip Flop is an SR flip-flop that is gated and has a clock input circuit added to it. @en both inputs are set
to 1, an invalid or illegal output state arises, which can be avoided by including a clock input circuit. Thus, there
are four possible input combinations for the JK flip-flop: 1, 0, "no change," and "toggle." With the addition of a
clock input, the JK flip flop symbol is identical to the SR Bistable Latch symbol.

Block Diagram:

Symbol
Circuit Diagram:

Toggles en leading SR Flip-Flop
edge of clock signal L
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Circuit




The inputs 'S' and 'R' of an SR flip flop are swapped out for two inputs, J and K. This indicates that S and R are

equivalent to J and K, respectively.

We swap out the two 2-input AND gates for two 3-input NAND gates. Each gate's third input is linked to the
outputs at Q and Q'. Since the two inputs of the SR flip-flop are now interlocked, the previously invalid condition

of (S="1", R ="1") can be exploited to generate the "toggle action" due to cross-coupling.

The J input is cut off from Q's "0" position through the lower NAND gate if the circuit is "set". K input is cut off
from Q's 0 locations through the higher NAND gate if the circuit is in the "RESET" state. We can utilize Q and
Q' to manipulate the input because they are always different. According to the provided truth table, the JK toggles
the flip flop when both inputs "J" and "K" are set to 1.

Truth Table:
Same | Clock Input Output Description
as for Clk J K Q Q'
SR X 0 0 1 0 Memory
Latch X 0 0 0 1 no change
J 0 1 1 0 Reset Q>>0
X 0 1 0 1
5 1 0 0 1 Set Q>>1
X 1 0 1 0
Toggle | 1 1 0 1 Toggle
action | 1 1 1 0

The circuit will toggle between the SET and RESET states when the JK flip flop's two inputs are both set to 1 and
the clock input is pulsating "High." When both of the JK flip flop's inputs are set to 1, it functions as a T-type
toggle flip flop.

An enhanced timed SR flip flop is the JK flip flop. However, the issue of "race" persists. When the output Q is
altered before the timing pulse of the clock input has a chance to turn "Off," an issue arises. To prevent this time,

we must maintain short timing plus period (T).
3.3.3 D Flip Flop

In digital systems, the D flip flop is a commonly used flip flop. Input synchronization, counters, and shift registers

are the main applications for the D flip flop.




CLK : "

Truth Table:

Clock
Jo w0
a1
J»0
™ »1

Ll Ll L=d R=d L~
=lojlo|lo|=<
=3

3.3.4 T Flip Flop

T flip flops are utilized similarly to JK flip flops. In contrast to JK flip flops, T flip flops have a single clock input.
The JK flip flop's two inputs are connected as a single input to create the T flip flop.
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The T flip flop is also known as Toggle flip-flop. These T flip-flops are able to find the complement of its state.

Truth Table:
T Y [ v(t+1)
0 0 0
1 0 1
0 1 1
1 1 0

Flip-Flop Applications




Flip-flops are versatile components in digital electronics, crucial for storing binary data and implementing various

sequential circuits. Here are some common applications of flip-flops:
1. Registers:

o Description: Registers are sequential circuits composed of flip-flops used for temporary storage

of data within a processor or digital system.

o Types: Parallel-in-Parallel-out (PIPO), Serial-in-Parallel-out (SIPO), Parallel-in-Serial-out
(PISO), Serial-in-Serial-out (SISO).

o Applications: Used in microprocessors, CPUs, and arithmetic logic units (ALUs) for data

buffering, temporary storage, and data transfer operations.
2. Counters:

o Description: Counters are sequential circuits that generate a sequence of binary numbers in

response to clock pulses.
o Types: Up counters, Down counters, Up/Down counters.

o Applications: Used in digital clocks, frequency dividers, digital signal processing (DSP), and

event counting in digital systems.
3. Memory Elements:
o Description: Flip-flops form the basic storage elements of memory units in digital systems.
o Types: SRAM (Static Random Access Memory), registers, cache memory.

o Applications: Primary storage in computers, buffering data between different speed devices,

and temporary data storage in embedded systems.
Edge-Triggered vs. Level-Triggered Flip-Flops
1. Edge-Triggered Flip-Flops:
o Operation: Respond to transitions (edges) of the clock signal (rising or falling edge).
o Advantages: Ensures stable operation with precise timing control, minimizing timing hazards.

o Applications: Used in synchronous digital systems where data changes state at specific points

in the clock cycle.
2. Level-Triggered Flip-Flops:
o Operation: Respond to the continuous level of the clock signal (HIGH or LOW).
o Behavior: Output changes state whenever the clock signal is at a specific logic level.

o Applications: Less common in digital designs due to potential for timing hazards and less

precise synchronization.




Comparison and Selection
e Selection Criteria:

o Timing Requirements: Edge-triggered flip-flops are preferred for synchronous designs

requiring precise timing and synchronization.

o Complexity: Level-triggered flip-flops may be simpler but are less commonly used due to their

limitations in timing control.

o Application Specific: The choice between edge-triggered and level-triggered flip-flops
depends on the specific requirements of the digital system and the design goals for timing,

synchronization, and performance.

3.4 Registers

Registers are essential components in digital electronics used for temporary data storage and manipulation. They
are composed of flip-flops and enable various operations such as data buffering, arithmetic operations, and data

transfer. Here’s an in-depth exploration of registers:
Types of Registers

1. Shift Registers: A flip-flop is a type of one-bit memory cell that can be used to store digital information.
We must utilize a set of flip-flops to improve the storage capacity in terms of bits. A register is a collection

éﬂip-ﬂops like this one. An n-bit word can be stored in the n-bit register, which is made up of n flip-
pS.

It is possible to transfer the binary data between flip-flops inside a register. Shift registers are the registers

that permit these kinds of data transfers. A shift register can operate in four different ways.
Shift registers are sequential circuits that shift data bit-by-bit either left or right based on clock pulses.
Types:
= Serial-in, Serial-out (SISO): Data is shifted in and out serially.
=  Serial-in, Parallel-out (SIPO): Data is shifted in serially and outputted in parallel.
= Parallel-in, Serial-out (PISO): Data is loaded in parallel and outputted serially.
=  Parallel-in, Parallel-out (PIPO): Data is loaded and outputted in parallel.
Let’s discuss one by one:

Serial-in, Serial-out (SISO):




Assume that every flip-flop started out in the reset state, with Q3 = Q2 = Q1 = Q0 = 0. When a four-bit

binary number, such as 1 1 1 1, is entered into the register, it should be applied to the Din bit first, using

the LSB bit. Din, the serial data input, is coupled to FF-3's D input, or D3. The input of the flip-flop after

it, D2, is connected to the output of FF-3, or Q3.
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Output
b FF-3 FF-2 n FR1 h FFO
K

JUL

Serial Input Parallel Output

e  These kinds of processes involve the serial entry and parallel extraction of data.

e Piece by piece, data is loaded. As long as the data is loading, the outputs are disabled.

e The outputs are turned on so that all of the loaded data is simultaneously available across all of

the output lines as soon as the data loading process is finished and all of the flip-flops have the

necessary data.

e A four-bit word can only be loaded with four clock cycles. As a result, SIPO mode operates at

the same speed as SISO mode.

CLK
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————————————— Parallel output =============<

Parallel Input Serial Output (PISO)

o Bits of data are entered in parallel.

o A four bit parallel input serial output register is depicted in the circuit below.

o A combinational circuit connects the input of the subsequent Flip Flop to the output of the

preceding one.

o The identical combinational circuit is used to apply the binary input words B0, B1, B2, and B3.

o This circuit can function in either the load mode or the shift mode.

Load Mode




@ AND gates 2, 4, and 6 become active when the shift/load bar line is low (0). Theyhen pass the bits
, B2, and B3 to the appropriate flip-flops. The binary inputs B0, B1, B2, and B3 will be loaded into

the appropriate flip-flops on the clock's low-going edge. Parallel loading occurs as a result.
Shift Mode

The AND gates 2, 4, and 6 are rendered inactive when the shift/load bar line is low (1). Thus, it is no
longer possible to load the data in parallel. However, the 1, 3, and 5 AND gates gen. As a result, when
clock pulses are applied, data is bit by bit shifted from left to right. As a result, tiie parallel in serial out

operation occurs.
Block Diagram:

Parallel inputs
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Parallel Input Parallel Output (PIPO)

9this mode, the data inputs D0, D1, D2, and D3 of the four flip-flops, respectively, receive the four-bit
nary input BO, B1, B2, and B3. Upon app@tion of a negative clock edge, the input binary bits will be
simultaneously fed into the flip-flops. On the output side, the loaded bits will show up simultaneously.

To load every bit, a clock pulse is the only requirement.

Block Diagram:
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2. Parallel Registers:

o Description: Parallel registers store data in parallel form, allowing simultaneous input and

output of data.

o Types: Includes general-purpose registers in CPUs, memory registers in microcontrollers, and

special-purpose registers for control and status handling.

o Operation: Input and output occur simultaneously in parallel, suitable for high-speed data

processing.
Design and Operation of Shift Registers
o Design: Shift registers are constructed using interconnected flip-flops and control logic for shifting data.
e Operation:
o Serial-in, Serial-out (SISO): Data is shifted in and out serially, bit-by-bit.
o Serial-in, Parallel-out (SIPO): Data is shifted in serially and outputted in parallel.
o Parallel-in, Serial-out (PISO): Data is loaded in parallel and outputted serially.
o Parallel-in, Parallel-out (PIPO): Data is loaded and outputted in parallel.
Applications of Registers in Data Storage and Manipulation
e Data Storage: Registers hold operands and results in arithmetic operations within CPUs.

e Data Manipulation: Used for data transfer between memory and peripherals, buffering data in

communication systems, and managing control signals in digital systems.

Register Transfer Level (RTL) Description and Implementation




e  RTL Description: RTL is a low-level hardware description language describing the flow of data between

registers in a digital circuit.

e Implementation: RTL is used to model and simulate digital systems at a register transfer level, aiding

in design verification and synthesis into physical hardware.
Example Application: Shift Register in Serial-to-Parallel Conversion
A 4-bit SIPO shift register converts serial data input (SI) into parallel data output (PO):

e Operation: Serial input data (1011) is clocked into the shift register bit-by-bit. After complete input, the

parallel data output (1011) is available simultaneously at the output.
e Diagram:
Registers:
e  Types of registers (Shift registers, Parallel registers)
e Design and operation of shift registers
e Applications of registers in data storage and manipulation

e  Serial-in, serial-out (SISO), serial-in, parallel-out (SIPO), parallel-in, serial-out (PISO), parallel-in,
parallel-out (PIPO) registers

e Register transfer level (RTL) description and implementation

3.5 Counters (Synchronous & Asynchronous)

A counter is a specific kind of sequential circuit that counts pulses; counters are collections of flip flops that

receive a clock signal.

One of the most common uses for the flip flop is as a counter. The output of the counter has a predetermined state

based on the clock pulse. With the counter's output, one may count the number of pulses.

Truth table:

Clock | Counter cutput | State | Decimal
Qs [+ number | counter
output

Initially 0 0 - 0

1= 0 1 1 1

[ = 1 0 2 2

3rd 1 1 3 3

4th 0 0 4 0




Types of Counters

e Asynchronous Counters

e  Synchronous Counters

gynchronous or ripple counters

The ripple counter is another name for the asynchronous counter. The 2-bit Asynchronous counter schematic,
which made use of two T flip-flops, is shown below. By permanently setting both inputs to 1, we can use the JK
flip flop in addition to the T flip flop. The external clock is applied to the clock input of flip flop number one, FF-
A, and its output, FF-B, is applied to the clock input of flip flop number two.

Block Diagram:
Logic 1
Clk
Q,
High High
Q,

Clk—

Signal Diagram:
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Operation:

Condition 1: When both flip flops are in the reset state is the first condition.

Operation: Both flip flops' outputs, QA and QB, will be 0.

Condition 2: When the first clock edge is negative is the second condition.

Operation: The output of the first flip flop will switch from 0 to 1. It will toggle. The clock input of the
subsequent flip flop will receive the output of this one. The second flip flop will interpret this output as
a clock with a positive edge. Since it is a negative edge triggered flip flop, this input will not alter the
state of the flip flop's output.

Thus, QB=0and QA =1.

Condition 3: Upon application of the second negative clock edge.

Operation: The initial flip flop will toggle once more, changing its output from 1 to 0. The second flip
flop will interpret this output as a clock with a negative edge. Since it is a negative edge triggered flip
flop, this input will alter the second flip flop's output state.

Hence, QB =1 and QA = 0.

Condition 4: Upon application of the third negative clock edge.

Operation: The initial flip flop will toggle once more, changing its output from 0 to 1. The second flip
flop will interpret this output as a clock with a positive edge. Since it is a negative edge triggered flip
flop, this input will not alter the state of the flip flop's output.

QA =1, then, and QB = 1.

Condition 5: Upon application of the fourth negative clock edge.

Operation: The initial flip flop will toggle once more, changing its output from 1 to 0. The second flip
flop will interpret this output as a clock with a negative edge. The second flip flop's output state will be
altered by this input.

Thus, QB =0 and QA = 0.

Synchronous counters




The output of the current counter feeds into the input of the subsequent counter in an asynchronous counter. As a

result, the counters are chained together. This system's disadvantage is that it causes the propagation delay during

the counting stage in addition to the counting delay itself. This disadvantage is meant to be eliminated by the

synchronous counter.

The clock input of each flip flop in the synchronous counter receives the identical clock pulse. Each and every

flip flop generates an identical clock signal. The schematic of a 2-bit synchronous counter with the inputs of the

first flip flop, or FF-A, set to 1, is shown below. The initial flip-flop will therefore function as a toggle flip-flop.

Both of the next JK flip flop's inputs receive the output of the first flip flop.

Logical Diagram

Logic 1

Ja—

Kn [—

Clk

FF-0

FF-2

Signal Diagram




Operation:

e  Condition 1: When both flip flops are in the reset state is the first condition.
Operation: Both flip flops' outputs, QA and QB, will be 0.
Thus, QB =0 and QA =0.

e Condition 2: When the first clock edge is negative is the second condition.
Operation: The output of the first flip flop will be switched from 0 to 1 by toggling it. The first flip
flop's output will be zero after the first negative clock edge is passed. The first flip flop's clock input and
both of'its inputs will be set to 0. The second flip flop will continue to be in the same state in this manner.
Thus, QB=0and QA= 1.

e Condition 2: When the second negative clock edge is passed is the second condition.
Operation: The first flip flop will be toggled once more, changing its output from 1 to 0. Upon passing
the second negative clock edge, the first flip flop's output will be 1. The first flip flop's clock input and
both of its inputs will be set to 1. The second flip flop's state will go from 0 to 1 in this fashion.
Thus, QB =1 and QA =0.

e Condition 2: When the third clock edge is negative, condition two is met.
Operation: The inputs and the clock input are both set to 0 in this case, therefore the initial flip flop will
toggle between 0 and 1. As a result, the results will not change.
QA =1, then, and QB = 1.

e Condition 2: Second condition: Upon the passage of the fourth negative clock edge.
Operation: The initial flip-flop will alternate between 1 and 0. The second flip flop's inputs and clock
input are currently set to 1. The outputs will therefore shift from 1 to 0.

Thus, QB =0 and QA =0.

3.6 Conclusion




In this unit, we have explored the fundamental components and design principles that underpin digital electronics.
Starting with combinational logic circuits, we examined how these circuits generate outputs based on current
inputs an importance of Boolean algebra and Karnaugh Maps in optimizing their design. Understanding these

concepts is crucial for creating efficient and effective digital systems.

We delved into flip-flops, the building blocks of sequential circuits, and discussed their various types, including
SR, JK, D, and T flip-flops. By analyzing their timing diagrams and truth tables, we gained insights into how flip-
flops store and transfer data. This knowledge is vital for designing complex digital circuits that require precise

timing and synchronization.

Registers and counters were also covered extensively. Registers, essential for data storage and manipulation, come
in various forms such as shift registers and parallel registers. We explored their design, operation, and applications.
Counters, both synchronous and asynchronous, play a critical role in timing, sequencing, and frequency division.
Understanding their design and implementation enables the creation of digital systems that can count, divide

frequencies, and generate specific sequences.

Overall, this unit has provided a comprehensive understanding of combinational and sequential logic circuits,
equipping you wi@he skills to design and analyze digital systems. These foundational concepts are integral to

U
the advancement in digital electronics and will be instrumental in your future endeavors in the field.

3.7 Unit Based Questions & Answers

1. What is a combinational logic circuit?

Answer: A combinational logic circuit is a type of digital circuit where the output is determined solely by the

current inputs, without any memory or feedback elements. Examples include adders, multiplexers, and decoders.

2. How can Boolean algebra be used in the design of combinational circuits?

Answer: Boolean algebra provides a mathematical framework to simplify and optimize logic expressions, which

can then be implemented using logic gates in combinational circuits.
3. What is the purpose of using Karnaugh Maps (K-maps)?

Answer: K-maps are used to simplify Boolean expressions by minimizing the number of terms and variables,

resulting in a simpler and more efficient combinational circuit design.
4. What is the primary function of a flip-flop?

Answer: A flip-flop is a digital memory element used to store one bit of data. It is a fundamental building block

in sequential circuits.

5. How does a D flip-flop differ from a JK flip-flop?




Answer: A D flip-flop has a single data input (D) and stores the value of the input at the rising or falling edge of
the clock signal. A JK flip-flop has two inputs (J and K) and can toggle its state, set, or reset based on the inputs

and clock signal.
6. Explain the concept of edge-triggered vs. level-triggered flip-flops.

Answer: Edge-triggered flip-flops change their state only at specific moments of the clock signal's rising or falling
edge, while level-triggered flip-flops respond to the level (high or low) of the clock signal, changing their state as

long as the clock is at the triggering level.
7. What are shift registers, and how are they used?

Answer: @ft registers are sequential logic circuits that shift the data stored in them by one position on each clock
pulse. They are used in data manipulation, storage, and transfer applications, such as serial-to-parallel and parallel-

to-serial data conversion.
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4.0 Introduction

In this chapter, we will explore the fundamental concepts and techniques used in the design and implementation
of Arithmetic Logic Units (ALUs) and faster algorithms for multiplication and division. An ALU is a critical
component computer's central processing unit (CPU), responsible for performing arithmetic and logical
operations. '@efﬁciency and speed of an ALU have a direct impact on the overall performance of a computer

system.

We will begin by outlining the objectives of this chapter and providing an introduction to ALU, including its
definition, functions, and importance in computer systems. We will then delve into the design of ALUs, including

the different types of ALUs, their components, and how they operate.

Next, we will explore the micro-operations that take place within an ALU, including arithmetic and logical
operations, and how they are executed. We will also discuss the ALU-chip, which is a hardware implementation

of an ALU.




In the second part of this chapter, we will introduce faster algorithms for multiplication and division, including
the Karatsuba multiplication algorithm and the SRT division algorithm. These algorithms are designed to optimize

the performance of ALUs and improve the overall efficiency of computer systems.

Finally, we will conclude this chapter by summarizing the key concepts and techniques discussed, and provide
unit-based questions and answers to reinforce your understanding. We will also provide references for further

reading and exploration.

4.1 Objectives

After completion of this unit, you will be able to understand:

e Understand thg.definition and functions of an ALU
e Learn about %esi@ and operation of ALUs

e  Explore micro-operations within an ALU

e  Study the ALU-chip and its components

e Introduce faster algorithms for multiplication and division

e  Understand the importance of ALUs in computer systems

4.2 Introduction to ALU

The Arithmetic Logic Unit (ALU) is a critical component of a computer's central processing unit (CPU). It is
responsible for performing arithmetic and logic operations, which are the fundamental tasks required for

processing data in computers.
Function:

e Arithmetic Operations: The ALU performs basic arithmetic operations such as addition, subtraction,

multiplication, and division.

e Logic Operations: It also carries out logical operations including AND, OR, NOT, XOR, and bitwise
shifts.

e Data Transfer: Some ALUs support data transfer operations like loading data from memory and storing

data to memory.

The ALU receives input data from the CPU registers, processes the data according to the operation specified by

the control unit, and then sends the result back to the registers or memory.




Figure 1: Basic ALU Block Diagram
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Basic Operations (Arithmetic and Logic Operations)
Arithmetic Operations:
e Addition: Adds two binary numbers. Example: 0101 + 0011 =1000.
e Subtraction: Subtracts one binary number from another. Example: 0101 — 0011 = 0010.
e  Multiplication: Multiplies two binary numbers. Example: 0011 x 0010 = 0110.
e Division: Divides one binary number by another. Example: 0110 + 0010 = 0011.

Figure 2: Arithmetic Operations in ALU
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Image Source: Study.com
Logic Operations:
e AND: Performs a bitwise AND operation. Example: 0101 AND 0011 = 0001.
e  OR: Performs a bitwise OR operation. Example: 0101 OR 0011 =0111.
e NOT: Performs a bitwise NOT operation (inversion). Example: NOT 0101 = 1010.
e  XOR: Performs a bitwise XOR operation. Example: 0101 XOR 0011 = 0110.

Figure 3: Logic Operations in ALU
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Importance of ALU in CPUs and Digital Systems

Role in CPUs: The ALU is integral to the operation of the CPU, performing the essential calculations and logic

decisions needed for processing instructions. It allows the CPU to:
e Execute complex mathematical computations.
e  Perform logical comparisons for decision-making.
e  Process data quickly and efficiently.

Impact on Performance:




Speed: m efficiency and speed of the ALU directly affect the overall performance of the CPU. Faster
ALUs enable quicker data processing and better performance in applications requiring intensive

calculations.

Versatility: Modern ALUs are designed to handle a wide range of operations, making CPUs versatile

for various applications, from scientific computations to everyday computing tasks.

Figure 4: ALU within a CPU Block Diagram

CPU Control

Importance of ALU in CPUs and Digital Systems

The ALU is indispensable in CPUs and digital systems for several reasons:

1.

Core Processing Element: The ALU is the heart of the CPU, handling all arithmetic and logic

operations. Without it, the CPU cannot perform essential computations.

Performance and Efficiency: The efficiency of an ALU directly impacts the performance of a CPU.

Optimized ALU designs lead to faster computation speeds and improved overall system performance.

Versatility: The ALU supports a wide range of operations, making it versatile for various computational

tasks, from simple arithmetic to complex logical decision-making processes.

Integration in Complex Operations: ALUs are integrated into larger processing units such as Floating
Point Units (FPUs) for advanced mathematical computations and Graphics Processing Units (GPUs) for
rendering graphics, highlighting their critical role in both general-purpose and specialized computing

tasks.

Role in System Stability and Reliability: The precision and accuracy of the ALU are vital for the
stability and reliability of a digital system. Errors in ALU operations can propagate through the system,

causing malfunctions.
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4.3 ALU Design

Components of an ALU

@ Arithmetic Logic Unit (ALU) is a crucial component of a CPU (Central Processing Unit) responsible for

performing arithmetic and logic operations on data. Here are the main components that typically make up an ALU:
1. Registers:

o Operand Registers (A and B): These registers hold the operands (input data) on which the

ALU will perform operations such as addition, subtraction, etc.
o Result Register (R): This register stores the result of the operation performed by the ALU.
2. Arithmetic Unit:

o Adder: The adder circuit within the ALU performs addition operations. It can handle adding

two operands and a carry-in bit for multi-bit addition.

o Subtractor: In some ALUs, a subtractor circuit is also included to perform subtraction

operations. Subtraction often utilizes two's complement arithmetic to handle negative numbers.

3. Logic Unit:




o Logic Gates (AND, OR, XOR, NOT): These gates perform various logical operations:
= AND Gate: Outputs true (1) only if both inputs are true.
*  OR Gate: Outputs true (1) if at least one input is true.
*  XOR Gate: Outputs true (1) if inputs are different.
= NOT Gate: Inverts the input.
4. Multiplexers (MUX):

o Selector MUX: This component selects which operation (arithmetic or logic) to perform based

on control signals received from the CPU's control unit.
5. Control Unit:

o Control Lines: These lines carry signals from the CPU's control unit to the ALU, specifying
the operation to be performed (addition, subtraction, AND, OR, etc.).

o Status Flags: Flags are set based on the result of operations (e.g., zero flag, carry flag, overflow

flag) and are used by the CPU for decision-making.
6. Timing and Control Circuits:

o Clock Signals: These synchronize the timing of operations within the ALU and with other parts
of the CPU.

o Control Logic: Decodes instructions and generates control signals to coordinate the operations
of the ALU.

7. Data Paths:

o Internal Data Paths: These pathways allow data to flow between the registers, arithmetic unit,

logic unit, and multiplexers within the ALU.

Block Diagram of ALU
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4.4 ALU Micro-Operations

Micro-operations are fundamental operations performed at the register transfer level within a CPU. They involve
manipulating data at the bit level and are essential for executing higher-level instructions and tasks. These

operations are atomic, meaning they cannot be further broken down into smaller operations.
Types of Micro-Operations
1. Register Transfer Micro-Operations:
o Transfer: Moves data from one register to another.
o Load: Loads data from memory into a register.
o Store: Writes data from a register back to memory.
2. Arithmetic Micro-Operations:
o Addition: Adds two operands to produce a sum.
o Subtraction: Subtracts one operand from another to produce a difference.
o Increment: Adds 1 to a register's value.
o Decrement: Subtracts 1 from a register's value.
3. Logical Micro-Operations:
o AND: Performs a bitwise AND operation on corresponding bits of two operands.
o  OR: Performs a bitwise OR operation on corresponding bits of two operands.

o XOR: Performs a bitwise XOR operation on corresponding bits of two operands.




o NOT: Inverts each bit of an operand.
4. Shift Micro-Operations:
o Logical Shift: Shifts bits left or right, filling empty bit positions with zeros.
o Arithmetic Shift: Shifts bits left or right, preserving the sign bit for signed numbers.
o Rotate: Circularly shifts bits left or right, with bits shifted out re-entering at the opposite end.
Execution of Micro-Operations within an ALU
'@ execution of micro-operations within an Arithmetic Logic Unit (ALU) involves several steps:

e  Fetching Data: Input operands (typically stored in registers) are fetched into the ALU's operand registers
(A and B).

e  Selecting Operation: The control unit of the CPU sends control signals to the ALU, specifying which

micro-operation (arithmetic, logical, shift) to perform.
e Operation Execution: The ALU executes the specified operation on the operands:
o For arithmetic operations (addition, subtraction), the ALU uses adder circuits.
o Logical operations (AND, OR, XOR) are performed using corresponding logic gates.
o Shift operations are executed using shift registers or dedicated shift circuits within the ALU.

e Result Storage: After performing the operation, the result is stored in the ALU's result register (R) or

transferred back to registers or memory, depending on the instruction and subsequent micro-operations.
Control Unit and Micro-Operation Sequencing
The Control Unit coordinates the sequencing of micro-operations within the CPU:

o Instruction Decoding: It decodes instructions fetched from memory to determine the sequence of micro-

operations required to execute the instruction.

o Control Signal Generation: Based on the decoded instruction, the control unit generates control signals

that specify which micro-operations to execute and in what sequence.

¢ Timing and Synchronization: It ensures that micro-operations occur in the correct order and at the

appropriate clock cycles to synchronize with other components of the CPU.

e Feedback and Error Handling: The control unit monitors the execution of micro-operations, handling
errors or exceptional conditions that may arise during execution, such as overflow or underflow

conditions in arithmetic operations.
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4.5 ALU-Chip

An Arithmetic Logic Unit (ALU) Chip is a critical component of microprocessors and central processing units
(CPUs). It is responsible for performing arithmetic and logic operations. Modern ALU chips are highly integrated

and optimized for speed and efficiency, capable of handling complex instructions within a microprocessor.

Intel and AMD are two leading manufacturers of microprocessors, and their ALU designs are integral to the

performance of their CPUs:

e Intel ALU Chips: Known for their integration in Intel’s microprocessors, such as the Core 17 and Xeon

series. These chips are designed for high performance in both general computing and specialized tasks.

e AMD ALU Chips: Integrated into AMD’s Ryzen and EPYC series, these ALU chips focus on providing

high-performance computing and efficient power consumption.
Architecture and Features of ALU Chips
The architecture of an ALU chip typically includes several key components:

1. Arithmetic Unit: Handles basic arithmetic operations like addition, subtraction, multiplication, and

division.
2. Logic Unit: Performs logical operations such as AND, OR, XOR, and NOT.
3. Shifter: Responsible for bitwise shifting operations.
4. Registers: Temporary storage for operands and results.
5. Control Unit: Manages the operation of the ALU by interpreting control signals from the CPU.

Features of Modern ALU Chips:




e Pipelining: Allows multiple instructions to be processed simultaneously at different stages of execution.
e  Parallelism: Supports parallel execution of operations to enhance performance.
e Power Efficiency: Optimized for low power consumption, critical for mobile and portable devices.

o Integrated Floating-Point Unit (FPU): Handles complex arithmetic operations involving floating-point

numbers.

Figure: Simplified Architecture of an ALU Chip

Integer Integer
Operand Operand

A \/ B
Status
Status
Opcode

Integer
Result

Integration of ALU Chips in Microprocessors

The ALU chip is integrated into microprocessors as part of the CPU’s core architecture. It interacts closely with

other components, such as:
e Instruction Fetch Unit: Retrieves instructions from memory and sends them to the ALU for execution.
e Register File: A collection of registers that store intermediate data and operands for the ALU.

e Cache Memory: Provides high-speed data access for frequently used data and instructions, reducing the

latency of ALU operations.

e Control Unit: Directs the operation of the ALU, ensuring correct execution order and handling control

signals.

Figure: ALU Integration in a Microprocessor
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Performance Metrics of ALU Chips
The performance of ALU chips is evaluated using several key metrics:
1. Clock Speed: Measured in GHz, indicating how many cycles per second the ALU can execute.

2. Instructions Per Cycle (IPC): Indicates the number of instructions the ALU can process in a single

clock cycle.
3. Latency: The time it takes to complete a single instruction, measured in clock cycles.
4. Throughput: The rate at which the ALU can process instructions over a given period.
5. Power Consumption: Measured in watts, indicating the energy efficiency of the ALU chip.

6. Heat Dissipation: The amount of heat generated by the ALU during operation, which impacts cooling

requirements and overall system design.

4.6 Introduction to Faster Algorithms

Faster algorithms are computational procedures designed to achieve optimal performance in terms of time
complexity, space comple@ or both, compared to their counterparts. These algorithms are crucial in computer
science and engineering solving complex problems efficiently. Here’s a detailed exploration of faster

algorithms:

Definition and Importance




Faster algorithms refer to algorithms that achieve improved efficiency, typically measured by their computational

complexity. Efficiency can be in terms of:
¢ Time Complexity: How fast the algorithm runs as a function of the size of its input.

e Space Complexity: How much memory the algorithm requires to run as a function of the size of its

input.

The importance of faster algorithms lies in their ability to handle larger datasets or more complex computations
within feasible time and resource constraints. This is critical in modern computing applications such as data

analysis, machine learning, cryptography, and real-time systems.
Types of Faster Algorithms
1. Divide and Conquer Algorithms:

o Definition: Divide the problem into smaller subproblems, solve them recursively, and combine

the results.
o Example: Merge Sort, Quick Sort, Strassen's Matrix Multiplication.
2.  Greedy Algorithms:

o Definition: Make locally optimal choices at each stage with the hope of finding a global

optimum.
o Example: Dijkstra's Algorithm for shortest path, Prim's Algorithm for minimum spanning tree.
3. Dynamic Programming:

o Definition: Break down complex problems into simpler overlapping subproblems and store the

results to avoid redundant computations.
o Example: Fibonacci series computation using dynamic programming.
4. Randomized Algorithms:
o Definition: Introduce randomness in the algorithm to achieve faster average-case performance.
o Example: Quick Sort with randomized pivot selection.
5. Approximation Algorithms:

o Definition: Provide solutions that are close to optimal for hard problems where finding exact

solutions is computationally expensive.
o Example: Approximation algorithms for NP-hard problems like Traveling Salesman Problem.

Advantages of Faster Algorithms




e Scalability: Faster algorithms enable scaling of computations to larger inputs or higher complexities

without significant increases in computation time.

¢ Resource Efficiency: They optimize the use of computational resources such as CPU time, memory, and

energy consumption.

e Real-Time Processing: Essential for applications requiring quick responses and real-time data

processing, such as robotics, financial trading systems, and online services.
Challenges and Considerations

e Complexity Analysis: Understanding and analyzing the time and space complexity of algorithms is

crucial to implementing faster solutions.

¢ Implementation: Efficient implementation requires careful consideration of algorithmic techniques,

data structures, and optimization strategies.

e Trade-offs: Faster algorithms may sacrifice precision or exactness in favor of speed, necessitating trade-

offs in certain applications.
Overview of Faster Algorithms for Multiplication and Division
Faster Algorithms for Multiplication
Multiplication is a fundamental arithmetic operation with several algorithms optimized for efficiency:
1. Binary Multiplication:
o Description: Involves multiplying binary numbers using bit-wise operations.
o Advantages: Simple and widely used in digital circuits and computer systems.

o Example: Booth's Algorithm optimizes binary multiplication by reducing the number of

addition operations.
2. Karatsuba Algorithm:
o Description: A fast multiplication algorithm that uses a divide-and-conquer approach.
o Advantages: Reduces the number of required multiplications compared to traditional methods.
o Example: Breaks down multiplication into smaller multiplications, reducing time complexity.
3. Toom-Cook Multiplication:

o Description: Extends Karatsuba algorithm by using interpolation and evaluation at specific

points.
o Advantages: Efficient for large operands, reducing complexity further than Karatsuba.

o Example: Used in cryptographic algorithms and digital signal processing.




4. Fast Fourier Transform (FFT)-based Multiplication:
o Description: Uses FFT to perform multiplication in O(n log n) time complexity.
o Advantages: Highly efficient for very large integers or polynomials.
o Example: Common in signal processing and digital communication systems.
Faster Algorithms for Division
Division algorithms focus on efficiently dividing one number by another:
1. Binary Division:
o Description: Divides binary numbers using bit-wise operations.
o Advantages: Simple and fundamental in digital systems.

o Example: Non-Restoring Division Algorithm optimizes binary division by avoiding restoration

steps.

2. Restoring Division:
o Description: Divides numbers by repeatedly subtracting the divisor from the dividend.
o Advantages: Guarantees exact division results.
o Example: Used in microprocessor design and arithmetic logic units (ALUs).

3. SRT Division (Sweeney, Robertson, and Tocher):
o Description: Advanced division algorithm combining digit selection and iterative refinement.
o Advantages: Faster than traditional division algorithms for large operands.
o Example: Common in high-performance computing and numerical analysis.

4. Newton-Raphson Division:
o Description: Uses iterative approximation to find reciprocal and multiply to achieve division.
o Advantages: Provides fast convergence for division of real numbers.
o Example: Used in mathematical software libraries and numerical simulations.

Applications and Advancements

e  Cryptographic Algorithms: Faster multiplication and division algorithms are crucial for encryption and

decryption processes in secure communication protocols.

o Digital Signal Processing: FFT-based multiplication supports efficient signal analysis and synthesis in

audio and video processing applications.




e High-Performance Computing: SRT division and advanced multiplication algorithms enable faster

numerical simulations and scientific computing tasks.

4.7 Multiplication Algorithms

Multiplication algorithms are methods used to perform multiplication of two numbers, either binary or decimal.
These algorithms are essential in digital electronics and computer arithmetic, as they enable efficient and accurate
multiplication of numbers. Various multiplication algorithms exist, each with its own strengths and weaknesses.
Some common multiplication algorithms include Binary Multiplication, Booth's Algorithm, Modified Booth's
Algorithm, Array Multiplier, and Wallace Tree Multiplier. Each algorithm uses a different approach to perform

multiplication, such as shifting and adding, or using lookup tables.

The choice of multiplication algorithm depends on factors such as the size of the numbers, the desired speed, and
the available hardware resources. For example, Booth's Algorithm is suitable for multiplying large numbers, while
the Array Multiplier is better suited for smaller numbers. Understanding multiplication algorithms is crucial in
designing and optimizing digital systems, such as computers, smartphones, and other electronic devices. By
selecting the appropriate multiplication algorithm, developers can improve the performance, power efficiency,
and accuracy of these systems. Additionally, multiplication algorithms have applications in various fields,

including cryptography, signal processing, and scientific simulations.
Binary Multiplication Basics

Binary multiplication is the process of multiplying two binary numbers. It is similar to decimal multiplication but

uses only the digits 0 and 1. The basic steps are:

1. Partial Products: Each bit of one number is multiplied by each bit of the other number, similar to

multiplying by each digit in decimal multiplication.
2. Shifting: Each partial product is shifted left based on its position.
3.  Summation: The shifted partial products are summed to get the final product.

Example:

1
shifted

s shifted two

s shifted three positions




Booth’s Algorithm for Multiplication

Booth's Algorithm is an efficient way to perform binary multiplication, particularly for numbers with both positive

and negative values. It reduces the number of additions required by encoding the multiplicand in a specific way.
Steps:

1. Initialization: Load the multiplicand and multiplier.

2. Examine Bits: Look at two bits of the multiplier at a time.

3. Decision Making: Depending on the bit pairs (00, 01, 10, 11), add or subtract the multiplicand and shift.

4. Shift: Right-shift the accumulator and multiplier as a unit.

Example:
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Modified Booth’s Algorithm

Modified Booth's Algorithm extends Booth's algorithm by encoding three bits at a time, improving performance

for large bit-width multiplications.
Steps:
1. Group Bits: Divide the multiplier into overlapping groups of three bits.
2. Recoding: Encode each group into a single digit.
3.  Multiply and Accumulate: Use the recoded digits to multiply and accumulate partial products.

Figure: Modified Booth's Algorithm
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Array Multiplier

An Array Multiplier is a combinational circuit that uses an array of AND gates and adders to perform binary

multiplication. Each row represents a partial product, and all partial products are summed in parallel.




Example:

For 4-bit multiplication:
Multiplicand (M) = 1101
Multiplier (Q) = 1011

Each bit of the multiplier multiplies the entire multiplicand, generating partial products which are then added.

a,; a, a; a,

x by b, b, b,
P30 P20 P10 Poo
P31 P21 P11 Po1 X

P32 P22 P12 Pe X X

P3s P23 P13 Pp3 X X X
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Wallace Tree Multiplier

A Wallace Tree Multiplier uses a tree of adders to sum partial products more efficiently than a linear array. It

reduces the number of sequential addition steps by summing multiple partial products simultaneously.
Steps:

1. Partial Product Generation: Generate all partial products.

2. Reduction: Use a tree structure to reduce the partial products to two rows.

3. Final Addition: Add the two rows to get the final product.

Figure: Wallace Tree Multiplier
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Implementation and Hardware Design

Implementing these multiplication algorithms in hardware involves designing circuits that can efficiently perform

the required operations.

1. Booth’s and Modified Booth’s Multipliers:
o Control Logic: For examining bits and deciding operations.
o Add/Subtract Units: For performing addition and subtraction based on control signals.
o Shift Registers: For shifting operations.

2. Array Multiplier:
o AND Gates: For generating partial products.
o Full Adders: For summing partial products.

3.  Wallace Tree Multiplier:
o Compressor Circuits: For reducing multiple partial products in parallel.
o Final Adder: For summing the reduced partial products.

Figure: Hardware Design of Multipliers
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4.8 Division Algorithms

A division algorithm is a method for dividing one number by another and obtaining the quotient and remainder.

There are several types of division algorithms, including:

1.

Binary Division: This algorithm is used for dividing binary numbers. It is based on the concept of

shifting and subtracting the divisor from the dividend.

Restoring Division: This algorithm is used for dividing signed numbers. It is based on the concept of

restoring the dividend to its original value after each subtraction.

Non-Restoring Division: This algorithm is used for dividing signed numbers. It is based on the concept

of not restoring the dividend to its original value after each subtraction.

SRT Division: This algorithm is used for dividing binary numbers. It is based on the concept of using a

lookup table to determine the quotient and remainder.

Goldschmidt Division: This algorithm is used for dividing binary numbers. It is based on the concept of

using a series of shifts and adds to determine the quotient and remainder.

Division Algorithm Steps




The steps for a division algorithm typically include:

1.

Initialization: Initialize the dividend, divisor, quotient, and remainder.

Shift: Shift the dividend and divisor to align the most significant bits.

Subtract: Subtract the divisor from the dividend.

Test: Test the result of the subtraction to determine if the dividend is greater than or equal to the divisor.
Quotient: Update the quotient based on the result of the test.

Remainder: Update the remainder based on the result of the test.

Repeat: Repeat steps 2-6 until the dividend is less than the divisor.

Division Algorithm Example

Suppose we want to divide 16 by 4 using the binary division algorithm.

1.

Initialization: Dividend = 16, Divisor = 4, Quotient = 0, Remainder = 0

Shift: Shift the dividend and divisor to align the most significant bits.

Subtract: Subtract the divisor from the dividend. 16 - 4 = 12

Test: Test the result of the subtraction. 12 >= 4, so we update the quotient and remainder.
Quotient: Quotient = 1, Remainder = 12

Repeat: Repeat steps 2-5 until the dividend is less than the divisor.

Binary Division Basics

Binary division is the process of dividing one binary number by another, similar to long division in the decimal

system. The steps involve repeated subtraction and shifting.

1.

Initialization: Set up the dividend and divisor.
Comparison: Compare the dividend (or part of it) with the divisor.

Subtraction and Shift: If the divisor is less than or equal to the dividend, subtract the divisor from the

dividend and record a 'l" in the quotient. If not, record a '0".
Shift: Shift the remainder and bring down the next bit of the dividend.

Repeat: Continue until all bits of the dividend have been processed.

Example:




Dividend (D) =

» quotient =
« Shift down
(shift down bit)

. Repeat all bits

Final .1.....ri.-.-.1 =

Restoring Division Algorithm

The Restoring Division Algorithm is a method for binary division that involves restoring the original value of the

dividend if the subtraction results in a negative value.

Steps:
1. Initialize: Load the dividend and divisor.
2. Align: Place the divisor aligned with the leftmost bit of the dividend.
3. Subtract: Subtract the divisor from the current portion of the dividend.

4. Check: If the result is positive, set the corresponding quotient bit to '1'. If negative, restore the original

value by adding the divisor back and set the quotient bit to '0".
5. Shift: Shift the remainder and bring down the next bit of the dividend.
6. Repeat: Continue until all bits have been processed.

Figure: Restoring Division Algorithm




A-Accumulator

( START ) M-Divisor

Q « di{.ridend Q-Dividend/Quotient
COUI\iT{— 0

M « divisor
A«0
P!

Left-shift A, Q |
¥

A< A-M

A< U-? Yes

v
Q(0) <0

No | A — A+

Q0) « 1

COUNT <« COUNT+1 —

Yes
( STOP ) Quotient in Q

Non-Restoring Division Algorithm

The Non-Restoring Division Algorithm improves efficiency by avoiding the restoration step. It adjusts the

quotient and remainder based on the result of the subtraction.

Steps:
1. Initialize: Load the dividend and divisor.
2. Align: Place the divisor aligned with the leftmost bit of the dividend.
3. Subtract: Subtract the divisor from the current portion of the dividend.

4. Check: If the result is positive, set the corresponding quotient bit to '1' and shift left. If negative, set the
quotient bit to '0' and shift left.

5. Correction: If the remainder is negative after the final step, add the divisor back.
6. Repeat: Continue until all bits have been processed.

Figure: Non-Restoring Division Algorithm
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SRT Division Algorithm

The SRT Division Algorithm is a method for dividing binary numbers using a combination of shifts, adds, and

subtracts. It was developed by Sweeney, Robertson, and Tocher in the 1950s.
Implementation
The SRT Division Algorithm is implemented using the following steps:
1. Initialization: Initialize the dividend, divisor, quotient, and remainder.
2. Shift: Shift the dividend and divisor to align the most significant bits.
3. Add/Subtract: Add or subtract the divisor from the dividend, depending on the sign of the dividend.

4. Test: Test the result of the add/subtract operation to determine if the dividend is greater than or equal to

the divisor.




5. Quotient: Update the quotient based on the result of the test.
6. Remainder: Update the remainder based on the result of the test.

7. Repeat: Repeat steps 2-6 until the dividend is less than the divisor.
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4.9 Conclusion

In this chapter, we explored the fundamental concepts and techniques used in the design and implementation of
Arithmetic Logic Units (ALUs) and faster algorithms for multiplication and division. We learned about the
definition and functions of an ALU, the different types of ALUSs, and their components. We also delved into the

micro-operations that take place within an ALU, including arithmetic and logical operations.

The importance of ALUs in computer systems cannot be overstated. They are responsible for performing
arithmetic and logical operations, which are essential for data processing and decision-making. The design and
operation of ALUs are crucial for optimizing the performance of computer systems. Furthermore, faster
algorithms for multiplication and division can significantly improve the performance of ALUs, leading to faster

and more efficient processing of arithmetic and logical operations.




In conclusion, this chapter provided a comprehensive overview of ALUs and faster algorithms for multiplication
and division. We hope that this information will be useful for students, researchers, and practitioners in the field
of computer science and engineering. By understanding the concepts and techniques discussed in this chapter, we
can appreciate the importance of ALUs in computer systems and the need for faster algorithms to optimize their
performance. This knowledge can be applied to improve the design and implementation of computer systems,

leading to faster and more efficient processing of arithmetic and logical operations.

4.10 Unit Based Questions & Answers

1. Define micro-operations within an ALU. Give examples.

Answer: Micro-operations are elementary operations performed by an ALU on data stored in registers. Examples
include register transfer operations (move, load, store), arithmetic operations (add, subtract), logic operations

(AND, OR, XOR), and shift operations (left shift, right shift).
2. How does the control unit manage micro-operation sequencing in an ALU?

Answer: The control unit decodes instructions and generates control signals that coordinate the execution of

micro-operations within the ALU, ensuring operations are performed in the correct sequence.
3. Compare and contrast the architecture of ALU chips from different manufacturers like Intel and AMD.

Answer: While specifics vary, both Intel and AMD ALU chips typically feature high-speed arithmetic and logic

circuits optimized for performance and power efficiency, integrated into their respective microprocessor designs.
4. Describe the Karatsuba algorithm for multiplication. What are its advantages?

Answer: The Karatsuba algorithm uses a divide-and-conquer approach to multiply numbers efficiently by
reducing the number of required multiplications. It's advantageous for large number multiplications, reducing

computational complexity.
5. Explain the restoring division algorithm. How does it ensure accurate division results?

Answer: Restoring division involves repeatedly subtracting the divisor from the dividend, restoring the dividend

if necessary. It ensures accurate results by maintaining consistency and handling remainders effectively.
6. Why are faster algorithms for multiplication and division important in modern computing?

Answer: Faster algorithms improve computational efficiency by reducing processing time and resource
consumption, making them crucial for handling large-scale data, real-time applications, and complex

computations.
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5.0 Introduction

The evolution of computer architecture has laid the foundation for modern computing systems, with one of the
most significant milestones being the development of the Von Neumann architecture. Proposed by John von
Neumann in the mid-20th century, this architecture introduced the concept of storing both instructions and data in
the same memory, a principle that greatly simplified computer design and paved the way for more versatile and
powerful computing machines. Understanding the principles and components of this architecture is crucial for

grasping how contemporary computers function and process information.

The IAS computer, developed a@ne Institute for Advanced Study under von Neumann's guidance, was one of the
first practical implementations of this architecture. It played a pivotal role in demonstrating the feasibility and
efficiency of the stored-program concept. This unit delves into the historical background and technical details of
the TAS computer, highlighting its contributions to early computing and its lasting impact on modern computer
architecture. By examining the operational flow chart, including the fetch and execute cycles, students will gain

insight into the fundamental processes that underpin CPU operations.




Furthermore, this unit explores the organization and design of ti¢ Central Processing Unit (CPU), the core
component of any computer system. Detailed discussions on CPU architecture, including pipelining, superscalar
architecture, and branch prediction, will elucidate how modern CPUs achieve high performance and efficiency.
Additionally, the concept of memory hierarchy, which includes registers, cache memory, main memory, and
secondary storage, will be covered to illustrate how data is managed and accessed at different levels within a
computer. By the end of this unit, students will have a comprehensive understanding of these critical aspects of

computer architecture and their significance in the development of advanced computing systems.

5.1 Objectives

After completing this unit, you will be able to understand,;

e To understand the principles and components of the Von Neumann architecture.
e To explore the historical development and significance of the [AS computer.

e To prehend the operational flow chart, including the fetch and execute cycles.

e To @; about the organization and architecture of the Central Processing Unit (CPU).
e To examine the concept and importance of memory hierarchy in computer systems.

e To understand how these elements integrate to enhance computing performance.

5.2 Von Neumann Architecture

The Von Neumann architecture, named after mathematician and physicist John von Neumann, is a foundational
design for computing systems. It describes a theoretical framework that outlines the basic structure of a computer

and how it operates. Key principles include:

e Stored Program Concept: Programs and data are stored in the same memory unit, allowing instructions

to be fetched and executed sequentially.

e Sequential Execution: Instructions are executed one after another, following the Fetch-Decode-Execute

cycle.

e Central Processing Unit (CPU) Control: The CPU interprets and executes instructions fetched from

memory, controlling the flow of data within the system.
Components
1. CPU (Central Processing Unit):

o Function: Executes instructions by performing arithmetic, logic, and control operations.




o Components: ALU (Arithmetic Logic Unit) performs arithmetic and logic operations, CU
(Control Unit) directs operations based on instructions fetched, and registers temporarily hold

data and instructions.
2. Memory:
o Function: Stores both data and instructions that the CPU accesses during execution.

o Types: Main memory (RAM) for fast access by the CPU and secondary storage (like hard

drives) for long-term storage.
3. Input/Output (I/0O) Devices:

o Function: Facilitate communication between the computer and external entities (e.g.,

keyboards, monitors, printers).
o Interface: Uses buses to transfer data between 1/0 devices and memory/CPU.
4. Bus System:

o Function: Provides pathways for data and control signals to travel between components (CPU,

memory, I/O devices).

o Types: Data bus (for data transfer), address bus (for memory address), control bus (for control

signals).
Advantages

o Flexibility: The ability to store programs and data in the same memory allows for easier programming

and reprogramming of computers.

o Efficiency: Sequential execution simplifies control and coordination within the CPU, enhancing overall

system efficiency.

e Standardization: Vor@eumann architecture has become a standard for general-purpose computing,

facilitating compatibility and interoperability across different systems.
Limitations

e Bottleneck: The single bus structure can create a bottleneck as all components must share the same

pathway for data transfer.

e  Vulnerability: Centralized control through the CPU and single bus system can lead to performance

limitations and potential system failures.

e Scalability: Scaling the architecture to support parallel processing and real-time computing tasks can be

challenging due to its sequential nature.

Comparison with Other Architectures




e Harvard Architecture: Separates data and instruction memory, allowing simultaneous access to both,

which can enhance performance in specific applications but requires more complex hardware.

e Parallel Architectures: Designed for simultaneous execution of multiple instructions or tasks, offering

superior performance in parallel computing tasks but requiring specialized programming and hardware.

Input
Device

Central Processing Unit

Output

Dovice

5.3 IAS Computer (Institute for Advanced Study Computer)

Historical Background and Development

he IAS Computer project emerged in the aftermath of World War II, during a period marked by rapid

advancements in electronic computing technology and theoretical computer science. Key figures involved in its

inception included John von Neumann, a prominent mathematician and physicist renowned for his contributions

to mathematics, quantum mechanics, and computing theory.

Development Timeline

1. 1946-1948: Early Conceptualization

The idea for the IAS Computer took shape in the mid-1940s z@e Institute for Advanced Study
(IAS) in Princeton, New Jersey. John von Neumann, along with a team of engineers and
scientists, began conceptualizing a new type of computing machine that could store and

manipulate both data and instructions electronically.

2. 1948-1951: Construction and Implementation




o Construction of the IAS Computer commenced in 1948, with the primary goal of creating a
practical implementation of von Neumann’s stored-program computer architecture. The project
faced numerous technical challenges, including the development of electronic circuits capable

of handling complex mathematical computations.
3. 1951: Operational Phase

o By 1951, the IAS Computer became operational, marking a significant milestone in the history
of computing. It represented one of the earliest exarﬁ-‘s of a fully functional stored-program
computer, where programs and data were stored il the same memory unit and processed

sequentially by a central processing unit (CPU).
Significance and Impact

The development of the IAS Computer had profound implications for both theoretical computer science and

practical computing applications:

e Stored-Program Concept: The IAS Computer demonstrated the feasibility and advantages of von
Neumann’s stored-program concept, which became the basis for most subsequent computer
architectures. This concept revolutionized the way computers processed information, enabling more

efficient program execution and flexibility in software development.

e Computational Power: As one of the first electronic computers capable of executing stored programs,
the IAS Computer facilitated advanced scientific computations and mathematical simulations that were
previously impractical. Its computational power accelerated research in fields such as physics,

engineering, and mathematics.

e Architectural Influence: The design principles of the IAS Computer influenced the development of
subsequent computing systems, including commercial mainframes and early academic research
computers. Its architecture served as a blueprint for future generations of computers, shaping the

evolution of modern computing technology.
Architecture and Components
The architecture of the IAS Computer reflected the foundational principles of the Von Neumann architecture:

e  Central Processing Unit (CPU): The IAS Computer featured a single CPU responsible for executing

instructions fetched from memory. It consisted of:
o Arithmetic Unit: Responsible for performing arithmetic operations.
o Control Unit: Managed the execution of instructions and coordination of data flow.

e Memory System: It utilized a shared memory design where both data and instructions were stored in a
single memory unit. This architecture facilitated the sequential execution of instructions, a hallmark of

the Von Neumann architecture.




Input/Output (I/0) System: The IAS Computer was equipped with basic I/O devices such as punched

card readers and printers, enabling interaction with external data sources and output devices.

Contribution to Early Computing and Modern Computer Architecture

The TAS Computer made several significant contributions to the field of computing:

Stored-Program Concept: It demonstrated the feasibility and advantages of the stored-program
concept, where instructions and data reside in the same memory. This concept became foundational for

subsequent computer designs and architectures.

Architectural Influence: The design principles of the IAS Computer heavily influenced the
development of early computing systems and architectures. It served as a model for subsequent

computers, including commercial machines and academic research projects.

Computational Advancements: By providing a platform for scientific computation and research, the
IAS Computer contributed to advancements in mathematics, physics, and engineering. It facilitated

complex calculations and simulations that were previously impractical or impossible.

Legacy: The legacy of the IAS Computer extends to modern computer architecture, where princip@
such as the Von Neumann architecture and the stored-program concept remain integral. Its influence ¢
be seen in the design of CPUs, memory systems, and I/O devices used in contemporary computing

devices.

5.4 Operational Flow Chart

The IAS Computer follows a structured sequence of operations for executing instructions stored in its memory.

This sequence, known as the instruction cycle, can be represented by an operational flow chart. The instruction

cycle primarily consists of two main phases: the Fetch phase and the Execute phase. Below is a detailed

explanation and a visual representation of the operational flow chart.

Steps in the Instruction Cycle

1.

2.

Fetch Phase:

o Step 1: The Control Unit (CU) sends a signal to fetch the instruction stored at the memory
location pointed to by the Program Counter (PC).

o Step 2: The instruction is fetched from memory and placed into the Instruction Register (IR).
o Step 3: The Program Counter (PC) is incremented to point to the next instruction in sequence.

Decode Phase:




o Step 4: The instruction in the Instruction Register (IR) is decoded to determine the operation to

be performed and the operands involved.
3. Execute Phase:

o Step 5: The appropriate signals are sent to the Arithmetic Logic Unit (ALU) and other

components to perform the required operation (e.g., addition, subtraction, logical operations).
o Step 6: The result of the operation is stored in the appropriate register or memory location.

o Step 7: If the instruction involves branching (conditional or unconditional jump), the Program

Counter (PC) is updated accordingly.
4. Repeat Cycle:

o Step 8: The cycle repeats, starting again from the fetch phase, until all instructions are executed

or a halt instruction is encountered.

Visual Representation of the Operational Flow Chart

Below is a simplified visual representation of the operational flow chart for the IAS Computer:
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Explanation of the Flow Chart

e Start Instruction Cycle (Fetch): This marks the beginning of the instruction cycle. The CPU prepares

to fetch the next instruction from memory.

e Fetch Instruction from Memory: The instruction is fetched from the memory location specified by the

Program Counter (PC) and placed into the Instruction Register (IR).

e Increment Program Counter (PC): The Program Counter is incremented to point to the next instruction

in sequence.




e Decode Instruction: The Control Unit decodes the instruction in the Instruction Register to determine

what operation to perform.

o Execute Instruction: The ALU and other components execute the decoded instruction. This may involve

arithmetic or logical operations, data transfer, etc.

e Store Result: The result of the executed instruction is stored in the appropriate register or memory

location.

e  Check for Branching or Halt: The Control Unit checks if the instruction involves branching (jumping

to another memory address) or if it is a halt instruction (to stop execution).

e Update Program Counter for Jump: If branching is required, the Program Counter is updated to the

target address.

e Continue to Next Instruction Cycle: The CPU prepares for the next instruction cycle if there are more

instructions to execute.

e Halt Execution: If a halt instruction is encountered, the CPU stops executing further instructions.

5.5 Organization of @ntral Processing Unit (CPU)

The Central Processing Unit (CPU) is the core component of a computer system responsible for executing
instructions and processing data. The organization of the CPU involves various components and subsystems that
work together to perform these tasks efficiently. Below is a detailed explanation of the organization of the CPU,

including its main components and their functions.
Main Components of the CPU
1. Arithmetic Logic Unit (ALU):
o The ALU performs arithmetic and logical operations on the data.

o It handles operations such as addition, subtraction, multiplication, division, and logical

operations like AND, OR, XOR, and NOT.

o The ALU is a critical component for executing mathematical computations and making logical

decisions.
2. Control Unit (CU):
o The Control Unit directs the operation of the CPU by generating control signals.

o It interprets instructions fetched from memory, decodes them, and controls the execution

process by coordinating with the ALU, registers, and other components.




o The CU manages the flow of data between the CPU and other parts of the computer.
3. Registers:
o Registers are small, fast storage locations within the CPU used to hold data temporarily.

o Common registers include the Accumulator (ACC), Program Counter (PC), Instruction Register
(IR), Memory Address Register (MAR), Memory Data Register (MDR), and General Purpose
Registers (GPRs).

o Registers facilitate quick access to data and instructions during execution.
4. Cache Memory:

o Cache memory is a high-speed memory located close to the CPU that stores frequently accessed

data and instructions.

o It reduces the time needed to access data from the main memory (RAM), enhancing overall

performance.
o The CPU typically has multiple levels of cache (L1, L2, L3) to improve efficiency.
5. Buses:

o Buses are communication pathways that connect the CPU with other components, such as

memory and input/output devices.

o The main types of buses are the Data Bus (transfers data), Address Bus (transfers memory

addresses), and Control Bus (transfers control signals).

o Buses enable the transfer of data, instructions, and control signals between different parts of the

computer.
6. Clock:

o The clock generates timing signals that synchronize the operations of the CPU and other

components.
o The clock speed, measured in Hertz (Hz), determines the rate at which instructions are executed.
o Higher clock speeds generally result in faster processing.
Organization and Interaction of CPU Components

The organization of the CPU involves the interaction and coordination of its components to execute instructions

and process data efficiently. Below is a diagram and explanation of how these components interact:




Control Unit (CU)

1. Control Unit (CU):
o Fetches instructions from the main memory (RAM) via the buses.

o Decodes the instructions and generates control signals to direct the operation of the ALU and

registers.
2. Registers:
o Temporarily hold data, instructions, and addresses needed for execution.

o Interface with the ALU for performing operations and with the CU for fetching and decoding

instructions.
3. ALU:
o Performs arithmetic and logical operations on data from the registers.
o Sends the results back to the registers or main memory as directed by the CU.
4. Cache Memory:

o Provides fast access to frequently used data and instructions, reducing the need to access slower

main memory.
o Interfaces directly with the registers and the CU to enhance performance.
5. Buses:

o Facilitate the transfer of data, instructions, and control signals between the CPU, main memory,

and other components.
o Ensure that data and instructions are available when needed by the CPU.
Functions of the CPU Components

e ALU: Executes arithmetic and logical operations, which are fundamental for processing data.




CU: Manages the instruction cycle (fetch, decode, execute, store) and ensures proper coordination among

CPU components.
Registers: Provide fast access storage for intermediate data and instructions during processing.

Cache Memory: Enhances processing speed by reducing access time to frequently used data and

instructions.

Buses: Enable efficient communication and data transfer between the CPU and other system

components.

Clock: Synchronizes the operations of the CPU, ensuring that all components work in harmony.

5.6 CPU Architecture and Design

Instruction Set Architecture (ISA): The ISA defines the set of instructions that the CPU can execute,
the data types, the registers, the addressing modes, and the memory architecture. Common ISAs include

RISC (Reduced Instruction Set Computing) and CISC (Complex Instruction Set Computing).

Microarchitecture: Microarchitecture is the detailed implementation of the ISA. It includes the design

of the ALU, CU, cache, pipeline stages, and other components to achieve efficient instruction execution.

Pipeline Design: Pipelining allows multiple instructions to be processed simultaneously by dividing the
instruction execution process into several stages, such as fetch, decode, execute, and write-back. This

improves CPU throughput.

Superscalar Architecture: Superscalar architecture allows the CPU to execute more than one
instruction per clock cycle by using multiple execution units, which significantly increases processing

speed.

Branch Prediction: Branch prediction is a technique to improve the flow in the instruction pipeline. It
attempts to guess whether a conditional branch will be taken or not, thus allowing the pipeline to be filled

more efficiently.

Out-of-Order Execution: This technique allows instructions to be executed out of order for optimal use

of CPU resources, reducing idle times and increasing overall efficiency.

Detailed Design Examples

Arithmetic and Logic Unit (ALU):

o The ALU is designed to handle arithmetic operations like addition and subtraction, as well as
logic operations like AND, OR, XOR, and NOT. Below is an example of an ALU design for a

simple 4-bit processor:




e Components:

o Adder/Subtractor Circuit: Performs addition and subtraction.

o Logic Circuit: Performs logical operations.

o Multiplexer: Selects between different operations based on control signals.
2. Control Unit (CU):

o The CU manages the execution of instructions by generating appropriate control signals. Here

is a simplified diagram of a control unit:
e Components:
o Instruction Decoder: Decodes the fetched instruction.

o Control Signal Generator: Produces signals to control the ALU, registers, and other

components.
o Timing and Control Logic: Ensures instructions are executed in correct sequence and timing.
3. Pipeline Architecture:

o Pipelining breaks down the execution of instructions into several stages, with each stage being

processed in parallel. Here is a simple 5-stage pipeline diagram:

e Stages:

o Fetch (F): l%ruction is fetched from memory.

o Decode (D): Instruction is decoded to understand the operation.

o Execute (E): Operation is performed by the ALU.

o Memory (M): Data is read from or written to memory.

o  Write-back (W): Results are written back to the register file.

CPU Architecture Types

1. Von Neumann Architecture:

o A single memory space stores both instructions and data, with a single bus for accessing

memory.
2. Harvard Architecture:

o Separate memory spaces and buses for instructions and data, allowing simultaneous access to

both.




5.7 Memory Hierarchy

Memory hierarchy in computer architecture refers to the structured arrangement of different types of storage
technologies to balance cost, capacity, and access speed. This organization allows a computer system to achieve
efficient performance and manage the storage of data and instructions in a way that maximizes processing speed

while minimizing cost.
Levels of Memory Hierarchy
Registers
e  Small, built-in memory within the CPU (typically 8-64 registers)
e Store temporary results, data, and instructions
o Fastest access time (typically 1-2 clock cycles)
e Volatile memory (loses data when power is turned off)
Cache Memory
e Small, fast memory that stores frequently accessed data
e Divided into levels (L1, L2, L3, etc.) with increasing size and access time
e L1 cache is smallest and fastest (typically 8-64 KB)
e L2 cache is larger and slower (typically 256 KB-1 MB)
e L3 cache is shared among multiple CPU cores (typically 1-10 MB)
e Reduces access times and improves cache hit rates
Main Memory (RAM)
e Larger, volatile memory that stores programs and data
e Typically 4-64 GB in size
e Access time is slower than cache (typically 50-100 clock cycles)
e Data is lost when power is turned off
Secondary Storage (Hard Drives, SSDs)
¢ Non-volatile storage for long-term data retention
e Hard disk drives (HDDs) use spinning disks and mechanical heads

e Solid-state drives (SSDs) use flash memory and are faster




e  Access times are slower than main memory (typically 1-10 ms)
e Data is retained even when power is turned off
The memory hierarchy is designed to optimize data access and processing efficiency by:
e  Storing frequently accessed data in faster memory levels
e Reducing access times and transfers between memory levels
e Improving cache hit rates and minimizing cache misses

e Providing a large storage capacity for programs and data

Computer Memory Hierarchy
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5.8 Conclusion

In summary, the Von Neumann architecture has been instrumental in shaping the landscape of modern computing.
Its core principles, including the stored program concept and the integration of data and instructions within a

single memory, have set a standard for computer design that persists to this day. The exploration of the IAS




computer provided a historical context, showcasing an early implementation that validated these principles and

significantly influenced subsequent computer architectures.

The detailed examination of the operational flow within a CPU, particularly the fetch and execute cycles, offered
insights into the fundamental processes that enable computers to perform complex tasks. Understanding the
organization and architectural design of the CPU, along with advanced techniques such as pipelining, superscalar
execution, and branch prediction, highlighted the advancements that have been made to enhance processing speed
and efficiency. Additionally, the concept of memory hierarchy underscored the importance of efficiently managing

data storage and retrieval to optimize overall system performance.

By delving into these topics, students have gained a comprehensive understanding of the foundational elements
of computer architecture. This knowledge not only provides a solid grounding in the principles and history of
computer design but also equips students with the insights needed to appreciate the ongoing advancements in
technology. As computing continues to evolve, these foundational concepts will remain crucial, guiding future

innovations and developments in the field.

5.9 Unit Based Questions & Answers

1. What are the main principles of the Von Neumann architecture?

Answer: The main principles include the use of a single memory to store both instructions and data, sequential
execution of instructions, and the concept of the stored-program where instructions are fetched from memory and
executed by the CPU.

2. Describe the components of a Von Neumann machine.

Answer: The main components are the Central Processing Unit (CPU), memory, input/output devices, and a bus

system for data transfer. The CPU is further divided into the Arithmetic Logic Unit (ALU) and the control unit.
3. What was the significance of the IAS computer in the development of computer architecture?

Answer: The IAS computer, developed under the guidance of John von Neumann, was one of the first practical
implementations of the stored-program concept. It demonstrated the feasibility and efficiency of this architecture,

influencing future computer designs.
4. Explain the fetch and execute cycle in a CPU's operational flow chart.

Answer: The fetch and execute cycle involves fetching an instruction from memory, decoding it to understand the
required operation, executing the operation by the ALU or other CPU components, and then storing the result

back in memory or a register.

5. How does the CPU architecture differ between single-core and multi-core processors?




Answer: A single-core processor has one processing unit that handles all tasks, while a multi-core processor has
multiple processing units (cores) that can execute instructions concurrently, improving performance and

multitasking capabilities.
6. What are the advantages of pipelining in CPU design?

Answer: Pipelining allows multiple instructions to be processed simultaneously at different stages of execution,
increasing instruction throughput and overall CPU performance by making more efficient use of the CPU's

resources.
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6.0 Introduction

To effectively manage and execute instructions within a central processing unit (CPU), the design and
functionality of its control units play a pivotal role. Control units serve as the "brain" of the CPU, orchestrating
the fetching, decoding, and execution of instructions. They are integral to ensuring that operations within a
computer system are performed accurately and efficiently. This section delves into the intricacies of control units,
exploring both hardwired and microprogrammed approaches, as well as the organizational aspects of CPU

architecture and instruction set design.

Understanding these components is essential for comprehending how computers process instructions and manage
data flow. This section will explore the fundamental principles behind control unit design, the trade-offs between

hardwired and microprogrammed implementations, and how these units interact with other critical elements like




data paths, registers, and memory structures. Moreover, it will delve into the organizational strategies that CPUs
employ to streamline operations, such as single organization models and the organization of data paths and control

paths.

By examining these topics, readers will gain insights into the foundational elements that underpin CPU operation,
paving the way for a deeper understanding of computer architecture and its practical applications in both hardware

and software engineering.

6.1 Objectives

¢ Understand the Role of Control Units: Define the role and significance of control units within a CPU
and digital systems.

¢ Differentiate Between Hardwired and Microprogrammed Control Units: Explore the differences in
design, implementation, and operation between hardwired and microprogrammed control units.

¢ Examine Single Organization Models: Investigate organizational strategies within CPU architecture,
focusing on single organization models and their impact on performance and efficiency.

e Analyze Data Path and Control Path Interactions: Understand how data paths and control paths
interact within a CPU, influencing the execution of instructions and overall system performance.

o Explore Instruction Set Architecture (ISA): Introduce the concept of ISA and its role in defining the

set of instructions that a CPU can execute, including instruction formats and addressing modes.

6.2 Introduction to Control Units

A control unit (CU) is a critical component of a computer's central processing unit (CPU). Its primary role is to
manage and coordinate the operations of the CPU by directing the flow of data between the CPU and other
components of the computer system. The control unit interprets the instructions from the computer's memory and

generates the necessary control signals to execute these instructions.
Functions of the Control Unit:
1. Instruction Fetching: Retrieving instructions from memory.
2. Instruction Decoding: Interpreting the instructions to determine the required actions.

3. Generating Control Signals: Producing signals that control the operations of the other CPU

components.

4. Execution Coordination: Managing the execution of instructions by coordinating the ALU, registers,

and other components.




5.

Data Flow Control: Ensuring that data moves to and from the correct locations at the right times.

The control unit essentially acts as the brain of the CPU, ensuring that all parts of the computer work together

smoothly and efficiently.

Differences between Hardwired and Microprogrammed Control Units

Hardwired Control Unit:

Design: Utilizes fixed logic circuits to control signals based on combinational logic. The control signals

are generated using hardware components such as gates, flip-flops, decoders, and multiplexers.

Speed: Generally faster because it directly translates instructions into control signals without

intermediary steps.
Flexibility: Less flexible as changes to the control logic require physical alterations to the hardware.

Complexity: Can become very complex and difficult to design, especially for CPUs with large

instruction sets.

Example: Often used in simple, high-speed processors and in applications where performance is critical.
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Microprogrammed Control Unit:

Design: Uses a sequence of microinstructions stored in control memory to generate control signals. Each

instruction is broken down into a series of simpler steps called micro-operations.

Speed: Generally slower than hardwired control units because microinstructions must be fetched and

executed from control memory.

Flexibility: More flexible as changes can be made by updating the microprogram in control memory,

without altering the physical hardware.

Complexity: Simplifies the design process and is easier to implement and modify, especially for complex

CPUs with extensive instruction sets.




Example: Commonly used in complex CPUs, microcontrollers, and systems where the ease of updates

and maintenance is essential.
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Fig. 7.6.1 Microprogrammed control unit

Comparison Summary:

Feature Hardwired Control Unit Microprogrammed Control Unit

Design Fixed logic circuits Sequence of microinstructions

Speed Generally faster Generally slower

Flexibility Less flexible More flexible

Complexity More complex to design and modify Easier to design and modify

Use Cases Simple. high-speed processors Complex CPUs and systems requiring updates

6.3 Hardwired Control Unit

A hardwired control unit is a fundamental component of a computer's central processing unit (CPU) responsible

for generating control signals that direct the operation of other CPU components based on the instructions fetched

from memory. Here's a detailed explanation of the hardwired control unit:

Definition and Function




The hardwired control unit operates using fixed logic circuits composed of gates (AND, OR, NOT), flip-flops,
decoders, multiplexers, and other digital components. Its primary function is to decode the instructions fetched

from memory into a series of control signals that coordinate the operation of the CPU.
Design and Operation

e Instruction Decoding: Upon fetching an instruction from memory, the control unit decodes it using
dedicated logic circuits. Each instruction opcode (operation code) is mapped to specific control signals
that instruct the CPU's components, such as the arithmetic logic unit (ALU), registers, and memory, on

what actions to perform.

e Direct Control Signal Generation: Unlike microprogrammed control units that use microinstructions
stored in memory, the hardwired control unit directly generates control signals based on the instruction's
opcode. This direct approach makes it faster in terms of execution compared to microprogrammed control

units.

e Combinational Logic: It employs combinational logic circuits to interpret the instruction's opcode and
generate appropriate outputs based solely on the current inputs (instruction opcode and possibly some

status bits).
Advantages

e Speed: Hardwired control units are generally faster than microprogrammed control units because they

execute instructions directly without the need to fetch microinstructions from memory.

e Simplicity: The design is straightforward and relies on fixed circuits, making it easier to understand,

implement, and verify.
Disadvantages

¢ Flexibility: Changes or updates to the instruction set architecture (ISA) may require physical changes to

the hardware, which can be complex and costly.

e Complexity for Large ISAs: Designing a hardwired control unit for CPUs with large instruction sets

can become challenging and may lead to intricate and extensive circuitry.
Example of Hardwired Control Unit

Consider a simplified example of a hardwired control unit for a CPU that supports basic arithmetic (add, subtract),

logic (AND, OR), and data movement instructions (load, store):
1. Instruction Fetch: Fetch an instruction from memory.

2. Instruction Decode: Decode the instruction opcode using combinational logic circuits to determine the

required control signals:

o For an arithmetic operation (e.g., ADD): Set control lines to activate the ALU and select

addition mode.




o Foradata movement operation (e.g., LOAD): Activate memory read lines and set address lines.

3. Control Signal Generation: Generate control signals based on the decoded instruction, directing the

CPU's components to execute the instruction effectively.
Implementation with combinational logic circuits

Implementing a hardwired control unit involves using combinational logic circuits to decode instruction opcodes

and generate control signals. Here’s how it is typically implemented:
1. Instruction Fetch

e Fetch Cycle: The CPU fetches an instruction from memory. This instruction is typically stored in the

instruction register (IR).
2. Instruction Decode

e Opcode Decoding: The opcode of the fetched instruction is decoded using combinational logic circuits.

Each opcode corresponds to a unique set of control signals that will direct the CPU’s components.
3. Control Signal Generation

e Control Logic: Combinational logic circuits such as AND gates, OR gates, NOT gates, and multiplexers

are used to interpret the opcode and generate specific control signals.

o Example: Suppose the CPU supports basic operations like ADD, SUBTRACT, LOAD, and STORE.
Each operation has a unique opcode. The control unit’s combinational logic will decode these opcodes

and set appropriate control lines:
o ADD Operation: Opcode 0001
= Control Signals: ALU control lines set to perform addition.
o SUBTRACT Operation: Opcode 0010
=  Control Signals: ALU control lines set to perform subtraction.
o LOAD Operation: Opcode 0100
=  Control Signals: Memory control lines set to perform data read from memory.
o STORE Operation: Opcode 0101
= Control Signals: Memory control lines set to perform data write to memory.
4. Output Control Signals
e Signal Lines: The generated control signals are sent to various components of the CPU:
o ALU (Arithmetic Logic Unit): Directs arithmetic and logic operations.

o Memory Interface: Controls data transfer to and from memory.




o Register File: Manages data movement between registers and ALU.
Example Circuit

Here’s a simplified example of how combinational logic circuits might decode and generate control signals for

basic operations:
In this diagram:
e Opcode Decoder: Combinational logic circuits decode the opcode stored in the IR.

e Control Signal Generator: Based on the decoded opcode, specific control lines (ALU control, memory

control) are activated.

6.4 Microprogrammed Control Unit

A microprogrammed control unit is a type of control unit in a CPU that uses microinstructions stored in memory
to execute instructions. Unlike a hardwired control unit, which uses fixed logic circuits to generate control signals
directly from instruction opcodes, a microprogrammed control unit fetches microinstructions from memory.

Here’s a detailed explanation of a microprogrammed control unit:
Definition and Function

e  Microinstructions: Microprogrammed control units operate using microinstructions, which are stored
in a control @emory (often referred to as a control store or microstore). Each microinstruction
0

corresponds t0 a set of control signals that direct the operation of the CPU during the execution of an

instruction.

e Instruction Execution: When an instruction is fetched from memory, its opcode is decoded to determine

the address of the corresponding microinstruction in the control memory.

e Control Memory: The microinstruction fetched from the control memory specifies control signals for
various components of the CPU, including the ALU (Arithmetic Logic Unit), registers, and memory

interface.
Components and Operation
1. Control Memory (Microstore):
o Stores microinstructions, each containing control signals.

o Addresses are typically generated by the opcode of the fetched instruction, directing which

microinstruction to fetch.

2. Microinstruction Format:




o Includes fields for control signals that activate various operations in the CPU.

o Fields may include ALU control, memory control, register transfer operations, and status flag

updates.
3. Control Unit Sequencer:

o Decodes the fetched instruction's opcode to determine the address of the microinstruction in the

control memory.
o Controls the sequencing of microinstructions during the execution of an instruction.
Advantages

o Flexibility: Easily accommodates changes to the instruction set architecture (ISA) by modifying

microinstructions in the control memory without altering hardware.

e Complexity Management: Suitable for CPUs with large and complex instruction sets, as it simplifies

the design of control logic.
Disadvantages

e Speed: Slower execution compared to hardwired control units due to the need to fetch and execute

multiple microinstructions per instruction.

e Complexity: Designing and managing microinstructions and control memory can be more complex and

require careful planning.
Example Circuit
Here’s a simplified example illustrating the operation of a microprogrammed control unit:
In this diagram:
e Control Memory: Stores microinstructions.
e Control Sequencer: Decodes the fetched instruction's opcode to address the control memory.

e  Microinstruction Format: Specifies control signals for ALU operations, memory access, and register

transfers.
Applications
e  Widely used in modern CPUs to efficiently manage and execute complex instruction sets.

e Allows for easier debugging and modification of control logic without hardware changes.

6.5 Single Organization




In computer architecture, "single organization" typically refers to a specific type of organization of the CPU and

its components. Here’s a detailed explanation of what it entails:
Single Organization in CPU Design
1. Definition:

o Single organization refers to a CPU architecture where the CPU components such as registers,
ALU (Arithmetic Logic Unit), control unit, and internal buses are designed to process and

execute a single instruction at a time.

o This contrasts with multiple organization (or pipelined organization), where the CPU can

process multiple instructions simultaneously in different stages of execution.
2. Components:

o Control Unit: Manages the operation of the CPU and directs data flow between components

based on the instruction being executed.
o Registers: Store operands, instructions, and intermediate results during computation.
o ALU: Performs arithmetic and logic operations specified by the instructions.

o Memory Interface: Handles communication between the CPU and memory, fetching

instructions and storing data.
3. Operation:

o I@’truction Cycle: The CPU fetches an instruction from memory, decodes it, executes the

operation specified, and stores or transfers the result.

o Sequential Execution: Instructions are executed one after another in a sequential manner, with

each instruction completing before the next one begins.
4. Advantages:
o Simplicity: Easier to design and implement compared to pipelined or superscalar architectures.
o Control: Clear control flow and easier to debug and verify.

o Resource Allocation: Resources such as registers and ALU are dedicated to executing one

instruction at a time, minimizing complexity in resource management.
5. Disadvantages:

o Efficiency: May not fully utilize CPU resources, leading to lower throughput compared to

pipelined architectures.

o Performance: Slower execution for tasks that benefit from parallelism or simultaneous

instruction execution.




o Scalability: Limited scalability for applications requiring high-performance computing due to

sequential nature.
Example and Application

o Example CPU: Early microprocessors like the Intel 8080 or Motorola 6800 were designed with single
organization. They executed instructions one at a time, making them suitable for simpler computing tasks

and early personal computers.

e Application: Single organization CPUs are still used in embedded systems, simple controllers, and
devices where power efficiency and simplicity are prioritized over high throughput and parallel

processing capabilities.
Simple processor architecture

A simple processor architecture typically refers to a basic design of a central processing unit (CPU) that focuses
on essential functionalities while minimizing complexity. Here’s an overview of what constitutes a simple

processor architecture:
Components of Simple Processor Architecture
1. Instruction Fetch and Decode Unit:
o Instruction Fetch: Retrieves instructions from memory.
o Instruction Decode: Decodes fetched instructions to determine the operation to be performed.
2. Execution Unit:

o Arithmetic Logic Unit (ALU): Performs arithmetic (addition, subtraction, etc.) and logic
(AND, OR, NOT) operations on data.

o Control Unit: Coordinates the operation of the CPU, directing data flow and controlling the

execution of instructions.
3. Registers:

o Program Counter (PC): Keeps track of the memory address of the next instruction to be
fetched.

o Instruction Register (IR): Stores the current instruction being executed.

o General-Purpose Registers: Hold data operands and intermediate results during computations.

4.  Memory Interface:
o Data Bus: Transfers data between the CPU and memory.

o Address Bus: Specifies the memory address for read or write operations.
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Operation of Simple Processor Architecture
e Instruction Cycle:
o Fetch: The CPU fetches the next instruction from memory using the address stored in the PC.
o Decode: The fetched instruction is decoded to determine its operation and operands.

o Execute: The ALU performs the operation specified by the instruction, utilizing data from

registers or memory.
o Store: Results are stored back in registers or memory, depending on the instruction.
Advantages of Simple Processor Architecture
e Ease of Design: Simplified design makes it easier to implement and understand.
e Low Cost: Requires fewer components, making it cost-effective for basic computing tasks.

e Low Power Consumption: Minimal circuitry leads to lower power consumption, suitable for battery-

operated devices and embedded systems.
Limitations of Simple Processor Architecture

e Limited Performance: Sequential execution limits throughput compared to more advanced architectures

like pipelined or superscalar processors.
e Instruction Set Limitations: Basic instruction set may not support complex operations or optimizations.

e Scalability: Limited scalability for applications requiring high computational power or parallel

processing.
Example Applications
e Embedded Systems: Used in microcontrollers for simple control and monitoring tasks.

e Basic Computing Devices: Found in early personal computers and calculators.




e Education: Often used in academic settings to teach fundamental CPU operation and architecture.

6.6 Data Path and Control Path

In computer architecture, the terms "data path" and "control path" refer to essential components of a processor's

design that collectively enable the execution of instructions. Let's delve into each concept in detail:
Data Path

The data path in a processor is responsible for the actual manipulation and processing of data. It consists of
hardware components that perform arithmetic and logical operations on data as directed by instructions. Key

elements of the data path include:

1. Registers: These are storage locations within the CPU that hold data temporarily during processing.

They include:

o General-Purpose Registers: Used for storing operands, intermediate results, and data for

calculations.

o Special Purpose Registers: Include program counter (PC), instruction register (IR), and

condition code registers (CCR) used for control flow and status information.

2. Arithmetic Logic Unit (ALU): The ALU performs arithmetic operations (addition, subtraction,
multiplication, division) and logical operations (AND, OR, NOT, XOR) on data fetched from registers

or memory.

3. Data Paths: These are the physical connections (buses) that allow data to flow between registers, ALU,

and memory. They include:
o Data Bus: Transfers data between the CPU and memory or between CPU components.
o Address Bus: Specifies memory addresses for read or write operations.
o Control Bus: Carries control signals that coordinate the operation of various CPU components.
Control Path

The control path manages the operation and sequencing of the data path. It interprets instructions fetched from
memory and generates the necessary control signals to coordinate the activities of the data path components. Key

elements of the control path include:

1. Control Unit: The control unit decodes instructions fetched from memory and generates control signals

that direct the operation of the data path. It includes:

o Instruction Decoder: Decodes the instruction opcode to determine the type of operation to be

performed.




o Control Signals: These signals activate specific paths within the data path to execute the

instruction.

2. Clock Signals: These signals synchronize the activities of the data path and control path, ensuring that

operations proceed in a coordinated manner.
Interaction Between Data Path and Control Path

¢ Instruction Execution: During the execution of an instruction, the control unit fetches the instruction,
decodes it to determine the operation, and generates control signals. The data path then executes the

operation using the ALU and registers.

e Cycle Execution: The fetch-decode-execute cycle involves the control path fetching an instruction,

decoding it to generate control signals, and directing the data path to perform the specified operation.
Example

In a simple processor architecture, the data path includes registers for storing operands and results, an ALU for
arithmetic and logical operations, and buses for data transfer. The control path consists of a control unit that fetches

instructions, decodes them, and generates control signals to coordinate the activities of the data path components.
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6.7 Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) refers to the set of instructions that a computer's CPU (Central Processing Unit)
can understand and execute. It serves as an interface between the hardware (the CPU and its components) and the

software (the programs and applications that run on the computer). Here's a detailed overview of ISA:
Components of Instruction Set Architecture (ISA)

1. Instruction Set: The ISA defines a set of instructions that the CPU can execute. These instructions are

typically categorized into several types:




o Data Transfer: Move data l@veen memory and registers.

o Arithmetic: Perform basic arithmetic operations like addition, subtraction, multiplication, and

division.
o Logical: Perform logical operations such as AND, OR, XOR, and NOT.
o Control Transfer: Change the sequence of execution (branching, jumping).
o Input/Output: Transfer data between the CPU and peripheral devices.

2. Registers: @ specifies the number of registers and their roles in storing operands, addresses, and

intermediate results during computation. Registers are critical for efficient instruction execution.

3. Memory Addressing Modes: Different modes for accessing memory locations (e.g., direct addressing,

indirect addressing, indexed addressing) are defined by ISA.
4. Data Types: Specifies the data types supported by the CPU (e.g., integer, floating-point, character).
Importance of ISA

e  Compatibility: ISA provides compatibility between software and hardware. Programs written for a

particular ISA can run on any CPU that implements that ISA.

e Performance: ISA influences the efficiency and speed of executing programs. Optimizations in ISA can

lead to faster execution of instructions.

o Portability: Software developed for one CPU architecture (ISA) can be ported to another compatible

architecture with minimal changes.
Examples of ISA
e x86: Used in most PCs and laptops, known for its complex instruction set architecture (CISC).

e ARM: Dominates mobile devices and embedded systems, known for its reduced instruction set

architecture (RISC).
e  MIPS: Commonly used in educational settings and embedded systems, also a RISC architecture.
ISA Design Considerations

e Complexity vs. Simplicity: CISC architectures have more complex instructions, while RISC

architectures focus on simpler, more efficient instructions.

e Instruction Encoding: Efficient encoding of instructions to minimize memory usage and maximize

performance.

e Support for Parallelism: ISA may include instructions that support parallel execution (e.g., SIMD

instructions for vector processing).

Evolution of ISA




e Advances in Technology: ISA evolves with advancements in CPU architecture, addressing new
challenges such as power efficiency, multi-core processing, and specialized computing tasks (e.g., Al

machine learning).

e Standardization: Industry standards bodies (e.g., IEEE, ISO) often define ISA standards to ensure

compatibility and interoperability across different hardware platforms.

6.8 General Register Organization

General register organization refe@o the structure and management of registers within a central processing unit

(CPU). Registers are small, fast stOrage locations within the CPU that hold data temporarily during processing.

Here’s a detailed overview of general register organization:
Components of General Register Organization
1. Types of Registers:

o Data Registers: Hold data operands and intermediate results during arithmetic and logical

operations.
o Address Registers: Store memory addresses for data access.
o Control Registers: Manage control and status information within the CPU.
2. Role of Registers:

o Operand Storage: Data registers hold operands that are currently being processed by the

arithmetic logic unit (ALU).

o Address Calculation: Address registers compute memory addresses for fetching or storing

data.

o Program Control: Control registers manage program flow and execution status (e.g., program

counter, status registers).
3. Register File:

o Qisters are typically organized into a register file, a set of storage locations directly accessible
by the CPU.

o The size and organization of the register file vary based on the CPU architecture and design

goals.
4. Register Transfer Operations:

o Load (L): Transfer data from memory to a register.




o Store (S): Transfer data from a register to memory.
o Move (M): Transfer data between registers.

o Arithmetic and Logic Operations: Registers are operands for arithmetic (addition, subtraction,
etc.) and logical (AND, OR, XOR) operations.

Importance of General Register Organization

e Speed: Registers are the fastest form of memory within the CPU, enabling rapid access and manipulation

of data.
o Efficiency: Minimizes ﬁnery access times by storing frequently accessed data and operands.

e Program Execution: Facilitates efficient execution of instructions by providing storage for operands

and results.

¢ Context Management: Registers store critical information during context switches between different

tasks or processes.
Examples of Register Usage
o Data Processing: Arithmetic and logical operations utilize data registers for storing operands and results.
e Address Calculation: Address registers compute memory addresses for load and store operations.

e Control and Status Management: Control registers manage program flow and execution status, such

as flags indicating arithmetic overflow or comparison results.
Design Considerations
e Register Size: Determines the range and precision of numeric data that can be processed.
e Number of Registers: Balances the need for fast access with the complexity and cost of CPU design.

e Special Purpose Registers: Includes program counters, stack pointers, and status registers tailored for

specific functions.
Evolution and Optimization
e Multi-Core Processors: Each core typically has its own set of registers, enhancing parallel execution.

e Vector Processing: Special registers (vector registers) support QID (Single Instruction, Multiple Data)

operations for efficient parallel processing.

e Cache Coherency: Registers play a role in maintaining cache coherency across multi-level memory

hierarchies.

Types of Registers




Registers in a CPU serve various purposes, categorized into general-purpose registers and special-purpose

registers. Here's an overview of each type:
General-Purpose Registers
1. Data Registers:

o Purpose: Used to hold operands ﬁ intermediate results during arithmetic and logical

operations.

o Role: Facilitate data manipulation and computation within the CPU.

o Examples: Accumulator (ACC), data registers in the ALU (Arithmetic Logic Unit).
2. Address Registers:

o Purpose: Store memory addresses for data access.

o Role: Compute effective addresses during load and store operations.

o Examples: Index registers, base registers.
3. Index Registers:

o Purpose: Assist in indexed addressing modes for accessing elements in arrays or data structures.

o Role: Store offsets or indices used in memory operations.

o Examples: Index Register (IX), Index Register 1 (IX1), Index Register 2 (IX2).
4. Stack Pointer (SP):

o Purpose: Manage the stack in memory, used in stack-based operations like subroutine calls and

returns.
o Role: Points to the top of the stack or the next available location.
o Examples: Stack Pointer (SP), Stack Pointer 1 (SP1), Stack Pointer 2 (SP2).
Special-Purpose Registers
1. Program Counter (PC):
o Purpose: Holds the memory address of the next instruction to be fetched and executed.
o Role: Controls the sequence of program execution.
o Examples: Program Counter (PC), Instruction Pointer (IP).
2. Status Registers (Flags):
o Purpose: Hold status information about the result of the last operation performed by the CPU.

o Role: Flag conditions such as zero, carry, overflow, and negative results.




o Examples: Condition Code Register (CCR), Flag Register (FL), Status Register (SR).
3. Instruction Register (IR):

o Purpose: Temporarily holds the current instruction being executed.

o Role: Facilitates decoding and execution of the instruction.

o Examples: Instruction Register (IR), Current Instruction Register (CIR).
4. Memory Address Register (MAR):

o Purpose: Holds the memory address of data that needs to be fetched or stored.

o Role: Interfaces with the memory unit to fetch or store data.

o Examples: Memory Address Register (MAR), Memory Buffer Register (MBR).

Usage and Optimization

e Efficiency: Registers are the fastest form of memory in the CPU, optimizing data access and

computation.

e Context Switching: Special-purpose registers assist in managing process and task states during context

switches.

¢ Instruction Execution: General-purpose registers support efficient arithmetic and logical operations,

while special-purpose registers manage control flow and status monitoring.
Design Considerations
e Register Size: Determines the range and precision of data that can be processed.
e Number of Registers: Balances hardware complexity with performance requirements.

e Specialization: Tailors registers for specific functions like addressing, control, and status monitoring.

6.9 Stack Organization

Stack organization refers to the structure and management of the stack memory within a computer system. The
stack is a special area of memory used for temporary storage of data, particularly during subroutine calls and
returns, as well as for storing local variables and preserving execution context. Here’s a detailed explanation of

stack organization:
Components of Stack Organization

1. Stack Memory:




o Purpose: Reserved region of memory used for storing data temporarily.

o Implementa@: Typically organized as a Last-In-First-Out (LIFO) structure, where the last
item pushed olito the stack is the first item popped off.

o Usage: Primarily used for subroutine calls, local variable storage, parameter passing, and

managing program execution flow.
2. Stack Pointer (SP):
o Purpose: Special-purpose register that points to the top of the stack.
o Role: Tracks the current position in the stack where the next push or pop operation will occur.
o Usage: Adjusts dynamically as items are pushed (added) or popped (removed) from the stack.
3. Frame Pointer (FP):

o Purpose: Optional register used in some architectures to point to the base of the current stack

frame.
o Role: Facilitates efficient access to local variables and parameters within a subroutine.

o Usage: Helps maintain the stack frame structure during subroutine execution and aids in

debugging and optimization.
Operations in Stack Organization
1.  Push Operation:
o Function: Adds a new item (data or address) onto the top of the stack.

o Implementation: Decreases the stack pointer (SP) to reserve space for the new item and stores

the item at the new top of the stack.
2. Pop Operation:
o Function: Removes the top item from the stack.

o Implementation: Retrieves the item at the current top of the stack, increments the stack pointer

(SP) to release the space, and returns the item for further processing.
Usage in Program Execution

e Subroutine Calls: Before calling a subroutine, parameters and return addresses are typically pushed onto
the stack. During subroutine execution, local variables and the frame pointer (if used) help manage data

within the subroutine.

e  Context Switching: Stack organization aids in saving and restoring the execution context of processes

or tasks during context switches, ensuring seamless task management in multitasking environments.




e Memory Management: Efficient use of stack memory helps conserve overall memory resources and

supports nested subroutine calls and recursive function execution.
Design Considerations
e Stack Size: Determined by hardware constraints and the needs of the software being executed.

e Stack Frame Structure: Defines how data is organized within each subroutine call, including

parameters, return addresses, and local variables.

e Stack Management: Requires careful handling to avoid stack overflow (exceeding available stack

space) or underflow (attempting to pop from an empty stack).
Benefits of Stack Organization
e  Simplicity: Provides a straightforward method for managing temporary data storage within a program.

o Efficiency: Facilitates rapid access and manipulation of data, crucial for subroutine execution and

parameter passing.

o Reliability: Ensures data integrity and orderly execution flow through well-defined push and pop

operations.
Instruction Set for Stack Organization

The instruction set for stack organization typically involves a set of operations that allow manipulation of the
stack memory. These operations enable programs to push data onto the stack, pop data off the stack, and manage

the stack pointer effectively. Here’s an outline of the typical instruction set for stack organization:
Basic Stack Operations
1. Push Operation:
o Description: Adds a data item onto the top of the stack.
o Instruction: PUSH operand
o Functionality:
=  Decreases the stack pointer (SP) to reserve space for the new item.
= Stores the operand at the memory location pointed to by the stack pointer.
= Updates the stack pointer to point to the new top of the stack.
2. Pop Operation:
o Description: Removes the data item from the top of the stack.
o Instruction: POP operand

o Functionality:




= Retrieves the data item from the memory location pointed to by the stack pointer.
= Increments the stack pointer (SP) to release the space previously occupied by the item.
= Stores the retrieved data item into the specified operand location.
Stack Pointer Management
1. Initialize Stack Pointer:
o Description: Sets the initial position of the stack pointer.
o Instruction: INIT_SP value

o Functionality: Initializes the stack pointer (SP) to a specific memory location (value), typically

at the beginning of the stack memory.
2. Reset Stack Pointer:
o Description: Resets the stack pointer to its initial position.
o Instruction: RESET_SP

o Functionality: Sets the stack pointer (SP) back to the initial memory location, effectively

clearing the stack.
Additional Operations
1. Peek Operation:
o Description: Retrieves the top item from the stack without removing it.
o Instruction: PEEK operand
o Functionality:
= Reads the data item from the memory location pointed to by the stack pointer.
=  Stores the retrieved data item into the specified operand location.
=  Does not modify the stack pointer (SP).
2. Check Stack Empty:
o Description: Checks if the stack is empty.
o Instruction: STACK_EMPTY
o Functionality:

= Checks if the stack pointer (SP) is at the initial position (indicating no items are on the

stack).

= Sets a status flag or returns a boolean indicating the stack's empty status.




Control Flow with Stack
1. Call Operation:
o Description: Initiates a subroutine call.
o Instruction: CALL subroutine address
o Functionality:

"  Pushes the return address (usually the address of the next instruction after the call) onto
the stack.

= Jumps to the specified subroutine address to begin subroutine execution.
2. Return Operation:
o Description: Returns from a subroutine call.
o Instruction: RETURN
o Functionality:

=  Pops the return address from the stack and jumps to that address to resume execution

after the subroutine call.

Example Instruction Set

PUSH 42 3 the value 42 onto th tack
POP R1 = 1 sp of the stack i r'q'g'j‘.h‘r' Rl

PEEE R2 s @ w top of the stack and stores it in register R2

INIT_SP @xleea ; Initializes the stack |'|-:'|i nter to memory add 55 Bx1088

CA Subroutine ; Calls the subroutine named Subroutine

RETURN : Returns from the subroutine

Usage and Considerations
o Efficiency: Stack operations should be efficient to minimize overhead during program execution.

e Memory Management: Careful management of the stack pointer ensures correct allocation and

deallocation of stack space.

¢ Error Handling: Proper checks should be in place to handle stack overflow (exceeding stack size) and

underflow (popping from an empty stack).
Advantages and Disadvantages of Stack Organization

Stack organization offers several advantages and disadvantages in computer architecture and programming. Here's

a detailed look at both:

Advantages of Stack Organization




1. Simplicity and Efficiency:

o Push and Pop Operations: Stack operations (PUSH and POP) are simple and efficient,

involving only a few instructions.

o Memory Management: Provides an organized and straightforward method for managing

temporary data storage and local variables during program execution.
2. Support for Subroutines and Function Calls:

o Subroutine Management: Enables the implementation of subroutine calls (CALL and

RETURN), supporting structured programming and modular code design.

o Parameter Passing: Facilitates passing parameters to functions and procedures, enhancing

code reusability and maintainability.
3. Memory Optimization:

o Automatic Memory Allocation: Allocates and deallocates memory dynamically as items are

pushed and popped from the stack.

o Space Efficiency: Utilizes memory efficiently by reusing stack space for different subroutine

calls and local variable scopes.
4. Context Management:

o Execution Context: Helps in preserving the execution context of a program during subroutine

calls, ensuring seamless execution flow and easier debugging.
5. Hardware Support:

o Hardware Stack Support: Many CPUs have dedicated instructions and hardware support for

stack operations, optimizing performance and reducing overhead.
Disadvantages of Stack Organization
1. Limited Size and Overflow Issues:

o Stack Size Limitations: The size of the stack is typically fixed or limited, leading to potential

stack overflow errors if too many items are pushed onto the stack.

o Runtime Errors: Stack overflow occurs when the stack exceeds its allocated size, leading to

program termination or crashes.
2. Fragmentation:

o Memory Fragmentation: Continuous push and pop operations can lead to memory

fragmentation, where small pockets of unused memory are scattered throughout the stack.

3. No Random Access:




o Sequential Access: Access to stack elements is sequential, making random access or arbitrary

retrieval of data inefficient compared to other data structures like arrays.
4. Complexity in Multithreading:

o Thread Safety: In multithreaded environments, managing stacks across different threads can

be complex and require careful synchronization to prevent data corruption or race conditions.
5. Limited Data Scope:

o Scope Limitation: Data stored on the stack is typically local to the subroutine or function where

it is allocated, limiting its scope and visibility outside that context.
Considerations for Use

e Usage in Embedded Systems: Stack organization is widely used in embedded systems and

microcontrollers due to its simplicity and efficient use of memory.

¢ Real-Time Systems: In real-time systems, careful stack management is critical to ensure predictable

execution times and avoid stack overflow conditions.

e Alternative Data Structures: For applications requiring dynamic memory allocation and larger data

storage, alternative data structures like heaps or dynamic arrays may be more suitable.

6.10 Conclusion

In conclusion, t@ study of control units and CPU organization reveals fundamental aspects of computer
architecture essential for understanding how instructions are processed and executed within a CPU. Control units
serve as the orchestrators of instruction execution, managing the flow of data and operations within the CPU. The
comparison between hardwired and microprogrammed control units highlights the trade-offs between hardware

complexity and flexibility in instruction handling.

The exploration of single organization models underscores the importance of efficient data and control path
management in enhancing CPU performance. Understanding the interaction between data paths and control paths
provides insights into optimizing instruction execution and system throughput. Furthermore, the discussion on
instruction set architecture (ISA) emphasizes the role of standardized instruction formats and addressing modes

in enabling software compatibility and system efficiency.

General register organization and stack organization demonstrate practical implementations within CPUs,
facilitating efficient data storage and management. These organizational strategies are pivotal in supporting

diverse computing tasks and enhancing system responsiveness.

Overall, a nuanced grasp of these concepts equips engineers and developers with the knowledge to design,

optimize, and troubleshoot CPUs and computing systems effectively. As technology advances, continued




exploration and innovation in control unit design and CPU organization will drive improvements in computing

performance and capability.

6.11 Unit Based Questions & Answers

1. What is the role of a control unit in a CPU?

8
Answer: m control unit manages the execution of instructions \@nin the CPU. It coordinates the fetch-decode-
execute cycle, controls data flow between different CPU components, and ensures that instructions are executed

in the correct sequence.
2. Compare and contrast hardwired and microprogrammed control units.

Answer: @dwired control units are implemented using combinational logic circuits, directly controlling the
CPU's operations. Microprogrammed control units use a sequence of microinstructions stored in memory to

control the CPU, offering flexibility but at the cost of additional memory access time.
3. Explain the concept of single organization in CPU architecture.

Answer: Single organization refers to a CPU design where both data path and control path components are
integrated into a single unit. This design simplifies the CPU structure but may limit flexibility compared to more

complex organizational models.
4. How do data path and control path interact in a CPU?

Answer: The data path performs arithmetic and logical operations on data, while the control path directs the flow
of instructions and data within the CPU. They interact closely to execute instructions efficiently and manage

system resources.
5. What is Instruction Set Architecture (ISA)?

Answer: ISA defines the set of instructions that a CPU can execute, including instruction formats, addressing
modes, and operations. It serves as a bridge between hardware and software, ensuring compatibility and defining

the capabilities of a CPU.
6. Discuss the importance of general register organization in CPU design.

Answer: General registers store data temporarily during instruction execution, facilitating quick access and
manipulation of data. They play a crucial role in optimizing CPU performance by reducing memory access times

and enhancing computational efficiency.
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7.0 Introduction

In computer architecture, understanding the internal operations of a system is crucial for designing efficient
hardware and software. This unit delves into several fundamental aspects of computer architecture and
organization that are vital for grasping how computers execute instructions and manage data. We will explore
addressing modes, which define how the processor locates data in memory, and instruction formats, which specify

how instructions are structured and encoded within machine code.

Furthermore, the unit covers data transfer and manipulation, essential for understanding how data is moved
between registers, memory, and I/O devices. The Input/Output (I/O) organization and bus architecture are also
examined to provide insight into how computers interface with peripheral devices and handle communication
between different system components. Finally, the role of programming registers in managing data and executing
instructions will be analyzed to complete the picture of internal processor operations. This comprehensive
exploration provides a foundational understanding necessary for further study and practical application in

computer system design and optimization.




7.1 Objectives

After completing this unit, you will be able to understand,

e Addressing Modes: Learn how different addressing modes affect data retrieval and instruction
execution.

o Instruction Formats: Understand the structure of instructions, including opcode and operand fields, and
their impact on instruction processing.

o Data Transfer & Manipulation: Explore methods for data movement and manipulation between
memory, registers, and I/O devices.

e I/O Organization: Investigate how input and output operations are organized and managed within the
computer system.

e Bus Architecture & Programming Registers: Study the role of bus architecture in system

communication and the function of programming registers in executing instructions.

7.2 Addressing Modes

An addressing mode in computer architecture defines how a processor accesses operands to perform operations.
It specifies the method or format by which the CPU identifies and retrieves data from memory or registers.
Addressing modes are fundamental in instruction set architecture (ISA), guiding how programs interact with data
and instructions. They vary in complexity and functionality, offering flexibility in how programs manage memory

and compute results.

Addressing modes include immediate, direct, indirect, register, indexed, relative, base-offset, stack, auto-
increment/decrement, and memory-indirect modes, each tailored for specific programming needs. Immediate
mode, for instance, directly embeds constant values within instructions, simplifying simple calculations. Direct
mode accesses specific memory locations directly by their address, suitable for fixed data storage. Indirect mode
uses a memory address that points to the actual data location, allowing for dynamic data access and data structures.

Register mode accesses data stored within CPU registers, offering rapid data manipulation capabilities.

These modes enable efficient program execution and memory management, crucial for optimizing performance
in computing tasks. They are integral to designing compilers, operating systems, and application software,
ensuring programs operate effectively across diverse hardware platforms. Understanding and selecting appropriate
addressing modes are essential for developers aiming to maximize computational efficiency and memory

utilization in modern computer systems.

1. Immediate Addressing Mode:




e Description: In immediate addressing mode, the actual operand value is specified within the instruction

itself rather than referencing a memory location.
o Example: MOV A, #25
This instruction moves the immediate value 25 directly into register A.
e Advantages:
o Simplifies programming as operands are directly specified.
o Useful for constants or literal values that do not change.
e Disadvantages:
o Wasteful of memory if the same constant is used multiple times.
o Limits flexibility as operands cannot be modified dynamically.
2. Direct Addressing Mode:
e Description: The operand's memory address is directly specified in the instruction.
e Example: MOV A, 2000H
This instruction moves the contents of memory location 2000H into register A.
e Advantages:
o Simple and straightforward to implement.
o Efficient for accessing specific memory locations.
e Disadvantages:
o Limited flexibility as the exact memory address must be known at compile-time.
o Not suitable for position-independent code.
3. Indirect Addressing Mode:

e Description: The instruction specifies a memory address that holds the actual memory address of the

operand.
e Example: MOV A, @X
Here, if X contains 2000H, the contents of memory location 2000H are moved into register A.
e Advantages:
o Allows for flexible memory referencing.

o Useful for accessing data structures where memory addresses are dynamic.




Disadvantages:
o Requires an extra memory access to fetch the actual operand address.

o Slower compared to direct addressing due to the additional memory access.

4. Register Addressing Mode:

Description: The operand is located in a processor register.

Example: MOV A, B

This instruction moves the contents of register B into register A.

Advantages:
o Fastest access mode as it involves direct register-to-register transfer.
o Suitable for frequently accessed data and arithmetic operations.
Disadvantages:
o Limited number of registers available.

o Register content might need to be saved and restored during context switches or interrupts.

5. Indexed Addressing Mode:

Description: An offset is added to a base address to reach the operand.

Example: MOV A, [X + 2]

This instruction moves the contents of memory location (X + 2) into register A.

Advantages:
o Useful for accessing elements in arrays and data structures.
o Supports position-independent code.
Disadvantages:
o Requires additional arithmetic operations to compute the effective address.

o Overhead in maintaining and updating the base register.

6. Relative Addressing Mode:

Description: The operand's address is calculated relative to the program counter or instruction pointer.

Example: ]IMP LABEL

This instruction jumps to the address specified by LABEL, which is a relative address from the current instruction.




e Advantages:
o Supports position-independent code.
o Simplifies code relocation and memory management.
e Disadvantages:
o Limited range of relative addressing depending on instruction format.
o Risk of errors if the offset is not correctly calculated.
7. Base or Base-Offset Addressing Mode:
e Description: An offset added to a base address stored in a register or specified in the instruction.
e Example: MOV A, [BASE + OFFSET]
This instruction moves the contents of memory location (BASE + OFFSET) into register A.
e Advantages:
o Supports efficient access to data structures and arrays.
o Facilitates modular programming and data segmentation.
e Disadvantages:
o Requires additional registers or memory locations to store base addresses.
o Complexity in managing multiple base registers in larger programs.
8. Stack Addressing Mode:
e Description: Operands are implicitly accessed from @op of the stack.
e Example: PUSH A
This instruction pushes the contents of register A onto the stack.
e Advantages:
o Supports last-in-first-out (LIFO) data structures.
o Facilitates function calls and parameter passing.
e Disadvantages:
o Slower access compared to register or direct addressing modes.
o Limited stack size and potential for stack overflow.

9. Auto-increment and Auto-decrement Addressing Mode:




e Description: The memory address automatically increments or decrements after each access.
e Example: LDA [X+]
This instruction loads the contents of memory at address X into the accumulator and increments X.
e Advantages:
o Simplifies sequential memory access operations.
o Reduces the need for explicit address manipulation in loops.
e Disadvantages:
o Limited support in modern architectures.
o Requires careful management to avoid unintended side effects.
10. Memory Indirect Addressing Mode:
e Description: Similar to indirect addressing, but the operand address is located in memory.
e Example: MOV A, @2000H
This instruction moves the contents of the memory address stored at 2000H into register A.
e Advantages:
o Flexibility in accessing dynamically allocated memory.
o Supports complex data structures and pointers.
e Disadvantages:
o Increased memory access time due to additional indirection.

o Potential for pointer errors and memory leaks.

7.3 Instruction Formats

Instruction formats in computer architecture define the structure and layout of machine instructions that the CPU
executes. They specify how operations and operands are encoded within the binary instructions, guiding the
processor on how to fetch, decode, and execute each instruction. Instruction formats are crucial for defining the

instruction set architecture (ISA) of a processor, determining its capabilities and compatibility with software.
Components of Instruction Formats:

1. Opcode (Operation Code):




o Defines the operation or instruction to be performed by the CPU.
o Typically occupies a fixed portion of the instruction word.

o Examples include arithmetic operations (add, subtract), data movement (load, store), and

control flow (jump, branch).
2. Operands:
o Data or addresses on which the operation acts.

o Can be specified in various ways depending on the addressing mode (immediate, direct, indirect,

register, etc.).
o Operand fields may vary in size and position within the instruction format.
3. Addressing Mode Specification:
o Specifies how to interpret or compute the operand address.
o Directly impacts how operands are fetched from memory or registers.
o Can be part of the opcode or in a separate field within the instruction format.
4. Control Bits:
o Flags or control information that governs the execution behavior of the instruction.

o Includes condition codes, interrupt enable/disable, privilege levels, etc.
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Common Instruction Formats:

1. Fixed-Length Format:

o All instructions have the same length in bits.




o Simplifies instruction @hing and decoding but may lead to inefficient use of space for simpler

instructions.

2. Variable-Length Format:
o Instructions vary in length based on the complexity of the operation or addressing mode.
o Efficient for compact instruction sets but requires more complex decoding logic.

3. Three-Address Format:
o Allows operations with three operands.
o Useful for complex arithmetic operations and scientific computing.

4. Two-Address Format:
o Typically used in older architectures where one operand serves as both a source and destination.
o Limited flexibility but efficient for certain operations.

5. One-Address Format:
o Operates on data stored in one register.
o Often used in stack-based or accumulator-based architectures.

Design Considerations:

o Efficiency: Instruction formats aim to balance between compactness and flexibility, optimizing

instruction decoding and execution.

e  Compatibility: Formats must support a wide range of operations and addressing modes specified by the

ISA.

¢ Encoding Scheme: Instructions must be encoded efficiently to minimize memory usage and maximize

execution speed.
Here are the various aspects of instruction formats and machine language instructions:

1. Instruction Length and Format:
o Defines the size and structure of machine instructions.
o Determines how instructions are fetched, decoded, and executed by the CPU.
o Can be fixed-length or variable-length depending on the architecture.

2. Opcode and Operand Fields:
o Opcode: Specifies the operation to be performed (addition, subtraction, load, store, etc.).

o Operand Fields: Hold data or addresses required for the operation.




o Format includes fields for different addressing modes (immediate, direct, indirect, etc.).
3. Fixed-Length vs. Variable-Length Instructions:

o Fixed-Length: All instructions are of the same size in bits.

o Variable-Length: Instructions vary in size based on complexity or addressing modes.

o Trade-offs between simplicity of decoding (fixed-length) and efficient use of memory (variable-

length).
4. Three-Address vs. Two-Address vs. One-Address Formats:
o Three-Address: Operates on three operands, useful for complex arithmetic.
o Two-Address: Uses one operand for both source and destination.
o One-Address: Operates on data stored in one register or accumulator.
5. Instruction Encoding and Decoding:
o Encoding: Translating assembly language mnemonics into machine code.
o Decoding: Process of interpreting Q:hine code instructions for execution by the CPU.
o Involves mapping opcodes and operands to binary representations.
6. Machine Language Instructions:
o Low-level instructions directly executable by the CPU.
o Binary representation of operations and data movements.
7. Assembly Language Instructions:
o Human-readable mnemonics representing machine instructions.
o Translated into machine code by an assembler.
8. Format for Arithmetic Operations:

o Specifies how arithmetic instructions (addition, subtraction, multiplication, division) are

structured.
o Includes opcode, operand fields for source and destination registers or memory locations.
9. Format for Logical Operations:
o Defines structure for logical operations (AND, OR, XOR, NOT).
o Similar to arithmetic operations but with different opcodes.

10. Format for Data Transfer Operations:




o How data is moved between registers, memory, and I/O devices.

o Includes opcodes for load (from memory to register) and store (from register to memory)

operations.

7.4 Data Transfer & Manipulation

Data transfer and manipulation in computer architecture refer to the operations involved in moving and processing
data within a computer system. These operations are fundamental to the execution of programs and the functioning

of applications. Here's an overview of the key aspects:
Data Transfer:
1. Load (L) and Store (S) Operations:
o Load (L): Moves data from memory to a register or processor.
o Store (S): Writes data from a register or processor to memory.
o  Operands typically specify memory addresses or offsets.
2. Move (MOYV) Operations:
o Directly transfers data between registers or memory locations.
o Often used for copying data within the CPU or between different parts of memory.
3. Data Transfer between 1/0 Devices:
o Facilitates communication between the CPU and peripherals (e.g., keyboards, displays, disks).
o Uses specialized instructions or I/O ports for data exchange.
Data Manipulation:
1. Arithmetic Operations:
o Addition (ADD), Subtraction (SUB), Multiplication (MUL), Division (DIV):
=  Operate on numerical data stored in registers or memory.
= Results typically stored back in registers or specified memory locations.
2. Logical Operations:
o AND, OR, XOR, NOT:

= Manipulate binary data to perform Boolean operations.




= Useful for bit manipulation, data masking, and conditional checks.

3. Shift and Rotate Operations:

o  Shift (SHL, SHR): Move bits left or right within a binary number.

o Rotate (ROL, ROR): Circularly shift bits, wrapping around the ends.
4. Bitwise Operations:

o Bitwise AND, OR, XOR: Perform operations on individual bits of data.

o Essential for low-level data manipulation and setting/clearing specific bits.

Examples:

e Data Transfer Example (Load Operation): LDR R1, [R2]; Load data from memory address in R2 into

register R1

e Arithmetic Operation Example (Addition): ADD R3, R1, R2; Add contents of R1 and R2, store result
in R3

¢ Logical Operation Example (AND): AND R4, RS, R6; Perform bitwise AND of R5 and R6, store result
in R4

Importance:
e Program Execution: Essential for executing instructions and processing data within programs.
e System Interaction: Facilitates communication between components (CPU, memory, I/O devices).

e Performance Optimization: Efficient data handling enhances overall system performance.

Here are the different aspects related to data handling, processing, and communication in computer systems:
Data Movement Instructions:
e Instructions that move data between registers, memory, and I/O devices.
e Include operations like load, store, move, and exchange.
Load and Store Operations:
e  Specific instructions for fetching data from memory (load) and writing data to memory (store).
e Vital for manipulating variables and data structures in programs.
Data Conversion Instructions:

e Operations that convert data from one format to another (e.g., integer to floating-point, ASCII to
Unicode).




e Ensure compatibility and correct representation of data.
Bit Manipulation Instructions:
e Instructions for manipulating individual bits or groups of bits within data.
e  Used for tasks like setting/clearing bits, bitwise operations (AND, OR, XOR), and shifting.
Data Packing and Unpacking:
e  Techniques for compactly storing multiple data items in a single memory location (packing).
e  Unpacking retrieves individual items from packed data structures.
Data Sorting Algorithms:
e  Algorithms that arrange data in a specified order (e.g., ascending or descending).
o Essential for efficient searching, indexing, and data retrieval.
Parallel Data Processing:
e  Techniques and architectures that enable simultaneous processing of multiple data streams or tasks.
¢ Includes multi-core processors, parallel computing frameworks, and GPU acceleration.
Data Transfer Protocols:
e Standards and protocols governing the reliable and efficient transfer of data between systems or devices.
e Examples include TCP/IP, UDP, HTTP, and FTP.
Data Compression Techniques:
e  Methods for reducing @ size of data to save storage space or transmission bandwidth.
e Include lossless (e.g., ZIP) and lossy (e.g., JPEG) compression algorithms.
Data Encryption and Decryption:
e  Techniques to secure data by encoding it in a way that only authorized parties can access (encryption).

e Decryption reverses encryption to retrieve the original data securely.

7.5 1/0 Organization

1/O (Input/Output) organization refers to how computer systems interact Q\ external devices to exchange data

and instructions. Here's an overview of the key aspects:




Components of I/O Organization:

1. /O Interfaces:
o Hardware components that facilitate communication between the CPU and peripherals.
o Examples include USB ports, network interfaces, serial ports, and expansion slots.

2. Device Controllers:
o Interface between the CPU and specific I/O devices (e.g., disk controllers, display controllers).
o Manage data transfer, error handling, and device-specific operations.

3. Interrupts and DMA (Direct Memory Access):
o Mechanisms for efficient data transfer and device signaling without CPU intervention.

o Interrupts allow devices to request attention, while DMA enables high-speed data transfers

between devices and memory.
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Operation Modes:
1. Programmed I/O:
o Basic mode where the CPU manages Q transfer between devices and memory.
o  Each byte or word transfer requires CPU involvement, making it slower for large data volumes.
2. Interrupt-Driven 1/O:
o Devices trigger interrupts to signal readiness or completion of data transfers.

o CPU responds to interrupts, allowing it to perform other tasks while data transfer occurs.

3. DMA (Direct Memory Access):




o Specialized mode where devices transfer data directly to/from memory without CPU

intervention.
o Improves system performance by offloading data transfer tasks from the CPU.
1/O Techniques:
1. Polling:
o CPU continuously checks the status of devices to initiate or complete data transfers.
o Simple but inefficient for real-time or high-speed applications.
2. Interrupt Handling:
o Devices signal interrupts to notify the CPU of data readiness or completion.
o Enables asynchronous data transfer and multitasking capabilities.
3. Buffering:

o Temporarily stores data in buffers (memory) to accommodate speed mismatches between

devices and CPU.
o Prevents data loss and optimizes data flow.
Importance of I/0 Organization:
¢ System Connectivity: Facilitates interaction with diverse peripherals, expanding system capabilities.

e Performance Optimization: Efficient data transfer mechanisms improve overall system responsiveness

and throughput.

e Device Management: Ensures seamless integration and operation of peripherals within the computing

environment.
Examples:

e USB Interface: Standardized I/O interface for connecting peripherals like keyboards, mice, and storage

devices.
e Network Interface Card (NIC): Facilitates data exchange between computers over networks.

e  Graphics Processing Unit (GPU): Specialized device controller for rendering graphics and accelerating

complex computations.

7.6 Bus Architecture




Bus architecture refers to the design and implementation of the communication system that allows various

components within a computer system to transfer data between each other. Here's an overview of the key aspects
of bus architecture:

Components of Bus Architecture:

1. Bus Types:

o Data Bus: Carries data between the CPU, memory, and peripherals.
o Address Bus: Specifies memory locations for read/write operations.

o Control Bus: Manages signals for coordinating operations (e.g., read, write, interrupt).

2. Bus Width:

o Determines the number of bits that can be transmitted simultaneously.
o Common widths include 8-bit, 16-bit, 32-bit, and 64-bit buses.
3. Bus Speed:
o Measures how fast data can be transferred across the bus.
o Expressed in MHz or GHz, indicating cycles per second.
4. Bus Topology:
o Single Bus (Shared Bus): All components connect to a single bus.
o Multi-Bus: Uses separate buses for data, address, and control signals.

o Hierarchical Bus: Combines multiple buses with varying speeds and functions.
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Operation Modes:

1. Synchronous Bus:




o Operates on a clock signal synchronized across all devices.
o Data transfers occur at fixed intervals.
2. Asynchronous Bus:
o Does not rely on a centralized clock signal.
o Devices signal readiness independently, enabling variable data transfer rates.
Bus Arbitration:
e  Master-Slave Configuration: Determines which device controls the bus during data transfers.
e  Bus Arbitration Protocols: Resolve conflicts when multiple devices request bus access simultaneously.
Types of Bus:
e  System Bus: Connects major system components like CPU, memory, and chipset.
e Peripheral Bus: Links external devices such as USB, SATA, and PCI Express.
e Internal Bus: Facilitates communication within CPU or chipset components.
Importance of Bus Architecture:

e Data Transfer Efficiency: Determines how quickly data moves between components, affecting overall

system performance.
e  Compatibility: Standardizes interfaces for hardware compatibility and interoperability.
e  Scalability: Supports expansion through additional devices or higher data rates.
Examples:
e PCI Bus: Peripheral Component Interconnect bus for connecting hardware peripherals.
e USB Bus: Universal Serial Bus for external devices like keyboards, mice, and storage.

e Memory Bus: Links CPU and memory modules for fast data access.

7.7 Programming Registers

Programming registers refer to special s@age locations within a CPU or a microcontroller that hold data
temporarily during program execution. These registers are directly accessible by the CPU and are crucial for

various operations such as arithmetic calculations, logical operations, and data manipulation.
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Here’s an overview of programming registers:

Types of Registers:

1. General-Purpose Registers:

o Used for storing operands, intermediate results, and memory addresses.

o Examples include the Accumulator (ACC), Data Register (DR), and Index Register (IR).

2. Special-Purpose Registers:

o Dedicated to specific tasks like addressing, status flags, and control signals.

o Examples include Program Counter (PC), Stack Pointer (SP), and Condition Code Register

(CCR).

Functionality and Operations:

Operand Storage: Hold data for arithmetic and logical operations performed by the CPU.

e Addressing: Store memory addresses for fetching instructions or data.

e Control Signals: Manage control flow and execution status within the CPU.

e  Status Flags: Indicate conditions such as overflow, carry, zero, and negative results.

Programming Register Usage:




e Arithmetic Operations: Registers store operands and results for gdition, subtraction, multiplication,

and division.
o Logical Operations: Perform bitwise operations (AND, OR, XOR) using register contents.
e Data Movement: Transfer data between registers, memory, and I/O devices.
e Program Control: Modify program flow using branch instructions and condition checks.
Programming Model:
e Register Organization: Defines the number, size, and purpose of registers in a CPU architecture.

o Instruction Set Architecture (ISA): Specifies how registers are accessed and manipulated by machine

instructions.
Examples:

e x86 Architecture: Uses general-purpose registers like AX, BX, CX, DX alongside special-purpose
registers such as IP (Instruction Pointer) and FLAGS.

e ARM Architecture: Includes general-purpose registers R0-R15, Program Counter (PC), and Current
Program Status Register (CPSR).

Benefits of Programming Registers:

e Speed: Direct access to registers improves processing speed compared to accessing memory.

o Efficiency: Reduces memory access times and enhances overall system performance.

e Versatility: Enables diverse computations and operations through flexible register usage.
Considerations:

e Register File Size: Balances the number of registers for optimal performance and cost-efficiency.

e Register Naming Conventions: Maintains clarity and consistency in register usage across software

development.

7.8 Conclusion

In conclusion, this unit has provided a comprehensive overview of essential concepts related to computer
architecture and system operations. Addressing modes and instruction formats are fundamental to understanding
how processors execute commands and interact with memory. By exploring data transfer and manipulation
techniques, we gain insight into the mechanisms that enable efficient communication between various components

of a computer system.




The organization of input and output operations is crucial for effective data exchange between peripheral devices
and the central processing unit. Additionally, the study of bus architecture sheds light on the system’s
communication infrastructure, while programming registers play a key role in executing instructions and
managing data. Overall, these elements collectively enhance our understanding of computer system design and

operation, laying a foundation for more advanced topics in computer science and engineering.

7.9 Unit Based Questions & Answers

1. What are addressing modes in computer architecture, and why are they important?

Answer: Addressing modes are techniques used to specify the operand(s) for an instruction in computer
architecture. They define how the CPU should access the data required for an operation. Addressing modes are
important bgeause they provide flexibility in accessing data, allowing for more efficient and effective instruction
execution. Common addressing modes include Immediate, Direct, Indirect, Register, and Indexed addressing.
Each mode helps in optimizing memory usage and operational speed based on the requirements of different

applications.
2. Explain the different types of instruction formats used in computer systems.

Answer: Instruction formats are the layouts used to encode instructions into binary form. Common types of

instruction formats include:

¢ Fixed-Length Instructions: All instructions are of the same length, simplifying decoding but potentially

wasting space.

e Variable-Length Instructions: Instructions vary in length, providing more flexibility and potentially

reducing code size but complicating decoding.
e Three-Address Format: Uses three fields to specify two source operands and one destination operand.

e Two-Address Format: Uses two fields, often one for source and one for destination, with one operand

serving as both source and destination in some cases.
e  One-Address Format: Typically involves an implicit accumulator and one explicit operand.
3. What is the role of data transfer and manipulation instructions in a computer system?

Answer: Data transfer instructions are responsible for moving data between registers, memory, and I/O devices.
These instructions include operations like LOAD, STORE, and MOV. Manipulation instructions perform
operations on data, such as arithmetic (ADD, SUB), logical (AND, OR), and bit manipulation (SHIFT, ROTATE).
These instructions are essential for executing programs and performing computations, enabling the CPU to handle

and process data effectively.

4. Describe the role of I/0 organization in a computer system.




Answer: 1/0 organization refers to the methods and structures used for managing input and output operations in a
computer system. It involves interfaces and controllers that facilitate communication between the CPU and
peripheral devices, such as keyboards, printers, and disks. Efficient I/O organization is crucial for ensuring smooth

data transfer and proper device operation, minimizing bottlenecks, and optimizing overall system performance.
5. What is bus architecture, and how does it impact system performance?

Answer: Bus architecture refers to the system's communication pathways that connect the CPU, memory, and
peripheral devices. It consists @lata buses, address buses, and control buses. The bus architecture impacts system
!

performance by determining thc speed and efficiency of data transfer @Ween components. A well-designed bus

architecture can enhance data throughput and reduce latency, leading t0 improved overall system performance.
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8.0 Introduction

In the landscape of modern computing, memory hierarchy stands as a critical framework that enables efficient
data processing. This hierarchy encompasses a spectrum of memory types, each strategically designed to balance
the need for speed, capacity, and cost-effectivenessgAt its core lies main memory (RAM), which directly interfaces
with the processor to provide fast data access ﬁing program execution. Complementing RAM are cache
memories, meticulously designed to bridge the speed gap between the CPU and main memory by storing
frequently accessed data and instructions. Virtual memory expands this hierarchy by utilizing a combination of
RAM and disk storage, providing an illusion of vast memory space that exceeds physical limitations. Associative
memory, in contrast, offers rapid access to data through content-addressable memory techniques, ideal for certain

types of specialized computations.




The efficient management of memory is crucial for maximizing system performance. Memory management
techniques encompass strategies for allocating and deallocating memory space, handling fragmentation issues,
and optimizing memory usage. Contiguous and non-contiguous allocation methods cater to different needs,
whether ensuring uninterrupted memory blocks or dynamically allocating scattered segments. Fragmentation,
both internal within allocated memory blocks and external due to unused but reserved memory, necessitates
careful management to prevent inefficiencies. Performance metrics, such as throughput, latency, and memory
utilization, provide quantitative measures of how effectively memory resources are utilized, guiding optimizations

and system enhancements.

This section explores the intricacies of memory hierarchy, delving into the architectural details, management
methodologies, and performance evaluations that underpin efficient memory usage in computer systems. By
understanding these fundamentals, one gains insight into how memory impacts overall system responsiveness,

scalability, and reliability in diverse computing environments.

8.1 Objectives

After completing this unit, you will be able to understand,;

e  Memory hierarchy organizes storage in computers by speed and proximity to the CPU, from registers to
auxiliary storage.

e RAM stores data and instructions temporarily for quick access by the CPU, while ROM holds essential
system instructions.

e Cache memory sits bctween RAM and the CPU, speeding up operations by storing frequently used data.

e Virtual memory expands RAM's capacity by swapping data between RAM and storage devices like hard
drives.

e Memory management includes techniques for efficient allocation and usage, addressing fragmentation

to optimize system performance.

8.2 Memory Hierarchy Overview:

Memory hierarchy gers to the arrangement of different types of memory storage devices in a computer system,
organized in levels based on their speed, capacity, and cost. The primary objective of memory hierarchy is to
provide the CPU with fast access to data and instructions while optimizing cost and capacity. The hierarchy
typically includes registers, cache memory, main memory (RAM), secondary storage (like SSDs and HDDs), and

tertiary storage (such as optical discs and tapes).




Each level in the hierarchy represents a trade-off between speed and cost. Registers and cache memory, being
closer to the CPU, offer the fastest access times but are expensive and have limited capacity. Main memory
provides larger capacity but with slower a@ess times compared to cache. Secondary storage offers even greater

capacity at the cost of slower access times tiilan main memory. Tertiary storage, although the slowest, provides the

largest storage capacity at the lowest cost per unit.
Importance of Hierarchy in Computer Systems:
The memory hierarchy is crucial for performance optimization in computer systems for several reasons:

1. Reduced Access Late@: By placing frequently accessed data and instructions in faster memory levels

(registers and cache), tlic CPU can retrieve them more quickly, reducing latency and improving overall

system performance.

2. Improved Throughput: Faster memory access allows the CPU to process data more efficiently,

increasing the system's throughput and handling more tasks concurrently.

3. Cost-Effective Design: Memory hierarchy allows designers to balance the need for speed with cost
constraints. Faster memory (registers and cache) is more expensive per unit of storage, while slower

memory (secondary and tertiary storage) offers larger capacities at lower costs.

4. Scalability and Flexibility: The hierarchical structure of memory enables systems to scale and adapt to
varying workload demands. Different levels of memory accommodate different types of data access

patterns and usage scenarios, optimizing overall system efficiency.

5. Enhanced Reliability: Multiple levels g memory hierarchy contribute to data integrity and reliability.
Redundancy and error-checking mechanisms can be implemented at various levels to ensure data

integrity and system stability.

The primary goal of memory hierarchy is to optimize the performance of the system by balancing speed, capacity,

and cost. Here's an overview of memory hierarchy:
Levels of Memory Hierarchy:
1. Registers:
o Located within the CPU.
o Fastest and smallest type of memory.
o Used to store data being actively processed by the CPU.
o Examples: Accumulator (ACC), Program Counter (PC).
2. Cache Memory:
o Small-sized memory located close to the CPU.

o Designed to store frequently accessed data and instructions.




o Divided into multiple levels (L1, L2, L3) based on proximity to CPU and size.
o Faster than main memory but more expensive.
o Helps reduce the gap between CPU speed and main memory access time.
3. Main Memory (RAM - Random Access Memory):
o Primary storage directly accessible by the CPU.
o Stores data and instructions required for current tasks.
o Volatile memory (loses data when power is off).
o Examples: Dynamic RAM (DRAM), Static RAM (SRAM).
4. Secondary Storage (Auxiliary Memory):
o Non-volatile storage used for long-term data storage.
o Examples: Hard Disk Drives (HDDs), Solid State Drives (SSDs), Optical Discs (CDs, DVDs).
o Slower access times compared to main memory but larger storage capacity.
5. Tertiary Storage:
o Typically used for archival purposes.
o Examples: Magnetic tapes.

o Extremely slow access times but very high storage capacity and low cost per unit of storage.

Computer Memory Hierarchy
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Functions and Importance:

e Performance Optimization: By placing frequently accessed data closer to the CPU (in registers and

cache), memory hierarchy reduces latency and improves processing speed.

e Cost-Effectiveness: Balances the cost of faster, smaller memory (like registers and cache) with larger,

slower memory (like secondary and tertiary storage).

e Capacity Management: Provides a scalable approach to managing data and instructions based on their

usage patterns and access requirements.

8.3 Main Memory

Main memory in computer systems refers to the primary storage that is directly accessible by the CPU for storing
data and instructions required during program execution. It is essential for the operation of the system and comes

in two primary types: RAM (Random Access Memory) and ROM (Read-Only Memory).
RAM (Random Access Memory)

RAM, or Random Access Memory, is a crucial component in modern computer systems and digital devices. It
serves as the primary memqay where data and instructions are temporarily stored for quick access by the CPU
(Central Processing Unit). M is volatile memory, meaning it requires a constant supply of power to retain
stored data. When the power is turned off or the device is restarted, the data stored in RAM is lost, distinguishing
it from non-volatile storage like ROM (Read-Only Memory).

The main ﬁl@on of RAM is to provide fast read and write access to @1 that the CPU needs to operate on in
real-time. It ai

in different types, such as DRAM (Dynamic RAM) and SRAM (Static RAM), each with unique characteristics in

as a bridge between the CPU and storage devices, facilitating rapid data exchange. RAM comes

terms of speed, cost, and power consumption. This memory is crucial for multitasking, as it allows the system to
store and retrieve data quickly, enhancing overall performance by reducing the need to access slower storage

devices like hard drives or SSDs for frequently used information.




Dynamic RAM (DRAM):
e Function: Stores data and instructions temporarily for the CPU.
e  Characteristics:
o Requires refreshing at regular intervals to maintain data integrity.
o Uses capacitors to store bits of data as electrical charges.

o Slower and less expensive per bit compared to SRAM.

o Mainly used as main memory (RAM) in computers and other digital devices.
o Provides high-density storage at a lower cost per bit.
Static RAM (SRAM):
e Function: Provides high-speed data storage for faster access.
e Characteristics:
o Does not require refreshing like DRAM.

o Uses flip-flops made of transistors to store data, which makes it faster but more expensive than

DRAM.
o Faster access times and lower power consumption compared to DRAM.
e Usage:
o Used in cache memory and other applications where speed and reliability are critical.

o Actsasa @ffer between the CPU and slower main memory (DRAM).




ROM (Read-Only Memory)

ROM, or Read-Only Memory, is a type of storage medium used in computers and electronic devices to store
permanent data and instructions that are essential for the operation of the system. Unlike RAM (Random Access
Memory), ROM is non-volatile memory, meaning it retains its contents even when the power is turned off. This
characteristic makes ROM suitable for storing critical system software, firmware, and instructions that must not

be altered or erased during normal operation.

The primary function of ROM is to provide read-only access to data and instructions that are integral to the
system's functionality. It typically contains firmware, boot loaders, basic input/output system (BIOS), and other
essential software components that initialize the hardware and facilitate the startup process of the computer or
device. ROM chips are manufactured with the data already stored during production, using methods that
permanently encode the information into the memory cells. There are several types of ROM, including PROM
(Programmable ROM), EPROM (Erasable Programmable ROM), and EEPROM (Electrically Erasable
Programmable ROM), each offering varying degrees of programmability and permanence suited to different

application needs in computing and electronics.

PROM (Programmable Read-Only Memory):
e Function: gores data and instructions that are permanently programmed during manufacturing.
e Characteristics:
o Can be programmed only once using a special device called a PROM programmer.
o Once programmed, the data cannot be changed or erased.
o Cost-effective for small production runs of custom software or firmware.

e Usage:




o

Stores boot firmware, basic system instructions, and other critical data that must remain

unchanged.

EPROM (Erasable Programmable Read-Only Memory):

e Function: Allows for erasing and reprogramming of the memory multiple times.

e Characteristics:

e  Usage:

Erased using ultraviolet (UV) light exposure, which clears the memory cells.
Once erased, new data can be written using a PROM programmer.

Commonly used for firmware updates and development purposes.

Ideal for applications where occasional updates or corrections are necessary without replacing

the entire chip.

EEPROM (Electrically Erasable Programmable Read-Only Memory):

¢  Function: Allows for electrical erasing and reprogramming of the memory.

e Characteristics:

e Usage:

Can be erased and reprogrammed electrically, which is faster and more convenient than

EPROM.
Retains data without power, similar to other ROM types.

Used in devices where frequent updates or changes to the stored data are required, such as BIOS

settings and configuration data.

Commonly found in consumer electronics, embedded systems, and devices requiring flexible

storage of configuration settings.

Auxiliary Memory:

Auxiliary memory, a@cﬂown as secondary storage, refers to external storage devices used alongside the primary

memory (RAM) of a computer system. Unlike RAM, which provides fast access to data but is volatile, auxiliary

memory offers larger storage capacities at a lower cost per byte and retains data even when the power is turned

off.

The primary role of auxiliary memory is to provide long-term storage for large volumes of data, programs, and

files that are not currently in use by the CPU. This includes persistent storage solutions such as hard disk drives

(HDDs), solid-state drives (SSDs), optical discs (CDs/DVDs), magnetic tapes, and cloud storage services. These




devices typically have slower access speeds compared to RAM but offer much larger storage capacities, making

them suitable for storing operating systems, applications, multimedia files, and user data.

Auxiliary memory plays a critical role in enhancing the overall functionality and efficiency of computer systems
by enabling data persistence, allowing users to store and access vast amounts of information beyond the immediate
capabilities of RAM. It supports functions such as data backup, archiving, and data sharing across multiple

platforms, ensuring that information remains accessible and secure over extended periods.

Types of Auxiliary Memory
1. Hard Disk Drives (HDDs)

Hard disk drives use spinning magnetic disks coated with a magnetic material to store data. They are one gle
most common types of auxiliary memory due to their relatively high storage capacity, cost-effectiveness, and
widespread compatibility with computer systems. HDDs are suitable for storing operating systems, applications,

and large files like multimedia.
2. Solid State Drives (SSDs)

Solid state drives use flash memory technology to store data electronically. They offer faster read and write speeds
compared to HDDs, resulting in quicker access to data. SSDs are known for their reliability, energy efficiency,

and resistance to physical shock, making them ideal for high-performance computing tasks and portable devices.
3. Optical Discs (CDs, DVDs)

Optical discs use laser technology to read and write data on a reflective surface. CDs (Compact Discs) and DVDs
(Digital Versatile Discs) are examples of optical discs that offer relatively large storage capacities and are
commonly used for distributing software, music, movies, and archival data. They provide a portable and durable

storage solution.
4. Magnetic Tapes

Magnetic tapes use magnetic storage to record data sequentially on a long strip of tape. They offer high Qage
capacities at a low cost per byte, making them suitable for long-term archival storage and backup purposes.
Magnetic tapes are often used in enterprise environments for data backup and disaster recovery due to their

durability and cost-effectiveness.

8.4 Cache Memory

ghe memory is a type of high-speed volatile memory located directly within or very close to the CPU (Central
Processing Unit) of a computer. Its primary role is to store frequently accessed data and instructions that are

temporarily needed by the CPU, reducing the average time to access data from the main memory (RAM).

Role and Functionality of Cache Memory:




Speed Enhancement: Cache memory operates at a much faster speed than main memory (RAM) and is
designed to bridge the speed gap between the CPU and RAM. By storing frequently accessed data and
instructions closer to the CPU, cache memory helps to minimize the time it takes for the CPU to fetch

data, thereby improving overall system performance.

Hierarchy: Cache memory is organized into multiple levels, typically L1, L2, and sometimes L3 caches,
with each level providing progressively larger storage capacity but slower access speeds compared to the
previous level. L1 cache is the fastest but smallest, located closest to the CPU, while L2 and L3 caches

are larger and located further away.

Cache Coherency: Cache memory implements mechanisms to ensure data consistency between
different levels of cache and main memory. When data is updated in the CPU cache, these updates are

eventually propagated to the main memory to maintain data integrity.

Automatic Management: Cache memory utilizes hardware and software algorithms to manage data
placement and replacement based on access patterns. This includes prefetching data likely to be needed

soon and evicting data that is least likely to be used.

Types of Cache Memory:

m;orta

L1 Cache: The smallest and fastest cache directly integrated into the CPU. It typically stores instructions
and data that are currently being executed by the CPU cores.

L2 Cache: Located between L1 cache and main memory, L2 cache is larger in size and provides

additional storage for frequently accessed data. It serves as a buffer between L1 cache and main memory.

L3 Cache: Found in some multi-core processors, L3 cache is shared among multiple CPU cores within
a processor. It offers larger storage capacity than L1 and L2 caches and helps improve overall system

performance by reducing the need to access main memory.

CPU | Level Level 2 Level 3 Main
(L1} cache (L2) cache (L3 cache Memaory

Fastent Fant
i Sl
e

nce of Cache Memory:

Cache memory plays a crucial role in enhancing the speed and efficiency of modern computer systems by reducing
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from slower main memory. This efficient data retrieval mechanism significantly improves the overall

responsiveness and performance of computers, especially in tasks requiring rapid data processing and execution

of complex software applications.

8.5 Virtual Memory

Virtual memory is a memory management technique used by operating systems to provide the illusion of a larger

and contiguous memory space than physically availa& in the main memory (RAM). It allows programs to operate

as if they have access to a large, continuous block of memory, even though physical memory may be limited or

fragmented.

Key Concepts and Functionality of Virtual Memory:

1.

Address Space: Virtual memory extends the address space visible to a program beyond the actual
physical memory installed on the computer. Each program sees a virtual address space that starts from

zero and goes up to the maximum addressable limit, defined by the architecture and operating system.

Demand Paging: Virtual memory uses demand paging, a strategy where portions of a program's code
and data are loaded into the main memory only when they are actively needed. This minimizes the

amount of physical memory required to run programs and optimizes the usage of available resources.

Page Faults: When a program accesses a portion of memory that is not currently in the main memory
but resides in the virtual memory, a page fault occurs. The operating system then retrieves the required
data from the secondary storage (usually the hard disk) into the main memory and updates the page tables

to reflect this mapping.

Page Tables: Virtual memory relies on page tables to manage the mapping between virtual addresses
used by programs and physical addresses in the main memory. These tables store information about
which pages of memory are currently resident in physical memory and facilitate quick lookups during

address translation.

Memory Protection: Virtual memory systems provide memory protection mechanisms to isolate and
protect the memory space of different processes from unauthorized access. This ensures that each

program operates within its designated memory boundaries, enhancing system security and stability.

Benefits of Virtual Memory:

Efficient Memory Management: Virtual memory allows efficient utilization of physical memory by
dynamically swapping data between main memory and secondary storage as needed, optimizing overall

system performance.




e Support for Large Applications: Virtual memory enables the execution of large applications that
require more memory than available physical RAM, enhancing the capabilities of modern software

systems.

e Simplified Programming: Programmers can write code without worrying about physical memory

limitations, as the operating system manages memory allocation and paging transparently.
Implementation and Considerations:

Virtual memory is implemented by the operating system using a combination of hardware support (such as
memory management units in CPUs) and software algorithms (like page replacement policies). Efficient
management of virtual memory requires balancing factors such as page size, page replacement algorithms (e.g.,
LRU - Least Recently Used), and disk I/O performance to minimize overhead and maximize system

responsiveness.
Paging and segmentation techniques in virtual memory systems.

Paging and segmentation are two fundamental techniques used in virtual memory systems to manage and utilize

memory efficiently. Here's a detailed explanation of each:

Paging:

Definition: Paging divides physical memory into fixed-size blocks called pages and logical memory into blocks
of the same size called frames. Pages are the unit of data transfer between secondary storage and main memory.
Key Concepts:

1. Page Table: Each process has a page table that maps virtual pages to physical frames. The page table
typically resides in main memory and is managed by the operating system. It translates virtual addresses

generated by the CPU into physical addresses.

2. Page Fault: When a program references a page not currently in main memory (a page fault occurs), the
operating system loads the required page from secondary storage (e.g., disk) into a free frame in main

memory. This process is known as demand paging.

3. Page Replacement: If all frames are occupied and a page fault occurs, the operating system must replace
a page in main memory with the required page. Various algorithms like Least Recently Used (LRU),

First-In-First-Out (FIFO), and Clock are used for page replacement decisions.

4. Benefits: Paging allows efficient use of physical memory by allocating memory on-demand, supports
memory protection through page-level permissions, and simplifies memory allocation by using fixed-

size pages.
Segmentation:

Definition: Segmentation divides a program's address space into variable-sized logical segments (such as code,

data, stack) rather than fixed-size pages.




Key Concepts:

1. Segment Table: Each segment is mapped to a segment table entry that stores the base address and size
of the segment in main memory. The segment table is typically stored in the CPU and is indexed by a

segment number obtained from the virtual address.

2. Address Translation: When a virtual address is generated by the CPU, the segment number is used to
index the segment table to retrieve the base address of the segment. The offset within the segment is then

added to the base address to obtain the physical address.

3. Segmentation Fault: Similar to page faults, segmentation faults occur when a program attempts to

access a segment that is not present in main memory or violates memory protection rules.

4. Benefits: Segmentation allows for more flexible memory allocation than paging, as segments can vary
in size and type (code, data, stack). It supports modular program design and simplifies memory

management by providing a hierarchical view of memory.
Comparison:
e Granularity: Paging uses fixed-size pages, whereas segmentation uses variable-sized segments.

e Address Translation: Paging translates virtual addresses to physical addresses using page tables, while

segmentation uses segment tables.

o Flexibility: Segmentation provides more flexibility in memory allocation and management compared to

paging but may lead to external fragmentation.
Combined Approach (Paging and Segmentation):

Modern virtual memory systems often combine paging and segmentation techniques to leverage their respective
advantages. This hybridqroach, known as paged segmentation or segmented paging, allows for both flexible

memory allocation and elTicient use of physical memory.

8.6 Associative Memory

Associative memory, also known as content-addressable memory (CAM), is a type of computer memory that
enables rapid search and retrieval of data based on its content rather than its location in memory. Here's a detailed

explanation of associative memory:
Definition and Function:

Associative Memory: Unlike conventional memory structures where data is accessed via an address, associative
memory allows data retrieval based on its content. It stores data as pairs of key-value or tag-data entries, where

the key serves as a search argument.




Functionality: When a search is performed in associative memory, the system compares the search key against
all stored keys simultaneously. If a match is found, the associated data or value is retrieved. This parallel search
capability makes associative memory extremely fast for certain types of operations, such as database queries or

caching mechanisms.
Key Concepts:

1. Content-Based Access: Data retrieval is based on the content or value of the data rather than its memory
address. This makes associative memory suitable for applications where quick access to specific

information is critical.

2. Search Operation: Associative memory performs searches in parallel, comparing the search key against
all stored keys simultaneously. This parallelism allows for rapid access times, often in constant time

O(1), making it efficient for real-time applications.
3. Applications: Associative memory is used in various fields, including:

o Cache Memory: CPU caches often use associative memory to quickly retrieve recently

accessed data.

o Database Systems: Associative memory accelerates search operations in databases, improving

query response times.
o Pattern Recognition: Used in Al and image processing applications to match patterns quickly.
Comparison with Conventional Memory:

e Access Time: Associative memory offers faster access times compared to traditional random-access

memory (RAM), which requires sequential access based on memory addresses.

e Storage Efficiency: While associative memory is efficient for quick retrieval based on content, it

typically stores fewer data entries than conventional memory due to its specialized search mechanism.
Implementation:

e Hardware: Associative memory is typically implemented using special-purpose hardware known as

associative memory chips or content-addressable memory (CAM) chips.

e Structure: Each entry in associative memory consists of a tag or key and associated data. Modern
implementations may use ternary content-addressable memory (TCAM) for more flexible search

operations, allowing for matches, mismatches, and "don't care" conditions.
Advantages and Limitations:
e Advantages: Fast access times, parallel search capability, suitable for real-time applications.

e Limitations: Higher cost and complexity compared to conventional memory, limited scalability for large

data sets.




Comparison with conventional memory types (RAM, ROM).
Access Method:

e Associative Memory: Access is based on content (data), allowing for parallel searches across all stored

entries simultaneously.

e RAM: Access is based on physical addresses assigned to each memory cell, requiring sequential access

or direct addressing.
Speed:

e Associative Memory: Provides very fast access times, often in constant time (O(1)), due to parallel

search capability.

e RAM: Offers fast access times but depends on the memory address, leading to variable access times

depending on the location of data in memory.
Applications:

e Associative Memory: Ideal for applications requiring quick retrieval based on content, such as cache

memories and database systems.

e RAM: Used for general-purpose computing tasks where sequential or direct access to specific memory

locations is sufficient.
Capacity and Cost:

e Associative Memory: Typically stores fewer entries &pared to RAM due to its specialized search

mechanism, which can increase costs.
e RAM: Offers larger storage capacity and is more cost-effective for storing large amounts of data.
Comparison with ROM (Read-Only Memory):
Access and Modification:

e Associative Memory: Allows for both reading and writing of data based on content, making it versatile

for dynamic applications.
¢ ROM: Generally used for storing fixed data or firmware that cannot be easily modified or updated.
Speed and Usage:

e Associative Memory: Provides fast access times similar to RAM, making it suitable for applications

requiring frequent data retrieval and updates.

e ROM: Offers fast read access times but limited or no write capability, suitable for storing programs,

firmware, and essential system data.

Flexibility:




e Associative Memory: Offers flexibility in data retrieval and search operations, supporting complex

search patterns and conditions.

e ROM: Provides fixed data storage, limiting its flexibility compared to associative or random-access

memory.
Cost and Implementation:

e Associative Memory: Generally more expensive and complex to implement compared to ROM due to

its specialized hardware requirements.

e ROM: Cost-effective for applications requiring permanent storage of data that does not change

frequently.

8.7 Memory Management Techniques

Memory management techniques are fundamental in computer systems to efficiently allocate and manage memory

resources. Here are key techniques related to memory allocation strategies and fragmentation management:
Memory Allocation Strategies
1. Contiguous Allocation:
o Concept: Allocates a contiguous block of memory to a process.

o Implementation: Typically used in systems with fixed-size partitions or with dynamic

partitioning where a large enough contiguous block is available.
o Advantages: Simple implementation, minimal overhead.
o Disadvantages: Can lead to external fragmentation.
2. Non-contiguous Allocation:
o Concept: Allocates memory to a process in non-contiguous blocks.
o Implementation: Includes paging and segmentation techniques.
o Advantages: Reduces external fragmentation, allows efficient memory usage.

o Disadvantages: Requires more complex management due to page tables (for paging) or

segment tables (for segmentation).

Fragmentation Types and Management Techniques




Fragmentation in memory management refers to the inefficient use of memory space, resulting in wastage or
fragmentation of available memory. There are two main types of fragmentation: internal fragmentation and

external fragmentation, each requiring specific management techniques.
Internal Fragmentation

Definition: Internal fragmentation occurs when allocated memory space is larger than what is actually needed by

the process.
Causes:

o Fixed-size Allocation: When memory is allocated in fixed-size blocks and a process does not fully utilize

the entire block.

e Variable-size Allocation: When variable-sized allocations result in leftover space due to alignment

requirements or memory allocation policies.
Management Techniques:

o Best Fit, Worst Fit, First Fit: These allocation strategies aim to reduce internal fragmentation by
matching process size closely to the available memory block size. For example, Best Fit allocates the

smallest block that fits the process, minimizing leftover internal fragmentation.

e Memory Compaction: In systems with dynamic partitioning, memory compaction involves rearranging
memory contents to place all free memory together, allowing larger contiguous blocks to be allocated to

processes.
External Fragmentation

Definition: External fragmentation occurs when there is enough total memory space to satisfy a request, but it is

fragmented into small, non-contiguous blocks, making it unusable.
Causes:

¢ Dynamic Allocation: Frequent allocation and deallocation of memory lead to small holes (free blocks)

scattered throughout memory.

e  Memory Reclamation: As processes finish and free memory, the remaining memory may be fragmented

into small pieces that cannot be used efficiently.
Management Techniques:

e Memory Compaction: Similar to managing internal fragmentation, memory compaction involves
rearranging memory to place all free blocks together, reducing external fragmentation and making larger

contiguous blocks available for allocation.

e Buddy System: Allocates memory in powers of two sizes. When a block is freed, it checks if its buddy
(adjacent free block of the same size) is also free. If so, it merges them into a larger block, reducing

fragmentation.




o Paging and Segmentation: Techniques used in virtual memory systems where memory is divided into
fixed-size pages or variable-sized segments. Paging reduces external fragmentation by allocating
memory in fixed-size pages, while segmentation allows for more flexible allocation but requires

management of segment tables to handle fragmentation.

8.8 Performance Metrics

Performance metrics in computing are essential for evaluating the efficiency and effectiveness of various system
components and processes. These metrics provide insights into how well a system performs under different

conditions and workloads. Here are some key performance metrics commonly used in computing:
1. Execution Time (Response Time)
o Definition: The total time taken to complete a task or process.

e Importance: Indicates the speed at which a system executes tasks, directly impacting user experience

and system throughput.
2. Throughput
e Definition: The number of tasks completed or processed per unit of time.

o Importance: Measures the system's capacity to handle multiple tasks simultaneously, providing an

overall measure of system performance under load.
3. CPU Utilization
¢ Definition: '@C percentage of time the CPU is actively executing instructions.

o Importance: Reflects how efficiently the CPU resources are being utilized. High CPU utilization may

indicate resource contention or inefficient code execution.
4. Memory Utilization
e Definition: The percentage of available memory resources (RAM) being used.

e Importance: Monitors the efficiency of memory allocation and usage. High memory utilization may

lead to paging or swapping, impacting overall system performance.
5. Latency
e Definition: The time delay between initiating a request and receiving a response.

o Importance: Critical for real-time systems and interactive applications, where low latency is essential

for responsiveness.




6. Bandwidth
e Definition: The amount of data transferred per unit of time over a network or between components.

o Importance: Determines the capacity and speed of data transmission, influencing network and system

performance.
7. Cache Hit Rate

e Definition: The percentage of memory accesses that are satisfied from the cache without accessing main

memory.

o Importance: Higher cache hit rates indicate efficient use of cache memory, reducing memory latency

and improving overall system performance.
8. Fault Tolerance
o Definition: The ability of a system to continue operating in the event of hardware or software failures.

e Importance: Measures system reliability and resilience, crucial for mission-critical applications and

systems.
9. Scalability

o Definition: The ability of a system to handle increasing workload or resource demands by adding

resources.

e Importance: Evaluates how well a system can grow to meet future needs without compromising

performance or functionality.

8.9 Conclusion

In examining the intricacies of memory hierarchy, it becomes evident that its layered structure is fundamental to
the efficiency and functionality of modern computing systems. Main memory, encompassing both volatile RAM
and non-volatile ROM, serves as the immediate repository for data and instructions needed by the CPU. This
proximity ensures swift access times critical for rapid computation and responsiveness. Cache memory further
optimizes performance by storing frequently accessed data closer to the CPU, reducing latency and enhancing

overall system speed.

Virtual memory extends the capabilities of physical RAM by utilizing secondary storage, such as hard drives, to
simulate larger memory spaces. This technique allows for efficient multitasking and handling of large datasets
that exceed the limitations of physical RAM alone. Associative memory introduces specialized, fast-access
storage solutions tailored for specific applications, such as high-speed data retrieval in databases or real-time

processing in embedded systems.




Effective memory management techniques, including allocation strategies and fragmentation management, are
essential for maximizing the use of available memory resources. By minimizing wasted space and optimizing data
placement, these techniques ensure that applications can efficiently utilize memory without unnecessary delays
or inefficiencies. Performance metrics play a crucial role in evaluating the effectiveness of memory systems,
measuring factors like latency, throughput, and overall system responsiveness to guide improvements in memory

architecture and design.

In conclusion, a well-designed memory hierarchy is essential for achieving optimal performance in computing
systems. It balances the need for speed, capacity, and flexibility, accommodating diverse computing tasks and
workloads efficiently. As computing continues to evolve, advancements in memory technology and management
will play a pivotal role in shaping the capabilities of future systems, enhancing both user experience and

computational capabilities across various domains.

8.10 Unit Based Questions & Answers

1. Explain the concept of memory hierarchy and its importance in computer systems.

Answer: Memory hierarchy refers to the layered structure of memory in a computer system, from fast and
expensive memory at the top (registers and cache) to slower and cheaper memory at the bottom (secondary
storage). It optimizes performance by balancing speed, capacity, and cost-effectiveness, ensuring that data can be

accessed quickly by the CPU when needed.
2. Compare Dynamic RAM (DRAM) and Static RAM (SRAM) in terms of structure and performance.

Answer: DRAM uses capacitors to store data and requires refreshing, whereas SRAM uses flip-flops and is faster
but more expensive. DRAM is suitable for main memory due to its higher density and lower cost per bit, while

SRAM is used in cache memory for its faster access times.
3. Explain the principle of locality and its relevance to cache memory.

Answer: The principle of locality suggests that programs tend to access a small subset of their data and
instructions at any given time. Cache memory leverages this by storing recently accessed data and instructions

close to the CPU, reducing the time required to fetch them from main memory.
3. How does virtual memory expand the address space available to programs?

Answer: Virtual memory uses disk space as an extension of RAM, allowing programs to access more memory
than physically available. It uses paging or segmentation to manage memory, swapping data between RAM and

disk based on demand, thereby enabling efficient multitasking and handling of large datasets.
4. Discuss the advantages and applications of associative memory.

Answer: Associative memory enables rapid data retrieval by storing data and its associated addresses together. It
is used in applications requiring fast access times, such as databases, real-time systems, and hardware-based

pattern recognition.




5. Explain the difference between internal and external fragmentation.

Answer: Internal fragmentation occurs when allocated memory is larger than required, wasting space within a
block. External fragmentation occurs when there is enough total memory space to satisfy a request, but it is

fragmented into small non-contiguous blocks, making it unusable.
6. Define latency and throughput in the context of memory performance metrics.

Answer: Latency refers to the time taken for a memory operation to complete, such as the time between requesting
data and receiving it. Throughput measures the rate at which data can be transferred, indicating the overall

bandwidth of memory systems.
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9.0 Introduction

In the realm of computer systems, effective memory management is crucial for ensuring optimal performance,
efficient data access, and seamless execution of applications. Memory management involves a variety of hardware
components and algorithms designed to manage the flow of data between the computer's main memory and other
storage devices. This unit delves into the essential aspects of memory management hardware, including the

Memory Management Unit (MMU), paging, segmentation, and the Translation Lookaside Buffer (TLB).

Furthermore, the unit explores the performance implications of memory management, focusing on the hit/miss
ratio, a critical metric for assessing the efficiency of memory access. The role of magnetic storage devices, such
as magnetic disks and tapes, in providing reliable and high-capacity data storage is also examined. Understanding
these components and their interplay is fundamental for anyone looking to grasp the complexities of modern

computer architectures.




By the end of this unit, readers will gain a comprehensive understanding of how memory management hardware

functions, the significance of different memory access strategies, and the performance considerations associated

with various storage media. This knowledge is essential for both designing efficient computer systems and

troubleshooting performance issues in existing setups.

9.1 Objectives

After completing this unit, student will able to understand,

Understand the role and function of the Memory Management Unit (MMU) in computer systems.
Explain the hardware mechanisms for paging and segmentation in memory management.
Calculate and analyze the hit/miss ratio and its impact on system performance.

Explore the structure and performance characteristics of magnetic disks and RAID configurations.

Describe the uses and performance implications of magnetic tape storage systems.

9.2 Memory Management Unit (MMU)

The Memory Management Unit (MMU) is a crucial hardware component in a computer system responsible for

handling memory and caching operations. It primarily translates virtual addresses to physical addresses, enabling

processes to utilize memory efficiently and securely. The MMU plays a key role in implementing virtual memory,

which allows a system to use more memory than is physically available by swapping data to and from the disk.

Functions of the MMU

1.

Address Translation: The MMU translates virtual addresses generated by the CPU into physical

addresses in the main memory.

Memory Protection: It ensures that a process cannot access the memory allocated to another process,

thus providing isolation and security.

Paging: The MMU divides virtual memory into pages and maps these pages to physical memory frames.

This helps in efficient memory allocation and management.

Segmentation: The MMU can support segmentation, where memory is divided into segments of varying

lengths, each associated with specific permissions and attributes.

Cache Control: It manages the translation lookaside buffer (TLB), which caches recent address

translations to speed up memory access.

Components of an MMU




Page Table: The page table is a data structure used by the MMU to keep track of the mapping between
virtual pages and physical frames. Each entry in the page table contains information such as the frame

number, access permissions, and status bits.

Segment Table: If segmentation is used, the MMU maintains a segment table containing base addresses

and limits for each segment, along with access control information.

Translation Lookaside Buffer (TLB): The TLB is a cache that stores recent translations of virtual
addresses to physical addresses. It helps speed up the address translation process by reducing the need to

access the page table frequently.

Control Registers: These registers hold configuration and status information related to the MMU, such

as base addresses for page tables and segment tables, and control bits for enabling or disabling features.

Address Translation Process

1.

2.

5.

Virtual Address Generation: The CPU generates a virtual address for accessing memory.

TLB Lookup: The MMU first checks the TLB to see if the translation for the virtual address is already

cached.

o TLB Hit: If the translation is found in the TLB, the physical address is obtained quickly, and

memory access proceeds.

o TLB Miss: If the translation is not found, the MMU accesses the page table to find the

corresponding physical address.

Page Table Access: The MMU uses the virtual address to index into the page table and retrieve the
physical address. If paging is used, this involves locating the appropriate page table entry.

Address Translation: The MMU translates the virtual address into a physical address using the

information from the page table.

Memory Access: The physical address is used to access the desired memory location.

Components of an MMU Diagram

To illustrate the components of an MMU, here is a simplified block diagram:

1.

2.

3.

4.

CPU: Generates virtual addresses.
TLB: Stores recent address translations.
Page Table: Maps virtual pages to physical frames.

Physical Memory: Actual memory locations accessed using physical addresses.

Benefits of MMU




1. Efficient Memory Utilization: The MMU allows for efficient use of physical memory by mapping only

the necessary pages, reducing fragmentation.

2. Security: By isolating processes, the MMU ensures that one process cannot interfere with another,

providing memory protection.

3. Flexibility: Virtual memory enables running larger applications than the available physical memory by

swapping pages in and out of disk storage.

4. Performance: The TLB and caching mechanisms within the MMU help improve the speed of address

translation and memory access.

Figure: MMU Address Translation
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9.3 Paging Hardware

Paging is a memory management scheme that eliminates the need for contiguous allocation of physical memory,
thereby reducing issues like fragmentation. It divides the virtual memory into blocks of physical memory called
"pages," which are typically of fixed size (e.g., 4KB). The main components involved in paging are the page table,

the Translation Lookaside Buffer (TLB), and the physical memory.
Components of Paging Hardware
1. Page Table:

o Definition: A data structure used to map virtual addresses to physical addresses.




o Function: Each process has its own page table, which keeps track of the frame number

corresponding to each page number.

o Structure: Contains entries that include the frame number and status bits (e.g., valid/invalid bit,

access permissions, dirty bit).
2. Translation Lookaside Buffer (TLB):
o Definition: A cache that stores recent page table entries.

o Function: Reduces the time taken to access the page table by caching recent translations of

virtual addresses to physical addresses.
o Structure: A small, fast memory structure within the MMU.
3. Memory Management Unit (MMU):

o Definition: The hardware component responsible for handling all memory and caching

operations, including paging.
o Function: Translates virtual addresses to physical addresses using the page table and TLB.
4. Physical Memory (RAM):
o Definition: The hardware where data and instructions are stored.
o Function: Stores the actual data corresponding to the virtual pages.
Paging Process

1. Virtual Address Generation: The CPU generates a virtual address that needs to be translated to a

physical address.
2. TLB Lookup: The MMU first checks the TLB to see if the translation is cached.
o TLB Hit: If found, the physical address is quickly retrieved, and the memory access proceeds.
o TLB Miss: If not found, the MMU accesses the page table.

3. Page Table Access: The MMU uses the virtual page number to index into the page table and retrieve the

corresponding frame number.

4. Address Translation: The virtual address is converted into a physical address using the frame number

obtained from the page table.
5. Memory Access: The physical address is used to access the desired memory location.
Detailed Steps in Paging
1. CPU Generates Virtual Address:

o The virtual address consists of a virtual page number (VPN) and an offset within that page.




o Example: If the virtual address is 0x1234 and the page size is 4KB, the VPN might be 0x1 and
the offset 0x234.

2. TLB Lookup:
o The TLB is checked for an entry matching the VPN.
o Ifanentry is found (TLB hit), it provides the corresponding frame number.
o Ifno entry is found (TLB miss), the MMU must access the page table.
3. Page Table Access:
o The VPN is used to index into the page table.
o The page table entry (PTE) contains the frame number and status bits.
o Ifthe PTE is marked valid, the frame number is used for address translation.

o Ifthe PTE is invalid (e.g., page not in memory), a page fault occurs, and the operating system

must handle it by loading the page from disk into memory.
4. Physical Address Calculation:

o The physical address is formed by combining the frame number from the PTE with the offset
from the virtual address.

o Example: If the frame number is 0x2 and the offset is 0x234, the physical address is 0x2234.
5. Memory Access:
o The physical address is used to access the desired data in the RAM.
Diagram of Paging Hardware

Here is a simplified block diagram of paging hardware:
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Key Points
e TLB: Enhances performance by caching recent address translations.

e Page Table: Maps virtual pages to physical frames, with entries containing frame numbers and status

bits.
e MMU: Manages the entire address translation process, utilizing the TLB and page table.
Benefits of Paging Hardware
1. Efficient Memory Management: Allows non-contiguous memory allocation, reducing fragmentation.
2. Security and Isolation: Ensures processes cannot access each other's memory.

3. Performance Optimization: TLB and page table structures improve address translation speed.

9.4 Segmentation Hardware

Segmentation is a memory management technique that divides the memory into different segments based on the
logical divisions of a program, such as code, data, and stack. Each segment has its own base address and limit,
which helps in accessing and managing memory efficiently. Unlike paging, which divides memory into fixed-size

blocks, segmentation deals with variable-sized segments.

Components of Segmentation Hardware




1. Segment Table:
o Definition: A data structure that maintains information about all segments of a process.
o Function: Each entry in the segment table holds the base address and limit of a segment.

o Structure: Contains entries with fields for the segment base address, segment limit, and status

bits (e.g., valid/invalid bit, access permissions).
2. Segment Table Register (STR):
o Definition: A special register that holds the base address of the segment table.

o Function: Points to the segment table in memory, enabling the CPU to access segment

information.
3. Memory Management Unit (MMU):

o Definition: The hardware component responsible for translating logical addresses to physical

addresses using the segment table.

o Function: Facilitates address translation by accessing the segment table and combining the

segment base address with the offset.
Segmentation Process

1. Logical Address Generation: The CPU generates a logical address that consists of a segment number

and an offset within that segment.

2. Segment Table Access: The MMU uses the segment number to index into the segment table and retrieve

the base address and limit of the segment.

3. Address Translation: The MMU checks if the offset is within the segment limit. If valid, the logical
address is translated into a physical address by adding the offset to the segment base address.

4. Memory Access: The physical address is used to access the desired memory location.
Detailed Steps in Segmentation
1. CPU Generates Logical Address:
o The logical address is composed of a segment number (SN) and an offset (O).

o Example: If the logical address is SN:O = 3:0x456 and the segment size is 4KB, SN is 3 and
the offset is 0x456.

2. Segment Table Lookup:
o The MMU uses the segment number to index into the segment table.

o Retrieves the base address and limit for the segment.




3. Address Translation:
o The MMU checks if the offset is within the segment limit.

o If the offset is valid, the physical address is calculated by adding the segment base address to
the offset.

o Example: If the segment base address is 0x2000 and the offset is 0x456, the physical address is
0x2000 + 0x456 = 0x2456.

4. Memory Access:
o The physical address is used to access the desired data in RAM.
Diagram of Segmentation Hardware

Here is a simplified block diagram of segmentation hardware:
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Key Points

e Segment Table: Maps segment numbers to base addresses and limits.

e Segment Table Register (STR): Holds the base address of the segment table.

e  MMU: Translates logical addresses to physical addresses using segment table entries.
Benefits of Segmentation Hardware

1. Logical Organization: Aligns with the logical divisions of a program, making it easier to manage

code, data, and stack separately.
2. Memory Protection: Each segment can have its own access permissions, enhancing security.

3. Dynamic Memory Allocation: Segments can grow or shrink as needed, reducing fragmentation.




9.5 TLB (Translation Lookaside Buffer)

The Translation Lookaside Buffer (TLB) is a specialized cache used to improve the speed of virtual address
translation in computer systems. It is a part of the memory management unit (MMU) and stores recent translations

of virtual addresses to physical addresses.
Importance of TLB

Without a TLB, every memory access would require a page table lookup, which involves accessing main memory
and can significantly slow down the system. By caching recent translations, the TLB reduces the number of

memory accesses needed for address translation, thereby improving overall system performance.
Components of TLB

1. Tag: Identifies the virtual page number.

2. Page Frame Number: The corresponding physical page frame number.

3. Valid Bit: Indicates whether the TLB entry is valid.

4. Access Control Bits: Permissions and access rights for the page.

5. Other Bits: May include bits for managing replacement policies (e.g., LRU).
Operation of TLB

1. Virtual Address Generation: The CPU generates a virtual address.

2.  TLB Lookup: The MMU checks the TLB for a match with the virtual page number.

3. TLB Hit: If a match is found (TLB hit), the corresponding physical page frame number is used to form

the physical address, and the memory access proceeds.
4. TLB Miss: If no match is found (TLB miss), the MMU must perform a page table lookup.
o The page table lookup retrieves the physical page frame number.
o The TLB is updated with the new translation.
o The memory access then proceeds with the translated address.
Detailed Steps in TLB Operation
1. Virtual Address Generation:

o The CPU generates a virtual address, consisting of a virtual page number and an offset within

the page.

o Example: For a 32-bit virtual address with a 4 KB page size, the top 20 bits could represent the

virtual page number, and the bottom 12 bits represent the offset.




2. TLB Lookup:

o The MMU uses the virtual page number to search the TLB.
o Ifthe TLB has multiple entries, associative or direct-mapped search techniques may be used.
3. TLB Hit:
o Ifthe virtual page number is found in the TLB, the corresponding physical page frame number
is retrieved.
o The physical address is constructed by combining the physical page frame number with the
offset.
o Example: If the TLB entry maps virtual page number 0x123 to physical page frame 0x456, and
the offset is 0x789, the physical address is 0x456789.
4. TLB Miss:
o Ifthe virtual page number is not found in the TLB, a page table lookup is initiated.
o The MMU retrieves the page table entry for the virtual page number, obtaining the physical
page frame number.
o The TLB is updated with the new translation.
o The physical address is then constructed, and the memory access proceeds.
5. Memory Access:
o The constructed physical address is used to access the memory.

Diagram of TLB Operation

Here is a simplified block diagram of TLB operation:
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Benefits of TLB
1. Speed: Significantly reduces the time needed for address translation by caching recent translations.

2. Efficiency: Decreases the number of memory accesses required for translation, freeing up memory

bandwidth for other operations.
3. Performance: Improves the overall performance of the system by reducing latency in memory access.
Challenges and Solutions

1. TLB Miss Penalty: When a TLB miss occurs, the penalty is the time taken to perform a page table
lookup. This can be mitigated by optimizing page table structures and using larger TLBs.

2. TLB Size: A larger TLB can store more entries, reducing the miss rate but at the cost of increased

hardware complexity and power consumption. Balancing TLB size and performance is critical.

9.6 Hit/Miss Ratio

The hit/miss ratio refers to a metric used to measure the effectiveness of caching algorithms in computer systems,
particularly in relation to cache memory. It represents the ratio of cache hits (successful accesses where the
requested data is found in the cache) to cache misses (failed accesses where the requested data is not found in the

cache and must be fetched from main memory or another lower-level cache).

In more detail, the hit/miss ratio is calculated using the formula:

" g ; 1 i ‘ache Hits
Hlt-f(h'llSS Ratio = Number of Cache Hits % 100%

Number of Cache Hits+ Number of Cache Misses




Ahigh hit ratio indicates that a significant portion of memory accesses are satisfied by the cache, which is desirable
for optimizing system performance. Conversely, a low hit ratio suggests that many accesses require fetching data

from slower main memory or storage, which can impact performance negatively.

Efficient caching strategies and algorithms aim to maximize the hit ratio by predicting which data will be needed
soon and ensuring it is readily available in the cache. Various factors, such as cache size, replacement policies
(like LRU - Least Recently Used), and access patterns, influence the hit/miss ratio in practical computing

scenarios.
Calculation

Calculating the hit/miss ratio involves using the following formula:

Hit /Miss Ratin = souaberof Cache Hits . ) 00
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Here’s how you can calculate it step-by-step:
1. Count Cache Hits and Misses:
o Cache Hits: Count the number of times the requested data is found in the cache.

o Cache Misses: Count the number of times the requested data is not found in the cache and must

be fetched from main memory or another level of cache.
2. Total Memory Accesses:

o Sum of both cache hits and cache misses. This gives you the total number of memory accesses

made by the system.
3. Calculate the Ratio:
o Divide the number of cache hits by the total number of memory accesses.
o  Multiply the result by 100% to convert it into a percentage.
Example Calculation:

Let's say a system has 1000 memory accesses, out of which 800 accesses were cache hits and 200 accesses were

cache misses.

Hit /Miss Ratio = 2= = 100%

Hit /Miss Ratio = 0.8 x 100% = 80%

So, in this example, the hit/miss ratio is 80%. This means that 80% of the memory accesses were satisfied by the

cache, while 20% required fetching data from slower memory levels due to cache misses.

Factors Affecting Hit/Miss Ratio




Several factors influence the hit/miss ratio in a caching system, impacting its effectiveness and overall

performance:

1.

Cache Size: Larger caches tend to have higher hit ratios because they can store more data and

accommodate more frequently accessed items.

Cache Replacement Policy: The policy used to decide which items to remove from the cache when it
is full affects the hit ratio. LRU (Least Recently Used), LFU (Least Frequently Used), and random

replacement policies can significantly impact cache performance.

Cache Mapping Technique: Different mapping techniques like direct mapping, set-associative
mapping, and fully associative mapping affect how addresses are mapped to cache locations. More

associative mappings typically result in higher hit ratios.

Data Size and Alignment: The size of data blocks stored in the cache and their alignment with cache
line boundaries affect the likelihood of cache hits. Optimal block size and alignment reduce the number

of cache misses.

Processor Architecture and Bus Speed: Faster processors and buses reduce the latency associated with
accessing data from caches and main memory, potentially improving the hit ratio by reducing the penalty

for cache misses.

Cache Placement: How caches are placed in the memory hierarchy, their proximity to the processor,
and their level (L1, L2, L3 caches) affect the hit ratio. Caches closer to the processor typically have

higher hit rates due to faster access times.

Improving Hit/Miss Ratio

Improving the hit/miss ratio in a caching system is crucial for optimizing performance. Here are several strategies

to enhance the hit ratio and reduce cache misses:

Increase Cache Size: Larger caches can hold more data, reducing the likelihood of cache evictions and

increasing the chances of finding requested data in the cache.

Optimize Cache Replacement Policy: Choose a replacement policy that best suits the application's
access patterns. Policies like LRU (Least Recently Used), LFU (Least Frequently Used), or adaptive

policies can improve hit ratios by keeping frequently accessed data in the cache longer.

Use Higher Associativity: Higher associativity allows more flexibility in mapping data to cache lines,
reducing collisions and improving the hit ratio. Moving from direct-mapped to set-associative or fully

associative caches can be beneficial.

Prefetching: Implement prefetching algorithms that anticipate future memory accesses based on current

access patterns. This can reduce misses by bringing data into the cache before it's requested.




Compiler Optimizations: Compiler optimizations such as loop unrolling, software prefetching, and
code restructuring can optimize memory access patterns, reducing cache misses and improving overall

performance.

Cache Coherency and Consistency: Ensure cache coherency in multi-core or distributed systems to

prevent unnecessary cache invalidations and misses due to stale data.

9.7 Magnetic Disk and Its Performance

A magnetic disk, often referred to as a hard disk drive (HDD), is a non-volatile storage device that uses magnetic

storage to store and retrieve digital data. Here's an overview of its structure, operation, and performance

characteristics:

Structure and Operation

A typical magnetic disk consists of the following components:

Platters: Circular, metallic disks coated with a magnetic material where data is stored.

Read/Write Heads: Positioned above and below each platter, these heads magnetically read data from

and write data to the platters.

Actuator Arm: Moves the read/write heads across the surface of the disk to access different tracks and

sectors.

Data on a magnetic disk is organized into concentric tracks (circles on the surface of each platter) and sectors (pie-

shaped divisions within each track). The disk spins at a high speed (e.g., 5400 to 15000 revolutions per minute),

allowing the read/write heads to access data quickly.

Performance Characteristics

1.

Access Time: The time it takes for the read/write heads to position over the correct track and sector. It

includes:
o Seek Time: Time to move the heads to the correct track.
o Latency: Time for the desired sector to rotate under the heads.

Data Transfer Rate: The speed at which data can be read from or written to the disk, measured in
megabytes per second (MB/s). It depends on factors like rotational speed, data density, and interface type
(e.g., SATA, SAS).

Capacity: HDDs typically offer large storage capacities, ranging from gigabytes to multiple terabytes,
making them suitable for storing vast amounts of data at a relatively low cost per gigabyte compared to

other storage technologies.




4. Reliability and Durability: Modern HDDs are robust and can withstand shocks and vibrations to some

extent, but they are mechanical devices prone to wear over time.
Performance Factors
¢ Rotational Speed: Higher speeds generally reduce latency and improve data access times.
e Data Density: Higher density allows more data to be stored per platter, increasing transfer rates.

e Caching: Use of onboard cache (buffer memory) helps improve read and write speeds by temporarily

storing frequently accessed data.
Applications
Magnetic disks are widely used in:
e Personal Computers: Primary storage for operating systems, applications, and user data.
e Servers and Data Centers: Bulk storage for databases, files, and backups.
e External Storage: Portable HDDs for data backup and transfer.

RAID (Redundant Array of Independent Disks)

RAID (Redundant Array of Independent Disks) is a technology that combines multiple physical disk drives into
a single logical unit to improve performance, redundancy, or both. Here's an overview of common RAID levels

and their characteristics:
RAID Levels and Characteristics

1. RAID 0: Striping

o Characteristics: Data is divided ("striped") evenly across multiple disks without parity

information.

o Performance: Improves read and write speeds significantly because data is accessed in parallel

across all disks.
o Reliability: No redundancy; if one disk fails, data on all disks may be lost.
2. RAID 1: Mirroring
o Characteristics: Data is mirrored across pairs of disks.

o Performance: Read performance can be enhanced since data can be read from both disks

simultaneously.

o Reliability: Provides fault tolerance; if one disk fails, data is still accessible from the mirrored

disk.

3. RAID 5: Striping with Distributed Parity




Characteristics: Data is striped across multiple disks with distributed parity (parity information

is distributed across all disks).
Performance: Offers good read performance and moderate write performance.

Reliability: Provides fault tolerance with distributed parity; can withstand the failure of one

disk without losing data.

4. RAID 6: Striping with Dual Parity

5.

Characteristics: Similar to RAID 5 but with dual parity, which means parity information is

written to two disks.

Performance: Slower than RAID 5 due to dual parity calculations, but offers better fault

tolerance.

Reliability: Can tolerate the failure of up to two disks simultaneously without losing data.

RAID 10 (RAID 1+0): Mirrored Striping

Characteristics: Combines RAID 1 (mirroring) and RAID 0 (striping).
Performance: Provides high performance and fault tolerance.

Reliability: Offers excellent fault tolerance as long as at least one disk in each mirrored pair is

operational.

Benefits of RAID Configurations

Disk Caching

Improved Performance: RAID configurations, particularly RAID 0 and RAID 10, can significantly

improve read and write speeds by distributing data across multiple disks and allowing parallel access.

Enhanced Reliability: RAID levels like RAID 1, RAID 5, and RAID 6 provide varying degrees of fault

tolerance, allowing systems to continue functioning even if one or more disks fail.

Scalability: Some RAID levels, such as RAID 5 and RAID 6, allow for expansion by adding more disks

to the array without significant downtime or data migration.

Data Protection: Redundancy provided by RAID configurations ensures that data remains accessible

even in the event of disk failures, reducing the risk of data loss and downtime.

Disk caching plays a crucial role in enhancing the performance of magnetic disks (hard disk drives, or HDDs) by

leveraging faster access times of volatile memory compared to the slower mechanical operations of disk drives.

Here's an exploration of its role and mechanisms:

Role of Disk Caches in Improving Performance




Disk caches act as a buffer between the CPU and the slower magnetic disks, storing frequently accessed data and
metadata temporarily in faster volatile memory (RAM). This mechanism accelerates read and write operations by
reducing the number of times the CPU needs to wait for data retrieval from the comparatively slower HDDs. Key

benefits include:

o Faster Data Access: By keeping frequently accessed data in RAM, disk caches reduce latency associated

with mechanical disk operations, enhancing overall system responsiveness.

¢ Improved Throughput: Caches ensure that data required by the CPU is readily available, minimizing

idle time and maximizing data throughput from the disk subsystem.

o Enhanced User Experience: Applications load faster and respond more quickly to user commands when

critical data is cached in memory, leading to smoother user interactions and reduced perceived latency.
Cache Mechanisms and Strategies for Magnetic Disks
1. Read-ahead and Write-back Caching:

o Read-ahead: Pre-fetching data into the cache before it's requested by the CPU, anticipating

sequential access patterns.

o  Write-back: Holding writes in the cache temporarily and committing them to the disk later,

optimizing write performance by batching smaller writes into larger, more efficient operations.
2. Write-through Caching:

o Immediate Write: Writing data both to the cache and to the disk simultaneously ensures data

consistency but can impact performance due to frequent disk writes.
3. LRU (Least Recently Used) and LFU (Least Frequently Used) Policies:

o LRU: Evicting the least recently accessed data from the cache when space is needed for new

data.
o LFU: Removing the least frequently accessed data to optimize cache usage and performance.
4. Cache Size and Placement:

o Size: Balancing the cache size with available RAM and workload requirements to maximize hit

rates without excessively consuming system resources.

o Placement: Strategically positioning caches to minimize latency and maximize effectiveness

based on access patterns and workload characteristics.

9.8 Magnetic Tape




Magnetic tape is a type of data storage media that uses magnetic material coated on a thin strip of plastic to store
digital information. It has been used for decades for various storage purposes, particularly for backup, archiving,

and bulk data transfer. Here's an in-depth exploration of magnetic tape:
Definition and Role

Magnetic tape is a sequential storage medium that stores data in a linear format. It consists of a thin strip of plastic
film coated with a magnetic material, typically iron oxide or a similar compound. Data is written to and read from
the tape by a tape drive, which magnetizes or demagnetizes specific areas of the tape to represent binary

information.
Role in Data Storage:

e Backup and Archiving: Magnetic tape is widely used for backing up large volumes of data due to its
high storage capacity and durability. It is also preferred for long-term archiving because it can retain data

for several decades if stored properly.

o Cost-Effective Storage: Compared to other storage media like hard drives and SSDs, magnetic tape

offers a lower cost per gigabyte, making it an economical choice for storing large datasets.

e Bulk Data Transfer: Magnetic tapes are used to transport large datasets physically, especially in

scenarios where network transfer is impractical or too slow.
Types of Magnetic Tape Storage

1. Cartridge Tapes: These are enclosed in protective cartridges and include formats like Linear Tape-Open
(LTO) and Digital Linear Tape (DLT).

2. Reel-to-Reel Tapes: Traditional open reels of tape, now largely obsolete, but historically significant in

early computing.
Performance Characteristics
1. Storage Capacity:

o Modern magnetic tapes, such as LTO-9, offer capacities of up to 18 terabytes (native) and 45

terabytes (compressed).
2. Data Transfer Rate:

o High data transfer rates are possible, with LTO-9 offering transfer rates up to 400 MB/s (native)
and 1,000 MB/s (compressed).

3. Durability and Longevity:

o Tapes can last up to 30 years or more when stored in optimal conditions, making them ideal for

long-term data preservation.

Advantages and Disadvantages




Advantages:

e High Capacity: Magnetic tape can store large amounts of data, making it suitable for enterprise-level

backup and archival solutions.
e Cost-Effective: Low cost per gigabyte compared to disk-based storage.
e Durability: Resistant to physical shocks and can last for decades if stored properly.
Disadvantages:

e Sequential Access: Data access is slower compared to random access storage devices like HDDs and

SSDs, as the tape must be wound to the specific location of the data.

e Physical Storage: Requires significant physical space for tape libraries and proper environmental

conditions to ensure longevity.

e Maintenance: Regular maintenance of tape drives and libraries is necessary to ensure reliable

performance.
Usage Scenarios

1. Enterprise Backup Systems: Companies use magnetic tape for regular backup operations, storing

copies of critical data to protect against data loss.

2. Data Archiving: Organizations archive historical data, research data, and compliance-related

information on magnetic tape to ensure long-term preservation.

3. Disaster Recovery: Magnetic tapes are part of disaster recovery plans, providing a reliable medium for

restoring data in case of catastrophic failures.

9.9 Conclusion

In this unit, we explored critical components and concepts related to memory management and storage systems
in computer architecture. We began by examining the Memory Management Unit (MMU), understanding its role
in facilitating efficient memory access and protection. We delved into the hardware mechanisms behind paging

and segmentation, gaining insights into how modern systems handle memory allocation and address translation.

We then analyzed the hit/miss ratio, an essential performance metric for evaluating cache effectiveness.
Understanding the factors affecting this ratio and methods to improve it is vital for optimizing system
performance. Our discussion extended to magnetic disks, where we examined their performance characteristics,
RAID configurations for enhanced reliability and performance, and the role of disk caching. Finally, we explored
magnetic tape, a storage medium still relevant for specific archival and backup applications due to its cost-

effectiveness and capacity.




This comprehensive exploration of memory management hardware, performance metrics, and storage solutions
underscores the importance of these components in designing efficient and reliable computer systems. The
knowledge gained in this unit provides a solid foundation for further studies and practical applications in computer

architecture and system optimization.

9.10 Unit Based Questions & Answers

1. What is the role of the Memory Management Unit (MMU) in a computer system?

Answer: The MMU is responsible for translating logical addresses to physical addresses, managing memory
protection, and handling virtual memory. It ensures that each process in the system has its own address space,

providing both isolation and efficient memory utilization.
2. How does paging hardware facilitate memory management?

Answer: Paging hardware divides the memory into fixed-size pages and manages the mapping between virtual
pages and physical frames. It helps in reducing fragmentation and enables efficient use of memory by allowing

non-contiguous memory allocation.
3. Explain the concept of hit/miss ratio in the context of cache memory.

Answer: The hit/miss ratio is a performance metric that measures the effectiveness of a cache. A "hit" occurs
when the requested data is found in the cache, while a "miss" occurs when it is not. The hit ratio is the proportion

of hits to total accesses, and a higher hit ratio indicates better cache performance.
4. What are RAID levels, and how do they improve performance and reliability?

Answer: RAID (Redundant Array of Independent Disks) levels define various ways of storing data across
multiple disks to improve performance and reliability. For example, RAID 0 improves performance by striping
data across disks, RAID 1 improves reliability through mirroring, and RAID 5 and 6 provide a balance of

performance and reliability with distributed parity.
5. Describe the purpose of disk caching and how it improves magnetic disk performance.

Answer: Disk caching temporarily stores frequently accessed data in a faster storage medium to reduce access
times. It improves performance by minimizing the latency associated with reading from or writing to a magnetic

disk, thus speeding up data retrieval and overall system performance.
6. What is the significance of Translation Lookaside Buffer (TLB) in memory management?

Answer: The TLB is a cache used by the MMU to reduce the time taken to access the translation tables. It stores
recent translations of virtual addresses to physical addresses, significantly speeding up address translation and

improving overall system performance.
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10.0 Introduction

In modern computer systems, the efficient management of input and output operations is crucial for optimal
performance and user experience. Peripheral devices, such as keyboards, mice, printers, and storage devices, form
an essential part of the computing environment, allowing interaction with the system and extending its capabilities.
These devices require robust interfaces and transfer methods to communicate effectively with the central

processing unit (CPU) and memory.

The architecture and methods used to handle input and output operations significantly impact the overall system
performance. Various techniques, including direct memory access (DMA), priority interrupts, and the use of
specialized input-output processors (IOPs), have been developed to streamline these operations and reduce the
CPU's workload. Each of these techniques has its unique advantages and is suited to different types of tasks and

performance requirements.

This unit explores the fundamental concepts and structures related to peripheral devices and their interaction with
computer systems. It covers the various types of I/O interfaces, modes of data transfer, the concept and

implementation of priority interrupts, and the role of DMA in improving data transfer efficiency. Additionally, we




delve into the design and function of input-output processors, which further enhance the system's ability to handle
complex /O operations seamlessly. Through this comprehensive examination, we aim to provide a clear
understanding of how input-output operations are managed in modern computer systems and their impact on

overall performance.

10.1 Objectives

After completing this unit, you will be able to understand;

e Understand the role and types of peripheral devices in computer systems.
e  Explore the different types of I/O interfaces and their functionalities.

e  Learn about various modes of data transfer and their applications.

e  Comprehend the concept of priority interrupts and their implementation.
e  Gain insights into Direct Memory Access (DMA) and its benefits.

e  Study the architecture and function of Input-Output Processors (IOPs).

10.2 Peripheral Devices

Peripheral devices are hardware components that are not part of the central processing unit (CPU) or main memory
of a computer system but are essential for various input, output, and storage functions. They are typically

connected to the computer via various ports and interfaces.
Definition and Examples of Peripheral Devices

Peripheral devices are external devices that provide input to the computer, output from the computer, or storage
capabilities. They enhance the functionality of the computer system by allowing it to interact with the external

environment and store data persistently.
Examples of peripheral devices include:

o Input Devices: Keyboard, mouse, scanner, microphone.

e  Output Devices: Monitor, printer, speakers.

e Storage Devices: Hard drives, solid-state drives (SSDs), optical drives (CDs, DVDs).
Classification of Peripheral Devices

1. Input Devices




o Keyboard: A primary input device used to input text and commands into the computer.

o Mouse: A pointing device that allows users to interact with the computer's graphical user

interface.
o Scanner: A device that converts physical documents into digital format.
o Microphone: An audio input device used for voice recording or communication.
2. Output Devices
o Monitor: The primary output device used to display visual information from the computer.
o Printer: A device that produces hard copies of digital documents.
o Speakers: Audio output devices used to play sound.
3. Storage Devices

o Hard Disk Drives (HDDs): Traditional storage devices that use spinning disks to read and write

data.
o Solid-State Drives (SSDs): Faster, more reliable storage devices that use flash memory.

o Optical Drives: Devices that read and write data from optical discs like CDs, DVDs, and Blu-

rays.
Types of Peripheral Devices
1. Input Devices

o Keyboard: The keyboard is a primary input device used to input text and commands into the
computer. Keyboards come in various layouts, with the QWERTY layout being the most

common. They can be wired or wireless.

o Mouse: The mouse is a pointing device that allows users to interact with the computer's
graphical user interface. It can be moved on a surface to control the position of a cursor on the

screen and has buttons for clicking and selecting items.

o Scanner: A scanner converts physical documents into digital format by capturing images of the
documents. Scanners can be flatbed, sheet-fed, or handheld, and are used for digitizing printed

text, images, and other documents.

o Microphone: Microphones capture audio input for recording or communication purposes. They

can be standalone devices or integrated into other hardware like headsets, webcams, and laptops.

2. Output Devices




o Monitor: Monitors display visual output from the computer. They come in various sizes and
resolutions, with technologies like LCD, LED, and OLED. Monitors can be used for general

computing, gaming, graphic design, and other applications.

o Printer: Printers produce hard copies of digital documents. They can be inkjet, laser, or 3D
printers, each suited for different tasks like printing photos, documents, or three-dimensional

objects.

o Speakers: Speakers output audio from the computer, providing sound for multimedia
applications, music, and communication. They can be part of a sound system or integrated into

other devices.

3. Storage Devices

o Hard Disk Drives (HDDs): HDDs use spinning disks coated with magnetic material to read
and write data. They offer large storage capacities and are commonly used for data storage and
backup.

o Solid-State Drives (SSDs): SSDs use flash memory to store data, providing faster read/write
speeds and greater reliability compared to HDDs. They are increasingly used in modern
computers for their performance benefits.

o Optical Drives: Optical drives read and write data from optical discs like CDs, DVDs, and Blu-
rays. They are used for data distribution, media playback, and backup storage.

10.3 I/O Interface

The 1/0 (Input/Output) interface is a critical component of a computer system, facilitating communication

between the CPU and peripheral devices. It ensures that data is transferred efficiently and accurately between the

internal system components and external devices, such as keyboards, monitors, printers, and storage drives.

Definition and Role of I/O Interface

The /O interface acts as a bridge between the CPU and peripheral devices, managing data exchange and ensuring

compatibility between different hardware components. It translates data and control signals from the CPU into a

form that peripheral devices can understand and vice versa. This interface also handles the timing and

synchronization of data transfers, enabling smooth operation of the entire system.

Types of 1/0 Interfaces

1. Parallel Interface

Definition: A type of interface that transfers multiple bits of data simultaneously across multiple channels

or wires.




o Examples: Parallel ports, used primarily for printers and older storage devices.

e Characteristics:
o Speed: High-speed data transfer as multiple bits are transferred at once.
o Cable Length: Limited to shorter lengths due to signal degradation over distance.
o Noise: Susceptible to noise and crosstalk between wires.

e Applications: Older computers for connecting printers and other high-speed peripherals.

2. Serial Interface
o Definition: Transfers data one bit at a time over a single channel or wire.
e Examples:

o USB (Universal Serial Bus): Widely used for connecting peripherals like keyboards, mice, and

storage devices.
o RS-232: Older standard used for serial communication in modems and other devices.
o SATA (Serial ATA): Used for connecting hard drives and SSDs.
e  Characteristics:
o Cable Length: Can use longer cables without significant signal degradation.
o Interference: Less susceptible to interference and crosstalk.
e Applications: Modern computers for most peripheral connections.
3. USB (Universal Serial Bus)
e Definition: A serial interface standard designed to connect peripheral devices to a computer.
e Features:
o Plug-and-Play: Automatically recognized by the system when connected.
o Hot-Swappable: Devices can be connected and disconnected without rebooting.
o Hubs: Supports multiple devices through hubs.

e Versions: USB 1.0, 2.0, 3.0, 3.1, and USB-C, each offering higher data transfer rates and better power

delivery.

e Applications: Connecting a wide range of devices including keyboards, mice, external storage, printers,

etc.

4. SCSI (Small Computer System Interface)




e Definition: A set of standards for connecting and transferring data between computers and peripheral

devices.
e Applications: Primarily used in servers, high-performance workstations, and storage systems.
e  Characteristics:
o Multiple Devices: Supports multiple devices on a single bus.
o Speed: High-speed data transfer rates.
o Complexity: More complex configuration and higher cost.

e Applications: High data throughput and reliability environments like servers and professional

workstations.
5. Bluetooth and Wireless Interfaces
e Definition: Wireless communication protocols for short-range data transfer.
e Examples:
o Bluetooth: For peripherals like keyboards, mice, and headphones.
o Wi-Fi: For connecting devices to local networks and the internet.
e Characteristics:
o Mobility: Eliminates the need for physical cables.
o Range: Limited range for Bluetooth, wider for Wi-Fi.
o Interference: Potential for interference from other wireless devices.
e Applications: Mobile devices, laptops, and peripherals requiring wireless connectivity.
1/0 Interface Components
1. T/O Ports
o Definition: Physical connectors on the computer where peripheral devices are attached.
o Examples: USB ports, Ethernet ports, HDMI ports, audio jacks.

o Function: Provide a point of connection and communication between the computer and external

devices.
2. 1/0 Controllers

o Definition: Hardware components that manage the communication between the CPU and

peripheral devices.

o Examples: Disk controllers, network interface cards (NICs), graphics cards.




o Function: Handle data transfer, error detection, and correction, and ensure proper operation of

connected devices.
3. Device Drivers

o Definition: Software programs that enable the operating system to communicate with peripheral

devices.

o Function: Translate high-level commands from the OS into low-level commands understood
by the device, manage data transfer, and provide an interface for device configuration and

control.
Data Transfer Techniques
1. Programmed 1/O

o Definition: The CPU is responsible for all data transfer between the peripheral devices and

memory.
o Advantages: Simple and straightforward implementation.
o Disadvantages: CPU is heavily involved, leading to inefficiency and slower performance.
2. Interrupt-Driven I/O

o Definition: Peripheral devices interrupt the CPU to signal that they are ready for data transfer,

allowing the CPU to perform other tasks in the meantime.
o Advantages: More efficient use of CPU resources.
o Disadvantages: Increased complexity in handling interrupts and context switching.
3. Direct Memory Access (DMA)

o Definition: A method where data is transferred directly between peripheral devices and memory

without CPU involvement.
o Advantages: Frees up CPU resources, faster data transfer.
o Components: DMA controller, which manages the data transfer process.
Importance of I/O Interface
1. Efficient Data Transfer
o Ensures fast and reliable communication between the CPU and peripheral devices.
o Minimizes delays and maximizes system performance.
2. Device Compatibility

o Standardized interfaces ensure compatibility between different hardware components.




o Allows for easy integration and expansion of computer systems.
3. System Stability

o Properly designed I/O interfaces and controllers ensure stable and error-free operation of

connected devices.

o Helps prevent data corruption and system crashes.

10.4 Modes of Transfer

The modes of transfer in computer systems refer to the methods used to move data between the computer's central
processing unit (CPU), memory, and input/output (I/O) devices. Efficient data transfer is crucial for system
performance, and different modes are used depending on the data transfer requirements and the hardware

capabilities. Here are the primary modes of transfer:
1. Programmed 1/0

e Definition: In this mode, the CPU is responsible for executing I/O instructions, checking the status of

I/O devices, and transferring data between memory and 1/0 devices.
e  Characteristics:

o CPU Involvement: The CPU actively manages the transfer, which can lead to inefficiencies as

the CPU is occupied with 1/O operations.

o Polling: The CPU continuously checks the status of an I/O device in a loop until the device is

ready for data transfer.
e Applications: Suitable for systems with simple and low-speed 1/O operations.
2. Interrupt-Driven 1/O

e Definition: This mode allows I/O devices to notify the CPU when they are ready for data transfer by

generating an interrupt signal.
e  Characteristics:

o CPU Efficiency: The CPU can perform other tasks and is interrupted only when the I/0 device

is ready, improving overall system efficiency.

o Interrupt Handling: The CPU executes an interrupt service routine (ISR) to handle the data

transfer when an interrupt is received.

e Applications: Commonly used in systems where 1/0 devices need to transfer data intermittently and

efficiency is important.




3. Direct Memory Access (DMA)

e Definition: DMA is a technique that allows I/O devices to directly transfer data to and from memory

without CPU intervention.
e Characteristics:

o DMA Controller: A dedicated hardware component, the DMA controller, manages the data

transfer process.

o CPU Offloading: The CPU initiates the DMA transfer and is then free to perform other tasks,

significantly improving system performance.

o High-Speed Transfer: Suitable for high-speed data transfer applications like disk drives and

network cards.

e Applications: Used in systems requiring high-speed data transfers such as multimedia applications and

high-speed network interfaces.
4. Memory-Mapped 1/0

e Definition: In this mode, I/O devices are assigned specific memory addresses, and data transfer occurs

through standard memory access instructions.
e Characteristics:
o Unified Addressing: The same instructions used for memory access are used for I/O operations.
o Efficiency: Simplifies the CPU's design as no special I/O instructions are needed.

e Applications: Commonly used in systems with simple I/O requirements and where the integration of

memory and I/O addressing simplifies system design.
5. Isolated I/0

o Definition: Isolated I/O uses a separate address space for I/O devices, distinct from the memory address

space.
e Characteristics:
o Special Instructions: Requires specific I/O instructions to access I/O devices.

o Complexity: More complex CPU design due to the need for additional I/O instructions.

e Applications: Used in older computer systems and microcontrollers where a clear distinction between

memory and I/O addressing is necessary.

10.5 Priority Interrupt




Priority interrupt systems are designed to handle multiple interrupt requests from various I/O devices based on
their priority levels. The main goal is to ensure that the most critical tasks are addressed first, enhancing the
efficiency and responsiveness of the system. This section delves into the concept, mechanisms, and applications

of priority interrupt systems.
1. Definition and Purpose

o Definition: A priority interrupt system assigns priority levels to different interrupt sources and ensures

that higher-priority interrupts are serviced before lower-priority ones.

e Purpose: The primary purpose is to manage multiple interrupt requests efficiently, ensuring that critical

tasks receive immediate attention while less critical tasks are deferred.
2. Priority Levels

e Hierarchy: Interrupt sources are organized into a hierarchy of priority levels. Each device or interrupt

source is assigned a specific priority level.

e Preemptive Handling: If a high-priority interrupt occurs while a lower-priority interrupt is being

serviced, the current process is suspended, and the high-priority interrupt is handled first.
3. Mechanisms for Priority Interrupts

e Daisy-Chaining: A simple hardware approach where devices are connected in series. The first device in

the chain has the highest priority, and the priority decreases down the chain.

e Parallel Priority Interrupt: A more complex and faster approach where each device is connected to a

priority encoder. The encoder determines the highest-priority interrupt and sends a signal to the CPU.

e Software Polling: The CPU polls the interrupt sources in a predefined priority order. This method is

simpler but slower compared to hardware-based mechanisms.
4. Interrupt Vectors and Service Routines

o Interrupt Vector Table (IVT): A table that holds the addresses of the interrupt service routines (ISRs)

for various interrupts. Each interrupt source has a specific entry in the IVT.

o Interrupt Service Routine (ISR): A special block of code executed in response to an interrupt. The ISR

for a high-priority interrupt must complete quickly to minimize the delay for lower-priority interrupts.
S. Applications

¢ Real-Time Systems: Priority interrupt systems are crucial in real-time systems where timely processing
of critical tasks is essential, such as in embedded systems, industrial control systems, and medical

devices.




e Multitasking Operating Systems: Used in operating systems to manage hardware interrupts from

various peripheral devices like keyboards, mice, and network cards.

e Communication Systems: Ensures that urgent communication tasks, like handling incoming data

packets, are given priority over less critical tasks.
6. Challenges and Considerations

e Complexity: Implementing a priority interrupt system can add complexity to both hardware and software

design.

e Overhead: Context switching and handling multiple interrupts can introduce overhead, impacting

system performance if not managed efficiently.

e Starvation: Lower-priority tasks may face starvation if high-priority interrupts occur frequently. Proper

system design and scheduling are necessary to mitigate this issue.
Types of Priority Interrupt Systems

Priority interrupt systems can be classified based on their implementation methods and the way they manage and

handle multiple interrupt requests. Here are the main types of priority interrupt systems:
1. Daisy-Chaining Priority System

e  Mechanism: Devices are connected in a series (daisy-chain) with each device having an interrupt enable

line that passes through it to the next device in the chain.

e Priority Determination: The device closest to the CPU has the highest priority. If it generates an

interrupt, it will block further interrupts from lower-priority devices.
e Advantages: Simple and cost-effective.

o Disadvantages: Not scalable for systems with many devices; lower-priority devices may experience long

wait times if higher-priority devices frequently generate interrupts.
2. Parallel Priority Interrupt System

e  Mechanism: Each interrupting device has a separate interrupt line connected to a priority encoder, which

determines the highest-priority interrupt.

e Priority Determination: The priority encoder identifies the highest-priority interrupt and sends the

corresponding interrupt vector to the CPU.
e Advantages: Fast and efficient; better suited for systems with multiple interrupt sources.
e Disadvantages: More complex and expensive due to additional hardware (priority encoder).

3. Software Polling




Mechanism: The CPU periodically checks each device's status in a predefined order to determine if it

has requested an interrupt.
Priority Determination: The order in which devices are polled defines their priority.
Advantages: Simple to implement in software; no need for additional hardware.

Disadvantages: Slower than hardware-based systems; not suitable for systems requiring immediate

interrupt servicing.

4. Interrupt Priority Level System

Mechanism: Each interrupt request line is assigned a priority level. The CPU includes a priority

controller that handles multiple interrupt requests based on these levels.

Priority Determination: The priority controller ensures that the highest-priority interrupt is serviced

first.

Advantages: Highly flexible and can handle complex priority schemes; allows dynamic priority

assignment.

Disadvantages: Requires sophisticated hardware and software support.

5. Vectored Interrupt System

Mechanism: Each interrupt source is assigned a unique vector address, which directly points to the

interrupt service routine (ISR).

Priority Determination: The priority is determined by the vector addresses assigned to the interrupt

sources.
Advantages: Fast and efficient interrupt handling; reduces the need for interrupt processing overhead.

Disadvantages: Complex to implement; requires hardware support for vector addresses.

6. Nested Interrupts

Mechanism: Allows an interrupt service routine (ISR) to be interrupted by higher-priority interrupts.
Priority Determination: Higher-priority interrupts can interrupt lower-priority ISRs.
Advantages: Improves system responsiveness for high-priority tasks; prevents critical task delays.

Disadvantages: Increases system complexity; requires careful management to prevent stack overflow

and ensure ISR completion.

10.6 Direct Memory Access (DMA)




Direct Memory Access (DMA) is a method that allows peripheral devices to transfer data to and from memory
without the continuous involvement of the CPU. This mechanism significantly enhances the data transfer speed

and efficiency within a computer system by offloading the data transfer workload from the CPU.
Components of a DMA System
1. DMA Controller (DMAC)
o Manages the data transfer between memory and peripheral devices.
o Controls the timing and sequencing of data transfer operations.
o  Often has multiple channels to handle multiple devices simultaneously.
2. Peripheral Devices

o Include devices like disk drives, network cards, and sound cards that need to transfer large

amounts of data.
3. System Bus

o The communication pathway that connects the DMA controller, CPU, memory, and peripheral

devices.
How DMA Works
1. Initiation

o The CPU initializes the DMA controller by providing it with the necessary parameters,

including:

= Source address (where the data is coming from).
= Destination address (where the data is going).
=  The amount of data to be transferred.

o The CPU then instructs the peripheral device to begin the data transfer.

2. Data Transfer
o The DMA controller takes over the data transfer process.
o It sends requests to the memory to read or write data directly.

o The DMA controller handles the data transfer between the peripheral device and the memory
while the CPU performs other tasks.

3. Completion
o Once the data transfer is complete, the DMA controller sends an interrupt to the CPU.

o The CPU then resumes control and processes the data as needed.
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Types of DMA Transfers
1. Burst Mode
o Transfers a block of data in a single, continuous burst.

o The DMA controller takes control of the bus and transfers all the data before releasing the bus

back to the CPU.
o Provides high-speed data transfer but can cause the CPU to wait if it needs the bus.
2. Cycle Stealing Mode

o The DMA controller transfers one data word per bus cycle, allowing the CPU to access the bus

between transfers.

o This mode balances bus usage between the DMA and the CPU, reducing the CPU's waiting

time.
3. Transparent Mode
o The DMA controller transfers data only when the CPU is not using the bus.
o Provides the lowest data transfer speed but does not interfere with the CPU's operations.
Advantages of DMA

e Increased Efficiency: Offloads data transfer tasks from the CPU, allowing it to focus on more critical

operations.

e Faster Data Transfer: Enables high-speed data transfers directly between memory and peripheral

devices.

e Reduced CPU Overhead: Minimizes CPU involvement in data transfer processes, reducing processing

overhead.
Disadvantages of DMA

e Complexity: Adds complexity to the system design and requires additional hardware (DMA controller).




Bus Contention: Potential for bus contention, as both the DMA controller and the CPU may need to

access the bus simultaneously.

DMA Operation Flow

1.

CPU Initiates DMA Transfer: The CPU sets up the DMA controller with source, destination addresses,

and transfer size.

DMA Controller Requests Bus Access: The DMA controller sends a request to the bus arbiter for

control of the system bus.
Bus Arbiter Grants Bus Access: The bus arbiter grants the DMA controller access to the system bus.

DMA Controller Performs Data Transfer: The DMA controller reads data from the source and writes

it to the destination.

DMA Controller Sends Interrupt: After completing the transfer, the DMA controller sends an interrupt
to the CPU.

CPU Processes Data: The CPU processes the data as required.

10.7 Input-Output Processor (IOP)

An Input-Output Processor (IOP) is a specialized processor used to manage input and output operations in a

computer system. It offloads these tasks from the main CPU, enabling more efficient processing and better overall

system performance. The IOP is designed to handle data transfer between the main memory and peripheral devices

independently of the CPU.

Functions of an IOP

1.

Data Transfer Management: The IOP controls the transfer of data between the main memory and

peripheral devices, ensuring that data is correctly transmitted and received.

Interrupt Handling: The IOP manages interrupts from peripheral devices, freeing the CPU from having
to handle these interruptions directly. It processes the interrupt requests and signals the CPU only when

necessary.

Device Control: The IOP issues commands to peripheral devices, controlling their operation and status.

It ensures that devices are correctly configured and ready for data transfer.

Buffering: The IOP often includes buffer memory to temporarily store data during transfers. This
buffering helps to smooth out differences in data transfer rates between the CPU, memory, and peripheral

devices.




5. Error Detection and Correction: The IOP can detect and correct errors that occur during data transfer,

ensuring data integrity and reliability.
Architecture of an IOP

1. Control Unit: Manages the execution of input-output instructions and coordinates the operations of the

IOP.

2. Buffer Memory: Temporarily stores data during transfers to manage differences in data rates between

devices.
3. Device Interfaces: Connects the IOP to various peripheral devices, allowing it to send and receive data.

4. Interrupt System: Handles interrupt signals from peripheral devices, prioritizing and processing them

as needed.

5. Communication Bus: Connects the IOP to the main CPU and memory, enabling data exchange and

coordination.
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IOP Operation Flow

1. Initialization: The CPU initializes the IOP with the necessary parameters for data transfer, including

source and destination addresses, transfer size, and device control information.

2. Data Transfer: The IOP takes over the data transfer process, moving data between memory and

peripheral devices according to the instructions provided by the CPU.

3. Interrupt Handling: The IOP processes interrupts from peripheral devices, performing the necessary

actions and notifying the CPU only when essential.

4. Completion: Upon completing the data transfer or handling an interrupt, the IOP signals the CPU,

allowing it to resume or take necessary actions based on the completed task.

Advantages of Using an IOP




e Increased CPU Efficiency: Offloads input-output tasks from the CPU, allowing it to focus on core

processing tasks.

e Improved System Performance: Manages data transfer more efficiently, reducing bottlenecks and

improving overall system throughput.
e Enhanced Reliability: Provides dedicated error detection and correction, ensuring data integrity.

e Scalability: Allows for easier integration of additional peripheral devices without significantly impacting

CPU performance.
Input-Output Processor (IOP)

1. Definition and Role of IOP
o Explanation of input-output processors.
o Difference between IOP and CPU.

2. Architecture of IOP
o Components and operation.
o Interaction with CPU and peripheral devices.

3. Applications and Benefits
o Use cases in modern computing.

o Advantages of using IOPs.

10.8 Conclusion

The management of input and output operations is a critical aspect of computer system design, directly influencing
performance and efficiency. Peripheral devices, through their various types and functionalities, expand the
capabilities of a computer system, allowing it to interact with the external environment effectively. The interfaces
and modes of transfer used for these devices must be well-designed to ensure smooth communication between the

peripheral devices, the CPU, and memory.

Understanding the different types of I/O interfaces, such as serial and parallel interfaces, is crucial for selecting
the right method for specific tasks. Modes of data transfer, including programmed I/O, interrupt-driven /O, and
direct memory access (DMA), each have their advantages and ideal use cases, impacting how efficiently data is
transferred and processed. Priority interrupts and their types, such as vectored and non-vectored interrupts, play a

significant role in managing the flow of data and ensuring that high-priority tasks are addressed promptly.




The introduction of specialized components like Direct Memory Access (DMA) controllers and Input-Output
Processors (IOPs) has further enhanced the system's ability to handle 1/0 operations efficiently. DMA reduces the
CPU's involvement in data transfer tasks, freeing it up for other processing activities, while IOPs manage complex

1/O operations independently, significantly improving system performance.

Through this unit, we have explored the various components and techniques involved in managing input-output
operations in computer systems. By understanding these concepts, we gain a deeper appreciation of the intricacies
involved in computer architecture and the continuous advancements aimed at improving system efficiency and

performance.

10.9 Unit Based Questions & Answers

1. What is the role of peripheral devices in a computer system?

Answer: Peripheral devices are hardware components that connect to the computer to provide additional
functionality and input/output capabilities. Examples include keyboards, mice, printers, and external storage
devices. They enable the computer to interact with the external environment, allowing users to input data, receive

output, and expand storage capacity.
2. Explain the difference between serial and parallel I/O interfaces.

Answer: Serial I/O interfaces transmit data one bit at a time over a single channel, making them suitable for long-
distance communication and simpler connections, such as USB and RS-232. Parallel /O interfaces transmit
multiple bits simultaneously over multiple channels, which allows for faster data transfer rates but is often limited

by cable length and complexity, as seen in older parallel ports like the LPT port.
3. What are the different modes of data transfer, and how do they impact system performance?
Answer: The primary modes of data transfer are:

e  Programmed I/O (P10): The CPU actively controls data transfers, which can be slow as it requires

continuous CPU intervention.

¢ Interrupt-driven I/O: The CPU is notified via interrupts when data transfer is required, reducing idle

time and improving efficiency compared to PIO.

e Direct Memory Access (DMA): A DMA controller handles data transfers directly between memory and
peripheral devices, freeing the CPU to perform other tasks and significantly improving data transfer rates

and system performance.
4. What is a priority interrupt, and why is it important?

Answer: A priority interrupt system allows the CPU to handle multiple interrupt requests by assigning different

priorities to each request. Higher-priority interrupts are serviced before lower-priority ones, ensuring that critical




tasks receive prompt attention. This mechanism prevents lower-priority tasks from delaying the processing of

urgent requests and maintains system responsiveness.
5. Describe the function of an Input-Output Processor (IOP) and its advantages.

Answer: An Input-Output Processor (IOP) is a specialized processor designed to manage 1/O operations
independently of the main CPU. It handles data transfers between peripherals and memory, performs I/O control
tasks, and often manages multiple I/O channels simultaneously. The advantages include reduced CPU load,

improved overall system performance, and the ability to handle complex I/O operations more efficiently.
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11.0 Introduction

In modern computer systems, the efficient management of data transfer between the central processing unit (CPU)
and peripheral devices is essential for optimal performance and functionality. This communication is facilitated
through a variety of methods and components designed to handle different aspects of input-output (I/O)
operations. Serial communication, I/O controllers, and data transfer techniques such as asynchronous data transfer,
strobe control, and handshaking are crucial elements in this process. Understanding these concepts provides a

foundation for comprehending how data is managed and transferred in computing systems.

Serial communication is a fundamental method for transmitting data sequentially over a single channel, making
it particularly effective for long-distance and low-speed applications. This approach contrasts with parallel
communication, which transfers multiple bits simultaneously, and is essential in many everyday devices and
systems. The principles of serial communication, including data framing and baud rates, are key to ensuring

accurate and efficient data transfer.

1/O controllers play a pivotal role in managing interactions between the CPU and peripheral devices, handling
tasks such as data transfer, device initialization, and error management. By abstracting the complexity of these

operations, controllers improve system performance and simplify device communication. Additionally, methods




like asynchronous data transfer, strobe control, and handshaking further enhance data integrity and
synchronization, ensuring reliable and efficient communication between devices. This section explores these

topics in detail, offering insights into their functions and impact on computer system design.

11.1 Objectives

After completing this unit, you will be able to understand,

e  Serial Communication: Learn the basics of serial data transmission, including framing, baud rates, and
its use in connecting devices.

e I/O Controllers: Understand the role of I/O controllers in facilitating communication between the CPU
and peripheral devices, including their functions and management.

e Asynchronous Data Transfer: Explore how asynchronous data transfer operates without a synchronous
clock signal, enabling flexible data communication.

e Strobe Control: Study how strobe signals manage timing and synchronization in data transfer processes
to ensure accurate communication.

¢ Handshaking: Learn about handshaking protocols that coordinate data transfer between devices,

ensuring reliability and error management.

11.2 Serial Communication

Serial communication is a method of transmitting data one bit at a time over a single communication line or
channel. Unlike parallel communication, which sends multiple bits simultaneously across multiple channels, serial
communication sends data sequentially. This method is widely used due to its simplicity and efficiency,
particularly for long-distance data transmission where parallel communication would be cumbersome and less

reliable.
Types of Serial Communication
e Synchronous Serial Communication

o Description: Data is transmitted in sync with a clock signal that both the sender and receiver
share. This allows for the precise timing of data bits, leading to faster and more reliable data

transfers.

o Protocols: Common synchronous protocols include Serial Peripheral Interface (SPI) and Inter-
Integrated Circuit (12C). SPI uses a master-slave architecture with a dedicated clock line, while

12C allows multiple devices to communicate over a shared bus with a clock signal.




o Applications: Used in high-speed data transfer applications such as memory devices and

communication between microcontrollers.
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e Asynchronous Serial Communication

o Description: Data is transmitted without a clock signal. Instead, it uses start and stop bits to

frame the data bits, which allows the receiver to identify the beginning and end of each byte.

o Protocols: Examples include Universal Asynchronous Receiver-Transmitter (UART) and RS-
232. UART is commonly used for serial ports on computers, while RS-232 is a standard for

serial communication that defines the electrical characteristics and connector types.

o Applications: Suitable for devices where precise timing is less critical, such as serial ports for

peripherals and communication between microcontrollers.
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3. Baud Rate

o Definition: The baud rate is the rate at which data is transmitted in a communication channel, measured
in bits per second (bps). It determines the speed of data transfer and must be set equally on both

communicating devices.

e Common Baud Rates: Examples include 9600 bps, 19200 bps, 115200 bps. Higher baud rates allow for

faster data transfer but may require better signal integrity to prevent errors.
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4. Advantages and Disadvantages

e Advantages:

o Reduced Wiring: Serial communication requires fewer wires compared to parallel

communication, simplifying connections and reducing costs.

o Long-Distance Transmission: More suitable for long-distance communication where signal

degradation and timing issues affect parallel transmission.

o Simplicity: The protocol and hardware required for serial communication are generally simpler

and less expensive.
e Disadvantages:

o Lower Data Transfer Rate: Generally slower compared to parallel communication, making it

less ideal for applications requiring very high data rates.

o Error Detection: Error detection and correction are more complex due to the lack of

synchronization provided by a clock signal.
5. Common Protocols
e  UART (Universal Asynchronous Receiver-Transmitter)

o Description: A hardware communication protocol that manages asynchronous serial
communication. It handles the framing of data, including start and stop bits, and often includes

error-checking features such as parity bits.
o Usage: Commonly used for serial ports and communication between microcontrollers.
e RS-232

o Description: A standard for serial communication that defines the electrical characteristics and
connector types for serial ports. It supports both synchronous and asynchronous

communication.




o Usage: Frequently used for connecting peripherals like modems, printers, and older computer

hardware.

e  SPI (Serial Peripheral Interface)

o Description: A synchronous serial communication protocol used for high-speed data transfer.

It uses separate lines for data, clock, and select signals.

o Usage: Commonly used in communication between microcontrollers and peripheral devices

like sensors and memory chips.
e 12C (Inter-Integrated Circuit)

o Description: A synchronous serial communication protocol that allows multiple devices to
communicate over a two-wire bus (SDA for data and SCL for clock). It uses addressing to

differentiate between multiple devices on the same bus.

o Usage: Often used for communication between low-speed peripherals, such as sensors and

EEPROMs, within embedded systems.
6. Applications
Serial communication is used in various applications including:
e  Computer Serial Ports: For connecting peripherals such as mice, keyboards, and modems.
¢ Embedded Systems: For communication between microcontrollers and sensors or other modules.

e Data Acquisition: For transferring data from sensors or instruments to a central processing unit.

11.3 I/O Controllers

An 1/0O (Input/Output) controller is a crucial component in computer systems that manages the communication
between the CPU (Central Processing Unit) and peripheral devices such as keyboards, mice, printers, and storage
devices. Its primary purpose is to handle data transfers to and from these peripherals and to ensure that the data is
processed correctly. The 1/O controller abstracts the complexities of interfacing with different types of hardware

and provides a standard interface for the CPU to interact with these devices.
2. Types of 1/0 Controllers
e Peripheral Interface Controllers (PICs)

o Description: These controllers manage the communication between the CPU and peripheral

devices. They handle tasks such as data buffering, signal conversion, and protocol management.




o Examples: Programmable Peripheral Interface (PPI), and Advanced Programmable Interrupt

Controller (APIC).

o Usage: Used in various types of peripherals including serial and parallel ports.

e Direct Memory Access (DMA) Controllers

o Description: DMA controllers facilitate direct data transfer between memory and peripheral
devices without involving the CPU in the data transfer process. This reduces CPU overhead and

improves system performance.
o Types: Single-channel DMA, Multi-channel DMA.

o Usage: Commonly used for high-speed data transfers such as disk I/O operations and

multimedia processing.

e Storage Controllers

o Description: Storage controllers manage data transfer between storage devices (like hard drives
and SSDs) and the system memory. They handle tasks such as data read/write operations, error

checking, and data buffering.
o Examples: SATA controllers, RAID controllers.

o Usage: Used to interface with hard drives, SSDs, and other storage devices to manage data

storage and retrieval.
e Network Interface Controllers (NICs)

o Description: NICs manage network communication between the computer and network

devices. They handle data packet transmission, reception, and protocol management.
o Examples: Ethernet controllers, Wi-Fi adapters.
o Usage: Used for connecting computers to local area networks (LANS) or the internet.
3. Functions of I/0 Controllers

e Data Buffering

o Description: I/O controllers often use buffers to temporarily store data while it is being
transferred between the CPU and peripheral devices. This helps to smooth out data transfers and

manage differences in data transfer rates.

o Benefit: Reduces the risk of data loss or corruption during transfer and improves overall system

efficiency.

e Signal Conversion




o Description: Converts signals between different formats used by the CPU and peripherals. For

instance, converting parallel data from a peripheral to serial data for transmission to the CPU.
o Benefit: Ensures compatibility between devices with different signaling methods.
e Interrupt Handling

o Description: Manages interrupts generated by peripheral devices to notify the CPU of events

that need attention, such as data availability or errors.

o Benefit: Allows for efficient handling of multiple I/O operations by prioritizing and managing

interrupt requests.
e  Protocol Management

o Description: Implements communication protocols specific to each peripheral device. This

includes managing the timing, data format, and error checking.

o Benefit: Ensures that data is transmitted and received correctly according to the requirements

of each device.
4. Design Considerations
e Performance

o Description: The performance of an I/O controller can affect overall system performance. High-

speed data transfer capabilities and efficient interrupt handling are crucial.

o Consideration: Controllers should be designed to handle the data rates and workload

requirements of the system.
o  Compatibility

o Description: /O controllers must be compatible with various peripheral devices and system

architectures. They should support standard communication protocols and interfaces.

o Consideration: Ensures that the controller can interface with a wide range of devices and

systems.

e Scalability

o Description: Controllers should be able to handle an increasing number of peripherals and

higher data transfer rates as system requirements grow.
o Consideration: Design should accommodate future expansion and upgrades.
5. Applications
1/O controllers are integral to many aspects of modern computing, including:

e Computer Systems: Managing communication between the CPU and various peripheral devices.




¢ Embedded Systems: Handling I/O operations in devices like printers, medical equipment, and industrial

machines.

e Networking: Managing data transfers in networked environments through NICs.

11.4 Asynchronous Data Transfer

Asynchronous data transfer is a communication method where data is transmitted between devices without the
need for a shared clock signal to synchronize the transmission. Unlike synchronous data transfer, which relies on
a common clock signal to coordinate the timing of data transfers, asynchronous transfer uses start and stop signals
to manage the timing of data exchanges. This allows for flexible and independent operation of the transmitting

and receiving devices.
2. Characteristics
e Start and Stop Bits

o Description: In asynchronous data transfer, each data frame is enclosed between start and stop
bits. The start bit signals the beginning of data transmission, while the stop bit indicates the end

of the transmission.

o Usage: This method helps in identifying the boundaries of data frames and ensuring that the

receiver knows when to start and stop reading data.
e Variable Timing

o Description: Unlike synchronous transfer, which requires precise timing synchronization,
asynchronous transfer allows for variable timing between data bits. The receiver determines

when to sample the data based on the start and stop bits.

o Benefit: Provides flexibility in communication, as devices do not need to operate at the same

clock speed.
e Error Detection

o Description: Asynchronous transfer typically includes mechanisms for error detection, such as

parity bits, to ensure the integrity of transmitted data.
o Usage: Parity bits can detect errors in data transmission and trigger retransmission if necessary.
3. Modes of Asynchronous Data Transfer
e Simplex

o Description: Data transfer occurs in only one direction, from the transmitter to the receiver,

with no feedback from the receiver to the transmitter.




o Example: Keyboard data sent to a computer.

e Half-Duplex

o Description: Data can flow in both directions, but not simultaneously. The communication

device must switch between sending and receiving modes.
o Example: Walkie-talkies where one person speaks while the other listens, and vice versa.
e  Full-Duplex

o Description: Data can flow in both directions simultaneously, allowing for simultaneous

sending and receiving of data.
o Example: Telephones where both parties can talk and listen at the same time.
4. Advantages
¢ Simplified Hardware

o Description: Asynchronous transfer does not require complex synchronization circuits,

simplifying the design of communication systems.
o Benefit: Reduces the cost and complexity of hardware.
¢  Flexibility

o Description: Devices do not need to operate at the same clock speed or maintain precise timing,

allowing for greater flexibility in communication.

o Benefit: Facilitates communication between devices with different clock speeds and operating

rates.
o Error Detection

o Description: Includes mechanisms such as parity bits to detect errors in transmission and ensure

data integrity.
o Benefit: Improves reliability of data transfer.
5. Disadvantages
e Overhead

o Description: The inclusion of start and stop bits increases the amount of data transmitted,

leading to overhead.
o Impact: Reduces the effective data transfer rate.

e Limited Speed




o Description: Asynchronous transfer may be slower compared to synchronous transfer due to

the lack of continuous synchronization.
o Impact: Less suitable for high-speed data transfer requirements.
6. Applications
Asynchronous data transfer is widely used in various communication systems, including:

e Serial Communication: Commonly used in serial ports for computer peripherals such as keyboards and

mice.
e Modems: Used for data transmission over telephone lines.

e UARTSs (Universal Asynchronous Receiver-Transmitter): Used in microcontrollers for serial

communication with other devices.

11.5 Strobe Control

Strobe control refers to a mechanism used in digital communication systems to manage the timing of data transfer
between devices. A strobe signal is a timing pulse that is used to indicate when data should be read or written,
ensuring that both the sender and receiver are synchronized. It acts as a "trigger" that tells the receiving device

when to sample or process the incoming data.
Characteristics of Strobe Control

e Strobe Signal

o Description: A strobe signal is a timing pulse that is generated by the sender to indicate that
data on the bus is valid and ready to be read by the receiver. It typically accompanies data signals

and is used to synchronize data transfer.

o Usage: Helps in ensuring that the data is captured correctly by signaling the exact time when

the data should be sampled.
¢ Timing Control

o Description: Strobe control provides precise timing for data transfer, ensuring that data is valid
when it is sampled by the receiving device. The timing of the strobe signal is crucial for accurate

data transmission.
o Benefit: Reduces the chances of data corruption and synchronization issues.

e Data Validity




o Description: The strobe signal indicates when data is stable and valid, allowing the receiver to

read the data accurately. The data is only considered valid when the strobe signal is active.
o Benefit: Ensures reliable data transfer by avoiding sampling of unstable or incorrect data.
Modes of Strobe Control
e Active High Strobe

o Description: The strobe signal is active (high) when data is valid. The receiver reads the data

when the strobe signal is high.

o Example: Used in many parallel communication systems where the strobe pulse is used to latch

data into the receiver.

e Active Low Strobe

o Description: The strobe signal is active (low) when data is valid. The receiver reads the data

when the strobe signal is low.

o Example: Commonly used in some digital systems where the low level indicates the readiness

of data.
Applications
e Parallel Communication

o Description: In parallel data transfer systems, strobe control is used to coordinate the transfer
of multiple bits of data simultaneously. The strobe signal ensures that all data lines are read at

the same time.
o Example: Used in interfacing with peripheral devices such as printers and memory modules.
e Memory Systems

o Description: In memory systems, strobe signals are used to control the timing of data read and

write operations. The strobe pulse ensures that memory operations occur at the correct times.

o Example: In DRAM (Dynamic Random Access Memory) systems, strobe signals help in

synchronizing memory access.
e Microprocessor Buses

o Description: Strobe control is used in microprocessor buses to manage the timing of data

transfers between the processor and other components.
o Example: Used in the control signals for data transfer between the CPU and peripheral devices.
Advantages

e Improved Synchronization




o Description: Strobe control provides precise timing for data transfer, improving the

synchronization between sender and receiver.
o Benefit: Ensures accurate data transmission and reduces the likelihood of timing-related errors.
e Enhanced Data Integrity

o Description: By indicating when data is valid, strobe control helps in maintaining data integrity

and reliability.
o Benefit: Reduces the chances of data corruption and errors.
Disadvantages
¢ Increased Complexity

o Description: Implementing strobe control adds complexity to the communication system,

requiring additional timing circuits and control signals.
o Impact: Increases the design and implementation efforts.
e Timing Issues

o Description: Precise timing of the strobe signal is crucial. Any delays or timing mismatches

can lead to data transfer issues.

o Impact: Requires careful design and calibration to ensure reliable operation.

11.6 Handshaking

Handshaking is a communication protocol used to synchronize the data transfer between two devices or systems.
It involves a series of signal exchanges to establish, control, and terminate a communication session. Handshaking
ensures that both sender and receiver are ready for data transmission and can handle the data correctly, thereby

preventing data loss or corruption.
Types of Handshaking
e Manual Handshaking

o Description: Involves manual intervention to coordinate the start and stop of data transmission.

Typically used in simpler or less automated systems.
o Example: Manual switch or lever activation to start data transfer in older systems.

e Automatic Handshaking




o Description: Utilizes automated signals and protocols to manage the synchronization and

transfer of data without human intervention.

o Example: Automatic handshaking protocols used in modern communication systems like

UART (Universal Asynchronous Receiver/Transmitter) and Ethernet.
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Handshaking Protocols
o Handshake Protocol

o Description: A specific sequence of signals exchanged between devices to establish a

communication link and ensure that both parties are ready for data transfer.
o Process: Often includes phases like request, acknowledgment, and data transfer.
e Three-Way Handshake

o Description: A common handshaking protocol used in TCP/IP networks to establish a

connection between two devices.

o Process: Involves three steps—SYN (synchronize) request, SYN-ACK (synchronize-

acknowledge) response, and ACK (acknowledge) to finalize the connection.
Handshaking Mechanisms
e Start-Stop Handshaking

o Description: Involves a start signal to initiate data transfer and a stop signal to end the transfer.

Often used in serial communication.

o Example: RS-232 serial communication uses start and stop bits to frame data.




¢ Flow Control Handshaking

o Description: Ensures that the sender does not overwhelm the receiver with data. It involves

signals to control the rate of data transfer and prevent buffer overflow.

o Example: XON/XOFF (software flow control) and RTS/CTS (Request to Send/Clear to Send)

are flow control mechanisms.
5. Handshaking Process
e Request for Data Transfer

o Description: The sender requests permission to transmit data. This request is often signaled by

a specific line or signal in the communication protocol.
o Example: A request signal in a UART communication system.
e Acknowledgment

o Description: The receiver acknowledges the request, signaling that it is ready to accept data.

This acknowledgment confirms that both devices are synchronized.
o Example: An ACK (acknowledgment) signal in TCP/IP.
e Data Transfer

o Description: The actual data is transmitted between the sender and receiver following

successful handshaking. Data transfer occurs only after acknowledgment of readiness.
o Example: Data packets in a network protocol are transferred after the three-way handshake.
e  Termination

o Description: After data transfer, a termination signal or sequence is used to end the
communication session. This ensures that resources are released and no further data is

transmitted.
o Example: FIN (finish) signal in TCP/IP protocol.
Applications
e Serial Communication

o Description: Handshaking is used in serial communication to ensure proper synchronization

and error-free data transfer.
o Example: UART handshaking for serial ports in computers.

e Networking




o Description: Handshaking protocols are fundamental in establishing and maintaining network

connections.

o Example: TCP three-way handshake for establishing a reliable connection between network

devices.

e Peripheral Devices

o Description: Used to manage communication between a computer and peripheral devices such

as printers, disk drives, and modems.
o Example: Handshaking in printer communication protocols.
Advantages
¢ Reliable Data Transfer

o Description: Ensures that data is transmitted accurately by confirming readiness and

synchronization between devices.
o Benefit: Reduces errors and data loss.
e Flow Control

o Description: Manages the rate of data transfer, preventing buffer overflow and ensuring smooth

communication.
o Benefit: Prevents data loss due to overwhelming the receiver.
Disadvantages
e Increased Overhead

o Description: The handshaking process introduces additional overhead due to the exchange of

control signals.
o Impact: May reduce the efficiency of data transfer.
o Complexity

o Description: Implementing and managing handshaking protocols adds complexity to

communication systems.

o Impact: Requires careful design and implementation to ensure reliable operation.

11.7 Conclusion




In this unit, we delved into essential concepts of serial communication, I/O controllers, and data transfer
mechanisms critical for computer system operations. Serial communication, a method of transmitting data one bit
at a time, plays a pivotal role in connecting and managing peripheral devices with efficiency and simplicity.
Understanding I/O controllers' functions highlights their crucial role in managing data exchange between the CPU

and external devices, ensuring smooth and orderly operations within a computer system.

Asynchronous data transfer, which operates without a synchronized clock signal, provides flexibility in
communication but requires effective management to ensure data integrity. Techniques such as strobe control and
handshaking protocols are essential in coordinating data transfers, enhancing synchronization, and minimizing
errors. These mechanisms ensure that data is transmitted and received accurately, reflecting their importance in

maintaining reliable communication between different system components.

Overall, mastering these concepts equips one with the knowledge needed to effectively manage and troubleshoot
data communication and device interfacing in modern computer systems. Understanding these fundamental

principles is crucial for designing efficient and reliable computer systems and interfaces.

11.8 Unit Based Questions & Answers

1. What is serial communication, and how does it differ from parallel communication?

Answer: Serial communication transmits data one bit at a time over a single channel or wire, which makes it more
suitable for long-distance transmission due to reduced signal degradation and interference. In contrast, parallel
communication sends multiple bits simultaneously across multiple channels or wires, which allows for faster data

transfer but is limited by issues such as signal skew and crosstalk over longer distances.
2. What are I/O controllers, and what is their role in computer systems?

Answer: 1/0 controllers are specialized hardware components that manage the communication between the CPU
and peripheral devices. They handle the data transfer operations, control signals, and protocol conversions
necessary for interfacing with devices such as keyboards, printers, and storage drives. Their role is crucial in
ensuring efficient data exchange and processing between the system’s central components and external

peripherals.
3. Explain asynchronous data transfer and its advantages.

Answer: Asynchronous data transfer involves transmitting data without a synchronized clock signal, meaning
that data can be sent at irregular intervals. This method allows for greater flexibility and efficiency as it does not
require a constant clock signal, which can simplify design and reduce hardware requirements. However, it requires

additional mechanisms like handshaking to ensure proper synchronization and error-free data transmission.

4. What is strobe control, and how does it facilitate data transfer?




Answer: Strobe control is a technique used in data transfer where a strobe signal is sent alongside the data to
indicate the timing of the data being transmitted. The strobe pulse informs the receiving device that data is present
on the data lines and should be read. This method ensures that data is correctly captured and processed at the right

moment, preventing miscommunication and data loss.
5. Describe the concept of handshaking in data communication.

Answer: Handshaking is a process used to establish a communication protocol between two devices to ensure
that data is transferred reliably. It involves a series of signals or messages exchanged between the sender and
receiver to agree on parameters such as data format, timing, and error-checking methods. Handshaking ensures

that both devices are synchronized and ready to send or receive data, minimizing the risk of data loss or corruption.
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12.0 Introduction

Microcomputer: A personal computer or a computer that runs on a microprocessor is referred to as a
microcomputer. Microcomputers, whether they be in the form of PCs, workstations, or laptop computers, are
intended for individual use. A microcomputer is composed of a microprocessor, which is a CPU on a microchip,

a bus system, an I/O port array, and a memory system, which is usually housed in a motherboard.
What is a Microprocessor?
* The word comes from the combination micro and processor.

— Processor means a device that processes numbers, specifically binary numbers, 0’s and
1’s.

— Micro is a new addition.

— Inthe late 1960’s, processors were built using discrete elements.

— These devices performed the required operation, but were too large and too slow.

— Inthe early 1970’s the microchip was invented. All of the components that made up the
processor were now placed on a single piece of silicon. The size became several thousand
times smaller and the speed became several hundred times faster.

— The “Micro” Processor was born.




12.1 Objective

In this unit, you will understand

® Qverview of Microcomputer Structure and Operation

e To understand the fundamental concepts of microcomputer structure and operation.

e To gain insight into the 8085 microprocessor, including its architecture and operational
features.

¢ To analyze the pin configuration and timing diagrams of the 8085 microprocessor.

® To appreciate the role of the 8085 microprocessor in the context of modern computing.

Overview of Microcomputer Structure and Operation

Evolution of Microprocessors:

Intel released the 4004 and 8008 microprocessors, its first 4-bit and 8-bit microprocessors, respectively, in 1971
and 1972. These microprocessors' performance and design restrictions prevented them from being successful as

general-purpose microprocessors.

1. Launched in 1974, the first general-purpose 8-bit microprocessor, the 8080, was later modified and
given further functionality in 1977, making it a functionally complete microprocessor. This was known
as the 8085 microprocessor.

2. The primary drawbacks of 8-bit microprocessors were their poor speed, restricted amount of general
purpose registers, low memory addressing capacity, and weaker instruction set.

3. The first member of the 16-bit microprocessor family to be released in 1978 was Intel's 8086.

4004 8008 8080 8085 8086
Year 1971 1972 1974 1977 1978
No. of Bits 4 8 8 8 16
Technology PMOS PMOS NMOS NMOS HMOS
MEMORY 4KB 16 KB 64 KB 1IMB
INSTRUCTIO N 45 48 246
SET
SPEED 50 KIPS
NO. OF 2300 3500 4500 6500 29000
TRANSISTORS




MICROPROCESSOR INTRODUCTION

Microprocessor: A CPU-containing silicon chip. Within the context of personal computers, microprocessor and

CPU are synonymous concepts.

e A microprocessor, frequently shortened to pP, is a single semiconductor integrated circuit (IC) that
contains miniature transistors.

e A computer system or portable device's central processing unit (CPU) is usually one or more
MiCroprocessors.

e  The development of the microcomputer was made possible by microprocessors.

e A microprocessor is the central component of most workstations and desktop computers. Almost all
digital devices, including clock radios and car fuel injection systems, use microprocessors that manage
their logic.

e  Microprocessors differ in three fundamental ways:

e A microprocessor's instruction set is the collection of commands it is capable of carrying out.

e The amount of bits processed in a single instruction is known as bandwidth.

e Clock speed: The clock speed, expressed in megahertz (MHz), dictates the number of instructions the
CPU can process in a second.

e The CPU's power increases with the value in both scenarios. A 32-bit CPU operating at 50MHz, for

instance, has greater power than a 16-bit microprocessor operating at 25SMHz.

12.3 8085 Microprocessor Introduction

Intel intoduced the Intel 8085, an 8-bit microprocessor, in 1977. Because it needed less auxiliary hardware and
was binary compatible with the more well-known Intel 8080, simpler and less expensive microcomputer
systems could be constructed. The model number "5" was derived from the fact that the 8085 only needed a +5-
Volt (V) power supply, as opposed to the +5 V, =5V, and +12 V supplies that the 8080 required. Key

characteristics of 8085 pP are:

e It's a microprocessor with eight bits.

e Itis produced utilizing N-MOS technology.

e Because of its 16-bit address bus, it can access memory locations through A0-A1S5, or 216 = 65536
bytes (64KB).

e ADO0-AD?7 is the multiplex of the first eight address bus lines and the first eight data bus lines.

e Data bus consists of 8 lines, DO through D7.

e External interrupt requests are supported.

e A 16-bit stack pointer (SP) with a 16-bit program counter (PC)

e Six general purpose registers with eight bits each, paired off as BC, DE, and HL.

e Itruns at 3.2 MHZ single phase clock and needs a signal +5V power supply.




e It has 40 DIP (Dual in line package) pins enclosed.

12.4 8085 Architecture

As seen in Fig. 1, 8085 is made up of several units, each of which carries out a specific duty. The following is a

list of a microprocessor's different units.

e  Program counter

e  Stack pointer

e  Timing and Control unit
e Interrupt control

e  Temporary register

e Accumulator

e Arithmetic and logic Unit
e  Address buffer and Address-Data buffer
e Address bus and Data bus
e  General purpose register
e Flags

e Instruction register and Decoder
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Figure: 8085 Architecture
e Accumulator: A register that can store 8-bit data is all an Accumulator is.

Accumulator makes it easier to store two quantities simultaneously. An accumulator stores the data that will be
processed by an arithmetic and logic unit. The outcome of the operation performed by the Arithmetic and Logic
unit is likewise stored there. An 8-bit register is another name for the accumulator. The ALU (arithmetic and
logic unit) and Internal Data Bus are connected to the accumulator. The Internal Data Bus can be utilized to

transmit and receive data through the accumulator.
e  Arithmetic and Logic Unit

Arithmetic operations such as +, -, *, and /, as well as logical operations such as AND, OR, NOT, and so forth,
are always required. Thus, the creation of a distinct unit capable of carrying out these kinds of tasks is required.
The Arithmetic and Logic Unit (ALU) handles these functions. These procedures are carried out via ALU on 8-

bit data. However, without an input (or) set of data on which to perform the intended operation, these operations




cannot be carried out. Where do these inputs come from then to get to the ALU? An accumulator is utilized in
this situation. The accumulator and temporary register provide the input for the ALU. Once the required

processes have been completed, the outcome is returned to the accumulator.
e General Purpose Registers

Six unique register types known as General Purpose Registers make up 8085, aside from the accumulator. As
with other registers, data is stored in these general-purpose registers. The 8085 processors have the following
general-purpose registers: B, C, D, E, H, and L. A register can store up to 8 bits of data. These registers can be

used in pairs to store 16-bit data in addition to the previously mentioned function.

To hold 16-bit data, they can function in pairs like B-C, D-E, and H-L. As a memory pointer, the H-L pair is
functional. An individual memory location's address is stored in a memory pointer. In their pairwork, they are

able to store 16-bit addresses.
* Program Counter and Stack Pointer

Program counter is a special purpose register. Consider that an instruction is being executed by processor. As
soon as the ALU finished executing the instruction, the processor looks for the next instruction to be executed.
So, there is a necessity for holding the address of the next instruction to be executed in order to save time. This
is taken care by the program counter. A program counter stores the address of the next instruction to be
executed. In other words, the program counter keeps track of the memory address of the instructions that are
being executed by the microprocessor and the memory address of the next instruction that is going to be
executed. Microprocessor increments the program whenever an instruction is being executed, so that the
program counter points to the memory address of the next instruction that is going to be executed. Program
counter is a 16-bit register. Stack pointer is also a 16-bit register which is used as a memory pointer. A stack is
nothing but the portion of RAM (Random access memory). So, does that mean the stack pointer points to

portion of RAM?

Yes. The address of the most recent byte added to the stack is kept track of by the stack pointer. The stack
pointer is decreased each time data is added to the stack. On the other hand, when data is taken out of the stack,

it is increased.

Temporary Register During arithmetic and logical processes, this register serves as a temporary memory, as its
name implies. This temporary register is totally inaccessible to programmers and is solely accessible by the

microprocessor, in contrast to other registers. An 8-bit register is a temporary register.

Flags All that Flags are is a collection of single Flip-flops. The flags are mostly connected to operations in logic
and arithmetic. Depending on the data conditions in the accumulator and other registers, the flags will display a
logical (0 or 1), or a set or reset. In reality, a flag is just a latch that can store data. It notifies the processor that

an event has occurred.
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Figure: Flag Register

Intel processors have a set of 5 flags.

1. Carry flag

2. Parity flag

3. Auxiliary carry flag
4. Zero flag

5. Sign flag

Consider two binary numbers.
For example

1100 0000

1000 0000

The most significant bit generates a carry when the two values above are added. The most significant bit is the
number on the extreme left, and the least significant bit is the number on the extreme right. Thus, the carry

results in the generation of a ninth bit. Then, how can the ninth bit be used in an eight-bit register?

This is the use of the Carry flag. Every time a carry is generated, the carry flag is set; it is reset when there isn't a
carry. However, is there a backup carry flag? What distinguishes an auxiliary carry flag from a carry flag?

Let's use an illustration to explain. Take a look at the two numbers below.
0000 1100
0000 1001

The fourth bit from the least significant bit generates a carry when we add the two values. Auxiliary carry flag is
set as a result. The secondary carry flag is reset in the event that there is no carry. The carry flag is thus set
whenever there is a carry in the most important bit. Conversely, a carry that is created in bits other than the most

significant bit only results in the setting of an auxiliary carry flag.

Parity adds parity or tests to see if it's even. In the event of odd parity, this flag returns a 0, while in the event of
even parity, it returns a 1. They are also known by the name parity bit, which is sometimes used to detect faults

in data transfer.

The zero flag indicates if the operation's output is zero or not. The outcome of the operation is not zero if the

Zero flag's value is 0. The flag returns value 1 if it is zero.




A positive or negative sign is indicated by the sign flag in the operation's output. When a sign is positive, 0 is

returned, and when it is negative, 1 is returned.

e Instruction Register and Decoder

Like all other microprocessor registers, the instruction register is an 8-bit register. Think of a directive. The
instructions could be anything from copying a data to moving a data or adding two data, among other things. An
instruction of this type is sent to the instruction register when it is retrieved from memory. Thus, the purpose of
the instruction registers is to hold the instructions that are retrieved from memory. The data contained in the

instruction register is decoded by an instruction decoder so that it can be processed further.
¢ Timing and Control Unit

Because it synchronizes the registers and data flow through many registers and other units, the timing and
control unit is a crucial component of the system. This unit transmits control signals required for both internal
and external control of data and other units. It is composed of an oscillator and a controller sequencer. The

oscillator produces two-phase clock impulses that help the 8085 microprocessor's registers all synchronize.
The following signals are connected to the timing and control unit:

Signals of Control: RD', WR', ALE

ALE serves as a control signal to synchronize the microprocessor's components and timing for instructions.

e Carry out the procedure.

To show whether an operation is reading data from memory or writing data into memory, two indicators are

used: RD (Active low) and WR (Active low).
Status Signals: S0, S1, IO/M’

10/M (Active low) is used to indicate whether the operation belongs to the memory or peripherals.

10/M’ (Active Low) | S1 | S2 | Data Bus Status (Output)

0 Halt

Memory WRITE

Memory READ

[0 WRITE

[0 READ

Op code fetch

mlol=|R|lc|le
RlRlrlol ol
=l=lolrklo|l~lo

Interrupt acknowledge

Figure: Table — Status signals and the status of data bus




« DMA Signals: HOLD, HLDA, READY

HOLD: Denotes a request for address and data bus usage from another master. The CPU will give up bus usage
as soon as the current bus transfer is finished after receiving the hold request. Internal processing is now
complete. The CPU can only recover the bus once the HOLD is released. The Address, Data RD, WR, and
10/M' lines are tri-stated when the HOLD is acknowledged.

Hold Acknowledgment (HLDA): This indicates that the CPU has received the HOLD request and will release
the bus in the subsequent clock cycle. After the Hold request is withdrawn, HLDA decreases. After the HLDA
drops low, the CPU takes the bus for one half-clock cycle.

READY: This signal brings the slow peripherals and fast CPU into sync. The memory or peripheral is prepared
to send or receive data if READY is high during a read or write cycle. Before finishing the read or write cycle,
the CPU will wait an integral number of clock cycles for READY to reach high if it is low. READY has to

follow the setup and hold times given.
* Reset Signals: Reset in, Reset out
RESET IN: This pin's low point;

e  Zeroes out the program counter (0000H).
e Resets the HLDA flip-flops and interrupt enables.
e The data bus, address bus, and control bus are tri-stated.

¢ Randomly modifies the contents of the internal registers of the CPU.

The 8085 executes the first instruction from address 0000H when the Program counter is set to 0000h upon

reset.

RESET OUT: The processor is being reset, as indicated by this active high signal. This signal can be used to

reset other system-connected devices and is synced with the processor clock.
* Interrupt control

This control stops a process, as its name implies. The main program is being run by a microprocessor, consider.
Currently, the microprocessor switches over to handle incoming requests when the interrupt signal is activated
or requested. Once the request is processed, the microprocessor returns control to the main program. To indicate

that the data is prepared for entry, an input/output device can, for instance, emit an interrupt signal.

The microprocessor gives the I/O device control while momentarily stopping the main program's execution. The
control is returned to the main program once the input data has been collected. The following interrupt signals

are found in 8085: INTR, RST 7.5, RST 6.5, and RST 5.5.

o Mask able 8080A compatible interrupt, or TRAP INTR. When an interrupt happens, the CPU retrieves
one instruction—typically one of the following instructions—from the bus: One of the eight RST
commands (RSTO-RST7). The CPU branches to memory address N * 8, where N is a 3-bit number




between 0 and 7 that is given with the RST instruction, and saves the current program counter into the
stack.

o Call instruction (3-byte instruction). Calling the subroutine from the processor where the instruction's
second and third bytes specify the address of.

o Mask able interrupts are like RST5.5. Upon receiving this interruption, the Hexadecimal address 2CH
is where the processor branches after saving the contents of the PC register into a stack.

o Mask able interrupts are like RST6.5. Upon receiving this interrupt, the CPU branches to the 34H
(hexadecimal) address and stores the contents of the PC register in the stack.

o Mask able interrupts are like RST7.5. Upon receiving this interrupt, the CPU branches to the 3CH
(hexadecimal) address and stores the contents of the PC register in the stack.

o Non-mask able interrupts are like TRAP. Upon receiving this interrupt, the CPU branches to the 24H
(hexadecimal) address and stores the contents of the PC register in the stack.

o With the use of EI and DI commands, all maskable interrupts can be activated or disabled. SIM

instructions can be used to independently enable or disable RSTS5.5, RST6.5, and RST7.5 interrupts.

Serial Input/output control

The input and output of serial data can be carried out using 2 instructions in 8085.

e  SID-Serial Input Data
e SOD-Serial Output Data

Two more instructions are used to perform serial-parallel conversion needed for serial 1/0 devices.

e SIM
e RIM

Address buffer and Address-Data buffer

The address buffer and address-data buffer are filled with the contents of the program counter and stack pointer.
The address-data bus and external address bus are then driven by these buffers. The CPU may exchange desired

data with the memory and I/O chips since they are connected to these busses.

The internal data bus, which has eight bits, and the external data bus are both connected to the address-data

buffer. Data from the internal data bus can be sent and received via the address data buffer.
Data bus and the Address Bus

It is known that the 8085 microprocessor has eight bits. Consequently, the microprocessor's data bus has an 8-bit
width. Thus, eight bits of data can be sent. Either to or from the CPU. However, because memory addresses are
16 bits wide, the 8085 CPU needs a 16-bit address bus. The eight most important components of the address bus
is used to communicate addresses, while the multiplexed address/data bus is used to transmit the eight least

significant bits. The eight least significant bits of the address bus are multiplexed with the eight-bit data bus.




The data bus and address bus are time multiplexed. This indicates that the data is created by the same pin for a

few seconds after the eight least significant bits of the address are generated for a few microseconds. We refer to

this as time multiplexing. However, there are instances in which it's necessary to send data and an address at the

same time. The signal known as ALE (address latch enables) is utilized for this purpose. The address is also

available at the output latch when the CPU sends the data again because the ALE signal retains the received

address in its latch until the data is obtained. We refer to this method as Address/Data demultiplexing.

12.5 Pin Diagram of 8085

The signals can be grouped as follows

1. Power supply and clock signals

2. Address bus
3. Databus
4. Control and status signals
5. Interrupts and externally initiated signals
6. Serial I/O ports
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Power supply and Clock frequency signals




Vce + 5-volt power supply

Vss Ground

X1, X2: Crystal or R/C network or LC network connections to set the frequency of internal clock
generator. The frequency is internally divided by two. Since the basic operating timing frequency is 3
MHz, a 6 MHz crystal is connected externally.

CLK (output) — Clock Output is used as the system clock for peripheral and devices interfaced with the

microprocessor.

Address Bus and Data Bus

ADO0-AD7: These are data bus and address multiplexed. Therefore, in addition to carrying data, it can also carry

a lower order 8-bit address. Usually, the Latch is used to demultiplex these lines. The lines deliver the lower

order address bus A0-A7 in the first clock cycle of the opcode fetch operation. It serves as data bus D0-D7 in the

10/M read or write that follows. Data can be read or written by the CPU over these lines. Address buses A8

through A15 are used to address memory locations.

Instruction Set

The following five functional headings apply to the 8085 instruction set.

Data Transfer Instructions: Instructions for moving (copying) data between registers or between
memory locations and registers are included in the Data Transfer Instructions. Not a single data transfer
transaction modifies the contents of the source register. As a result, data transport is a copying process.
Arithmetic Instructions: Contains instructions for performing operations such as addition,
subtraction, increment, and decrement. Following the execution of an instruction in this group, the flag
conditions are changed.

Logical Instructions: This category includes instructions that carry out logical operations such as
AND, OR, EXCLUSIVE-OR, complement, compare, and rotate. Following the execution of an
instruction in this group, the flag conditions are changed.

Branching Instructions: This category includes instructions used to move the program's control from
one memory region to another.

Machine Control Instructions: Contains instructions for stopping program execution and for handling

interruptions.

Data Transfer Instructions

These instructions transfer information from memory to registers or between registers and memory.
These instructions replicate information from one location to another.

The contents of the source are not altered throughout the copying process.




MOV

MVI

LDA
LDAX
LXI
STA
STAX
XCHG

Rd, Rs

Descri 1ol

Copy from source to destination.
M, Rs
Rd, M
Rd, Data Move immediate 8-bit
M, Data
16-bit address Load Accumulator
B/D Register Pair Load accumulator indirect
Reg. pair, 16-bit data Load register pair immediate
16-bit address Store accumulator direct
Reg. pair Store accumulator indirect
None Exchange H-L with D-E

Arithmetic Instructions

These instructions perform arithmetic operations such as addition, subtraction, increment, and

decrement.
Opcode | Operand Description
ADD :: Add register or memory to accumulator
ADC S Add register or memory to accumulator with carry
ADI 8-bit data | Add immediate to accumulator
ACI 8-bit data | Add immediate to accumulator with carry
SUB S Subtract register or memory from accumulator
Sul 8-bit data | Subtract immediate from accumulator
INR :; Increment register or memory by 1
INX R Increment register pair by 1
DCR ; Decrement register or memory by 1
DCX R Decrement register pair by 1




Logical Instructions

These instructions perform various logical operations with the contents of the accumulator.

Opcode Operand Description
CMP M Compare register or memory with accumulator
CMP :: Compare register or memory with accumulator
CPI 8-bitdata Compare immediate with accumulator
ANA ; Logical AND register or memory with accumulator
ANI 8-bitdata Logical AND immediate with accumulator
XRA :1 Exclusive OR register or memory with accumulator
ORA :: Logical OR register or memory with accumulator
ORI 8-bitdata Logical OR immediate with accumulator
XRA ::I Logical XOR register or memory with accumulator

XRI B-bitdata XOR immediate with accumulator

Branching Instructions

This group of instructions alters the sequence of program execution either conditionally or unconditionally.

Opcode Operand Description
JMP 16-bit address Jump unconditionally
Jx 16-bit address Jump conditionally

Machine Control Instructions

These instructions control machine functions such as Halt, Interrupt, or do nothing.




Opcode | Operand Description
HLT MNone Halt
NOP None No operation
i . The interrupt enable flip-flop is set and all interpupts are
' one enabled. No flags are affected.
DI T The interrupt enable flip-flop is reset and all the interrupts
except the TRAP are disabled. No flags are affected.
SIM Non This is a multipurpose instruction and used to implement the
o 8085 interrupts 7.5, 6.5, 5.5, and serial data output.
RIM Non This is a multipurpose instruction used to read the status of
= interrupts 7.5, 6.5, 5.5 and read serial data input bit.
D, D D; D, D; D, Dy D
SID|I7 |16 |IS|IE|7.5]|65]5.5
Serial input (_l L Interrupt
data bit masked if
bit = 1
Interrupts Interrupt enable
pending if < — flip-flop is set
bit = 1 if bit = 1
Figure: SIM Instruction
D'II DE D$ DJ D| DJ DL DD
[SOD | SDE | XXX | R7.5 [ MSE [ M7.5 [ M6.5 | M5.5 |
| J |
4
Serial output data Reset R7.5 Masks interrupts
ifD, =1 if bits = |
Serial data enable Mask set
| = Enable enable if
0 = Disable D, =1

Figure: RIM Instruction

Addressing Modes




A program's instructions must all function with data. The process of defining the data that an instruction is to

operate on is known as addressing. The 8085 is equipped with five distinct addressing types.

o IMMEDIATE ADDRESSING
e Direct Addressing Method

e Register Addressing -

e Register Indirect Addressing.

e Implied Addressing

Immediate Addressing

The data is given in the instruction itself when using immediate addressing mode. The information will be

included in the program's instructions.
Move the data indicated in the instruction, 3EH, to the B register (EX. MVI B, 3EH); LXI SP, 2700H.
Direct Addressing

The instruction contains the address of the data in direct addressing mode. It will be stored in memory. Data and

program instructions can be kept in separate memory locations when using this addressing technique.
For example, LDA 1050H loads the data into the accumulator at memory address 1050H; SHLD 3000H.
Register Addressing.

When using register addressing mode, the instruction identifies the register that contains the data.

For example, SPHL; ADD C; MOV A, B - Transfer the contents of B register to A register.

Register Indirect Addressing

In this style of instruction, the address of the data is available in a register named after the instruction. In this

case, the address will be in the register pair while the data will be in memory.
MOV A, M - This moves the memory data addressed by the H L pair to register A. LDAX B.
Implied Addressing

When using implied addressing mode, the data to be operated is specified right in the instruction itself. For

example, CMA - Enhance the accumulator's content; RAL

12.6 Timing Diagrams

A timing diagram shows when read/write and transfer of data operations begin, with three status signals—
10/M, S1, and SO—controlling the process. Numerous clock cycles make up each machine cycle. Since both the

data and the instructions are kept in memory, the puP uses a fetch operation to read the data and then the




instruction before executing it. The IO / M', S1 and SO status signals are generated at the start of every machine

cycle.

These three distinct status signals work together to uniquely identify read or write operations, and they are valid
for the entire cycle. Therefore, the clock period is used to determine how long it takes any pP to complete a
single instruction. To transport data to or from the pP, memory, or I/O devices, read and write operations are
always necessary for the execution of an instruction. Each read/write operation results in one cycle of the

machine. T-states, or several clock periods/cycles, make up each machine cycle.

Leading edge Lagging edge

& State-1 sl State-2 -ie- State-3 - State-4 -»ie- State-5 -»ie- State-6 -»ie- State-7 +|

—» CLK Period L— |

#—————— Machine cycle-1 (MC1) —¢+-— Machine cycle-(MCz) ——,

Figure: Machine cycle showing clock periods

The clock cycle governs every single process that takes place inside the microprocessor. The clock signal
controls how long it takes the CPU to complete an instruction. The difference in time between the clock's two
leading or trailing edges is known as the state. The amount of time needed to move data to and from memory or

/O devices is called a machine cycle.
Five basic machine cycles make up the 8085 microprocessor. They're

e Opcode fetch cycle (4T)
e Memory read cycle (3 T)
e  Memory write cycle (3 T)
e [/Oreadcycle (3T)

e I/O write cycle (3 T)

Processor Cycle

The fetch and execute cycles of each program instruction make up the microprocessor's function. All that a
program consists of is a sequence of instructions kept in memory. The microprocessor normally fetches,
receives, or reads instructions and then proceeds to execute each one sequentially until it reaches the halt (HLT)

command.

The time needed to retrieve and execute an instruction is therefore defined as an instruction cycle. With the use

of clocks, any program is essentially executed in two steps at a time.

e Fetch

o Execute.




The term "fetch and execute cycle" refers to how long it takes the uP to complete the fetch and execute

activities. As seen in Fig., the instruction cycle is thus the total of the fetch and execute cycles.

Instruction Cycle (IC) = Fetch cycle (FC) + Execute Cycle (EC)

- Ty —01'1— T H T H Ta FI'I T, -t Ts Dfl‘ Ts =

4——  Felch cycle (FC) L Execule cycle —o]
- Instruction cycle {IC = FC + EC) *

Figure: Processor cycle

Every instruction starts with an Opcode fetch cycle, during which the processor determines what kind of
instruction it is. It has a minimum of four states. It might reach six states.

The processor learns the type of instruction to be performed during the opcode fetch cycle. During the first cycle
(M1), the processor loads the contents of the program counter into the address bus and uses the read process to
read the instruction's opcode. The basic memory read operation uses the T1, T2, and T3 clock cycles; the opcode
is interpreted starting with the T4 clock and up. These interpretations let the uP determine what kind of further
data or information is required to carry out the instruction, and it then moves on to read and write memory for

one or two machine cycles.

Instruction Fetch (FC): During the fetch, a single, double, or triple-byte instruction is taken out of the memory

locations and placed in the instruction register of the puP.

Instruction Execute (EC): During the execution stage, the instruction is decoded and translated into particular
actions.

Opcode Retrieve Reading data from memory is the first stage in a communication process between the
microprocessor and memory. We refer to this reading procedure as "opcode fetch." Opcode fetch operation is the
first machine cycle (M1) of each instruction and requires a minimum of four clock cycles, T1, T2, T3, and T4.
The machine cycle uses the status signals IO/ M, S1, and SO to distinguish between the data byte related to an
address and an opcode. Opcode fetch action is indicated by S1 = SO = 1, while memory operation is indicated by
I0/M = 0.

There are four states in the opcode fetch machine cycle M1 (T1, T2, T3, and T4).

The byte is fetched (transferred) from memory using the first three states, and it is decoded using the fourth

state.
Example
Fetch the 41H byte that is kept at memory address 2105H.

The CPU has to locate the byte's storage location in memory before it can be fetched. Next, establish a condition

(control) for the data transfer between the microprocessor and memory. Figs. 5.3(a), (b), and (c) depict the fetch




operation's timing diagram and data flow mechanism. The following sequence describes how the uP retrieves

the instruction's opcode from memory.

e A lowIO/M' indicates that the CPU is trying to talk to memory.

e To indicate a fetch operation, the uP delivers a high on status signals SO and S1.

e  The pP transmits a 16-bit address. The address for the AD bus is T1, the first clock of the first machine
cycle.

e  When ALE = 1, the AD7to ADO address is latched in the external latch.

e Data can now be carried by AD bus.

e To allow read operation of the memory, the RD control signal drops in T2.

e  Opcode is placed on the AD bus by the memory.

e  After being entered into the data register (DR), the data is moved to the information register (IR).

e During T3, memory is disabled and the RD signal rises.

e The opcode is submitted for decoding during T4 and is decoded in T4.

e Ifthe instruction consists of a single byte, the execution is also finished in T4.

e  For instructions with two or three bytes, more machine cycles are required. The purpose of machine
cycle M1 is to retrieve the opcode. The M2 and M3 machine cycles are necessary for reading and

writing data, as well as for addressing memory and I/O devices.

Memory and 1I/0 Read Cycle

The CPU uses the memory read machine cycle to read a data byte from memory. For the CPU to complete this
cycle, 3T states are needed. Following the opcode fetch machine cycle, instructions with word sizes larger than

one byte will utilize the machine cycle.
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Figure: I/0 Read Cycle

On the first low going transition of the clock pulse, the low order address (AD7 <> ADO) and high order

address (A15 < A8) are asserted. Fig. displays the IO/M read timing diagram. For the remainder of the bus
cycle, or T1, T2, and T3, the A15 < A8 are still valid, but AD7 < ADO are only valid in T1. It needs to be




stored for usage in the T2 and T3 since it needs to be valid for the entire bus cycle. Every bus cycle's T1 begins
with the assertion of ALE and ends with its negation. ALE is utilized as the clock pulse to latch the address
(AD7<ADO) during T1 and is only active during T1. Near the start of T2, the RD is declared. It concludes at
T3's end. Upon activation, the RD compels the memory or I/O port to assert data. As T3 comes to a conclusion,

RD' becomes inactive, which causes the port or memory to stop the data.

Memory and I/O Write Cycle

The processor asserts data on the address/data bus at the start of the T2, right after the low order address

terminates.

WR' control is turned on close to the beginning of T2 and turns off at the conclusion of T3. The processor keeps
up current data till WR's termination. This guarantees that when WR' is active, the memory or port contains
valid data. Figures show that in the case of the READ bus cycle, data appears on the bus as a result of RD's
activation, and in the case of the WR' bus cycle, valid data is on the bus for a longer period of time than WR' is

active.
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12.7 Summary

The 8085 Microprocessor, introduced in the early 1970s, is a prime example of the 8 Bit and 16 Bit Intel
Microprocessor Architecture and Register set. This architecture allows for faster and smaller processors, with
key characteristics including a 16-bit address bus, 16-bit stack pointer, 16-bit program counter, six general-

purpose registers, and 3.2 MHZ single-phase clock.

The 8085 processors consist of several units, including a program counter, stack pointer, timing and control unit,

interrupt control, temporary register, accumulator, arithmetic and logic unit, address buffer, address-data buffer,




address bus and data bus, general-purpose register, flags, instruction register, and decoder. The instruction
register holds instructions retrieved from memory and is decoded by an instruction decoder for further

processing.

Interrupt control is crucial for the microprocessor, allowing it to stop a process and return control once the main
program has been executed. In the 8085 microprocessor, two instructions are used: SID-Serial Input Data and
SOD-Serial Output Data. The address buffer and address-data buffer are filled with the contents of the program

counter and stack pointer, allowing the CPU to exchange desired data with memory and I/O chips.

The 8085 instruction set consists of five functional headings: Data Transfer Instructions, Arithmetic Instructions,
Logical Instructions, Branching Instructions, and Machine Control Instructions. These instructions transfer
information from memory to registers or between registers and memory, perform operations like addition,
subtraction, increment, decrement, and branching instructions, and control machine functions like Halt,

Interrupt, or do nothing.

The 8085 microprocessor has five addressing modes: Immediate Addressing, Direct Addressing, Register
Addressing, Register Indirect Addressing, and Implied Addressing. It uses data in instructions, stores it in
memory, identifies the register containing data, and specifies the data to be operated. The microprocessor
consists of five basic machine cycles: opcode fetch cycle (4T), memory read cycle (3 T), memory write cycle (3
T), I/0 read cycle (3 T), and 1/O write cycle (3 T). Each instruction is a sequence of instructions stored in
memory, executed sequentially until the halt (HLT) command is reached. The opcode fetch cycle determines the

type of instruction and uses the read process to read the instruction's opcode.

12.8 Questions

1. What are the key components of the 8085 microprocessor architecture?

Answer: The key components of the 8085 microprocessor architecture include the Arithmetic Logic
Unit (ALU), register array, instruction decoder, and control unit. The ALU performs arithmetic and
logical operations, the register array stores data and instructions, the instruction decoder interprets

instructions, and the control unit manages the execution of instructions.
2. How many pins does the 8085 microprocessor have and what are the key pins?

Answer: The 8085 microprocessor has 40 pins. Key pins include Ve (power supply), GND (ground),
address/data buses, control signals such as RD (Read), WR (Write), and IRQ (Interrupt Request), and
the clock pin.

3. What is the purpose of the address/data bus in the 8085 microprocessor?




Answer: The address/data bus in the 8085 microprocessor is used for both addressing memory and
transferring data. The bus is multiplexed, meaning that it functions as both an address bus and a data

bus at different times during the microprocessor’s operation.
4. What is the significance of timing diagrams in the context of the 8085 microprocessor?

Answer: Timing diagrams are significant as they illustrate the relationships between various control
signals and operations of the 8085 microprocessor. They help in understanding the timing
requirements for instruction fetch, memory read/write, and I/O operations, ensuring correct

synchronization and operation.
5. Explain the function of the Arithmetic Logic Unit (ALU) in the 8085 microprocessor.

Answer: The Arithmetic Logic Unit (ALU) in the 8085 microprocessor is responsible for performing
arithmetic operations (such as addition and subtraction) and logical operations (such as AND, OR, and
XOR). It is a crucial component that enables the microprocessor to carry out computations and

decision-making processes.
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13.1 Introduction

After covering directives, program development tools, and Input/Output in assembly language programming,
let's delve deeper into assembly language programs. This unit will begin by exploring simple assembly
programs, which handle basic tasks such as data transfer, arithmetic operations, and shifts. A fundamental
example includes determining the larger of two numbers. Subsequently, we'll progress to more intricate
programs demonstrating the use of loops and various comparisons to accomplish tasks such as code conversion,
character coding, and finding the largest value in an array. Additionally, this unit delves into more advanced
arithmetic and string operations, as well as modular programming. For further details on these programming

concepts, additional readings are recommended.

13.2 Objectives

After going through this unit, you should be able to:




create assembly programs that include shift, logical, and basic arithmetic operations;
implement loops;

build different comparison functions using comparisons;

create basic assembly programs to convert codes;

create basic assembly programs to use arrays;

describe how to use a stack when passing parameters; and

Employ assembly language for modular programming

13.3 SIMPLE ASSEMBLY PROGRAMS

The 0—1 combinations that the computer decodes directly make up machine language code. However, the

following issues with the machine language exist:

Writing in 0-1 forms is challenging for most individuals and heavily relies on the computer.
Debugging is challenging.
The machine code is incredibly hard to decipher. As a result, it will be difficult to understand program

logic.

Computer manufacturers have created English-like terms to describe a machine's binary instruction in order to

get around these problems. A mnemonic is a symbolic code that corresponds to each instruction. A specific

instruction's mnemonic is made up of letters that allude to the task that the instruction is supposed to complete.

The ADD mnemonic, for instance, is used to add two numbers. Machine language instructions can be written in

symbolic form using these mnemonics, with one corresponding symbolic instruction for each machine

instruction. We refer to this as an assembly language.

Advantages and disadvantages of using assembly language:

Advantages:

D

2)

3)

4

Assembly language provides extensive control over specific hardware and software components,
enabling in-depth exploration of instruction sets, addressing modes, interrupts, and more.

Programs written in assembly generate smaller, more compact executable modules due to their close
proximity to the machine. This proximity allows for the creation of highly optimized programs,
resulting in faster execution.

Assembly language programs tend to be at least 30% denser than equivalent programs written in high-
level languages. This density arises from the fact that compilers often produce lengthy code sequences
for each instruction, whereas assembly language typically employs a single line of code for each
instruction, particularly noticeable in string-related programs.

Assembly language offers programmers significant freedom, as it imposes few restrictions or rules,

allowing for flexible system construction.




Disadvantages:

1) Assembly language is inherently machine-dependent, with each microprocessor featuring its own
unique set of instructions. Consequently, assembly programs lack portability.

2) Programming in assembly requires a deep understanding of underlying hardware architecture, making
it more complex and time-consuming compared to high-level languages.

3) Debugging and maintaining assembly code can be challenging due to its intricate and less readable
nature compared to code written in higher-level languages.

4) Development in assembly language often demands more effort and expertise, potentially increasing

development time and costs, and making it less accessible to beginners.

What the Assembler Does

A source program is required before using the assembler. Instructions written in assembly language by the
programmer make up the source program. These instructions have been written with mnemonic labels and
opcodes. Programs written in assembly language and sent to the assembler must be machine-readable. You can
keep source programs as paper tape or diskette files with the help of the text editor included in the Intellect
development system. After that, you can give the assembler the generated source program file. The 8080 and
8085 microprocessors can run object code thanks to the assembler program, which handles the tedious operation
of converting symbolic code. The output of the assembler can be found in three different files: the object file,
which is your program translated into object code; the list file, which is a printout of your source code, the
object code produced by the assembler, and the symbol table; and the symbol-cross reference file, which is a list

of such records.
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Figure: Function of an Assembler
Example Programs

1. Statement: Store the data byte 32H into memory location 4000H.

Program 1
MVI A, 32H : Store 32H in the accumulator
STA 4000H : Copy accumulator contents at address 4000H

HLT : Terminate program execution




Program 2

LXIH : Load HL with 4000H

MVIM : Store 32H in memory location pointed by HL register pair (4000H)
HLT : Terminate program execution

Statement: Exchange the contents of memory locations 2000H and 4000H

Program 1

LDA 2000H : Get the contents of memory location 2000H into accumulator
MOV B, A : Save the contents into B register

LDA 4000H : Get the contents of memory location 4000H into accumulator

STA 2000H : Store the contents of accumulator at address 2000H

MOV A, B : Get the saved contents back into A register

STA 4000H : Store the contents of accumulator at address 4000H

Program 2

LXIH2000H : Initialize HL register pair as a pointer to memory location

LXID 4000H : Initialize DE register pair as a pointer to memory location 4000H.
MOV B,M : Get the contents of memory location 2000H into B register.

LDAX D : Get the contents of memory location 4000H into A register.
MOV M, A : Store the contents of A register into memory location 2000H.

MOV A, B : Copy the contents of B register into accumulator.

STAX D : Store the contents of A register into memory location 4000H.
HLT : Terminate program execution.

Sample problem
(4000H) = 14H

(4001H) = 89H

Result = 14H + 89H = 9DH
Source program

LXI H 4000H : HL points 4000H




MOV A,M : Get first operand

INXH : HL points 4001H

ADDM : Add second operand
INXH : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution

Statement: Subtract the contents of memory location 4001H from the memory location 2000H and place the

result in memory location 4002H.

Program - 4: Subtract two 8-bit numbers
Sample problem

(4000H) = 51H

(4001H) = 19H

Result=51H - 19H = 38H

Source program

LXI H, 4000H : HL points 4000H

Sample problem

MOV A,M : Get first operand

INXH : HL points 4001H

SUBM : Subtract second operand
INX H : HL points 4002H

MOV M, A : Store result at 4002H.

HLT : Terminate program execution

13.4 Memory Interfacing

A crucial component of computer design is memory interfacing, which makes it easier for different kinds of
memory modules and a computer's central processing unit (CPU) to communicate. In order to allow the CPU to

read from and write to memory effectively, hardware and protocols must be designed and put into place. Static




random-access memory (SRAM), dynamic random-access memory (DRAM), and non-volatile memory,

including flash memory, are commonly used in memory interfaces in contemporary computers.

Ensuring smooth data communication between the CPU and memory while maximizing speed, dependability,
and affordability is the main objective of memory interfacing. Memory controllers and bus interfaces are
examples of specialized integrated circuits that are frequently needed for this. Memory controllers handle
operations including addressing, data transmission, and error detection and correction as well as the flow of data

between the CPU and memory modules.

Addressing mechanisms to access certain memory locations and data transmission protocols, such as
synchronous and asynchronous communication techniques, are also included in the process of integrating.
Memory interfacing design also takes into account factors like bus designs, memory hierarchy, and caching

techniques, all of which contribute to improved system performance.

The seamless functioning of computer systems depends on effective memory interfacing, which affects things
like program performance, multitasking ability, and user experience in general. Memory interface strategies
must change to provide larger capacities, quicker speeds, and new kinds of memory modules as memory

technology grow, guaranteeing continuous improvements in computing power.
Typical EPROM and Static RAM

e  There are typically "n" address pins and "m" data pins (also known as output pins) on a semiconductor
memory IC.

e Possessing two power supply pins, one for ground and the other for attaching the necessary supply
voltage (V).

e  Chip select (chip enable), read control (output enable), and write control (write enable) are the control
signals required for static RAM.

e Read control (output enable) and chip select (chip enable) are the control signals required for EPROM

read operations.

i} m
(= A
Address bus Address bus
Voo = 'i"“ =
GND GND

GITE - Chip select (or Chip enable)  ; OE / RD - Qutput enable (or Read control)

WE/WR - Write enable (or Write control)




Memory IC Capacity Number of Number of
EPROM/RAM address pins data pins
2708/6208 1kb 10 B
2716/6216 2kb 1" 8
273216232 4kb 12 8
276416264 Bkb 13 8
27256/62256 32kb 15 8
27512/62512 64kb 16 8
27010/62128 128kb 7 8
27020/62138 256kb 18 8
27040/62148 512kb 19 8

Assembly language program to add two numbers
MVIA,2H ; Copy value 2H in register A

MVI B, 4H ; Copy value 4H in register B

ADD B ; A=A+B

Note:

« Assembly language is specific to a given processor

e Fore.g. assembly language of 8085 is different than that of Motorola 6800 microprocessor
Microprocessor understands Machine Language only!
Microprocessor cannot understand a program written in Assembly language

e A program known as Assembler is used to convert a Assembly language program to machine language

Programming model of 8085
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13.5 Overview: 8085 Programming model

The 8085 programming model is an assembly language program written specifically for the Intel 8085 CPU.

Fundamental parts include the accumulator (A), which is primarily used for arithmetic and logical operations,

and the six general-purpose registers (B, C, D, E, H, and L), which are critical for data manipulation and

storage. While the stack pointer (SP) handles subroutine calls and returns by showing the top of the stack, the

program counter (PC) tracks the address of the next instruction to be executed. Status indications that represent

the results of arithmetic and logical operations, such as Sign (S), Zero (Z), and Carry (CY), are kept in the flags

register. To this are added a variety of instructions covering data transfer, branching, and arithmetic, logic, and

control transfer functions. Programming design is made more flexible and efficient by addressing modes, which

control how operands are accessed during instruction execution. The 8085 also has input/output connections that

allow it to communicate with other devices. This allows for a variety of applications, from simple control

programs to complex data processing and communication jobs. Comprehending this programming approach is

essential to effectively utilizing the microprocessor's capabilities and creating assembly language programs.

1.
2
3.
4.
5

Details:

Six general-purpose Registers — B, C, D, E, H, L

Six general-purpose Registers
Accumulator Register

Flag Register

Program Counter Register

Stack Pointer Register

— Can be combined as register pairs to

Perform 16-bit operations (BC, DE, HL)The Intel 8085 microprocessor features six general-purpose

registers, which are used for storing and manipulating data during program execution. These registers

are as follows:




o B Register: The B register is an 8-bit register used for temporary storage of data and as an operand in
arithmetic and logical operations.

e C Register: The C register is another 8-bit register that works in conjunction with the B register as a
pair (BC register pair). It is commonly used for storing data and as an operand in various instructions.

e D Register: The D register is an 8-bit general-purpose register used for storing intermediate data and as
an operand in arithmetic and logical operations.

e E Register: The E register is another 8-bit register that forms a pair (DE register pair) with the D
register. It serves similar functions to the D register, providing additional storage for data.

o H Register: The H register is an 8-bit general-purpose register used for storing data and as an operand
in arithmetic and logical operations. It often works in conjunction with the L register.

e L Register: The L register is the sixth 8-bit general-purpose register in the 8085 microprocessor. Like
the H register, it is used for data storage and manipulation, often forming a pair (HL register pair) with

the H register for 16-bit operations.

Accumulator Register

An essential part of the programming model for the Intel 8085 microprocessor is the Accumulator Register,
sometimes known as the "A" register. It temporarily stores data during arithmetic, logic, and data transfer
operations as an 8-bit register. The accumulator functions as the main working register and is essential to the

majority of the microprocessor's arithmetic and logical operations.

The accumulator stores the outcomes of data transfer operations between memory and other registers in addition
to its use in arithmetic operations. When data is transported into or out of the microprocessor's memory or other
registers, it serves as the destination register. The accumulator is frequently listed as one of the operands in

instructions involving arithmetic, logic, or data transfer operations.

The accumulator register is essential to the execution of instructions and numerous computations carried out by
assembly language programs developed for the 8085 microprocessor, owing to its fundamental role in data
management and processing. Efficient programming and utilization of the microprocessor's capabilities require

an understanding of its usage and capabilities.

—  This register is a part of ALU
—  8-bit data storage
—  Performs arithmetic and logical operations

—  Result of an operation is stored in accumulator

Flag Register

An essential part of the Intel 8085 microprocessor's programming model is the Flag Register, which holds a
variety of condition code flags representing the results of logical and arithmetic operations. The outcomes of the
most recent arithmetic or logical command that the processor carried out are indicated by these flags. The Flag

Register is made up of multiple flags, each of which stands for a distinct condition:




« Sign Flag (S): When an operation has a negative result, this flag is set, meaning that the most
important bit of the result is 1.

e Zero Flag (Z): When an operation yields a zero result, the Zero Flag is set. The Zero Flag is set when
the result is 00000000, meaning that no bits are set in the result.

e The Auxiliary Carry Flag (AC) is utilized in arithmetic procedures involving Binary Coded Decimal
(BCD). In order to enable BCD correction, it is set if there is a carry from bit 3 to bit 4 during an
arithmetic operation.

e Parity Flag (P): When an operation yields an even number of set bits, which indicates even parity, the
Parity Flag (P) is set. The Parity Flag is removed in the event that the result has an odd number of set
bits.

e Carry Flag (CY): During an arithmetic operation, if the most significant bit (bit 7) is carried out, the

Carry Flag is set. Additionally, it is employed in subtraction procedures to detect borrow.

Program Counter (PC)

An essential part of the architecture of the Intel 8085 microprocessor is the Program Counter (PC), a 16-bit
register that stores the memory address of the subsequent instruction to be retrieved and performed. The
Program Counter, which points to the memory address of the next instruction as it is executed sequentially by

the CPU, automatically increases after each instruction execution.

The microprocessor retrieves the instruction stored at the memory address that the Program Counter points to
during the fetch-execute cycle. After an instruction is fetched, the PC automatically increments to point to the
memory address of the next instruction, readying it for the next fetch operation. The CPU can then carry out
instructions sequentially until a branch or jump instruction modifies the value of the Program Counter. This

process is repeated iteratively.

The Program Counter is altered by branching and jumping instructions, which reroute the execution flow to
alternative sections of the program or subroutine. For example, conditional branch instructions allow the
execution of different instruction sequences dependent on the result of previous operations by altering the PC's

value based on predetermined criteria.

The microprocessor's ability to execute instructions sequentially from memory is made possible by the Program
Counter, whose function in managing the instruction sequence is essential to its functioning. For the purpose of
creating successful assembly language programs and guaranteeing proper program flow inside the 8085

microprocessor architecture, it is imperative to comprehend and efficiently manage the Program Counter.
The Stack Pointer (SP)

An essential component of the Intel 8085 microprocessor's architecture, the Stack Pointer (SP) Register is in
charge of overseeing the stack memory region. The memory address of the top of the stack at any given time is

stored in this 16-bit register.




The stack of the 8085 microprocessor functions according to the Last-of-First-Out (LIFO) principle, which
states that the last data item added to the stack will be the first one removed. Typically, the stack is utilized for

interrupts and subroutine calls, where it is used to temporarily store data and return addresses.

The Program Counter (PC) is pushed onto the stack when a subroutine is called, enabling the CPU to return to
the proper place in the main program once the subroutine has finished executing. Furthermore, during the

execution of a procedure, additional registers or temporary data may be pushed into the stack for storage.

In contrast, the CPU can resume running the main program when a subroutine is completed by popping the

previously saved return address off the stack and loading it into the Program Counter.

As data is added to or removed from the stack, the Stack Pointer automatically increases or decreases to
preserve the accurate memory location of the stack's top. It is essential for effectively controlling the stack and

guaranteeing the accuracy of the data kept therein.

13.6 Instruction Set of 8085

The instruction set of the Intel 8085 microprocessor comprises a wide range of instructions categorized into
various groups, including data transfer, arithmetic, logical, branching, and control transfer instructions. Here's an

overview of the instruction set:
Data Transfer Instructions:

—  MOV: Move data from one register/memory location to another.
—  MVI: Move immediate data into a register/memory location.

— LXI: Load immediate 16-bit data into a register pair.

— LDA: Load accumulator with data from a memory address.

—  STA: Store accumulator data into a memory address.

— LHLD and SHLD: Load and store HL register pair data from/to memory.

Data Transfer (Copy) Operations

= Load a 8-bit number in a Register

= Copy from Register to Register

= Copy between Register and Memory

= Copy between Input/Output Port and Accumulator
= Load a 16-bit number in a Register pair

= Copy between Register pair and Stack memory

Example Data Transfer (Copy) Operations / Instructions




1. Load a B-bit number 4F in MVI B, 4FH
register B

2. Copy from Register B to MOV A.B
Register A

3. Load a 16-bit number L¥I H, 2050H
2050 in Register pair HL

4. Copy from Register B 1o MOV M.E
Memory Address 2050 '

5. Copy between T

fOutput Port and ::IUD?:]H

Accumulator

Arithmetic Instructions:

— ADD: Add the contents of a register/memory location to the accumulator.

— ADC: Add the contents of a register/memory location to the accumulator with carry.

—  SUB: Subtract the contents of a register/memory location from the accumulator.

—  SBB: Subtract the contents of a register/memory location from the accumulator with borrow.
— INR: Increment the contents of a register/memory location.

— DCR: Decrement the contents of a register/memory location.

Arithmetic Operations

=  Addition of two 8-bit numbers
=  Subtraction of two 8-bit numbers

= Increment/ Decrement a 8-bit number

Example Arithmetic Operations / Instructions

1. Add a 8-bit number 32H to ADI 32H
Accumulator

2. Add contents of Register B to ADD B
Accumulator

3. Subtract a 8-bit number 32H suUl 22H
from Accumulator

4. Subtract contents of Register SUB C
Z from Accumulator

5. Increment the contents of INR D
Register D by 1

6. Decrement the contents of DCR E
Register E by 1

Logical Instructions:

—  ANA: Perform a logical AND operation between the accumulator and a register/memory location.
—  XRA: Perform a logical XOR operation between the accumulator and a register/memory location.
— ORA: Perform a logical OR operation between the accumulator and a register/memory location.

—  CMP: Compare the accumulator with a register/memory location.




Logical & Bit Manipulation Operations

= AND two 8-bit numbers

*  OR two 8-bit numbers

=  Exclusive-OR two 8-bit numbers
= Compare two 8-bit numbers

=  Complement

= Rotate Left/Right Accumulator bits

Example Logical & Bit Manipulation Operations / Instructions

1. Logically AND Register H
with Accumulator

2. Logically OR Register L with
Accumulator

2. Logically XOR Reqgister B
with Accumulator

4. Compare contents of
Register C with Accumulator

5. Complement Accumulator
6. Rotate Accumulator Left

Branching Instructions:

— JMP: Unconditional jump to a specified memory address.

AMNA H

ORA L

XRA B

CMP C

ChMA
RAL

— JC,INGC, JP,IM, JZ, JNZ, JPE, JPO: Conditional jumps based on various flag conditions.

— CALL: Call a subroutine at a specified memory address.

— RET: Return from a subroutine.
Example Branching Operations / Instructions

1. Jump 1o a 16-bit Address
2080H if Carry flag is SET

2. Unconditional Jump

3. Call a subroutine with its 16-hit
Address

4. Return back from the Call

5. Call a subroutine with its 16-bit
Address if Carry flag is RESET

6. Return if Zero flag is SET

Control Transfer Instructions:

— NOP: No operation (Do nothing).
—  HLT: Halt the microprocessor.

— DI and EI: Disable and enable interrupts, respectively.

JC 2080H

JMP 2050H
CALL 3050H

RET
CNC 3050H

RZ




Stack Manipulation Instructions:

—  PUSH: Push register pairs onto the stack.
—  POP: Pop register pairs from the stack.

Input/Output Instructions:

— IN: Read data from an input port.
—  OUT: Write data to an output port.

13.7 Writing a Assembly Language Program

Steps to write a program

e Analyze the problem

e Develop program Logic
e  Write an Algorithm

e Make a Flowchart

e  Write program Instructions using Assembly language of 8085

Program 8085 in Assembly language to add two 8-bit numbers and store 8-bit result in register C.

Algorithm for writing this problem:

1. Get two numbers e Load Istno. in register D

e Load 2nd no. in register E

2. Add them e Copy register D to A

e Addregister E to A
3. Store result e Copy A to register C
4. Stop e  Stop processing

Try to Make a Flowchart
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Assembly Language Program

MWV D, Z2H
MVI E, 3H

Addressing Modes of 8085

The Intel 8085 microprocessor supports several addressing modes that determine how operands are accessed
during instruction execution. These addressing modes offer flexibility in programming and allow efficient use of

memory and register resources. Here are the main addressing modes of the 8085:

[Label:] Mnemonic [Operands] [;comments]
HLT
MVIA, 20H
MOV M, A ;Copy A to memory location whose address is stored in register
pair HL
LOAD: LDA 2050H ;Load A with contents of memory location with address 2050H
READ: IN 07H ;Read data from Input port with address 07H

1. Immediate Addressing: In immediate addressing, the operand is specified directly within the instruction

itself. For example:

MVI A, 05H ; Load immediate data O0SH into the accumulator




2. Direct Addressing: In direct addressing, the operand's memory address is directly specified within the

instruction. For example:
MOV A,M ; Move the data from memory location addressed by HL into the accumulator

3. Register Addressing: In register addressing, the operand is located in one of the microprocessor's registers.

For example:
MOV B,C ; Move the contents of register C into register B

4. Indirect Addressing: In indirect addressing, the operand's address is stored in a register or memory location,

and the data is accessed indirectly. For example:
MOV A, (HL) ; Move the data from the memory location addressed by the contents of HL into the accumulator

5. Register Indirect Addressing: This is a specific form of indirect addressing where the operand's address is

stored in a register. For example:

MOV A, (B) ; Move the data from the memory location addressed by the contents of register B into the

accumulator

6. Indexed Addressing: In indexed addressing, the operand's address is calculated by adding an index value to a
base address. This mode is often used for accessing elements of arrays or data structures. The 8085 doesn't have

built-in support for indexed addressing, but it can be simulated using other addressing modes.

These addressing modes provide versatility in accessing operands and data, allowing programmers to write
efficient and compact code for various tasks. Mastery of addressing modes is essential for effective

programming on the Intel 8085 microprocessor, enabling the utilization of its capabilities to their fullest extent.

Instruction & Data Formats

In the Intel 8085 microprocessor architecture, instructions and data are structured according to specific formats
to facilitate their interpretation and execution. The instruction format typically consists of an operation code

(opcode) and, in some cases, additional operands.

Instructions are encoded using a variable-length format, with opcodes representing different operations such as
data transfer, arithmetic, logical, branching, and control transfer instructions. Each opcode is associated with a
specific operation that the microprocessor performs when executing the instruction. Additionally, some
instructions may require additional data, which can be specified as immediate values, memory addresses, or

register operands, depending on the addressing mode used.

Data in the 8085 architecture can be represented in various formats, including binary, hexadecimal, and ASCII.
Binary data consists of sequences of 1s and Os, which are interpreted by the microprocessor as numerical values
or instructions. Hexadecimal notation is commonly used to represent binary data in a more compact and
readable format, with each hexadecimal digit representing four bits of binary data. ASCII encoding is used for

representing alphanumeric characters and symbols, with each character assigned a unique binary code.




Both instructions and data are stored in the memory of the 8085 microprocessor, with instructions typically
residing in program memory and data stored in either program memory or data memory locations. The
microprocessor fetches instructions from memory using the program counter (PC) and executes them

sequentially, interpreting each opcode and its associated operands according to the instruction set architecture.
8085 Instruction set can be classified according to size (in bytes) as

1. 1-byte Instructions
2. 2-byte Instructions
3. 3-byte Instructions

1. One-byte Instructions

One-byte instructions in the Intel 8085 microprocessor architecture are compact instructions that occupy only
one byte of memory. These instructions typically represent simple operations that can be executed quickly by

the microprocessor.

One-byte instructions are often used for basic arithmetic, logical operations, data transfer between registers, and
control transfer instructions such as NOP (no operation) and HLT (halt). Since they are encoded in only one
byte, they are easy to decode and execute, contributing to faster program execution and efficient memory

utilization.
Examples of one-byte instructions in the 8085 architecture include:

e MOV rl, r2: Move the contents of register 12 into register rl.

e ADD r: Add the contents of register r to the accumulator.

e  SUB r: Subtract the contents of register r from the accumulator.

e INR r: Increment the contents of register r.

e JMP addr: Unconditionally jump to the memory address specified by addr.
e  NOP: Perform no operation.

e HLT: Halt the microprocessor.

dpcud-e bperan[:i I Binary Code| Hex Code
MOV C,A 01001111 | 4FH
ADD B 1000 0000 | 8OH
HLT 101110110 |  76H

2-byte Instructions

Two-byte instructions in the Intel 8085 microprocessor architecture are instructions that require two bytes of
memory to represent. These instructions are typically more complex than one-byte instructions and may involve
additional operands or data. Two-byte instructions provide more functionality and flexibility, allowing for a

wider range of operations to be performed by the microprocessor.

Some examples of two-byte instructions in the 8085 architecture include:




MVI Rd, data: Move immediate data (data) into the specified register (Rd).
e Example: MVI A, 0AH (Move immediate value 0AH into the accumulator).
LXI Rp, data: Load immediate data (data) into the specified register pair (Rp).
e Example: LXI H, 2050H (Load immediate value 2050H into the HL register pair).

STA address: Store the contents of the accumulator into the memory location specified by the 16-bit
address.

e Example: STA 3000H (Store the contents of the accumulator into memory location 3000H).

LDA address: Load the accumulator with the contents of the memory location specified by the 16-bit
address.

e Example: LDA 4000H (Load the accumulator with the contents of memory location 4000H).
JMP address: Unconditionally jump to the memory address specified by the 16-bit address.

e Example: JMP 5000H (Jump to the memory address SO00H).
CALL address: Call a subroutine located at the memory address specified by the 16-bit address.

e Example: CALL 6000H (Call subroutine at memory address 6000H).

Opcode Operand |Binary Code| Hex Code
MVI A, 32H 0011 1110 3EH
0011 0010 32H
MVi B, F2H 0000 0110 0o6H
1111 0010 F2H

3-byte Instructions

In the Intel 8085 microprocessor architecture, three-byte instructions are instructions that require three bytes of

memory to represent. These instructions are typically more complex and involve additional operands or data

compared to one-byte or two-byte instructions. Three-byte instructions provide even greater functionality and

flexibility, enabling a wider range of operations to be performed.

Some examples of three-byte instructions in the 8085 architecture include:

1.

LHLD address: Load the HL register pair with the contents of the memory location specified by the
16-bit address.

e Example: LHLD 2000H (Load the HL register pair with the contents of memory location
2000H).




2. SHLD address: Store the contents of the HL register pair into the memory location specified by the
16-bit address.

e Example: SHLD 3000H (Store the contents of the HL register pair into memory location
3000H).

3. LXI Rp, address: Load immediate 16-bit data (address) into the specified register pair (Rp).
e Example: LXI SP, 4000H (Load immediate value 4000H into the stack pointer register pair).

4. STA address: Store the contents of the accumulator into the memory location specified by the 16-bit

address.
e Example: STA 4000H (Store the contents of the accumulator into memory location 4000H).

5. LDA address: Load the accumulator with the contents of the memory location specified by the 16-bit

address.
e Example: LDA 5000H (Load the accumulator with the contents of memory location 5000H).
6. CALL address: Call a subroutine located at the memory address specified by the 16-bit address.

e Example: CALL 6000H (Call subroutine at memory address 6000H).

'(_L_.‘I'El:nde | Eperand Binan_,t Code Hex Code
LXxi H, 20S50H | 0010 0001 21H
0101 0000 50H
0010 0000 20H
LDA 207OH 0011 1010 3AH
0111 0000 TOH
o011 0000 30H

Block data transfer

e MVIC, 0AH ; Initialize counter i.e no. of bytes Store the count in Register C, ie ten
e« LXI H, 2200H ; Initialize source memory pointer Data Starts from 2200 location

e LXID, 2300H ; Initialize destination memory pointer

e MOV A, M ; Get byte from source memory block i.e 2200 to accumulator.

e« STAX D ; Store byte in the destination memory block i.e 2300 as stored in D-E pair
e INX H ; Increment source memory pointer

e INX D ; Increment destination memory pointer

¢ DCR C; Decrement counter to keep track of bytes moved

o« JNZ BK; If counter 0 repeat steps

e HLT ; Terminate program

13.8 Summary




This unit explores assembly language programming based on Intel 8085, focusing on basic tasks like data
transfer, arithmetic operations, and shifts. It progresses to more intricate programs, demonstrating the use of
loops and comparisons for code conversion, character coding, and finding the largest value in an array.
Assembly language programs are machine-dependent and require a deep understanding of underlying hardware
architecture. Development in assembly language often demands more effort and expertise, potentially increasing

development time and costs.

The assembler is a crucial component of computer design, enabling smooth communication between memory
modules and the central processing unit (CPU). It handles the tedious operation of converting symbolic code
into object code, which can be stored as paper tape or diskette files using the Intellect development system's text
editor. Memory interfacing is essential for ensuring smooth data communication between the CPU and memory,
and memory interface strategies must change to provide larger capacities, quicker speeds, and new memory

modules as memory technology grows.

In summary, understanding the programming model and its functions is crucial for effectively using the

microprocessor's capabilities and creating assembly language programs.

The Intel 8085 microprocessor architecture consists of the Program Counter (PC), a 16-bit register that stores
the memory address of subsequent instructions. It automatically increases after each instruction execution,
allowing the CPU to execute instructions sequentially until a branch or jump instruction modifies the value. The
Stack Pointer (SP) Register oversees the stack memory region, following the Last-of-First-Out (LIFO) principle.
The instruction set of the 8085 microprocessor includes data transfer, arithmetic, logical, branching, and control
transfer instructions. The 8085 assembly language allows for problem analysis, program logic development,
algorithm creation, and program instruction writing. The microprocessor supports several addressing modes,
allowing for flexibility in programming and efficient use of memory and register resources. Instructions and
data are structured according to specific formats, with instructions encoding in variable-length format and data
represented in binary, hexadecimal, and ASCII formats. The 8085 instruction set can be classified as 1-byte
Instructions, 2-byte Instructions, and 3-byte Instructions. Assembly language defines instructions, while

memory interfacing is used for efficient memory utilization.

13.9Questions

1. What is the significance of understanding assembly language programming in the context of

microprocessors?

Answer: Understanding assembly language programming is crucial for developing efficient and optimized code
for microprocessors. It allows programmers to write low-level code that interacts directly with the hardware,

giving them control over the system’s resources and performance.

2. What are the primary objectives of learning 8085 assembly language programming?




Answer: The primary objectives include understanding the 8085 microprocessor's architecture and instruction
set, learning how to write and debug assembly language programs, and interfacing memory and I/O devices with

the 8085 microprocessor.

3. Write a simple 8085 assembly language program to add two numbers stored in memory locations 2000H and

2001H and store the result in 2002H.

Answer:

o the accumulator

mu lato

4. Explain how memory interfacing is done with the 8085 microprocessor.

Answer: Memory interfacing with the 8085 involves connecting memory chips to the microprocessor using
address and data buses. The 8085 uses address lines to specify the memory location, and data lines to read from
or write to that location. Control signals such as Memory Read (M/IO) and Memory Write (WR) are used to

manage the read and write operations.
5. Describe the basic programming model of the 8085 microprocessor.

Answer: The 8085 microprocessor programming model includes 5 registers (B, C, D, E, H, L), a 16-bit stack
pointer, a 16-bit program counter, and an accumulator (A). The microprocessor also has a set of flag registers

that indicate the status of the accumulator after arithmetic and logic operations.
6. What are the main categories of instructions in the 8085 instruction set?

Answer: The 8085 instruction set is divided into several categories: Data Transfer Instructions (e.g., MOV,
MVI), Arithmetic Instructions (e.g., ADD, SUB), Logical Instructions (e.g., AND, OR), Branch Instructions
(e.g., IMP, CALL), and Control Instructions (e.g., NOP, RLC).
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14.0 Introduction

Parallel computing has become an essential technology in modern computers, driven by the constantly
increasing demands for higher performance, lower costs, and sustained productivity in real
applications. There are concurrent events taking place in today's high performance computers due to
the common practices of multiprogramming, multiprocessing, or multi-computing. Parallelism can

take the form of look ahead, pipelining, vectorization, concurrency, simultaneity, data parallelism,




partitioning, interleaving, overlapping, multiplicity, replication, time sharing, space sharing,
multitasking, multiprogramming, multithreading, and distributed computing at different processing
levels. Parallel computing is a type of computation where many calculations are performed at the
same time, operating under the principle that large problems can often be divided into smaller ones,

which are then solved together concurrently.

14.1 Objectives

After reading this unit, you should be able to:

e  Clarify the different standards used to categorize parallel computers;
e Talk about flynn's classification system which is based on instruction and data flows;
e  Characterize the structural classification that is based on varying computer architectures;

e FElucidate handler's classification which focuses on three separate computer levels: the processor
control unit (pcu), the arithmetic logic unit (alu), and the bit-level circuit (blc);

e Delineate the sub-tasks or instructions within a program that can be run concurrently depending on
the granularity.

14.2 Types of Classification

The following classifications of parallel computers have been identified:
1) Classification based on the instruction and data streams
2) Classification based on the structure of computers
3) Classification based on how the memory is accessed
4) Classification based on grain size

All these classification schemes are discussed in subsequent sections.

14.3 Basic types of architectural classification

This categorization of computers was initially researched and suggested by Michael Flynn in 19714. Flynn did
not take into account the machine design when classifying parallel computers. Instead, he presented the ideas of
instruction and data flows to categorize computers. Not all the computers classified by Flynn are parallel, but to
understand parallel computers, it is essential to comprehend all kinds of Flynn's classification. Because this

classification relies on instruction and data flows, we first need to grasp how the instruction cycle functions.

14.3.1 Instruction Cycle

The instruction cycle consists of a sequence of steps needed for the execution of an instruction in a program. A
typical instruction in a program is composed of two parts: Opcode and Operand. The Operand part specifies the

data on which the specified operation is to be done. (See Figure 1). The Operand part is divided into two parts:




addressing mode and the Operand. The addressing mode specifies the method of determining the addresses of the
actual data on which the operation is to be performed and the operand part is used as an argument by the method

in determining the actual address.

Yy

4+—— Operand
o— Operation —.-ld—h|4— Operand Address

Code Addressing mode

Figure: Opcode and Operand (Image Source: IGNOU)

The control unit of the central processing unit (CPU) in the computer sequentially obtains instructions from the
program, one instruction at a time. The obtained instruction is then interpreted by the decoder, which is part of the
control unit, and the processor carries out the interpreted instructions. The outcome of the execution is briefly
stored in the Memory Buffer Register (MBR), also known as the Memory Data Register. The standard execution

process is illustrated in Figure.
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Figure: Instruction Execution steps

14.3.2 Instruction Stream and Data Stream

The term ‘stream’ refers to a sequence or flow of either instructions or data operated on by the computer. In the
complete cycle of instruction execution, a flow of instructions from main memory to the CPU is established.
This flow of instructions is called instruction stream. Similarly, there is a flow of operands between processor
and memory bi-directionally. This flow of operands is called data stream. These two types of streams are shown

in Figure 3.
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Figure: Instruction and Data stream

14.3.3 FLYNN’S TAXONOMY OF COMPUTER ARCHITECTURE

Parallel computing is a form of computation where tasks are divided into separate pieces that can be worked on
at the same time. Each part is further split into a sequence of instructions. The instructions from each part are
executed simultaneously on different CPUs. Parallel systems involve the concurrent use of multiple computer
resources, which can include a single computer with multiple processors, several computers linked by a network
to create a parallel processing cluster, or a mix of both. Parallel systems are harder to program than single-
processor computers because the architecture varies based on the parallel computer and the processes across
multiple CPUs need to be coordinated and synchronized. CPUs are at the core of parallel processing. Based on
the number of instruction and data streams that can be handled at the same time, computing systems are

categorized into four major types:

[nstruction stream
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Figure: Flynn's taxonomy (1966) (Image courtesy: Research Gate)
According to Flynn’s classification, either of the instruction or data streams can be single or multiple.
Computer architecture can be classified into the

e Single-Instruction Single-Data Streams (SISD)

e Single-Instruction Multiple-Data Streams (SIMD)

e  Multiple-Instruction Single-Data Streams (MISD)

e  Multiple-Instruction Multiple-Data Streams (MIMD).

SISD (Single Instruction Single Data Stream):
Traditional sequential computers are classified as SISD - [single instruction stream over single data stream]

machines. Instructions in these computers are carried out one after another, but their execution phases may overlap

(pipelining).
Captions(abbreviations)

CU = Control Unit

PU = Processing Unit
= H MU = Memory Unit
IS = Instruction stream
DS = Data Stream

|
G




Fig: SISD Uni-processor Architecture PE = Processing Element
LM = Local Memory
SIMD (Single Instruction Multiple Data Stream)

This represents computers with both vector/array processing capabilities as well as scalar hardware. There are
multiple processing elements overseen by one control unit. All the processing elements get the same instruction

from the control unit but work on different data sets from separate data streams.
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Fig: MIMD Architecture (with shared memory)

MISD(multiple instruction over single data stream): The same data stream flows through a linear array of
processors executing different instruction streams. This architecture is also known as systolic arrays For pipelined

execution of specific algorithms.
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Figure: MISD Architecture (the systolic array)

Of the four machine models, most parallel computers constructed in the past were based on the MIMD model for

general purpose computing tasks. The SIMD and MISD models are better suited for specific computations. As a

result, MIMD is the most widely used model, followed by SIMD, while MISD is the least common model

implemented in commercial machines.

14.3.4 FENG’S CLASSIFICATION

Feng suggested the use of degree of parallelism to classify various computer architectures. Tse-yun Feng

suggested the use of degree of parallelism to classify various computer architectures.

The maximum number of binary digits that can be processed within a unit time by a computer system is

called the maximum parallelism degree P.

A bit slice is a string of bits one from each of the words at the same vertical position.

Under above classification

» Word Serial and Bit Serial (WSBS)
» Word Parallel and Bit Serial (WPBS)
» Word Serial and Bit Parallel( WSBP)
» Word Parallel and Bit Parallel (WPBP)
Classification:
» WSBS has been called bit parallel processing because one bit is processed at a time.
» WPBS has been called bit slice processing because m-bit slice is processes at a time.
» WSBP is found in most existing computers and has been called as Word Slice processing because
one word of n bit processed at a time.
>  WPBP is known as fully parallel processing in which an array on n x m bits is processes at one time.
Mode Computer Model Degree of parallelism
WSPS The “MINIMA” (1, 1)
N =
M=
WPBS STARAN (1,256)




N=1 MPP (1, 16384)

M>1 DAP (1, 4096)

WSBP IBM 370/168 UP (64, 1)

N>1 CDC 660 (60, 1)

M =1 (Word Slice Processing) Burrough 7700 (48, 1)
VAX 11/780 (16/32, 1)

WPBP [lliav IV (64, 64)

N>1

M > 1 (FULLY Parallel

Processing)

14.3.5 Handler Classification

In 1977, Wolfgang Handler proposed an elaborate notation for expressing the pipelining and parallelism of

computers. Handler's classification addresses the computer at three distinct levels:

e  Processor control unit (PCU),
e  Arithmetic logic unit (ALU),
o Bit-level circuit (BLC).

The PCU corresponds to a processor or CPU, the ALU corresponds to a functional unit or a processing element
and the BLC corresponds to the logic circuit needed to perform onebit operations in the ALU.
Handler's classification uses the following three pairs of integers to describe a computer:
Computer=(p *p',a *a',b *b")
Where p = number of PCUs
Where p'= number of PCUs that can be pipelined
Where a = number of ALUs controlled by each PCU
Where a'= number of ALUs that can be pipelined
Where b = number of bits in ALU or processing element (PE) word
Where b'= number of pipeline segments on all ALUs or in a single PE
The following rules and operators are used to show the relationship between various elements of the computer:

e  The '*' operator is used to indicate that the units are pipelined or macro-pipelined with a stream of data
running through all the units.

e The '+' operator is used to indicate that the units are not pipelined but work on independent streams of
data.

e The 'v' operator is used to indicate that the computer hardware can work in one of several modes.

o The '~' symbol is used to indicate a range of values for any one of the parameters.




o Peripheral processors are shown before the main processor using another three pairs of integers. If the

value of the second element of any pair is 1, it may omitted for brevity.

Handler's system for categorizing computers can be clarified by demonstrating how the guidelines and operators

are utilized to sort various machines.

The CDC 6600 has a solitary central processor upheld by 10 I/O processors. One control unit coordinates one
ALU with a 60-bit word length. The ALU has 10 functional units which can be assembled into a pipeline. The 10
peripheral 1/O processors may work at the same time with one another and with the CPU. Each 1/O processor

contains one 12-bit ALU. The portrayal for the 10 I/O processors is:
CDC 66001/0 = (10, 1, 12)

The description for the main processor is:
CDC 6600main = (1, 1 * 10, 60)

The main processor and the I/O processors can be regarded as forming a macro-pipeline so the '*' operator is used

to combine the two structures:
CDC 6600 = (I/0 processors) * (central processor = (10, 1, 12) * (1, 1 * 10, 60)

Texas Instrument's Advanced Scientific Computer (ASC) has one controller coordinating four arithmetic units.

Each arithmetic unit is an eight stage pipeline with 64-bit words.
Thus we have:
ASC=(1,4, 64 *38)

The Cray-1 is a 64-bit single processor computer whose ALU has twelve functional units, eight of which can be
chained together from a pipeline. Different functional units have from 1 to 14 segments, which can also be

pipelined. Handler's description of the Cray-1 is:
Cray-1=(1,12 * 8, 64 * (1 ~ 14))

Another sample system is the C.mmp multiprocessor developed by Carnegie-Mellon University. The C.mmp was
designed to facilitate research into parallel computer architectures, so it can be extensively reconfigured. The
system consists of 16 PDP-11 minicomputers with 16-bit word lengths, interconnected by a crossbar switching
network. Typically, the C.mmp operates in MIMD mode, where the processors execute asynchronously; this
mode's description is (16, 1, 16). The C.mmp can also run in SIMD mode, where a single master controller
coordinates all processors. The SIMD mode's description is (1, 16, 16). Additionally, the C.mmp can be
reconfigured to operate in MISD mode, where the processors are chained together and a single data stream passes
through them all. The MISD mode's description is (1 * 16, 1, 16). Handler describes the complete C.mmp using

the 'v' operator to combine the descriptions of its different operating modes:
C.mmp = (16, 1, 16) v (1, 16, 16) v (1 * 16, 1, 16)

The '*' and '+' operators are utilized to bring together multiple separate hardware components. The 'v' operator
differs from the other two in that it is employed to combine the various operating modes of a single hardware

piece.




While Flynn's categorization is straightforward, Handler's classification is unwieldy. The direct application of
numbers in the nomenclature of Handler's classification makes it much more abstract and thus difficult. Handler's
classification is highly oriented towards depicting pipelines and chains. Although it can adequately illustrate the

parallelism in a single processor, the diversity of parallelism in multiprocessor computers is not well addressed.

14.5 STRUCTURAL CLASSIFICATION

Flynn's taxonomy focuses on the behavioral aspects of parallel computers and does not consider their structural
design. However, parallel computers can also be classified based on their architecture, as discussed below and

illustrated in Figure 8.

As we have seen, a parallel computer (MIMD) consists of multiple processors and shared memory modules or
local memories connected via an interconnection network. When the processors in a multiprocessor system
communicate through global shared memory modules, this organization is called a shared memory computer or
tightly coupled system, as depicted in Figure. In contrast, when each processor has its own local memory and
processors exchange messages between their local memories, this is called a distributed memory computer or

loosely coupled system, as shown in Figure. Figure provides simplified diagrams of both architectures.

In both organizations, the processors and memories are linked through an interconnection network, which can
take various forms like a crossbar switch, multistage network, etc. We will discuss these in more detail in the next

unit.
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14.5.1 Shared Memory System / Tightly Coupled System

Shared memory multiprocessors have the following characteristics:
» Every processor communicates through a shared global memory.
> For high speed real time processing, these systems are preferable as their throughput is high as
compared to loosely coupled systems.

In tightly coupled system organization, multiple processors share a global main memory, which may have many
modules as shown in detailed Figure. The processors have also access to I/0 devices. The inter- communication

between processors, memory, and other devices are implemented through various interconnection networks,

which are discussed below.
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Figure: Tightly Coupled System Organization
i) Processor-Memory Interconnection Network (PMIN): This switch links up various

processors with different memory units. Connecting each processor directly to each

memory module in one step can make the crossbar switch very complex. So a multi-step




network can be used instead. There can also be a clash where processors try to access the
same memory modules at the same time. The PMIN system deals with this clash as well.

i) Input-Output-Processor Interconnection Network (IOPIN): This interconnection
network is used for communication between processors and input/output (I/O) channels.
All processors talk to an I/O channel to interact with an I/O device, but only after getting
permission from the I/O processor interconnection network (IOPIN).

iii) Interrupt Signal Interconnection Network (ISIN): When one processor desires to
interrupt another processor, the interruption first travels to the ISIN (Inter-processor
Interrupt Network). The ISIN then passes the interruption to the destination processor. This
allows the ISIN to synchronize the processors by facilitating their interruptions.
Additionally, if a processor fails, the ISIN can broadcast a message to the other processors
about the failure.

The ISIN acts as an intermediary for interruptions between processors. It coordinates and
relays the interruptions while also notifying all processors if any individual processor

malfunctions. This allows for synchronization and communication between the processors.

Since, every reference to the memory in tightly coupled systems is via interconnection network, there
is a delay in executing the instructions. To reduce this delay, every processor may use cache memory

for the frequent references made by the processor as shown in Figure.
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Figure: Tightly coupled systems with cache memory

The shared memory multiprocessor systems can further be divided into three modes which are based on the

manner in which shared memory is accessed. These modes are shown in Figure and are discussed below.
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Figure: Modes of Tightly coupled systems

14.5.1.1 Uniform Memory Access Model (UMA)

In this model, main memory is uniformly shared by all processors in multiprocessor systems and each processor
has equal access time to shared memory. This model is used for time-sharing applications in a multi user

environment.

14.5.1.2 Non-Uniform Memory Access Model (NUMA)

In shared memory multiprocessor systems, local memories can be connected with every processor. The collections
of all local memories form the global memory being shared. In this way, global memory is distributed to all the
processors. In this case, the access to a local memory is uniform for its corresponding processor as it is attached
to the local memory. But if one reference is to the local memory of some other remote processor, then the access

is not uniform. It depends on the location of the memory. Thus, all memory words are not accessed uniformly.

14.5.1.3 Cache-Only Memory Access Model (COMA)

As we have discussed earlier, shared memory multiprocessor systems may use cache memories with every
processor for reducing the execution time of an instruction. Thus in NUMA model, if we use cache memories
instead of local memories, then it becomes COMA model. The collection of cache memories forms a global

memory space. The remote cache access is also non-uniform in this model.

14.5.2 Loosely Coupled Systems

In loosely coupled systems, processors do not share global memory as shared memory leads to memory conflict
issues, which slow down instruction execution. To mitigate this problem, each processor has a large local memory
that is not shared with other processors. These systems have multiple processors with their own local memory and
1/0O devices, forming individual computer systems. They are connected via a message passing interconnection
network through which processes communicate by exchanging messages. Since each node has separate memory,
they are called distributed multicomputer systems. They are also known as loosely coupled systems, indicating

little interdependence between nodes.
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Since, local memories can only be accessed by their attached processor, no processor is able to access remote
memory. For this reason, these systems are also referred to as no-remote memory access (NORMA) systems.
The message passing interconnection network connects every node and communication between nodes with
messages is dependent on the type of interconnection network. For instance, the interconnection network for

a non-hierarchical system could be a shared bus.

14.6 CLASSIFICATION BASED ON GRAIN SIZE

This classification is based on recognizing the parallelism in a program to be executed on a multiprocessor system.
The idea is to identify the sub-tasks or instructions in a program that can be executed in parallel. For example,
there are 3 statements in a program and statements S1 and S2 can be exchanged. That means, these are not

sequential as shown in Figure. Then S1 and S2 can be executed in parallel.

Program Flow

—
—

53 5

Figure: Parallel Execution for S1 and S2

But it is not sufficient to check for the parallelism between statements or processes in a program. The decision of

parallelism also depends on the following factors:

« Number and types of processors available, i.e., architectural features of host computer




e« Memory organisation

o Dependency of data, control and resources
14.6.1 Parallelism Conditions

As mentioned earlier, parallel computing necessitates that the segments to be run concurrently must be
autonomous of one another. Therefore, before implementing parallelism, all the prerequisites of parallelism
between the segments need to be examined. In this part, we talk about three kinds of dependency circumstances

between the segments.

Diependeney
condilions
Drata Control Resource
Dependency Dependency Dependency

Figure: Dependency relations among the segments for parallelism

Data Dependency: It refers to the condition where two or more commands use the same information.
The directions in a program can be organized based on the connection of data reliance; this means how
two directions or parts depend on the same data. The following kinds of data dependencies are
identified:

i) Flow Dependence: If instruction 12 follows I1 and output of I1 becomes input of 12, then 12 is said to be

flow dependent on I1.

ii) Antidependence: When instruction 12 follows I1 such that output of 12 overlaps with the input of I1 on

the same data.

iii) Output dependence: When output of the two instructions I1 and I2 overlap on the same data, the

instructions are said to be output dependent.

iv) I/0O dependence: When read and write operations by two instructions are invoked on the same file, it is

a situation of 1/0 dependence.

Consider the following program instructions:

Ii:a=b
Iyc=a+d
Is:a=c

This program segment contains instructions Ii, I, and I; that have various dependencies. I, and I, are flow

dependent because I generates variable as a output, which is then used by I» as input. I and I3 are anti-dependent




since I3 generates variable a but I> uses it, and 1> comes before I3 in the sequence. I3 is flow dependent on I> due

to variable c. I3 and I are output dependent because both instructions generate variable a.

Control Dependence: Instructions or segments in a program often contain control structures. As a
result, dependency among the statements can also occur within control structures. However, the order
in which instructions in control structures will execute is not known until run time. Therefore, when
analyzing dependencies among instructions, any dependencies introduced by control structures must be
examined carefully. For instance, in the following control structure, the successive iterations are

dependent on one another:

For (i=1; I<=n;it+)

{
if (x[i - 1]==0)
x[i] =0
else
x[i] = 1;
}

Resource Dependence: The similarity between the instructions can also be influenced because of the
shared resources. If two instructions are utilizing the same shared resource then there is a resource
dependency situation. For instance, floating point units or registers are shared, and this is referred to as

ALU dependency. When memory is being shared, then it is called Storage dependency.
14.6.2 Bernstein Conditions for Detection of Parallelism

For execution of instructions or block of instructions in parallel, it should be ensured that the instructions are
independent of each other. These instructions can be data dependent / control dependent / resource dependent on
each other. Here we consider only data dependency among the statements for taking decisions of parallel
execution. A.J. Bernstein has elaborated the work of data dependency and derived some conditions based on which
we can decide the parallelism of instructions or processes. Bernstein conditions are based on the following two

sets of variables:

i) The Read set or input set RI that consists of memory locations read by the statement of instruction
I1.

i) The Write set or output set WI that consists of memory locations written into by instruction I1.
The sets RI and WI are not disjoint as the same locations are used for reading and writing by SI.

The following are Bernstein Parallelism conditions which are used to determine whether statements are

parallel or not:

Locations in R1 from which S1 reads and the locations W2 onto which S2 writes must be mutually exclusive.

That means S1 does not read from any memory location onto which S2 writes. It can be denoted as:




RINW2=¢

2) Similarly, locations in R2 from which S2 reads and the locations W1 onto which S1 writes must be mutually
exclusive. That means S2 does not read from any memory location onto which S1 writes. It can be denoted as:

R2NW1=¢

3) The memory locations W1 and W2 onto which S1 and S2 write, should not be read by S1 and S2. That means
R1 and R2 should be independent of W1 and W2. It can be denoted as :

WINW2=¢
To show the operation of Bernstein’s conditions, consider the following instructions of sequential program:
Il:x=(a+b)/(a*b)
2:y=(b+c)*d
3:z=x2+(a*e)
Now, the read set and write set of I1, 12 and I3 are as follows:
Rl ={a,b} W1 = {x}
R2={b,c,d} W2 = {y}
R3={x,a,e} W3={z}
Now let us find out whether 11 and 12 are parallel or not
RINW2=¢
R2NW1=¢
WINW2=¢
That means I1 and 12 are independent of each other.
Similarly for I1 || I3,
RINW3=¢
R3NW1#£e
WINW3=¢
Hence 11 and I3 are not independent of each other.
For 12 || I3,
R2NW3=¢
R3NW2=¢
W3NW2=¢
Hence, 12 and I3 are independent of each other.

Thus, 11 and 12, 12 and 13 are parallelizable but I1 and 13 are not.




14.6.3 Parallelism based on Grain size

Grain size: Grain size or Granularity is a measure which determines how much computation is involved in a
process. Grain size is determined by counting the number of instructions in a program segment. The following

types of grain sizes have been identified

Types of Grain sizes

Fine Grain Medium Coarse
Grain Grain

Figure: Types of Grain sizes

1) Fine Grain: This type contains approximately less than 20 instructions.

2) Medium Grain: This type contains approximately less than 500 instructions.

3) Coarse Grain: This type contains approximately greater than or equal to one thousand instructions.

According to the grain sizes, parallelism in a program can be categorized into different levels. These parallelism
levels make up a hierarchy where processes become finer-grained at lower levels. As the level increases, the
degree of parallelism decreases. Each level requires communication and scheduling overhead depending on its

grain size. The parallelism levels are as follows:

Parallelism Levels

Degree of
Parallelism
Level 1 Instruction Level 4
Level 2
Loop Level
Level 3
Procedure or SubProgram
Lewvel
lLevel 4
Program Level

Figure: Parallelism Levels




iii.

iv.

The instruction level is the most basic level and has the highest degree of parallelism. The grain size here
is fine, with just a few instructions making up each grain. The exact fine grain size can vary based on the
program type - for scientific applications, the instruction level grain size may be larger. This level allows
for the highest degree of parallelism, but also requires more overhead for the programmer.

The loop level involves parallelizing iterative loop instructions. The grain size at this level is also fine.
Simple program loops are easy to parallelize, while recursive loops are more difficult. Compilers can
achieve this type of parallelism automatically.

The procedure or subprogram level consists of procedures, subroutines or subprograms. The grain size
here is medium, containing thousands of instructions per procedure. Multiprogramming is implemented
at this level. Programmers have exploited parallelism here, but compilers have not achieved parallelism
at medium or coarse grain sizes.

The program level is the highest level, consisting of independent programs. The grain size here is coarse,
with tens of thousands of instructions per program. Time sharing achieves parallelism at this level.

Parallelism here has been exploited through the operating system.

The relation between grain sizes and parallelism levels has been shown in Table 1

Table 1: Relation between grain sizes and parallelism

Grain Size Parallelism Level

Fine Grain Instruction or Loop Level
Medium Grain Procedure or SubProgram Level
Coarse Grain Program Level

Typically, coarse grain parallelism is carried out in tightly coupled or shared memory multiprocessors such as the

Cray Y-MP. Loosely coupled systems are utilized to execute medium grain program segments. Fine grain

parallelism has been seen in the SIMD organization of computers.

14.7 Summary

In section 2.3.3, we examined Flynn’s Classification of computers. This classification system was proposed by

Michael Flynn in 1972 and is founded on the ideas of data flow and instruction flow. Next, in section 2.2.5, we

discuss Handler’s classification scheme. This classification system, suggested by Wolfgang Handler in 1977,

categorizes computers at the following three distinct tiers:

Processor Control Unit (PCU)
Arithmetic Logic Unit (ALU)

Bit-Level Circuit (BLC)




In section 2.5, in the context of structural classification of computers, several new concepts are presented and
examined. The concepts covered include: Tightly Coupled (or shared memory) systems, loosely coupled (or
distributed memory) systems. In the case of distributed memory systems, different kinds of Processor
Interconnection Networks (PIN) are talked about. Another classification scheme based on the idea of grain size is

examined in section 2.6.

14.8Questions

1. Why is the classification of computer architectures important in computer science?

Answer: The classification of computer architectures is important because it helps in understanding the design
and operational principles of various computer systems. It aids in selecting the appropriate architecture for specific
tasks and performance requirements, and in evaluating and comparing different systems based on their

capabilities.
2. What are the main types of classification used in computer architecture?

Answer: The main types of classification in computer architecture include structural classification, classification
based on grain size, and instruction set classification. These classifications help in organizing and analyzing

computer systems based on their design, performance, and operational characteristics.
3. What is the instruction cycle in computer architecture?

Answer: The instruction cycle is the sequence of operations that a CPU performs to execute an instruction. It
typically includes fetching the instruction from memory, decoding it to determine the operation, executing the

instruction, and storing the result. This cycle is fundamental to the operation of any computer system.
4. How do instruction streams and data streams differ in computer architecture?

Answer: Instruction streams refer to the sequence of instructions that a CPU executes, while data streams refer to
the sequence of data being processed. The differentiation is important for optimizing performance, as different

architectures may handle instruction and data streams in varying ways to achieve efficiency.
5. What is Flynn’s Taxonomy and how does it classify computer architectures?

Answer: Flynn's Taxonomy classifies computer architectures based on their parallel processing capabilities. It
includes four categories: Single Instruction stream Single Data stream (SISD), Single Instruction stream Multiple
Data streams (SIMD), Multiple Instruction streams Single Data stream (MISD), and Multiple Instruction streams

Multiple Data streams (MIMD). Each category describes how instructions and data are processed in parallel.
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15.0 Introduction

In the realm of modern computing, the pursuit of enhanced performance and efficiency has led to significant
advancements in parallel processing techniques. Parallelism, a key concept in computing, involves executing
multiple processes or tasks simultaneously to optimize computational speed and resource utilization. This
approach contrasts with serial processing, where tasks are executed sequentially, one after the other. The transition
from serial to parallel processing has revolutionized the way complex computations are handled, enabling the

development of more powerful and efficient computing systems.

Parallel processing can be implemented in various forms, ranging from simple uniprocessor systems with parallel
capabilities to sophisticated multi-processor and multi-core architectures. Each of these systems employs distinct

parallel computing structures, such as pipeline computers, array computers, and multi-processor systems, to




achieve different performance goals. Understanding these structures and their operational principles is essential

for designing and utilizing effective parallel computing systems.

The concepts of scalability and load balancing further enhance the efficiency of parallel systems. Scalability refers
to a system's ability to handle increasing workloads by adding more resources, while load balancing ensures that
these resources are utilized effectively without overloading any single component. Together, these principles help
optimize parallel processing applications across various domains, from scientific research and data analysis to
real-time processing and large-scale simulations. This chapter will explore these aspects in detail, providing a

comprehensive overview of parallel processing in contemporary computing.

15.1 Objectives

At the end of this unit, you should be able to understand:
. Uni-processor
«  Parallelism in uni-processor
. Hardware and software approach in parallelism

. Parallel and serial computer architecture

15.2 PARALLELISM IN UNIPROCESSOR SYSTEMS

The majority of general purpose single processor systems share a common fundamental design. Advancing
parallel processing capabilities in single processor computers can improve power and bandwidth of the machine,

mechanisms and so on. In this section we will examine single processor architectures in the following manner:

Basic Uni-processor Architecture

A usual single processor computer has three major parts: main memory, a central processing unit, and input/output
devices. The structure of two commercially available single processor computers illustrates how these three
subsystems can interconnect. The diagram shows the components of the VAX-11/780 super minicomputer made
by Digital Equipment Corporation. The CPU is the main controller of the VAX system. It has sixteen 32-bit
general purpose registers, with one register as the program counter. The CPU also contains a special status register
with information about the current state of the processor and the program being executed. The CPU includes an
arithmetic logic unit with optional floating point accelerator and some local cache memory. The operator can
interface with the CPU through a console connected to a floppy disk. The CPU, main memory, and I/O devices
all connect to a common bus called the synchronous backplane interconnect. Through this bus, all I/O devices can
communicate with each other, the CPU, or memory. Peripheral storage and I/O devices can connect directly to the

bus through a controller.
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Parallelism in Uniprocessor

What is Parallelism?

Parallel computing is the method done by computer systems to execute multiple instructions at the same time by
allocating each task to different processors. This capability is done in a uniprocessor system through various
techniques such as utilizing multi-core processors or multiple cores within a single processor chip, separating a
job into smaller sub-tasks that can be processed concurrently, or leveraging specialized hardware or software to

coordinate parallel processing.

Parallelism in Uniprocessor

Uniprocessor has only one processor but still, it is possible to achieve parallelism by using certain techniques such

as pipelining and multitasking.

Pipelining is a technique that allows a processor to execute a set of instructions simultaneously by dividing the
instructions execution process into several stages.

Uniprocessor contains a single processor, however parallel processing is still achievable through certain methods
like pipelining and multitasking. Pipelining allows a processor to carry out multiple instructions at the same time
by dividing the execution process into several phases.

Each stage in the pipeline operates on a different instruction concurrently, allowing one instruction to be fetched
from memory while another is being executed. This parallelism enhances the throughput of the processor and
enhances performance.

Multitasking is a method that permits a single processor to run multiple tasks at the same time. It works by dividing

the processor's time into short intervals and rapidly changing between tasks. Each task gets allocated a particular




time slot to execute. Although the processor executes only one task at a time, this rapid switching creates the

illusion of parallel processing.

These methods enhance the performance of a single processor. However, as the number of tasks or instructions
running at the same time grows, the performance eventually decreases. Therefore, a multiprocessor is required

here to boost performance.
Advantages of Uniprocessor

e Improves performance- Improves the performance of a uniprocessor by allowing it to execute multiple
tasks or instructions simultaneously. This is achieved by increasing throughput which reduces the time
required to complete a particular task.

e Cost Effective- A Parallelism in uniprocessor is cost-effective for applications that do not require the
performance of a multiprocessing system. The cost of a uniprocessor with parallelism is often lower
compared to a multiprocessing system.

e Low power consumption- A uniprocessor consumes less power than a multiprocessor system which
makes it suitable for mobile and battery powers devices.

e  All these advantages make the uniprocessor an attractive option for some applications.

Disadvantage of Uniprocessor

e Limited scalability— Parallelism is achieved in a very limited way and as the number of tasks or instructions
being executed simultaneously increases the performance decrease. This makes it unsuitable for applications
that require high levels of parallelism.

e Limited processing power— It has limited processing power as compared to a multiprocessing system hence
it is not suitable for applications that require high computational power like scientific simulations and large-
scale data processing.

e Complex design— Implementing parallelism in a uniprocessor can be complex as it requires careful design
and optimization to ensure that the system operates correctly and efficiently this increases the development

and maintenance costs of the system.

Applications of Parallelism in Uniprocessor

e  Multimedia applications— In multimedia applications such as video and audio playback, image processing,
and 3D graphics rendering it helps in increasing performance.

e  Web servers— Provides assistance to web servers by allowing them to handle multiple requests simultaneously
which makes it more reliable.

e Artificial Intelligence and machine learning— It improves performance in artificial intelligence and machine
learning applications allowing them to process large amounts of data more quickly.

e Scientific simulations— Parallelism performs scientific simulations such as weather forecasting, fluid

dynamics, and molecular modeling.




e Database management systems— Parallelism in uniprocessors is used to improve the performance of database

management systems by allowing them to handle large volumes of data more efficiently.
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Figure: Trends towards parallel processing
Parallel Processing Mechanism

The parallel processing is an effective way of processing information that focuses on taking advantage of events
happening at the same time in the computing process. Parallelism means events can take place concurrently using
multiple resources during the same time period. Simultaneity means events can occur at exactly the same instant.

Pipelining allows events to happen in overlapping time frames.
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Hardware Approach for Parallelism in Uniprocessor

Multiplicity of Functional Unit

In earlier computers, the central processing unit (CPU) had just one arithmetic logic unit that could only carry out
one function at a time. This slowed down the execution of long sequences of arithmetic instructions. To improve
this, the number of functional units in the CPU was increased so that parallel and simultaneous arithmetic

operations could be performed.

In reality, many of the tasks performed by the ALU can be spread out across multiple specialized units that work
at the same time. The CDC-6600 computer has ten different functional units built into its central processing unit

as shown in the diagram.
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Figure: The system architecture of CDC-6600 computer (Courtesy of control data corp.).

These ten units work independently and can run at the same time. A scoreboard keeps track of which functional
units and registers are available. With 10 functional units and 24 registers, the instruction issue rate can be greatly

increased.

Another great example of a multifunction uniprocessor is the IBM 360/91. It has two parallel execution units: one
for integer arithmetic and one for floating point arithmetic. The floating point unit has two functional units inside
it - one for float add/subtract and one for float multiply/divide. The IBM 360/91 is a highly pipelined,

multifunction scientific processor.
Parallelism and Pipelining within CPU

Parallel adders that use methods like carry-lookahead and carry-save are not integrated into all arithmetic logic
units, unlike the bit-serial adders used in early computers. Techniques like high-speed multiplier recoding and
convergent division allow parallel processing and sharing of hardware components for multiply and divide

operations.

The execution of instructions is now divided into multiple pipeline stages, including fetching the instruction,
decoding it, fetching operands, executing the arithmetic logic, and storing the result. To allow overlapped
execution of instructions through the pipeline, techniques like instruction prefetching and data buffering have

been developed.
Overlapped CPU and I/O Operation

The input/output (I/O) operations can be carried out at the same time as the CPU computations through the use of
separate I/O controllers, channels, or I/O processors. A direct memory access (DMA) channel enables direct
transfer of information between the I/O devices and main memory. DMA operates by cycle stealing, which is
transparent to the CPU. Additionally, I/O multiprocessing such as utilizing I/O processors in the CDC-6600 can

accelerate data transfer between the CPU and external devices.




Use Hierarchical Memory System

The CPU is about 1000 times faster than memory access. A hierarchical memory system can be used to close up

the speed gap. Computer memory hierarchy is as shown in the diagram.
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The most internal level is the register files that can be directly accessed by the ALU. The cache memory can
function as a buffer between the CPU and main memory. Block access of main memory can be accomplished

through multiway interleaving across parallel memory modules.
Balancing of Subsystem Bandwidth

In general, the CPU is the fastest unit in computer with a processor cycle of tp of tens of nanoseconds. The main
memory has a cycle time tm of hundreds of nanoseconds and 1/0 devices are the slowest with an average of access

time td of few milliseconds. It is observed that
td>tm>tp

For example, the IBM 370/168 has td of 8 ms , tm = 360 ns and tp = 90 ns. With these speed gaps between the

subsystems, we need to match their processing bandwidth in order to avoid a system bottleneck problem.

The bandwidth of the system is defined as number operations performed per unit time. In the case of main memory
system the memory bandwidth is measured by the number of memory words that can be accessed per unit time.
Let W be the number of words delivered per memory cycle tm . Then the maximum memory bandwidth Bm is

equal to
Bm=W/tm

The bandwidth of the processor is measured as the maximum CPU computation rate Bp . For example it is 160

megaflops in the Cray- 1 and 12.5 million instructions per second in IBM 370/168.

Also the utilized CPU rate is Bj < B,




Hence the utilized rate is measured as By = };—""

p
Bandwidth balancing between CPU and memory

The performance difference between the CPU and memory can be reduced by utilizing fast cache memory in
between them. The cache should have an access time similar to the CPU. A block of memory words is transferred
from main memory into the cache so that subsequent instructions or data are accessible most of the time from the

cache. The cache acts as a data or instruction buffer.

Bandwidth balancing between Memory and 1/0 devices

Communication channels with different speeds can be utilized between slow input/output devices and main
memory. These input/output channels execute buffering and multiplexing functions to move data from multiple
disks into main memory by taking cycles from the CPU. Additionally, more advanced disk controllers or database
machines can be used to filter out non-relevant data directly from the tracks of the data. This filtering will alleviate
input/output channel overloading. The combined buffering, multiplexing, and filtering processes can enable faster,

more productive data transfer rates, aligning with that of the memory.
Multiprogramming and Time Sharing

In a single processor computer system with just one CPU, we can still accomplish a high level of resource sharing
between many user programs. Multiprogramming and time sharing are software techniques that allow concurrency
in a single processor system. We use three symbols - i for input, ¢ for compute, and o for output - to represent

operations.

Software Approach for Parallelism in Uni-processor

Multiprogramming

Within a given time period, multiple processes may be running concurrently in a computer system. These
processes compete for memory, input/output, and CPU resources. We know that some programs are CPU-intensive
while others are I/O-intensive. We can execute a mix of program types to balance usage across different hardware
components. Interleaving program execution is meant to enable better utilization through overlapping of I/O and

CPU operations.

When a process P1 is occupied with I/0, the scheduler can switch the CPU to process P2. This allows multiple
programs to run simultaneously. When P2 finishes, the CPU can switch to P3. Note that interleaving I/0O and CPU
work and CPU wait times are greatly reduced. The interleaving of CPU and I/O operations across multiple

programs is called multiprogramming.
Time Sharing

Multiprogramming on a single processor involves the CPU being shared by many programs. Sometimes, a high
priority program may occupy the CPU for a long time which prevents other programs from sharing it. This issue

can be resolved through a method called timesharing. Timesharing builds on multiprogramming by assigning




fixed or variable time slots to multiple programs. This provides equal opportunities for all programs competing to

use the CPU.

The timesharing use of the CPU by multiple programs on a single processor computer creates the concept of
virtual processors. Timesharing is especially effective for computer systems connected to many interactive
terminals. Each user at a terminal can interact with the computer. Timesharing was first developed for single

processor systems. It has also been extended to multi-processor systems.

15.3 PARALLEL COMPUTER STRUCTURES

Parallel computers are those systems that use parallel processing. The basic features of parallel computers are

listed below, they are

(i) Pipeline computers
(i) Array processors

(iii) Multiprocessor systems.

A pipeline computer performs overlapped computations to exploit temporal parallelism. An array processor uses
multiple synchronized arithmetic logic units to active spatial parallelism. A ultiprocessor system achieves

asynchronous parallelism through a set of interactive processors with shared resources.
15.3.1 Pipeline Computers

The execution of an instruction on a digital computer involves four steps:

(6] Fetching the instruction from main memory,

(ii) Decoding the instruction to identify the operation to perform,
(iii) Fetching operands if needed for the execution, and

(iv) Executing the decoded arithmetic/logic operation.

In non-pipelined computers, these four steps must finish before the next instruction can start. However, in a
pipelined computer, successive instructions are executed concurrently in an overlapped manner. The diagram

illustrates this process.

In the diagram, the four pipeline stages - Instruction Fetch (IF), Instruction Decode (ID), Operand Fetch (OF),
and Execute (EX) - are arranged in a linear sequence. The two space-time diagrams demonstrate the difference

between overlapped pipelined execution versus sequential non-pipelined execution.

The instruction cycle is made up of multiple pipeline cycles. A pipeline cycle can be set to the delay of the slowest
stage. Data flows from stage to stage on each cycle, triggered by a common pipeline clock. All stages operate
synchronously under this clock. Interface latches between stages hold intermediate results. For a non-pipelined
computer, one instruction takes four pipeline cycles. Once the pipeline is full, output results emerge from the

pipeline each cycle.




Because of the overlapped instruction fetch/decode and execution, pipelines are well-suited for repeatedly

performing the same operations. When the operation changes (e.g. from add to multiply), the pipeline must
be drained and reconfigured, causing delays. Thus, pipelines are most attractive for vector processing with

repeated operations.
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15.3.2 Array Computers
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Figure: Functional structure of an SIMD array processor with concurrent scalar processing

An array processor is a synchronized parallel computer with multiple arithmetic logic units, referred to as
processing elements (PEs). It can operate simultaneously in a lockstep fashion. By replicating ALUSs, spatial
parallelism can be achieved. The PEs are synchronized to execute the same function concurrently. An appropriate

data routing system must connect the PEs.

A typical array processor is structured as shown in the diagram. Scalar and vector instructions are directly
implemented in the Control unit. Each PE has an ALU with registers and local memory. The PEs are
interconnected by a data routing network. The interconnection pattern established for a specific computation is
under program control. Vector instructions are broadcast to the PEs for distributed execution across different
component operands fetched directly from local memory. The PEs are passive devices with instruction decoding

capabilities.

Additionally, associative memory, which is content addressable, will be examined in the context of parallel
processing. Array processors designed with associative memory are called associative processors. Parallel
algorithms on array processors will be provided for matrix multiplication, merging, sorting, and Fourier

transforms.
15.3.3 MULTIPROCESSOR SYSTEMS

The goal of researching and developing multiprocessor systems is to enhance throughput, reliability, flexibility,
and availability. The fundamental multiprocessor design has two or more processors with similar capabilities.
All processors have access to the same memory modules, I/O channels, and peripherals. Most critically, the

entire system must be controlled by a single integrated operating system that enables interaction between




processors and their programs. In addition to the shared memories and /O devices, each processor has its own
local memory and private devices. Processors can communicate through the shared memories or the interrupt

network.

Multiprocessor hardware system organization is determined by the interconnection structure to be used between

the memories and processors . The three different interconnections are

e Time-shared common bus
e  Crossbar switch network

e  Multiport switches

15.4 Serial Versus Parallel Processing

Parallelism: Parallelism refers to the simultaneous execution of multiple tasks or processes to achieve faster
computation and efficiency. This is done by dividing a task into smaller subtasks that can be processed

concurrently by multiple processing units. There are several types of parallelism:

e Data Parallelism: Involves distributing data across different processors and performing the same
operation on each piece of data simultaneously. This is commonly used in tasks like image processing or

matrix operations.

e Task Parallelism: Involves performing different tasks or operations at the same time. This type of
parallelism is useful when tasks can be executed independently, such as in multi-threaded applications

where different threads handle different functions.

o Instruction-Level Parallelism (ILP): Refers to executing multiple instructions from a single program
simultaneously. Modern CPUs use techniques like out-of-order execution and speculative execution to

exploit ILP.

Pipelining: Pipelining is a technique used in computer architecture to improve the throughput of a system by
overlapping the execution of different stages of an instruction. It is similar to an assembly line in manufacturing,
where each stage completes a part of the task. In pipelining, an instruction is divided into several stages, such as
fetch, decode, execute, and write-back. While one instruction is being executed in one stage, other instructions

can be processed in previous or subsequent stages.
Comparison:

e Parallelism aims to execute multiple tasks or processes simultaneously to improve overall performance.

It can be applied at different levels, such as data, tasks, or instructions.

o Pipelining focuses on increasing the efficiency of a single task by overlapping the stages of instruction

execution. It improves the throughput of a processor by reducing the idle time between stages.




While both parallelism and pipelining aim to improve performance, parallelism is more about executing multiple

tasks concurrently, whereas pipelining enhances the efficiency of sequential task execution.
15.4.2 Parallel Processing Applications

Parallel processing involves the use of multiple processors or cores to perform computations simultaneously, and

it has a wide range of applications across various fields:

e Scientific Computing: Large-scale simulations and computations in fields such as physics, climate
modeling, and bioinformatics often require parallel processing to handle complex calculations and large

datasets efficiently.

e Image and Video Processing: Tasks such as image filtering, video encoding, and real-time image
recognition benefit from parallel processing. Processing multiple frames or pixels simultaneously speeds

up these operations significantly.

e Data Analysis and Machine Learning: Training machine learning models, especially deep learning
networks, involves processing large amounts of data and performing complex calculations. Parallel

processing helps accelerate these tasks, allowing for faster model training and inference.

e Computational Fluid Dynamics (CFD): CFD simulations involve solving complex equations that
describe fluid flow. Parallel processing allows these simulations to be divided into smaller tasks, each

handled by different processors, resulting in faster computations.

e Cryptography: Encryption and decryption algorithms, which involve complex mathematical operations,
can be parallelized to enhance security and performance. Parallel processing helps handle large volumes

of data and improve encryption speed.

e Database Management: Parallel processing is used to improve the performance of database queries and
transactions. By distributing queries across multiple processors, databases can handle more requests and

deliver faster responses.

e Rendering: In graphics rendering, such as in computer-aided design (CAD) or video games, parallel
processing enables the simultaneous rendering of different parts of a scene, leading to faster image

generation and better frame rates.

15.5 Scalability and Load Balancing

Scalability refers to the capability of a system to handle increasing workloads or accommodate growth effectively.
It involves designing systems that can scale up (vertical scalability) by adding more power to existing machines
or scale out (horizontal scalability) by adding more machines to distribute the load. Scalable systems can adjust

to varying demands without compromising performance, making them suitable for applications with fluctuating




or growing resource requirements. For example, cloud computing platforms often utilize horizontal scalability to

manage large amounts of data and user requests by adding more servers to a network.
Types of Scalability:

e Vertical Scalability: This involves upgrading the existing hardware or software to increase the capacity
of a single machine. For example, adding more CPUs, memory, or storage to a server to handle larger
workloads is vertical scaling. While this approach can enhance performance, it is limited by the

maximum capacity of the hardware and often involves significant investment in high-end equipment.

o Horizontal Scalability: This approach involves adding more machines or nodes to a system to distribute
the load. For instance, deploying additional servers in a cloud environment to handle increased traffic or
processing requirements is horizontal scaling. This method is generally more flexible and cost-effective,

allowing for incremental expansion and better handling of high demand or failure scenarios.
Scalability Challenges:

o Bottlenecks: As systems scale, certain components may become bottlenecks, limiting overall
performance. For instance, a single database server may struggle to keep up with requests if it becomes

overwhelmed, even if other parts of the system are scaled effectively.

e System Limitations: Not all systems or applications are designed to scale easily. Certain architectural
constraints, such as dependencies on centralized resources or inadequate distribution mechanisms, can

hinder scalability.

¢ Impact on Performance: Scaling can introduce complexity in managing consistency, synchronization,
and coordination across multiple nodes. Ensuring that all parts of a distributed system work harmoniously
and efficiently is essential to maintaining performance and avoiding issues like data inconsistency or

increased latency.

Load Balancing is the process of distributing workloads evenly across multiple resources to ensure optimal
performance and prevent any single resource from becoming a bottleneck. It aims to improve system efficiency,
reliability, and availability by directing incoming traffic or tasks to the least loaded or most appropriate server.
Techniques such as round-robin, least connections, and least load algorithms are commonly used to manage this
distribution. Effective load balancing ensures that no single server is overwhelmed, enhances the responsiveness

of applications, and contributes to overall system resilience.
Load Balancing Techniques:

e Round-Robin: This simple method distributes incoming requests or tasks sequentially among available
resources. Each resource is assigned a request in turn, which helps ensure an even distribution of the
load. However, this technique assumes all resources have similar capabilities and may not be optimal if

resources vary in performance.




o Least Connections: This approach directs traffic to the resource with the fewest active connections. It
is particularly effective in environments where the workload is unevenly distributed among resources, as

it dynamically adjusts based on current load conditions.

e Least Response Time: This technique routes requests to the resource with the fastest response time. It
is useful for applications requiring minimal latency, as it prioritizes resources that can handle requests

more quickly.

¢ Weighted Distribution: Resources are assigned weights based on their capacity or performance. The
load balancer then distributes requests according to these weights, allowing more capable resources to

handle a higher share of the load.

e Dynamic Load Balancing: This method involves continuously monitoring the performance and load on
resources and adjusting the distribution of tasks in real-time. It adapts to changing conditions and ensures

optimal use of resources based on current demand.

Challenges and Considerations:

o Session Persistence: In some applications, it is essential to maintain a user's session on the same server
throughout their interaction. Load balancing must handle session persistence or sticky sessions to ensure

users do not experience disruptions.

e Scalability: Effective load balancing should support scalability by accommodating additional resources
as needed. This requires coordination with the system's scalability mechanisms to ensure that new

resources are integrated smoothly.

e  Fault Tolerance: Load balancing must account for potential failures by redirecting traffic away from
failed resources and ensuring continuous service availability. This involves implementing health checks

and failover mechanisms to maintain system reliability.
Load Balancing in Distributed Systems:

In distributed systems, load balancing refers to the process of distributing workloads evenly across multiple
servers or nodes in a network. The goal is to optimize resource utilization, maximize throughput, minimize
response time, and ensure high availability and fault tolerance. Unlike single systems, distributed systems rely on
multiple interconnected components, making effective load balancing crucial for maintaining performance and

preventing any single node from becoming a bottleneck.
Techniques and Strategies:

1. Round-Robin Load Balancing:
o Description: Distributes requests or tasks sequentially across a list of servers or nodes.

o Advantages: Simple to implement and ensures an even distribution of tasks.




o Challenges: Assumes all nodes have similar performance capabilities, which may not be true

in heterogeneous environments.
2. Least Connections Load Balancing:
o Description: Routes new requests to the node with the fewest active connections.

o Advantages: Dynamic adjustment based on current load, effective in environments with

varying workloads.

o Challenges: Requires real-time monitoring of connection counts and may be complex to

implement in large-scale systems.
3. Least Response Time Load Balancing:
o Description: Directs requests to the node with the fastest response time.
o Advantages: Reduces latency by prioritizing nodes that can handle requests more quickly.

o Challenges: Requires continuous measurement of response times and can be affected by

network latency.

4. Weighted Load Balancing:

o Description: Assigns weights to nodes based on their capacity or performance and distributes

requests proportionally.
o Advantages: Allows more powerful nodes to handle a higher share of the load.

o Challenges: Requires accurate weight assignment and may need adjustments as system

capabilities change.
5. Dynamic Load Balancing:

o Description: Continuously monitors the load and performance of nodes and adjusts the

distribution of tasks in real-time.

o Advantages: Adapts to changing conditions, providing optimal performance and resource

utilization.

o Challenges: Complex implementation and may require sophisticated monitoring and

adjustment mechanisms.

Challenges and Considerations:

e Session Persistence (Sticky Sessions): In some applications, it's essential to keep a user's session on the

same node. Load balancers must manage session persistence to ensure a consistent user experience.




Fault Tolerance: Load balancing in distributed systems must handle node failures gracefully. This
involves redirecting traffic away from failed nodes and ensuring that the system continues to operate

smoothly.

Scalability: Effective load balancing should support horizontal scaling by integrating new nodes into the

system seamlessly. The load balancing strategy must adapt as the number of nodes increases.

Data Consistency: In distributed systems with shared data, load balancing must ensure that all nodes
have consistent views of the data. This may involve synchronization mechanisms to prevent data

inconsistency.

Network Latency: Load balancing decisions can be affected by network latency between nodes.

Strategies should account for the impact of network delays on overall system performance.

15.6 Conclusion

The evolution of parallel processing represents a significant leap in computing capabilities, addressing the
limitations of serial processing and meeting the demands for higher performance and efficiency. By
leveraging parallelism, modern computing systems can execute multiple tasks concurrently, drastically
reducing processing time and enhancing overall system throughput. This advancement is embodied in
various parallel computing structures, such as pipeline computers, array computers, and multi-processor
systems, each offering unique advantages and applications.

Understanding the nuances of scalability and load balancing is crucial for optimizing parallel systems.
Scalability ensures that a system can adapt to increasing workloads by expanding its resources, while load
balancing distributes tasks evenly across available resources to prevent bottlenecks and maintain system
efficiency. Together, these principles enable parallel systems to perform effectively across diverse
applications, from complex simulations to real-time data processing.

In summary, parallel processing, with its diverse architectures and efficient management techniques, plays
a pivotal role in advancing computing technology. The ongoing development in this field continues to push
the boundaries of what is possible, paving the way for more robust, high-performance computing solutions.
As technology progresses, the understanding and application of these parallel processing principles will
remain integral to achieving computational excellence and addressing the ever-evolving demands of

modern applications.

15.7 Unit Based Questions and Answers

1. What is parallel processing, and how does it differ from serial processing?




Answer: Parallel processing is a computing paradigm where multiple processors or cores work simultaneously to
perform tasks or computations. This approach contrasts with serial processing, where tasks are executed one after
the other in a sequential manner. Parallel processing improves efficiency and performance by dividing tasks into
smaller sub-tasks that can be processed concurrently, while serial processing can become a bottleneck for large-

scale or complex operations due to its linear execution.
2. Explain the concept of pipelining and its benefits in parallel processing.

Answer: Pipelining is a technique used in parallel processing where multiple instruction phases are overlapped
to improve the throughput of a processor. It involves dividing a single instruction into several stages, with each
stage being executed in parallel by different pipeline stages. This allows multiple instructions to be processed
simultaneously at different stages, increasing the overall processing speed. Benefits of pipelining include
improved execution efficiency and reduced processing time for tasks, as it maximizes the utilization of processor

resources.
3. What are the key differences between SIMD and MIMD architectures?

Answer: SIMD (Single Instruction, Multiple Data) and MIMD (Multiple Instruction, Multiple Data) are two types
of parallel architectures. SIMD architecture executes the same instruction on multiple data points simultaneously,
making it well-suited for tasks requiring repetitive operations on large data sets, such as image processing. In
contrast, MIMD architecture allows different processors to execute different instructions on different data points
independently, making it more versatile for a wider range of applications, including complex simulations and

multitasking environments.
4. Describe the role of scalability in parallel computing systems.

Answer: Scalability refers to a system's ability to handle increased workloads by expanding its resources, either
by adding more processing units (horizontal scaling) or enhancing the existing ones (vertical scaling). In parallel
computing, scalability is crucial for maintaining performance as demands grow. Scalable systems can adapt to
larger datasets or more complex computations without a significant drop in efficiency or performance, ensuring

that the system remains effective and cost-efficient as it scales.
S. What is load balancing, and why is it important in distributed systems?

Answer: Load balancing is the process of distributing workloads evenly across multiple computing resources to
ensure that no single resource is overwhelmed while others are underutilized. In distributed systems, load
balancing is vital for optimizing resource use, maximizing throughput, minimizing response time, and avoiding
bottlenecks. Effective load balancing improves system performance and reliability by ensuring that all

components are used efficiently and that tasks are handled in a timely manner.
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16.0 Introduction

In the realm of computer science and engineering, system architecture forms the foundational framework for
designing and implementing computing systems. It encompasses a broad spectrum of architectures, including
single-processor systems, multiprocessor systems, and distributed systems, each tailored to specific computational
needs and performance criteria. Understanding these architectures is essential for optimizing system performance,

enhancing scalability, and ensuring reliability.

Single-processor systems, characterized by a single central processing unit (CPU), provide a straightforward
approach to computing tasks but may face limitations in handling complex or high-demand applications.
Multiprocessor systems, which integrate multiple CPUs, offer improved performance and redundancy by
distributing tasks across processors. Distributed systems take this further by spreading computations across

multiple machines, often geographically dispersed, to achieve higher scalability and resilience.

The study of scalability and reliability is crucial in evaluating how well these architectures handle increased
workloads and maintain consistent performance. Scalability examines a system's capacity to grow and manage

additional load efficiently, while reliability focuses on the system's ability to operate continuously without failure.




By analyzing these aspects, one can design robust systems capable of adapting to evolving demands while

maintaining high performance and reliability.

16.1 Objectives

After completing this unit, you will be able to understands;

e Understand System Architectures: Learn the fundamental types of system architectures, including
single-processor, multiprocessor, and distributed systems.

o Explore Single-Processor Systems: Analyze the structure, performance, and limitations of systems with
a single central processing unit (CPU).

o Examine Multiprocessor Systems: Investigate how systems with multiple CPUs manage parallel
processing and enhance performance.

e Study Distributed Systems: Understand how tasks are distributed across multiple machines and
networks to handle complex computing needs.

e Evaluate Scalability and Reliability: Assess techniques for ensuring systems can scale efficiently and

remain reliable under varying loads and conditions.

16.2 System Architectures

System architectures refer to the fundamental structures and organization of computer systems that define how
various hardware and software components interact to perform computing tasks. This encompasses the design of
the central processing unit (CPU), memory hierarchy, input/output systems, and communication pathways. System
architectures are crucial for determining the overall performance, scalability, and efficiency of a computing
system. They provide a blueprint for integrating different components to meet specific operational requirements

and user needs, impacting everything from system speed and capacity to energy consumption and reliability.

In practice, system architectures can be categorized into several types, including single-processor, multiprocessor,
and distributed systems. Single-processor systems feature a single CPU that handles all processing tasks, which
can limit performance due to its single processing thread. Multiprocessor systems use multiple CPUs or cores to
execute parallel tasks, enhancing performance and reliability but introducing complexities in communication and
synchronization. Distributed systems spread computational tasks across multiple interconnected computers or
nodes, enabling scalability and fault tolerance but requiring sophisticated coordination and data consistency
mechanisms. Understanding these architectures helps in designing systems that efficiently handle various

workloads and adapt to evolving technological demands.




Overview of system architecture types and their applications.

System architecture defines how various components of a computer system are structured and interact with each
other. Understanding the different types of system architectures is essential for selecting or designing systems that
meet specific performance, scalability, and reliability requirements. Here’s an overview of major system

architecture types and their applications:

16.3 Single-Processor Systems

Single-processor systems, also known as single-core systems, are computing systems that utilize a single central
processing unit (CPU) to handle all computational tasks. This CPU is responsible for executing instructions,

managing data, and performing calculations.
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Characteristics:
1. Architecture:

o Central Processing Unit (CPU): The sole processor performs all operations and controls the

system.




2.

4.

o Memory: Typically includes both primary memory (RAM) and secondary storage (like hard
drives or SSDs).

o 1/O Devices: Interfaces with peripheral devices such as keyboards, mice, printers, and displays

through I/O controllers.
Performance:
o Simplicity: The architecture is straightforward, making it easier to design and implement.

o Limited Multitasking: Although modern single-processor systems can switch between tasks
rapidly (context switching), true parallel processing is not possible. Performance may degrade

with increased multitasking.
Cost and Power Consumption:
o Cost-Efficient: Generally lower cost compared to systems with multiple processors or cores.

o Power Consumption: Consumes less power than multi-core systems, making it more suitable

for battery-powered or low-energy applications.
Applications:

o Personal Computers: Many desktops and laptops with moderate computing needs use single-

processor systems.

o [Embedded Systems: Devices like microwaves, digital cameras, and some home appliances

often use single-processor systems due to their simplicity and cost-effectiveness.

o Basic Workstations: Used for tasks that do not require extensive parallel processing, such as

word processing, web browsing, and light multimedia tasks.
Limitations:

o Performance Bottlenecks: The single CPU can become a performance bottleneck when

handling multiple or complex tasks simultaneously.

o Scalability: Limited in terms of scalability and parallel processing capabilities compared to

multi-core or multi-processor systems.
Advantages:

e Ease of Design and Implementation: The architecture is less complex, which simplifies

system design and reduces development time.

e Cost-Effectiveness: Fewer components and simpler design lead to lower manufacturing and

maintenance costs.

e Lower Power Consumption: Generally consumes less power, making it suitable for energy-

efficient applications.




Disadvantages:

Limited Multitasking: Although capable of switching between tasks quickly, the system

cannot execute multiple tasks simultaneously as efficiently as multi-core systems.

Performance Constraints: May struggle with performance-intensive applications or tasks that

require significant computational power.

16.4 Multiprocessor Systems

Multiprocessor systems, also known as multi-core systems, use more than one central processing unit (CPU) to

handle computations. Each CPU or core can perform separate tasks or work together on a single task, improving

overall system performance and efficiency.

Characteristics:
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1. Architecture:

Multiple CPUs/Cores: The system contains two or more CPUs or cores that work in parallel
to execute instructions. These processors share the system's resources, such as memory and I/O

devices.

Interconnection Network: A communication network or bus connects the processors and
facilitates data exchange between them. This network can be a shared bus, crossbar switch, or

other interconnect technologies.

Shared Memory: In many multiprocessor systems, all processors have access to a common

memory space, which requires synchronization mechanisms to manage concurrent access.




2.

4.

Performance:

o

Parallel Processing: Multiple processors can execute different instructions simultaneously,

leading to significant performance improvements for tasks that can be parallelized.

o Increased Throughput: The system can handle more operations per unit time compared to a
single-processor system, enhancing overall throughput.
o Load Balancing: Workload can be distributed among processors, leading to more efficient
utilization of system resources.
Cost and Complexity:
o Higher Cost: More CPUs or cores increase the system's cost due to additional hardware and
complexity in design and implementation.
o Complex Design: Multiprocessor systems require sophisticated design to manage processor
synchronization, communication, and memory consistency.
Applications:
o Servers and Workstations: Often used in high-performance computing environments where
parallel processing is crucial, such as web servers, database servers, and scientific computing.
o Enterprise Systems: Utilized in environments requiring high reliability and availability,
including financial systems and large-scale enterprise applications.
o High-Performance Computing (HPC): Employed in supercomputers and data centers to
handle complex simulations, data analysis, and large-scale computations.
Types:
o Symmetric Multiprocessing (SMP): All processors have equal access to the memory and I/O
devices, and each processor runs a copy of the operating system.
o Asymmetric Multiprocessing (AMP): One processor, called the master, controls the system,
while the other processors, called slaves, perform specific tasks as directed by the master.
o Cluster Computing: Multiple computers (or nodes) work together as a single system, often
connected by a network, to provide high-performance computing capabilities.
Advantages:

Enhanced Performance: Capable of handling multiple tasks simultaneously, leading to

improved performance for multi-threaded and parallel applications.

Scalability: Systems can be scaled by adding more processors or cores, allowing for increased

computational power and capacity.




e Improved Reliability: Redundancy and fault tolerance can be built into multiprocessor

systems, increasing system reliability and availability.
Disadvantages:

e Increased Complexity: Design and management of multiprocessor systems are more complex

due to issues related to synchronization, communication, and consistency.

e Higher Cost: Additional hardware and the need for sophisticated software and management

tools contribute to higher costs.

e Software Compatibility: Not all software is designed to take advantage of multiple processors,

which can limit the benefits of the system.

16.5 Distributed Systems

A distributed system is a network of independent computers that appears to its users as a single coherent system.
These computers communicate and coordinate their actions by passing messages, working together to achieve a
common goal. Distributed systems are designed to share resources, manage tasks, and ensure reliability across

multiple machines, often spread over a wide geographical area.

A DISTRIBUTED SYSTEM
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Characteristics:
1. Geographical Distribution:

o Location Independence: Components of a distributed system can be located in different

physical locations, ranging from different rooms in a building to different cities or countries.




o Networked Communication: These systems rely on networks (e.g., local area networks
(LANs), wide area networks (WANs), or the internet) to enable communication between

distributed nodes.
2. Resource Sharing:

o Shared Resources: Resources such as files, databases, and computing power are shared among

the nodes in the system. This enables efficient use of hardware and software resources.

o Scalability: Distributed systems can scale horizontally by adding more nodes to the network,

accommodating increased loads and demands.
3. Fault Tolerance and Reliability:

o Redundancy: Redundant components and data replication are used to enhance reliability and

ensure continuous operation even if some nodes fail.

o Fault Detection and Recovery: The system must detect failures and recover from them to

maintain its operations, often through mechanisms like checkpointing and failover.
4. Concurrency and Coordination:

o Parallel Processing: Multiple nodes can process tasks simultaneously, improving performance

and throughput.

o Synchronization: Coordinating actions between distributed nodes requires synchronization

mechanisms to ensure consistency and avoid conflicts.
5. Transparency:

o Access Transparency: Users interact with the system as if it were a single entity, without being

aware of the underlying distribution of resources.

o Location Transparency: Users do not need to know the physical location of resources or

services they are accessing.
Types of Distributed Systems:
1. Distributed Computing:

o Grid Computing: Utilizes a network of dispersed computers to work on a shared task, often

used for scientific research and large-scale computations.

o Cloud Computing: Provides on-demand access to computing resources and services over the

internet, allowing users to scale resources up or down as needed.
2. Distributed Databases:

o Replication: Copies of data are maintained on multiple nodes to ensure availability and

reliability.




o Partitioning: Data is divided and distributed across different nodes to improve performance

and manageability.
3. Distributed File Systems:

o Network File Systems (NFS): Allows files to be shared and accessed over a network as if they

were on a local disk.

o Distributed File Systems: Spreads files across multiple servers and provides a unified interface

for file access.
4. Distributed Applications:

o Service-Oriented Architecture (SOA): Applications are built as a collection of services that

communicate over a network, promoting modularity and reusability.

o Microservices: A variant of SOA, where applications are decomposed into smaller, loosely-

coupled services that interact over well-defined interfaces.
Advantages:
e Scalability: Easily scales by adding more nodes to handle increased loads and demands.
e Resource Utilization: Efficiently uses resources by leveraging distributed nodes.

e Fault Tolerance: Redundant components and data replication increase reliability and

availability.
Disadvantages:

o Complexity: Designing and managing distributed systems is more complex due to issues like

communication, synchronization, and fault tolerance.
e Latency: Network communication can introduce latency, affecting performance.

e Security: Distributing resources across multiple locations can create security challenges that

need to be addressed.

16.6 Scalability and Reliability

Scalability refers to a system’s ability to handle increasing workloads or accommodate growth without
compromising performance. It ensures that as demand grows, a system can expand its capacity either by adding
more resources (scaling up) or by adding more nodes or instances (scaling out). Scalability is crucial for

maintaining efficient performance and ensuring that systems can grow alongside business needs or user demands.

Types of Scalability:




1. Vertical Scalability (Scaling Up):
o Involves adding more power (CPU, RAM, storage) to an existing server or node.

o Suitable for applications that require high performance from a single node or where the

application does not support distributed processing.
2. Horizontal Scalability (Scaling Out):
o Involves adding more nodes or instances to distribute the workload across multiple machines.

o Common in cloud computing environments and distributed systems where tasks can be

parallelized and distributed across different servers.

Scalability Challenges:

o Bottlenecks: As a system scales, certain components may become bottlenecks if they cannot handle the

increased load.

e System Limitations: Physical and architectural limitations may impact the effectiveness of scaling

strategies.

e Performance Impact: Ensuring that performance remains optimal as the system grows requires careful

planning and architecture.
Reliability:

Definition and Importance: Reliability refers to a system’s ability to continuously operate correctly and
consistently over time. A reliable system minimizes downtime and ensures that it performs its intended functions
accurately. Reliability is essential for maintaining trust and meeting user expectations, particularly in critical

applications such as financial systems, healthcare, and infrastructure.
Key Concepts in Reliability:
1. Fault Tolerance:

o The ability of a system to continue operating properly in the event of a failure of some of its

components.

o Implemented through redundancy (e.g., backup systems, failover mechanisms) and error

detection and correction techniques.
2. Redundancy:

o Involves having multiple instances of critical components or systems to ensure that a failure in

one does not disrupt overall functionality.

o Types include hardware redundancy (e.g., redundant power supplies, RAID storage) and

software redundancy (e.g., duplicated services, load balancing).




3. Error Detection and Recovery:
o Techniques to identify and correct errors that occur during operation.
o Includes mechanisms such as error codes, checksums, and automatic failover processes.
Reliability Challenges:

e Single Points of Failure: Identifying and mitigating potential points where a failure could impact the

entire system.
e Complexity: As systems grow in complexity, ensuring reliability becomes more challenging.

e Maintenance and Updates: Balancing reliability with the need for regular maintenance and updates to

address issues and improve functionality.

Evaluating System-Level Scalability and Reliability

Evaluating system-level scalability and reliability involves assessing various aspects of a computing system to
ensure it can grow with increasing demands and maintain consistent performance and operation. This process
includes understanding and testing how well a system scales, identifying potential bottlenecks, and ensuring that

the system remains reliable under different conditions.
Evaluating System-Level Scalability
1. Performance Testing:

e Load Testing: Measure how the system performs under different levels of load, from normal to peak

usage. This helps identify the system's capacity limits and performance characteristics.

e  Stress Testing: Push the system beyond its normal operational limits to observe how it behaves under

extreme conditions. This helps identify potential points of failure and bottlenecks.
2. Scalability Metrics:

e  Throughput: Measure the amount of work the system can handle over a given period. Higher throughput

indicates better scalability.

e Latency: Assess the time it takes for the system to respond to requests. Lower latency with increased

load indicates effective scaling.

¢ Resource Utilization: Monitor how system resources (CPU, memory, network bandwidth) are used as

the system scales. Efficient resource utilization is a sign of good scalability.
3. Capacity Planning:

e  Predictive Modeling: Use historical data and trends to predict future growth and resource needs. This

helps in planning for future expansions.




e Scalability Testing: Test various scaling strategies (e.g., vertical vs. horizontal scaling) to determine the

most effective approach for your system's needs.

4. Bottleneck Identification:

e Profiling Tools: Use performance profiling tools to identify bottlenecks in the system. This includes

detecting slow components or resource constraints.

e Optimization: Implement optimization techniques to address identified bottlenecks and improve overall

scalability.

5. Architectural Considerations:

e Scalable Design Patterns: Evaluate if the system architecture employs scalable design patterns (e.g.,

microservices, distributed databases).

o Elasticity: Assess the system's ability to dynamically allocate and deallocate resources based on current

demand.
Evaluating System-Level Reliability
1. Fault Tolerance Testing:

e Redundancy Testing: Verify the effectiveness of redundant components (e.g., backup systems, failover

mechanisms) in maintaining system operation during failures.

e Failure Injection: Simulate failures to test how the system responds and recovers. This helps identify

weaknesses in the fault tolerance design.
2. Reliability Metrics:

e Mean Time Between Failures (MTBF): Measure the average time between system failures. Higher

MTRBEF indicates better reliability.

e Mean Time to Repair (MTTR): Measure the average time required to repair and restore the system

after a failure. Lower MTTR indicates more efficient recovery processes.

e Uptime: Track the percentage of time the system is operational and available. Higher uptime indicates

greater reliability.
3. Error Handling:

e Error Detection and Correction: Evaluate the mechanisms in place for detecting and correcting errors.

This includes error codes, checksums, and automated recovery processes.

e Logging and Monitoring: Assess the effectiveness of system logging and monitoring in detecting and

diagnosing issues. Comprehensive logging helps in identifying root causes of failures.

4. Redundancy and Backup:




e Backup Testing: Ensure that backup systems and processes are reliable and can be quickly restored in

case of failure.

¢ Failover Mechanisms: Test automatic failover mechanisms to ensure seamless transitions to backup

systems without disrupting operations.
5. Maintenance and Updates:

e Scheduled Maintenance: Evaluate the impact of scheduled maintenance on system reliability. Regular

maintenance should minimize disruptions and improve overall system health.

e Patch Management: Assess the process for applying patches and updates to address security

vulnerabilities and improve system stability.

16.7 Conclusion

The study of system architectures provides crucial insights into the various approaches used to design and optimize
computing systems, addressing different needs and challenges. Single-processor systems represent the
foundational architecture, focusing on a single CPU to perform all computing tasks. These systems are simpler
and cost-effective but can struggle with performance limitations when faced with high workloads or complex
applications. As computing demands grow, single-processor systems often reach their capacity, necessitating the

exploration of more advanced architectures.

Multiprocessor systems, which utilize multiple CPUs, offer a significant advancement by allowing parallel
processing. This design improves performance and efficiency by distributing tasks across several processors,
enabling better handling of intensive computations and multitasking. On a broader scale, distributed systems
extend the principles of multiprocessing by connecting multiple machines over a network, each contributing to
the overall computational power. This approach enhances both scalability and fault tolerance, making it suitable

for large-scale and geographically dispersed applications.

Scalability and reliability are critical aspects of evaluating system architectures. Scalability ensures that a system
can expand its resources to accommodate increasing workloads, whether by adding more power to existing
machines (vertical scaling) or integrating additional machines into the network (horizontal scaling). Reliability
focuses on maintaining consistent performance and availability, crucial for minimizing downtime and ensuring
uninterrupted service. Together, these considerations are vital for building robust and adaptable computing

environments capable of meeting the evolving demands of modern technology.

16.8 Unit Based Questions & Answers




1. What are the main types of system architectures, and how do they differ?

Answer: The main types of system architectures include single-processor systems, multiprocessor systems, and

distributed systems.

e Single-Processor Systems: These have a single central processing unit (CPU) that handles all tasks.
They are straightforward and cost-effective but may face performance bottlenecks with increasing

workloads.

e  Multiprocessor Systems: These systems use multiple CPUs to handle tasks in parallel, which improves

performance and efficiency by distributing the computational load.

o Distributed Systems: These involve a network of interconnected computers that work together to
perform tasks. They offer scalability and fault tolerance by leveraging the resources of multiple machines

across various locations.
2. What is the significance of scalability in system architecture?

Answer: Scalability refers to a system's ability to handle increasing workloads by adding resources without
significantly compromising performance. It is crucial for adapting to growing demands and ensuring that systems
can expand efficiently. Scalability can be achieved through vertical scaling (adding more power to existing
machines) or horizontal scaling (adding more machines to the network). Effective scalability ensures that systems

remain functional and efficient as user demands and data volumes grow.
3. Describe the concept of reliability in system architectures.

Answer: Reliability in system architectures pertains to a system's ability to perform consistently and maintain
operational stability over time. It involves minimizing downtime, preventing system failures, and ensuring that
the system can recover from issues quickly. Reliable systems incorporate features such as fault tolerance,
redundancy, and error correction mechanisms to maintain performance and availability even in the face of

hardware or software failures.
4. What are the key differences between single-processor systems and multiprocessor systems?
Answer:

e Single-Processor Systems: These systems are characterized by a single CPU that manages all processing
tasks. They are simpler and less expensive but may experience performance limitations under heavy

loads.

e  Multiprocessor Systems: These use multiple CPUs to process tasks simultaneously, which improves
performance and allows for better handling of complex computations. Multiprocessor systems can

execute multiple instructions in parallel, enhancing overall system efficiency and responsiveness.
5. How do distributed systems enhance scalability and reliability?

Answer: Distributed systems enhance scalability by distributing tasks across multiple machines, which can be

added or removed as needed to handle varying workloads. This horizontal scaling approach allows for a flexible




and scalable system that can grow with demand. Reliability is improved through redundancy and fault tolerance,
as the failure of one machine does not necessarily lead to system failure. Distributed systems often incorporate
backup and failover mechanisms to ensure continuous operation and minimize the impact of any single point of

failure.
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